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ABSTRACT

ROBUST AIRLINE SCHEDULING WITH
CONTROLLABLE CRUISE TIMES AND CHANCE

CONSTRAINTS

Aslıgül Serasu Duran

M.S. in Industrial Engineering

Supervisor: Prof. Dr. M. Selim Aktürk

Co-Supervisor: Asst. Prof. Dr. Sinan Gürel

July, 2012

This is a study on robust airline scheduling where flight block times are considered

in two parts as cruise time and non-cruise time. Cruise times are controllable and

non-cruise times are random variables. Cruise time controllability is used together

with idle time insertion to handle uncertainty to guarantee passenger connection

service levels while ensuring minimum costs. The nonlinearity of these cost func-

tions are handled by representing them via second order conic inequalities. The

uncertainty in non-cruise times are modeled through chance constraints on pas-

senger connection service levels, which are expressed using second order conic

inequalities using the closed form equations. Congestion levels of origin and des-

tination airports are used to decide variability for each flight. Computational

study shows exact solutions can be obtained by commercial solvers in seconds for

a single hub schedule and in minutes for a 4-hub daily schedule of a major US

carrier.

Keywords: chance constraints, congestion, airline scheduling, cruise time control-

lability, passenger connections, service level.
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ÖZET

ŞANS KISITLI VE DENETLENEBİLİR UÇUŞ
SÜRELERİNE SAHİP DAYANIKLI HAVAYOLU

ÇİZELGELEME MODELİ

Aslıgül Serasu Duran

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. M. Selim Aktürk

Eş-Tez Yöneticisi: Yrd. Doç. Dr. Sinan Gürel

Temmuz, 2012

Bu çalışma uçuş blok zamanlarının seyir süresi ve seyir dışı süre olarak iki kısımda

incelendiği dayanıklı bir çizelgeleme üzerinedir. Seyir zamanları kontrol edilebilir

karar değişkenleriyken seyir dışı süreler rassal değişkenler olarak alınmıştır. Seyir

zamanlarındaki kontrol edilebilirlik ve boş süre yerleştirme beraber kullanılarak

belirsizlikleri dengelemek ve yolcu bağlantı hizmet seviyelerini en düşük maliyetle

garanti altına almak amaçlanmaktadır. Doğrusal olmayan maliyet fonksiyonları

ve şans kısıtları ikinci dereceden konik eşitsizlikler ile ifade edilerek eniyi çözümler

hızlıca elde edilebilmiştir. Büyük bir Amerikan havayolları için yapılan sayısal

hesaplamalar, tek ana üslü çizelge için saniyeler, 4 üslü çizelge içinse dakikalar

içinde çözüm elde edilebildiğini göstermiştir.

Anahtar sözcükler : şans kısıtları, uçuş çizelgeleme, dayanıklı çizelgeleme, gürbüz

çizelgeleme, konik eşitsizlikler.
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Chapter 1

Introduction

Using operations research tools in airline industry became popular after the dereg-

ulation of US airline industry which resulted in a high competition among car-

riers. Companies started to lose money when trying to keep up with the prices

of low-cost carriers and consequently they started to employ operations research

methods to increase their profits. Airline scheduling is one of the major operations

research tools that is currently being used in airline industry.

An airline schedule provides information for a specified set of flights such as

origin and destination, the arrival and departure times or the assigned aircraft

and crew. Developing schedules for airline operations is a challenging mathemat-

ical programming problem considering the competitive environment, operations

consisting of many steps and expensive resources. One of the major challenges

in airline scheduling models is that problem sizes are very large. Considering the

schedule generation, fleet assignment, crew assignment and passenger itineraries

in a single model will necessitate the use of millions of variables and constraints.

Generating flight schedules is not enough. There are many disruptions that

occur which cause operational delays and decrease schedule performances. Ex-

amples to disruptions can be given as problems with aircraft, crew unavailability,

gate shortages, security delays, unexpected delays during the loading of a plane,

1



CHAPTER 1. INTRODUCTION 2

weather conditions or even natural disasters. All of these disruptions have differ-

ent effects on the flight block times. Accurately reflecting the effect of a disruption

on flight block times is not an easy task.

Another challenge is the managing of these disruptions. Alternative options

have been developed but this is not an easy procedure. A delay resulting from a

natural disaster may result in cancellation of all following flights making it im-

possible to continue the original schedule whereas a delay due to crew illnesses

can sometimes be solved easily by using back-up crews or switching crew pairs.

It is important for a disruption management model to include as many recovery

options and alternatives as possible but this results in an increase in the prob-

lem complexity. Schedules that can handle these delays which are generated in

reasonable time are needed. This makes it important to have flexible or robust

schedules. Robust schedules are less vulnerable to disruptions and are easier to

repair in case of a disruption.

Airline practitioners try to maintain this flexibility by inserting idle time into

schedules. However, inserting more idle time than needed is not favorable since

expensive equipment such as aircraft is kept idle. Another tool is to change

the speed of the aircraft. Aircraft can fly faster to reduce the cruise time in

exchange for increased fuel costs. However, these decisions are made locally and

the propagation of delays are not taken into account in majority of cases. In this

study, we develop a model that uses both idle time insertion and aircraft speed

control to output a robust schedule of minimum costs that satisfy given passenger

connection service levels. Thinking over all passenger connections also allows us

to consider delay propagation. This thesis provides several major contributions

to airline scheduling literature.

First of all, it is very important to take variability in block times into account

when studying robust airline scheduling. Flight cruise times are not affected

significantly by variability so we start by taking an initial schedule, where a flight

block-time is considered in two parts: cruise time and non-cruise time. Non-cruise

times are taken as random variables and the uncertainty is modeled through

chance constraints. In this study, fast and exact solutions to this large size model
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of probabilistic constraints and non-linear cost components are provided. Chance

constraints are transformed to second order conic inequalities from the closed form

expressions for these probabilistic constraints. The nonlinearity arising from the

cost function is also transformed using second order conic inequalities. Therefore,

we are able to solve a nonlinear mixed integer model in reasonable computation

time using commercial solvers like Cplex.

Another important contribution is incorporating origin and destination infor-

mation of a flight when calculating non-cruise time variability. It is known that

airport congestion levels are different than each other, and an aircraft taking off

from a non-hub location spends lot less time for take off compared to an aircraft

that originates from a hub location; with the same concept applying to landing

times. Therefore, the variability of non-cruise times in this study are calculated

separately for each flight, depending on the origin-destination pairs.

To continue with, idle times actually are very expensive to put into a schedule

since aircrafts are not utilized during that time slot and a lot of revenue is lost.

In most situations, it can be cheaper not to insert idle time to the schedule but

cover the delay time by making the aircraft fly faster in exchange for increased

fuel costs. In this thesis, uncertainty is covered through both idle time insertion

and speed controllability to achieve minimum costs.

Moreover, in this study we superimpose the aircraft network and passenger

connection network. Considering them together rather than having a sequential

approach allows us to achieve more realistic results and more accurately evaluate

the interaction between these two networks.

In the next chapter, an extensive literature review is provided. Detailed back-

grounds on robustness, airline scheduling, disruption management techniques in

airline scheduling, cruise time and fuel cost relationship and conic programming

are given.

In Chapter 3, the problem environment is described. Extensive information

on problem parameters and decision variables are given. The properties of the

random variable in the model is described in detail. The structure of the service
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level decisions and the fuel cost function is analyzed. In addition, a numerical

example is provided to explain how the model works on an example.

Chapter 4 is devoted to the problem formulation and the mathematical model.

The closed form expression of the chance constraints and the conic reformulation

of the model are also described in this chapter.

An extensive computational study is given in Chapter 5. In two separate

sections, results for a single hub schedule and a 4-hub schedule of a major US

carrier are discussed. Computation time analysis is done for the two schedules

separately. Finally, the thesis is concluded in Chapter 6.



Chapter 2

Literature Review

In this chapter, a literature review on related research areas to this thesis will

be provided. In the following sections, background information on robustness,

airline scheduling, disruption management in airline operations, flight cruise time

controllability and fuel cost information and second order cone programming are

summarized.

2.1 Robustness

Robustness incorporated into a system tries to ensure the system performs well

even if the conditions do not fit the previous assumptions and there are pertur-

bations or uncertainty. However, it is not in stone what makes up for a robust

solution. There are different metrics used to quantify the robustness of a solution

and also different methodologies are used to incorporate robustness into a model.

Beyer and Sendhoff (2007) worked on a comprehensive survey on robust opti-

mization. Their work includes information on methods to measure and evaluate

robustness and the different approaches to robust optimization in literature. They

also discuss benefits and shortcomings of the different methods. Bertsimas et al.

(2011) also conducted an extensive study on robust optimization. In their work,

5



CHAPTER 2. LITERATURE REVIEW 6

they adress important issues such as tractability of robust optimization prob-

lems, the probability guarantees of problem solutions and the flexibility provided

by robust optimization.

In our study, we use chance constraints to handle the uncertainty to output

a robust schedule. There are many studies on chance constrained programming

and researchers took many different approaches. Luedtke and Ahmed (2008)

work on checking feasibility of regions defined by chance constraints by develop-

ing a Monte Carlo based sample approximation. Nemirovski and Shapiro (2006)

develop computationally tractable convex approximations for the chance con-

strained problems. They extend their work to cases where the data distributions

are not known exactly but belong to a convex compact set. Calafiore and Ghaoui

(2006) discuss linear programming models for radial distributions of the data and

for data that is known to belong to a given set of distributions.

2.2 Airline Scheduling Process

An airline scheduling process consists of a series of operations that follow each

other. The first step in the process is the generation of an initial schedule which

answers the questions of which markets to serve in what frequency. Then fleet

assignment problem follows where each flight is assigned an aircraft type. The

output information from this step is used in aircraft maintenance routing problem

where the aircraft from airline’s fleet is assigned to a flight considering the main-

tenance requirements. In the last step, crew assignment problem is considered to

assign crew to each flight incurring minimal cost. Extensive information on flight

operations of airlines can be found in Barnhart and Cohn (2004); Midkiff et al.

(2009) for interested readers.

Considering all these steps in the scheduling process result in problems that

are not manageable since considering the schedule generation, fleet assignment,

maintenance routing, crew assignment and passenger itineraries in a single model

will necessitate the use of millions of variables and constraints. Some researchers
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take a sequential approach to get optimization results that are closer to a full

optimization model. Another approach is to combine several of these problems

in a single integrated model to get better results. Various integrated models are

introduced in Papadakos (2009) with compared solutions to classic approaches

in literature. Still, solving these problems deterministically result in unforeseen

operational costs since uncertainties such as delays and disruptions are not con-

sidered.

2.3 Disruption Management in Airline Opera-

tions

During the implementation of airline schedules, many disruptions are faced that

compromise matching up with the initial schedule and result in operational delays.

The continuous increase in fleet sizes, number of flights and number of passengers

result in congestions which make the effects of delays very significant. With

new destinations added each day, amount of passenger connections also grow and

impacts of delay propagation cannot be avoided. All of these problems necessitate

robust schedule generations that are less vulnerable to these delays, or recovery

methods that help handling these delays in a short response time. An extensive

review for irregular airline operations can be found in Barnhart (2009); Clausen

et al. (2010). Two main methods for handling disruptions are robust planning

and recovery models.

2.3.1 Robust Planning

Robust scheduling is a proactive scheduling model that is more flexible to schedule

disruptions and offers a plan that reduces the impacts of a disruption in case one

happens. Robust schedules can offer better use of resources and considerable

cost savings for airlines. Ageeva and Clarke (2000) provide a wide study on how

airline optimization problems can be made robust and suggests new methods for
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building robust schedules. Robust airline scheduling has been studied by many

researchers with different metrics used to define and incorporate robustness into

schedules.

Airlines put slack times into the schedules to ensure robustness most of the

time. However, slack time is keeping expensive aircraft idle losing efficiency which

is not preferred. Moreover, putting slack time simply without an overall analysis

of the system fails to capture later effects of uncertainties and delays in the

network. There are a few studies addressing the problem of slack distribution

and its effects on schedule performances.

In the robust aircraft maintenance routing study of Lan et al. (2006), flight

delays are categorized into two as propogated and nonpropogated delay. An

aircraft routing is a sequence of flights flown by a single aircraft, so a delay in one

of these flights propogates to the following if there is no slack time in between.

The authors suggest that propogated delay can be reduced by assigning slack

optimally to aircraft routings.

Chiraphadhanakul and Barnhart (2011) study a model that re-allocates ex-

isting schedule slack to achieve a more robust schedule. They propose alternative

objective functions that result in more robust solutions with respect to differ-

ent performance evaluation metrics. They use delay propogation and passenger

delays as metrics to evaluate the resulting schedules. The study shows that mi-

nor schedule adjustments to the original schedule can result in significant overall

schedule performance improvements.

Ahmadbeygi et al. (2010) conducted a study to reduce delay propogation by

redistributing existing slack, while leaving the original fleeting and crew schedul-

ing decisions unchanged. They show that re-allocating the existing slack to the

flight connections that are most prone to delay propagation, downstream impacts

can be reduced without changing planned crew or fleeting costs and exceeding

planned budgets.

There are few other studies addressing the later affects of delays. Delay prop-

agation for airline networks are analyzed and robustness measures are developed
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in Arıkan et al. (2012). They use a stochastic model that captures the random-

ness in the block-time of a flight and the propogation of this randomness through

the flight network. Dunbar et al. (2012) developed a formulation to minimize

propogated delay costs while integrating aircraft routing and crew pairing prob-

lems.

Schedule performances and affects of schedule delays on these are other areas

of study under robust airline scheduling. Arıkan and Deshpande (2012) analyze

the impact of scheduled block time to the on time performances. Burke et al.

(2010) develop a multi-objective robust scheduling approach where they consider

schedule reliability and schedule flexibility as two robust schedule objectives and

show that increased flexibility and reliability improve on-time performances.

Various methods are used to capture uncertainty in flight times in the robust

scheduling models. We use chance constraints to model the uncertainty, which

is studied by few other researchers. Sohoni et al. (2011) take an alternative ap-

proach and model block-time distributions using chance constraints and perturb

departure times of an initial schedule to achieve improved passenger and net-

work service levels and also maximize operational profits. To solve the model,

they develop linear approximations on chance constraints. Marla and Barnhart

(2010) employ two approaches to robust airline optimization focusing on the air-

craft routing problem, the extreme value-based approach and chance constrained

programming approach and they provide trade-offs between the different models.

Chance-constrained programming is an old technique appearing in the work of

Charnes and Cooper (1959). In our study, we also model the variability using

chance constraints.

2.3.2 Recovery Models

Recovery models or rescheduling models are more of a reactive scheduling mea-

sure that focuses on reoptimising a schedule after a disruption occurs. As airline

transportation industry grows, frequency of disruptions increase and recovery
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decisions should be made in minutes of times, which makes this an area of im-

portance. One major difficulty of recovery problems is to satisfy constraints such

as maintenance requirements, balance requirements, crew union constraints and

passenger itinerary constraints and to generate recovery options in seconds of

time. Building robust schedules make it easier to recover a schedule in case of a

disruption. A summary on recovery literature is provided for interested readers.

Thengvall et al. (2001) present multi-commodity network type models for con-

structing a recovery schedule for all aircraft operated by a large carrier following

a hub closure. Rosenberger et al. (2003) modeled the aircaft recovery problem

as a set packing problem where each flight leg is either included in one route

or cancelled. As an addition, they also consider airport disruptions that occur

for example when weather conditions change the capacity of a given airport. In

the study of Eggenberg et al. (2010) a flexible model named constraint specific

recovery network is introduced for solving airline recovery problems. A dynamic

programming algorithm is used for recovery network generation and a column

generation algorithm is used to solve the problem. A heuristic method to solve

the aircraft recovery problem which involves reassignments of aircraft to flights,

delaying of flights and cancellations of flights is discussed in Love et al. (2002).

Recovery and rescheduling models provide many options to handle disruptions

after the disruptions occur but uncertainties can also be considered before they

occur by robust planning. The study by Eggenberg (2009) combines robustness

and recovery for airline schedules. The model results in schedules that are more

robust and more recoverable than the original schedule, with lower recovery costs.

2.4 Cruise Time and Fuel Costs

Fuel costs make up the most of airline operational costs and airlines developed

an evaluating system named as cost index to manage fuel costs. Cost index is

defined as the ratio of time related cost per minute of flight of an airline operation

to the cost of fuel per kg of fuel in Airbus (1998). The cost index provides a tool
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to control fuel burn and trip time between the two extremes of minimum fuel

burn and maximum range to minimum time and maximum fuel burn. Cost

index provides an essential tool when optimizing cost by trading increased fuel

burn for reduced trip time for example. It is provided as an index to the Flight

Management System (FMS) of an aircraft and FMS decides all flight parameters

such as cruise speed.

Still, making the trip time vs. fuel burn decision locally for each flight is not

a very effective method since effects of any modification propagates through the

whole flight network. A global optimization tool that considers the cost index and

cruise time controllability is needed. Majority of airline scheduling and disruption

management research assumes that flight cruise times are constant. In fact, flight

cruise times can be altered by changing the speed of the aircraft in exchange for

differing fuel costs.

In the recovery model proposed by Aktürk et al. (2012), flight cruise speeds are

taken as controllable providing a recovery option after a disruption occurs. In our

study, cruise time controllability is used to build a robust schedule where cruise

times are taken as decision variables and they can be shortened with increased fuel

costs and this is taken as a measure to reduce unnecessary slack in the schedule.

2.5 Second Order Cone Programming

In our study, instead of developing approximations, chance constraints are trans-

formed to second order conic equations and therefore can be solved exactly and

fast. As far as we know, these methods have not been applied in airline schedul-

ing literature before. Extensive information on conic programming and conic

representable functions can be found in Ben-Tal and Nemirovski (2001).

Second order cone programming has begun to be applied in optimization and

operation research in recent years. Günlük and Linderoth (2010) show how to
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express the convex hull via conic quadratic constraints for several classes of prob-

lems. Aktürk et al. (2009) studied a conic quadratic reformulation for a machine-

job assignment problem where processing times are controllable. Calafiore and

Ghaoui (2006) show that for radial distributions on the data, probability con-

straints can be converted into second-order cone constraints.

2.6 Summary

During the implementation of airline schedules, disruptions occur that compro-

mise the schedule and result in operational delays. The continuous increase in

fleet sizes, number of flights and number of passengers result in congestions which

make the effects of delays very significant. With new destinations added each day,

amount of passenger connections also grow and impacts of delay propagation can

not be avoided. A flexible schedule generations scheme that can handle these de-

lays during implementation or propose a recovery alternative after the disruption

is needed.

Recovery models and robust scheduling models answer these needs and there

is a growing literature addressing them. Our study is on a robust scheduling ap-

proach where inserted slack time is balanced by cruise speed controllability which

results in less operational costs. Few studies address slack-time redistribution but

there is no research that handles cruise speed controllability as a trade-off to slack

times.

We use chance constraints to model the uncertainty in flight block times.

Other studies with the same approach develop approximations to solve the chance

constraints whereas we transform them to second order cone equations and solve

exactly in very short time.



Chapter 3

Problem Definition

Given an initial published schedule, the model that we work on uses both idle

time insertion and cruise time controllability to output a robust schedule of mini-

mum cost that satisfy given passenger connection service levels. To achieve that,

aircraft routings, flight sequence and passenger itineraries of an initial schedule

is used to design a more robust schedule alternative. Block time of flights in

the original schedule are considered in two parts as cruise and non-cruise times.

Cruise times are allowed to be shortened via speeding of the aircraft, while non-

cruise times are represented with random variables and their duration change

regarding the variability. The model adjusts the departure times in the origi-

nal schedule by perturbing the original flight durations and inserting idle time

between flights.

While building the robust schedule, the service level of passenger connections

are set to achieve a desired level. A passenger connection between two flights F1

and F2 is possible if the departure time of F2 is later than and within a time

interval of the arrival time of F1, the origin of F2 is the same as the destination of

F1 and the destination of F2 is different than the origin of F1. Each connection

has a service level expressed by chance constraints and will be described in detail

later in this chapter. The overall service level of the schedule is a weighted average

of individual connection service levels.

13
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The variability of flight non-cruise times are affected by the congestion in the

airports that the flights take-off from and land to. The airport congestion also

affects the turnaround time the flight spends in an airport. Turnaround times

also depend on aircraft types. Note that delays are not allowed in this study, so

the departure time of a flight cannot be set earlier than the previous arrival time

of its aircraft plus the necessary turnaround time.

In this section the parameters of the model will be given and described. The

properties of the random variable will be given with the associated distribution

function. The calculation of passenger service levels will be explained in detail

and the cost function related to cruise time and speed change will be analyzed.
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Parameters

J : set of all flight legs

T : set of aircraft

B : set of airports

ti : the aircraft of flight i ∈ J , ti ∈ T
Oi : origin of flight i ∈ J
Di : destination of flight i ∈ J

FILi : number of passengers in flight i ∈ J
fui : original cruise time duration of flight i ∈ J

TPij : turntime needed to connect passengers between flights i, j ∈ J
TAij : turntime needed to connect aircraft between flights i, j ∈ J

PASij : normalized passenger connection level between flights i, j ∈ J
Ct : fuel burn rate of aircraft t ∈ T in tons of fuel per minute

It : unit idle time cost of aircraft t ∈ T in dollars per minute

wi : lower bound for the departure time of flight i ∈ J
vi : upper bound for the departure time of flight i ∈ J
f li : lower bound for the cruise time of flight i ∈ J
fui : upper bound for the cruise time of flight i ∈ J
Pi : set of flights that has a passenger connection with flight i ∈ J

PAIR : set of pairs of consecutive flights of the same aircraft

eb : airport congestion coefficient for b ∈ B
γ : required service level

cf : fuel cost per ton of aircraft fuel

Decision Variables

xi : departure time of flight i ∈ J
si : idle time after flight i ∈ J
fi : cruise time of flight i ∈ J
γij: service level for passenger connections between i, j ∈ J

In the model, J represents the set of flights in the initial schedule, T represents

the set of aircraft and PAIR represents the set of flight duals that are flown

consecutively by the same aircraft. For a flight i ∈ J , ti represents the aircraft

assigned to that flight, FILi is the number of passengers in the flight and fui
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is the ideal duration of the flight which is the scheduled duration in the initial

plan. This ideal duration in flight operations is decided by airlines using the cost

index ratio described earlier. This duration is the result of the setting that has

the minimum fuel cost. So decreasing this duration results in higher fuel costs.

Since this is the minimum cost time setting, it is taken as the upper bound for

the flight cruise time duration. In this model, f li , is the allowed lower bound for

cruise time of flight i, where f li will result in the highest fuel costs in this case.

There is a lower bound on the cruise time, because speeding can only be done up

to some extent. Higher speeds may not comply with the aircraft specifications,

or cause noise levels that are disturbing to passengers and therefore avoided.

Pi represents the set of flights for which i has an immediate passenger con-

nection with in the destination point of i, i.e. set Pi consists of following flights

that passengers from flight i continue their itineraries with. Flights having the

same destination as origin of flight i are not allowed in the connection set. An

important parameter is the window for departure time of flight i, which is rep-

resented by [wi, vi]. Ensuring the departure time of a flight is within a certain

time frame might be important for marketing and demand purposes, as the model

works with perturbing the original departure times of flights.

For a given aircraft t ∈ T , Ct equals the fuel burn rate for aircraft in tons

per minute where cf gives the fuel cost per ton of aircraft fuel and It equals idle

time cost of aircraft in dollars per minute. For flights (i, j) ∈ PAIR, TAij repre-

sents the turnaround time needed by the aircraft between two consecutive flights.

The realized turnaround times are dependent to airport congestion coefficients

that measure the congestion level of the airport that the turnaround takes place.

They are also affected by the type of aircraft, since each aircraft needs a different

amount of time for this operation. 1 For each i ∈ J , we have decision variables

xi, si and fi, representing departure time, idle time after the flight and cruise

time of the flight respectively.

1These congestion coefficients are provided in Table 5.3, and are explained in detail in §5.
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3.1 Random Variable Ai

The random variable in our model, Ai, for i ∈ J represents the portion of block

time except the cruise time. Arıkan and Deshpande (2012) suggest that flight

block times fit a Loglaplace distribution, so Ai’s are assumed to be Loglaplace

variables. Each Ai is associated with two parameters of the Loglaplace distri-

bution; α and βi. βi are calculated by multiplying parameter β by a function

of two congestion coefficients corresponding to origin and destination airports

of the flight. Therefore, the mean and variance of the random variable change

depending on the airports. In other words,

βi = β · (eOi)4 · (eDi)4

where Oi and Di are the origin and destination airports of flight i ∈ J . Ai are

assumed to be symmetric Loglaplace random variables, therefore the tail grows

one-sided, i.e., depending on the level of variability, the mean of distribution

grows.

3.1.1 Loglaplace Distribution

The properties for a symmetric Loglaplace random variable X with parameters

α and βi > 0, where eα is a scale parameter and 1/βi is the tail parameter are

given as:

FX(x) =

1
2
e

(ln(x)−α)
βi , if ln(x) < α

1− 1
2
e

−(ln(x)−α)
βi , if ln(x) ≥ α

fX(x) =

 1
2·βi·xe

(ln(x)−α)
βi , if ln(x) < α

1
2·βi·xe

−(ln(x)−α)
βi , if ln(x) ≥ α

with quantile function

F−1
X (p) =

(2p)βi · eα, if ln(x) < α

eα

(2−2p)βi
, if ln(x) ≥ α
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Proposition 3.1. Expected value of loglaplace variable X with parameters α and

βi is finite only for βi < 1 and has value eα

(1−βi)·(1+βi)
.

Proof. Define δ such that α = ln(δ). Then;

fX(x) =

 1
2βiδ

[
x
δ

]1/βi−1
, if x < δ

1
2βiδ

[
δ
x

]1/βi+1
, if x ≥ δ

Using the distribution function, we can calculate expected value of X by:

E[X] =

∫ ∞
−∞

x · fX(x) · dx

=

∫ δ

0

1

2βi

[x
δ

]1/βi
· dx+

∫ ∞
δ

1

2βi

[
δ

x

]1/βi

· dx

Define;

g1(x) =

∫ δ

0

1

2βi

[x
δ

]1/βi
· dx

g2(x) =

∫ ∞
δ

1

2βi

[
δ

x

]1/βi

· dx

Then;

g1(x) =
δ

2(βi + 1)

whereas

g2(x) =


−δ

2(βi−1)
, if βi < 1

undefined, if βi = 1

∞, if βi > 1

Then, for α and 0 < βi < 1 we get:

E[X] =
eα

(1− βi) · (1 + βi)
.

3.2 Service Level (γ)

In this study, aircraft routing network is considered together with the passenger

connection network. For flight i ∈ J , and j ∈ Pi, TPij equals the time needed by
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passengers to connect between flights i and j, with associated decision variable γij

which represents the percentage of passenger connection satisfied between i and

j. γij’s are calculated using chance constraints for the above described random

variable such that the probability of time between arrival of flight i and departure

of flight j being greater than the required connection time TPij is at least γij.

The weighted average of these γij values using weights PASij needs to be greater

than or equal to γ, the overall service level of the schedule. PASij values are

assigned to flight connections in a manner that they represent the percentage of

a given connection among all other passenger connections based on the number of

passengers connecting. These values are normalized over the whole flight network

and are used as weights when calculating the overall schedule service level.

Note that the service level of the schedule is calculated using a weighted

average of service levels of individual passenger connections. This provides more

reasonable information on actual service levels, since the service level value of

each connection is allowed to be different. In this study, we weigh the connections

based on the number of passengers connecting, but a different weighing scheme

such as percentage of higher class customers within all connecting passengers

could be used as well. It is also possible to add lower bound constraints in the

following manner to desired γij variables to ensure a minimum level of service is

satisfied in flights.

γij ≥ γij
d i ∈ J, j ∈ Pi

where γij
d represents the minimum desired connection service level.

3.3 Fuel Cost Function

Airbus (1998) provides detailed information on fuel costs and the relationship

between speed and fuel costs of airplanes. In this study, the fuel cost function for

flight i ∈ J is given as:

Kti(fi) =
Cti · cf · (fui )m

fm−1
i

for a factor m. The fuel burn rate of the aircraft in tons per minute is multiplied

with the cost per ton of fuel to get how much fuel an aircraft burns in monetary
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terms in one minute. This resulting cost term is used in the nonlinear cost

function by multiplying it with the term (fui )m/fm−1
i , where fui stands for the

initial cruise time of flight i, and fi is the associated decision variable with the

new cruise time of flight i. You can observe the trade-off between fuel cost and

idle cost functions in relation to time in Figure 3.1. Note that for an amount of

slack that is wanted, it is cheaper to speed the aircraft up to a point, and cover

the rest of the time with inserting idle time.

time

cost

Idle tim
e cost

Fuel cost

Figure 3.1: Idle time and fuel cost functions

3.4 Numerical Example

A numerical example will be provided in this section to better explain model

mechanics. On a small schedule example, both the idle time insertion and the

cruise time controllability mechanisms of the model will be shown. First, the

flight network graph of the initial schedule will be given which shows the initial

idle time distribution in the schedule and the resulting delays. Remember with

our model, delays are not allowed. Following the original schedule example, a new

schedule generated only using the idle time insertion mechanism of our model will

be given. Speeding of the aircraft is not allowed for this case, and it is seen that
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even with using a better idle time distribution, delays can be avoided and costs

can be improved. In the last example, both speed control and idle time insertion

will be used in the schedule which will result in greater cost improvements. The

Tail # Flight # From To Dep.Time Duration Arr.Time Actual Dep. TA Time

N531AA 2303 ORD LGA 7:35 2:05 9:40 7:35 0:39
2336 LGA ORD 10:30 2:15 12:45 10:30 0:41
1053 ORD DFW 13:15 3:00 16:15 13:33 0:40
336 DFW ORD 16:50 3:00 19:50 17:20 0:21
336 ORD LGA 20:20 2:05 22:25 20:49

N4WPAA 2311 ORD DFW 7:45 2:25 10:10 7:45 0:37
2348 DFW ORD 11:30 2:25 12:55 11:30 0:38
1797 ORD LGA 14:00 2:20 16:20 14:41 0:36
1982 LGA ORD 17:20 2:00 19:20 17:44 0:38
1339 ORD SAN 20:20 4:30 0:50 20:29

Table 3.1: Published Schedule

published schedule extracted from BTS data used in this numerical example is

provided in Table 3.1 and it consists only of the daily plans of two aircraft. Tail

numbers of these aircraft are provided in the first column, which is followed by

the assigned flights to these aircraft in the second column. The following two

columns give origin and destination information for flights, where the following

three columns list planned and announced departure times, flight durations and

arrival times. In the next column, actual departure time information is listed,

and finally turnaround times are given in the last column. Note that there are

two flights with flight code 336. This is because flight 336 is a “through” flight,

which is defined as a single flight from origin to destination with one or more

intermediate stops.

As it can be observed, actual departure times could be different than the

planned departure times, which results in delays. This is related to several issues.

First of all, because of variability, actual duration of flights are realized differently

than planned durations. For example, the planned duration of flight 2303 is 2

hours and 5 minutes. The non-cruise time of the flight is taken as 20 minutes

of this duration. But this non-cruise time has an expected value of 27 minutes

instead, because of variability. These mean times are calculated as explained in

§3.1, with an α value of ln(20), a β value of 0.05 and airport congestion coefficients

given in Table 5.3. Another reason for the difference is turnaround times. In

some cases, the planned duration left for the aircraft between arrival time of
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Figure 3.2: Network graph for the published schedule

a flight and the departure time of the next flight is shorter than the necessary

turnaround time, which results in a delayed departure. If this time is longer than

what is necessary, then there is an unnecessary idle time for the aircraft. It is also

important to note that the delays propogate through the network. For example,

a 10 minute delay in a given flight will affect the next flight of that aircraft as

well if there is no idle time left in between two consecutive flights.

The resulting flight network is seen in Figure 3.2. Continuous lines for flights

show the actual realized departure times of aircraft, where dashed lines for flights

show the planned departure times. Continuous ground lines correspond to turn

times of aircraft, where dashed ground lines correspond to unnecessary waiting.

The idle time in the schedule are 5 minutes after flight 2303 and 35 minutes after

flight 2311. It can be observed that this utilization of idle time distribution results

in unnecessary waiting for some flights, whereas there is a delay in others. These

delays also cause connecting passengers to miss their flights since a certain time is

needed for passengers to connect to their next flight. Passenger connected flight

pairs in this schedule are 2336-1053, 336-336, 336-1339, 2348-1797 and 1982-1339.

Assume schedule delay is unwanted and needs to be avoided. Intuitively, one

can decide that better utilization of slack time can reduce these unnecessary cost

items and avoid flight delays. In fact, Chiraphadhanakul and Barnhart (2011)
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support this claim with their research. The departure times for a perturbed

schedule with a better utilization of idle times is drawn in Figure 3.3, where de-

lay is completely avoided, and passenger service levels are same as the original

schedule. Passenger service levels are decided based on the percentage of passen-

gers that catch their connections. It can be seen that in the new schedule, two

idle time slots are inserted after the first connecting leg of flight 336 and flight

2348, and there is no delay in the schedule.

In this schedule, idle times are put as 48 minutes after flight 2348 and 10

minutes after first connecting flight of 336. Note that total idle time seems to

be more than before, but delay costs are totally avoided in this case. In cost

terms, if we compare the costs of two schedules without taking delay costs into

consideration, total costs increased by around 5%. But when delay costs are

considered, there is a total cost saving of 32% when the second schedule is used.

Remember the total operational costs are calculated as the sum of fuel cost

and idle time cost in our model. Delay costs for the original schedule are also

considered for comparison, however delay costs for our model are zero. Fuel costs

are calculated via the speed cost function described in §3.3. Idle time costs are

calculated by multiplying the total idle time in the schedule with the unit idle

time cost per minute of the assigned aircraft. Lastly, delay costs for the original

schedule are calculated in the same manner, by multiplying the total delay time

by the unit delay cost per minute. The improvement percentages are calculated

using the formula:

Cost Improvement = 100 · Original Schedule - Proposed Model

Original Schedule

Costs can be improved even more while preserving the service levels by the uti-

lization of cruise time controllability. In exchange for extra fuel burn, an aircraft

can fly a route faster resulting in cruise time savings. Fuel costs are nonlinear

with increasing speed, therefore a balance of cruise time controllability and idle

time insertion can be achieved to have a schedule with the same service level with

significant idle time cost improvements. The new schedule with controlled speed

times can be found in Figure 3.4.
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Figure 3.3: Network graph with adjusted departure times

DFW

ORD

LGA

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 Time

23
03 2336

SAN

23482311

1339

33
6  

   

33
6 

   
 

1053

23:00 00:00

17
97

1982

23
03

2336

1053

336  
   

Figure 3.4: Network graph with adjusted departure times and speed control
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With speeding option introduced, Flights 2303, 2336, 1053 and the first con-

necting part of flight 336 have decreased cruise times. The original duration of

the flights are drawn in dashed lines. In this case, the idle time after flight 2348

is not needed anymore since passenger service levels could be ensured with speed

control. This new schedule has 8% more fuel cost than the initial schedule, but

idle time costs have improved by 74% and there is 35% total cost improvement.

The model given in the new section works with these mechanics. The objective

is to achieve less costs where costs are measured in terms of idle time, fuel and

delay cost components. By using cruise time control, major idle time cost and

total cost savings are achieved in exchange for increase in fuel costs.

3.5 Summary

In this chapter, the problem definition along with a numerical example is given.

Moreover, parameters, decision variables and the random variable in the problem

are described. Several properties of the random variable, service level constraints

in the model and the structure of the cost function are explained in detail. The

working mechanics of the model are explained through a numerical study of an

example published schedule.



Chapter 4

Problem Formulation

The model works as described in the numerical example. As mentioned earlier,

the aircraft routings, flight sequence and passenger itinerary information on con-

nections are taken from the original schedule. The departure times of flights in

the initial schedule is perturbed by inserting slack into the schedule and speed-

ing aircraft as necessary. As a result, a more robust schedule is generated that

avoids delays and ensures a given level of passenger connection service levels while

minimizing costs.

Airlines can make flight cruise speed decisions based on the cost index ratio

defined below. But cruise time decisions affect the whole flight network through

propagation. It is not possible for a pilot to make the most effective cruise time

decisions locally during a flight. The balancing of cruise time reduction and idle

time insertion is an even more complex problem and decisions should be made

considering the whole network, so a global optimization tool such as the one

described in this chapter is needed.

26
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4.1 Mathematical Model

The mathematical formulation is provided below which includes chance con-

straints and nonlinear cost terms.

min
∑
i∈J

si · Iti +
Cti · cf · (fui )m

fm−1
i

(4.1)

s.to Pr[Ai + fi ≤ xj − xi − TPij] ≥ γij i ∈ J, j ∈ Pi (4.2)∑
i∈J

∑
j∈Pi

PASij · γij ≥ γ (4.3)

wi ≤ xi ≤ vi i ∈ J (4.4)

xj − xi − TAij − fi − E[Ai]− si = 0 (i, j) ∈ PAIR (4.5)

f li ≤ fi ≤ fui i ∈ J (4.6)

si ≥ 0 i ∈ J (4.7)

γij
d ≤ γij ≤ 1 i ∈ J, j ∈ Pi (4.8)

The objective function (4.1) aims to minimize sum of idle time and fuel costs,

where the summation is over each flight in the network. The fuel costs are cal-

culated using a nonlinear function of the cruise time for flight i and for exponent

m, which was described in Chapter 3. Note that there is no term included in the

model for delay costs, since delay is not allowed in our model, and delay costs

are zero. Delay costs are only calculated for the original schedule for compari-

son purposes. In (4.2), we require the probability of the block time being not

greater than the difference of departure times minus minimum passenger con-

nection time needed to be greater than or equal to the associated service level

variable. Detailed information on passenger connection service levels was given in

Chapter 3. In (4.3), we require the weighted sum of γij’s to be greater than the

desired service level γ, where weights are measured by the passenger connections,

PASij. Constraints (4.2) and (4.3) work together to guarantee desired service

levels, where γij’s are decision variables in the model and this constraint applies

the restriction on their values. Moreover, with (4.8), we impose the desired lower

bounds to service level variables.
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In (4.4), time window constraint for a flight leg is given. Remember that this

restriction on departure times can be important for marketing purposes, since

passenger demand highly depends on the time of a flight. For example, passen-

gers traveling for business purposes would prefer early flights in the mornings and

later flights in the evening. In (4.5), we guarantee that the minimum aircraft

connection time is available between two consecutive flights of the same aircraft,

using the mean value of the random variable. This is the constraint that allows

our model to avoid delays, since aircraft is not allowed to take-off before the nec-

essary time for turnaround operations has passed. In (4.6), we give the allowed

boundaries for cruise time change.

4.1.1 Routing Feasibility

It might be important to ensure in a schedule that there is at least a time of Φ

hours left between the arrival of the aircraft from the last flight of the day and

the departure of the same aircraft for the first flight of the next day for crew

or routing feasibility. In fact, in some cases of the original published schedule

used in computations, this rule had been broken several times. To maintain this

feasibility, we define two parameters for aircraft t ∈ T . Let tf be the first flight

of aircraft t in the morning where tl be the last flight of aircraft t in the evening,

tf ∈ J , tl ∈ J . Then by adding the below constraint, the routing feasibility

can be satisfied via decreasing of cruise times and elimination of unnecessary idle

times.

xtf − xtl ≥ Φ t ∈ T

4.1.2 Challenges for Solving the Model

The solution of the model makes for a challenge. There is nonlinearity in the ob-

jective function, and there are probabilistic constraints in the model. In previous

literature, chance constraints were handled with approximations, but we intend

to solve them in their exact form. The methodology is to first transform these
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probabilistic constraints into their closed form expressions and then transform

them to second order conic equations. Nonlinear costs are also transformed to

conic form. The next section explains this methodology in detail.

4.2 Conic Reformulation of the Model

Using a conic formulation of the model allows us to solve for the chance constraints

exactly to optima, as opposed to using approximations. To achieve the conic

reformulation, the nonlinear cost expressions and the probabilistic constraints

in the model are rewritten as second order cone constraints. To transform the

probabilistic constraints into conic equations we first need to write them in close

form. Then the closed form expression will be transformed to second order conic

equations.

4.2.1 Closed Form Expressions for the Chance Con-

straints

The closed form expression is written using the quantile function, i.e. the in-

verse cumulative distribution function of the random variable. Unfortunately,

the quantile function does not have a closed form expression for all probability

distributions.

If the cumulative distribution function (CDF) has a closed form expression,

the quantile function can be derived inverting the cumulative distribution function

using different methods such as the bisection method. For other cases, algorithms

based on polynomial approximations are available. Examples to distributions

with available closed-form distribution functions are exponential, logistic, log-

logistic, tukey lambda, uniform, etc. Quantile functions to several distribution

functions can be found in Appendix §B for reference.

As stated earlier, we will be using the loglaplace distribution to represent the
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random variable in our model. Remember the quantile function for a loglaplace

random variable X with parameters α and βi is derived as:

F−1(p) =

(2p)βi · eα, if ln(x) < α

eα

(2−2p)βi
, if ln(x) ≥ α

Denote

f1(p) = 2βi · eα · pβi

f2(p) =
eα

2βi · (1− p)βi

Also remember the chance constraint of the form:

Pr[Ai ≤ xj − xi − TPij − fi] ≥ γij

Property. For i ∈ J, j ∈ Pi;

Pr[Ai ≤ xj − xi − TPij − fi] ≥ γij

is equivalent to

xj − xi − TPij − fi ≥ F−1(γij)

Proposition 4.1. f2(p) ≥ f1(p) for 0 ≤ p ≤ 1.

Furthermore, f2(p) = f1(p) for p = 1
2
.

Proof. Consider

f2(p)− f1(p) = eα
(

1− 4βi · pβi · (1− p)βi
2βi · (1− p)βi

)
Notice that, eα > 0, 2βi · (1− p)βi > 0.

Also 1− 4βi · pβi · (1− p)βi ≥ 0 always holds since pβi · (1− p)βi ≤ 1
4βi

is always

true.

Furthermore, f2(p) = f1(p) at p = 1
2
.
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Then for our chance constraint equation for i ∈ J, j ∈ Pi for a loglaplace r.v.

with parameters α and βi, we can write using Proposition 4.1:

F−1(γij) =

2βi · eα · γβiij , if 0 ≤ γij ≤ 1
2

eα

2βi ·(1−γij)βi
, if 1

2
≤ γij ≤ 1

Two different conic formulations are provided below because of the properties of

the loglaplace random variable. Remember for flight i ∈ J , in 3.1 it is shown

that mean of loglaplace random variable Ai is finite only for βi < 1. In order to

achieve finite mean, we assume βi < 1 when reformulating the problem in Conic

Reformulation A with second order cone constraints. Conic reformulation of the

model for βi > 1, which is named as Conic Reformulation B is discussed in §4.4.

4.3 Conic Reformulation A

This is the conic reformulation of the model where βi < 1 for for flight i ∈ J .

The conic representation of the chance constraints will be given first, which will

be followed by the conic representation of the cost function.

4.3.1 Conic Representation of Chance Constraints

Remember βi < 1 in this first conic reformulation.

Proposition 4.2. For i ∈ J, j ∈ Pi, f2(γij) is a strictly convex function when

0 < βi < 1.

Proof. Second derivative of f2(γij) is positive for 0 < βi < 1. The result follows.

Proposition 4.3. For i ∈ J, j ∈ Pi, (xj − xi − TPij − fi) ≥ F−1(γij) is SOCP

representable if 0 < βi < 1 and 1
2
≤ γij ≤ 1.
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Proof. Replace

xj − xi − TPij − fi ≥ F−1(γij)

in problem with

xj − xi − TPij − fi ≥
eα

2βi · (1− γij)βi
.

This case will be binding in our problem if γij ≥ 1
2
. This lower bound on γij is

applied to achieve convexity of the constraint as shown in Proposition 4.2. This is

SOCP-represantable. Denote xj−xi−TPij−fi by σij. Let the constant λ = eα

2βi
.

Then we can write:

λ · zij ≤ σij · γβiij

where γij = 1− γij. βi can be written as ai
bi

for integers ai and bi. This is written

as:

λbi ≤ σij
bi · γijai

Since λbi is a constant, we can write this equation as:

(
2l
√
λbi)2l ≤ σij

bi · γijai

Choose l such that

l = dlog2(ai + bi)e .

Then, the constraint is SOCP representable due to Ben-Tal and Nemirovski

(2001).

Note that we require γij ≥ 1
2

for each passenger connection, which is a desirable

situation since it means a service level of at least 0.5 is guaranteed for each

connection. This restriction does not apply in Conic Reformulation B.

4.3.2 Conic Representation of the Speeding Cost Function

The cost function for flight i and for a factor m is represented as following:

Kti(fi) =
Cti · cf · (fui )m

fm−1
i

.

Proposition 4.4. For i ∈ J , the fuel cost function Kti(fi) is SOCP representable.
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Proof. The term Cti · cf · (fui )m is constant for each flight i ∈ J , so it can be

represented as Ψi. This cost function appears only in the objective function, and

can be written as a conic inequality.

First, introduce a dummy variable qi for each i ∈ J to represent the cost

component in the objective function. The objective function is now linear and is

written as:

min
∑
i∈J

si · Iti + qi

Then, we add the following constraints to the model for each i∈J:

Ψi ≤ qi · fm−1

qi ≥ 0

Define n = dlog2me. Then; (
1
2n
√

Ψi

)2n

≤ qi · fm−1

which is SOCP represantable due to Ben-Tal and Nemirovski (2001).
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4.3.3 Conic Formulation of the Model

After the above described changes, the model becomes:

min
∑
i∈J

si · Iti + qi (4.9)

s.to σij
bi · γijai ≥ (

2l
√
λbi)2l i ∈ J, j ∈ Pi (4.10)

xj − xi − TPij − fi = σij i ∈ J, j ∈ Pi (4.11)

γij = 1− γij i ∈ J, j ∈ Pi (4.12)∑
i∈J

∑
j∈Pi

PASij · γij ≥ γ (4.13)

Ψi ≤ qi · fim−1 i ∈ J (4.14)

xj − xi − TAij − fi − E[Ai]− si = 0 (i, j) ∈ PAIR (4.15)

wi ≤ xi ≤ vi i ∈ J (4.16)

f li ≤ fi ≤ fui i ∈ J (4.17)

0.5 ≤ γij ≤ 1 i ∈ J, j ∈ Pi (4.18)

si ≥ 0 i ∈ J (4.19)

qi ≥ 0 i ∈ J (4.20)

The objective function (4.9) is slightly different than in the original model objec-

tive function (4.1) because of the conic transformation of the fuel cost function.

The original objective is now represented with this objective equation and con-

straints (4.14) and (4.20). The chance constraints in (4.2) are now represented

by the conic form constraints in (4.10), (4.11) and (4.12). Constraint (4.13) is

the service level constraint that is available as the initial mathematical model

constraint (4.3).

Constraints (4.15), (4.16), (4.17) and (4.19) are same as the original mathe-

matical formulation. Note that the restriction of γij’s to be greater than 0.5 is

applied on constraint (4.18). In the previous constraint (4.8), this lower bound

setting was different. Actually, it is possible to apply the lower bound parameters

γij
d here as long as they satisfy 0.5 ≤ γij

d ≤ 1.
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This resulting model is solvable via commercial solvers in reasonable compu-

tation time due to the conic quadratic formulation and can easily be used by

airline practitioners.

4.4 Conic Reformulation B

This is the conic reformulation of the model where β ≥ 1 for flight i ∈ J . We

can formulate the problem for β ≥ 1 if we use the geometric mean of Loglaplace

random variable for calculations to avoid infinity. The conic representation of

the chance constraints will be given for this case. Conic formulation of the cost

function is same as in the Conic Reformulation A.

4.4.1 Conic Representation of Chance Constraints

Remember from §4.3 by Proposition 4.1 for i ∈ J, j ∈ Pi for a loglaplace r.v. with

parameters α and βi, we can write:

F−1(γij) =

2βi · eα · γβiij , if 0 ≤ γij ≤ 1
2

eα

2βi ·(1−γij)βi
, if 1

2
≤ γij ≤ 1

Denote

f1(γij) = 2βi · eα · γβiij

f2(γij) =
eα

2βi · (1− γij)βi

Proposition 4.5. For i ∈ J, j ∈ Pi, F−1(γij) is a convex function when βi ≥ 1.

Proof. Both f1(γij) and f2(γij) are convex for 0 ≤ γij ≤ 1. The result follows.
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Proposition 4.6. For i ∈ J, j ∈ Pi, (xj − xi − TPij − fi) ≥ F−1(γij) is SOCP

representable if βi ≥ 1.

Proof. Introduce a 0-1 variable zij such that:

zij =

0, if γij <
1
2

1, if γij ≥ 1
2

Replace the constraint

xj − xi − TPij − fi ≥ F−1(γij)

in the problem with the equations 1, 2 and 3 below:

1.

xj − xi − TPij − fi ≥ 2βi · eα · γβiij

This case will be binding in our problem if γij <
1
2
. Denote xj−xi−TPij−fi

by σij. Let the constant ω = 2βi · eα. We can denote βi as ai
bi

for integers ai

and bi such that ai ≥ bi. Then we can write:

σij ≥ ω · γ
ai
bi
ij

If we take powers of b for both sides, we get:

σbiij ≥ ωbi · γaiij

Then for ki = dlog2(ai)e we can write

σbiij · γ
(2ki−ai)
ij ≥ ωbi · γ2ki

ij

which is SOCP representable due to Ben-Tal and Nemirovski (2001).

2.

xj − xi − TPij − fi ≥
eα

2βi · (1− γij)βi
· zij
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This case will be binding in our problem if γij ≥ 1
2
. Denote xj−xi−TPij−fi

by σij. Let the constant λ = eα

2βi
. Then we can write:

λ · zij ≤ σij · γβiij

where γij = 1 − γij. βi can be written as ai
bi

for integers ai and bi. Also

since zij is a 0-1 variable this inequality can be written as:

λbi · zij ≤ σbiij · γ
ai
ij

Then for li = dlog2(ai + bi)e, we can write:

λbi · z2li
ij ≤ σbiij · γ

ai
ij

which is SOCP representable due to Ben-Tal and Nemirovski (2001) as λbi

is a constant.

3.

zij > γij −
1

2

which is the constraint to ensure that zij takes the value of 1 when γij ≥ 1
2
.
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4.4.2 Conic Formulation of the Model

Then for this case, the conic formulation of the model becomes:

min
∑
i∈J

si · Iti + qi (4.21)

s.to λbi · z2li
ij ≤ σbiij · γ

ai
ij i ∈ J, j ∈ Pi (4.22)

σbiij · γ
(2ki−ai)
ij ≥ ωbi · γ2ki

ij i ∈ J, j ∈ Pi (4.23)

xj − xi − TPij − fi = σij i ∈ J, j ∈ Pi (4.24)

γij = 1− γij i ∈ J, j ∈ Pi (4.25)∑∑
PASij · γij ≥ γ i ∈ J, j ∈ Pi (4.26)

zij > γij −
1

2
i ∈ J, j ∈ Pi (4.27)

Ψi ≤ qi · fim−1 i ∈ J (4.28)

xj − xi − TAij − fi −G[Ai]− si = 0 (i, j) ∈ PAIR (4.29)

wi ≤ xi ≤ vi i ∈ J (4.30)

f li ≤ fi ≤ fui i ∈ J (4.31)

γij
d ≤ γij ≤ 1 i ∈ J, j ∈ Pi (4.32)

zij ∈ 0, 1 i ∈ J, j ∈ Pi (4.33)

si ≥ 0 i ∈ J (4.34)

qi ≥ 0 i ∈ J (4.35)

In this version, the chance constraint (4.2) in the original mathematical model

is represented by constraints (4.22), (4.23), (4.24), (4.25) and (4.27). The 0-1

variable zij is used to ensure which of the conic constraints (4.22) or (4.23) will

be active depending on the value of γij. This relation between zij and γij is

maintained by constraint (4.27).

Constraint (4.29) is also slightly different in the sense of the random variable

mean used. Note that G[Ai] represents the geometric mean for Loglaplace random

variable here and it is used instead of the expected value E[Ai]. Also note that

in constraint (4.32), the lower bound parameters for γij are applied again.
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4.5 Summary

In this chapter, the mathematical formulation of the model is given. This is a

complex model with chance constraints and nonlinear objective function terms

that makes it hard to solve. To obtain exact and fast solutions, the model is

reformulated as a second order cone programming model.

Two different conic reformulations for different random variable parameters

are developed and are explained in detail. Chance constraints are expressed using

second order conic inequalities using their closed form equations. Nonlinear cost

function in the objective is also handled by representing it via second order conic

inequalities



Chapter 5

Computational Study

The aim of the study was to acquire a robust schedule in reasonable computation

time. In addition to analyzing time performance, in this section, the performances

of the model and the original published schedule are compared using several

criteria for schedules of two different sizes. Daily schedule of a US carrier for a

single hub and 4-hub will be used.

As previously defined in §4.1, a service level γ is fed into the model to achieve

a minimum cost robust schedule that has a service level above γ. We chose

to compare the original published schedule with our proposed robust schedule

according to the sum of costs they have for the same service level. For the

purposes of comparison, service levels of the original schedule are fed as input

to the model, and the resulting schedule of same service values is evaluated for

different cost components.

Also, as previously explained, departure time windows are given as constraints

in the model. However setting time windows around the published departure

times in the original schedule resulted in infeasibility because schedule delay

present in the original data could not be avoided as needed. In order to get

feasible solutions, departure time windows are not applied for the flights in the

model. However, the departure time of the first flight for each aircraft is set to

the published value in the original schedule not to diverge excessively from the

40
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published schedule.

The factors and their levels used in the study are given in Table 5.1. Com-

putational experiments showed that the effect of the factors were monotonous.

Fuel Cost represents the price for ton of jet fuel. The prices are calculated using

the history of oil barrel prices. A ton of fuel is equal to 1234 liters which is

approximately 326 gallons, which is around 7.8 barrels. The price of a barrel of

oil fluctuated between $60 and $180, and currently is priced around $100. The

prices taken per barrel in the study are approximately $75 for the lower setting

and $150 for the higher setting, which are a realistic representation of varying

market prices.

Levels

Factor Description Low High

A Fuel Cost $600 $1200

B Compression 10% 15%

C β 0.01 0.05

D Connection Density 50% 100%

Table 5.1: Factor Values

Compression Level denotes the allowed percentage of cruise time compression

in a flight via speeding of the aircraft. In the low setting, an aircraft is allowed

to speed up to shorten the cruise time by 10%, whereas in the higher setting this

value is 15%. For example, in the low setting, a flight with a cruise time duration

of 120 minutes is allowed to shorten that duration by a maximum of 12 minutes.

β is the Loglaplace parameter described in Section 2, which used to adjust

mean and variance of random variable. Remember, this parameter is adjusted

for each flight using airport congestion coefficients.

Finally, connection density represents the percentage of the possible passenger

connections realized in the network. This is basically a network density parameter

and when it is set to its low value, only 50% of the possible passenger connected

flights are allowed. When this factor is set high, all possible passenger connections
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are realized. For a given flight i, a passenger connection is possible with the

consecutive flight j if destination of j is a different location than the origin of i

and the scheduled departure time of j is withnin 45 minutes or 180 minutes of

the scheduled arrival time of i.

There are six different types of aircraft used, each assigned different costs and

capacities. The values for these parameters are provided in Table 5.2.

Aircraft Type 1 2 3 4 5 6

Idle Time Cost ($) 140 142 136 144 147 150

Fuel Burn Rate (tons/min) 0.12 0.108 0.064 0.065 0.058 0.083

Base Turntime 36 26 40 28 30 32

Number of Seats 261 262 158 159 131 190

Table 5.2: Aircraft Parameters

In Table 5.3, airport congestion coefficients used in this study are provided.

These coefficients take a value between 0.8 and 1.4, latter representing the most

congested airport, decided according to number of passengers visiting the airports

from T-100 market data of BTS (2010b) and information in Arıkan et al. (2012).

The methodology was to decide on congestion coefficients of airports based on the

total passenger numbers they achieved in the year 2010. We chose 2010 since the

schedules we used in the computational study are of that year. These coefficients

are used for calculating the turnaround time of an aircraft and also for calculating

the βi value of a flight i ∈ J . Then, sample turnaround times were calculated for

several airports, and the results were accurate to the study conducted in Arıkan

et al. (2012).

To find the turntime an aircraft spends at the changeover airport, the con-

gestion coefficients are multiplied with base aircraft turntime values. For flights

(i, j) ∈ PAIR, the changeover airport will be Di or Oj. For example, for two

selected airports MIA and HDN, the turnaround times for different types of air-

craft will be as given in Table 5.4. It can be observed that these values are similar

to calculated averages in Arıkan et al. (2012). Moreover, if the flight is a through
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Airport Location Coefficient Airport Location Coefficient

MIA Miami, FL 1.40 DCA Washington, DC 1.08
ORD Chicago, IL 1.37 SAN San Diego, CA 1.05
LAX Los Angeles, CA 1.35 STL St.Louis, MO 1.05
DEN Denver,CO 1.35 MCI Kansas City, MO 1.02
DFW Dallas, TX 1.32 AUS Austin, TX 1.00
LGA New York, NY 1.30 RDU Raleigh/Durham, NC 1.00
BOS Boston, MA 1.30 MSY New Orleans, LA 0.98
ATL Atlanta, GA 1.28 SNA Santa Ano, CA 0.98
PHX Phoenix, AZ 1.25 SAT San Antonio, TX 0.95
LAS Las Vegas, NV 1.25 RSW Fort Myers, FL 0.95
SFO San Fransisco, CA 1.20 SJU San Juan, PR 0.92
MSP Minneapolis, MN 1.15 PBI West Palm Beach, FL 0.90
PHL Philadelphia, PA 1.15 TUS Tuscan, AZ 0.88
EWR Newark, NJ 1.12 MCO Orlando, FL 0.85
FLL Fort Lauderdale, FL 1.12 EGE Eagle, CO 0.85
SLC Salt Lake City, UT 1.08 HDN Hayden, CO 0.80

Table 5.3: Congestion Coefficients

flight, the turnaround time will be 70% of the calculated value, since number

of passengers and cargo loading and unloading are significantly less in case of a

connection. The reason for that is for through flights, most of the passengers and

their cargo stay seated in the aircraft, where some other passengers might board

the plane in the connecting airport of the through flight. Therefore, there is no

unloading of the aircraft and a less number of passengers board the plane.

Turn time (min.)

Type MIA HDN

1 50.4 28.8

2 36.4 20.8

3 56 32

4 39.2 22.4

5 42 24

6 44.8 25.6

Table 5.4: Turnaround time study

Passenger connection times are taken uniformly between 25 and 40 minutes,

where the number of passengers in the plane are allowed to be within 60% and

100% of full capacity, again assigned uniformly.
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5.1 Schedule for Single Hub Data

The schedule in this part of the study is taken from the work of Aktürk et al.

(2012). To generate this schedule, data was taken from the BTS database and

was filtered to include aircrafts which originate their first flight from Chicago

O’hare International Airport (ORD) and revisit ORD at least once the same day.

This way, they could consider a schedule for a single hub location and work on it.

This schedule has 114 flights operated by 31 different aircrafts, and can be found

in Table 5.5. Note that, a similar methodology will be applied when generating

the 4-hub schedule used in compuational studies.

In the given schedule, first column represents the tail number of the aircraft

and the next column lists the flight numbers of the flights that are assigned to

that aircraft for that day. The third and fourth columns list the departure and

arrival airports of the flights respectively. Following the origin and destination

information, the departure time, flight time and the arrival time of each flight

can be found.

In this study, we analyze flight block times in two components as cruise time

and non-cruise time. Of the flight block times given in this schedule, we took 20

minutes of this duration to be left for the non-cruise time, and the rest of the

time as cruise time. As an extension, computational runs for different settings of

cruise times can be done to see the results in that case.

In Table 5.6, a comparison among different cost components between model

objectives and original published schedule are given. The values correspond to

idle time cost improvement, increase in fuel cost, total cost improvement and

improvement in total cost without including delay costs. Unit delay cost can be

very hard to measure accurately, but it is evident that our model performs better

costwise even when delay costs are not considered. Before analyzing the results,

it is important to mention that fuel costs make up approximately 90% of the total

costs for model results and they make up approximately 75% of the total cost for

original schedule. As stated before, the improvement percentages are calculated
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Tail No Flight No Departure Arrival Departure Time Flight Time Arrival Time Tail No Flight No Departure Arrival Departure Time Flight Time Arrival Time
N530AA 398 ORD LGA 6:15 2:14 8:29 N3ETAA 1704 ORD EWR 6:35 2:05 8:40

319 LGA ORD 9:25 2:50 12:15 1883 EWR ORD 9:30 2:40 12:10
2329 ORD DFW 13:35 2:35 16:10 810 ORD DCA 13:10 1:45 14:55
2364 DFW ORD 17:00 2:30 19:30 2013 DCA ORD 15:45 2:15 18:00

N459AA 394 ORD LGA 6:50 2:15 9:05 2013 ORD LAS 19:00 4:10 23:10
321 LGA ORD 10:00 2:50 12:50 N3DYAA 1063 ORD LAX 8:50 4:35 13:25
366 ORD LGA 13:55 2:20 16:15 874 LAX ORD 14:30 4:15 18:45
347 LGA ORD 17:15 2:50 20:05 874 ORD BOS 19:45 2:15 22:00

N531AA 2303 ORD DFW 6:45 2:35 9:20 N3DRAA 1021 ORD LAS 8:30 4:05 12:35
2336 DFW ORD 10:10 2:20 12:30 1544 LAS ORD 13:25 3:35 17:00
1053 ORD AUS 13:25 2:50 16:15 1544 ORD DCA 18:00 1:45 19:45
336 AUS ORD 17:00 2:45 19:45 N5DXAA 1048 ORD MIA 7:35 3:10 10:45
336 ORD LGA 20:40 2:05 22:45 1763 MIA ORD 11:55 3:20 15:15

N4XGAA 2079 ORD SAN 8:45 4:30 13:15 1899 ORD MIA 16:20 3:05 19:25
1438 SAN ORD 14:00 4:10 18:10 N454AA 2441 ORD ATL 6:30 2:00 8:30
346 ORD LGA 19:50 2:15 22:05 1986 ATL ORD 9:15 2:15 11:30

N598AA 1341 ORD SFO 7:50 4:55 12:45 1872 ORD MCO 12:25 2:40 15:05
348 SFO ORD 13:30 4:25 17:55 1131 MCO ORD 15:50 3:05 18:55

1521 ORD TUS 19:15 3:55 23:10 N4YMAA 1137 ORD MSY 8:20 2:25 10:45
N439AA 2455 ORD PHX 7:10 4:00 11:10 1768 MSY ORD 11:30 2:30 14:00

358 PHX ORD 11:55 3:30 15:25 1768 ORD PHL 15:05 2:05 17:10
358 ORD LGA 16:25 2:25 18:50 1697 PHL ORD 18:00 2:35 20:35
371 LGA ORD 20:00 2:35 22:35 N467AA 1823 ORD PBI 9:20 2:55 12:15

N475AA 407 ORD STL 6:20 1:10 7:30 2067 PBI ORD 13:00 3:20 16:20
755 STL ORD 8:35 1:15 9:50 2067 ORD STL 17:15 1:10 18:25
755 ORD SAT 10:45 3:00 13:45 1186 STL ORD 19:10 1:20 20:30
408 SAT ORD 14:30 2:40 17:10 N536AA 2305 ORD DFW 7:45 2:40 10:25
408 ORD PHL 18:05 2:05 20:10 2344 DFW ORD 11:35 2:20 13:55

N3EEAA 876 ORD BOS 6:35 2:10 8:45 1201 ORD STL 14:50 1:05 15:55
413 BOS ORD 9:35 3:05 12:40 1815 STL ORD 17:00 1:20 18:20
413 ORD SNA 13:45 4:35 18:20 1815 ORD SLC 19:15 3:40 22:55

1262 SNA ORD 19:10 3:50 23:00 N420AA 1686 ORD RDU 6:50 1:50 8:40
N4YDAA 451 ORD SFO 9:45 4:55 14:40 2435 RDU ORD 9:25 2:15 11:40

554 SFO ORD 15:45 4:25 20:10 2435 ORD PHX 12:35 3:55 16:30
N3ERAA 496 ORD DCA 6:45 1:40 8:25 1206 PHX ORD 17:15 3:25 20:40

1715 DCA ORD 9:15 2:10 11:25 N546AA 1462 ORD EWR 8:00 2:20 10:20
1715 ORD LAS 12:25 4:05 16:30 1387 EWR ORD 11:25 2:40 14:05
1708 LAS ORD 17:20 3:40 21:00 1397 ORD MCO 15:00 2:40 17:40

N5CLAA 1425 ORD SNA 8:25 4:40 13:05 1221 MCO ORD 18:25 2:55 21:20
556 SNA ORD 14:00 4:00 18:00 N4WPAA 2311 ORD DFW 9:05 2:35 11:40

1940 ORD MIA 19:25 3:00 22:25 2348 DFW ORD 12:35 2:20 14:55
N535AA 2460 ORD RSW 6:45 2:45 9:30 1797 ORD STL 15:50 1:10 17:00

564 RSW ORD 10:20 3:05 13:25 1982 STL ORD 18:00 1:20 19:20
1446 ORD EWR 14:55 2:45 17:40 1339 ORD SAN 20:15 4:30 24:45
1411 EWR ORD 18:45 2:45 21:30 N5EBAA 2375 ORD EGE 8:10 2:55 11:05

N3DMAA 568 ORD FLL 7:25 2:55 10:20 2378 EGE ORD 12:25 2:45 15:10
711 FLL ORD 11:10 3:15 14:25 1677 ORD SNA 18:40 4:30 23:10

2021 ORD SJU 15:25 4:35 20:00 N3DUAA 2099 ORD LAX 7:00 4:30 11:30
N544AA 2463 ORD MCI 6:25 1:30 7:55 1972 LAX ORD 12:40 4:05 16:45

754 MCI ORD 8:40 1:30 10:10 1972 ORD RDU 17:45 1:55 19:40
2321 ORD DFW 11:15 2:35 13:50 N3ELAA 2057 ORD SJU 8:30 4:50 13:20
2356 DFW ORD 14:40 2:20 17:00 2078 SJU ORD 14:25 5:35 20:00
2487 ORD DEN 17:50 2:45 20:35 N3DTAA 2363 ORD HDN 9:50 2:50 12:40

N3EBAA 1565 ORD MSP 6:40 1:30 8:10 2318 HDN ORD 13:40 2:50 16:30
779 MSP ORD 9:00 1:25 10:25 N412AA 2345 ORD DFW 17:15 2:35 19:50
779 ORD SAN 11:35 4:20 15:55 2374 DFW ORD 20:40 2:10 22:50

1358 SAN ORD 16:45 3:55 20:40
1358 ORD BOS 21:50 2:05 23:55

Table 5.5: Complete ORD Schedule
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using the following formula:

Cost Improvement = 100 · Original Schedule - Proposed Model

Original Schedule

where the percentage of cost increases are calculated using the negative of the

same formula.

Factor A, i.e. the fuel price per ton of fuel, has significant effects on total cost

and total fuel cost improvements. Since idle time cost contribution to total cost

is lower than the fuel cost, the increase in unit fuel price ends in slightly lower

idle cost improvements overall. The result is that our model achieves better total

cost savings when fuel price is low as expected, but the performance of the model

in improving idle time costs is only affected a little by fuel price.

An important result to see is that changing levels of Factor B does not have

a statistically significant effect on model performance. This factor represents the

allowed compression level on the cruise time of the flight. Similar improvement

levels for different levels of compression means that cruise times are not com-

pressed to the boundary even in the low setting. As an extension to this study,

further analysis could be done to see if speed compression hits the boundaries

when the exponent m used in the cost function is changed.

Factor C, i.e. β, shows another interesting result. It is observed that in-

crease in fuel costs do not change for higher levels of β whereas all other cost

improvements are decreased. The reason for less idle time cost improvements

with increasing level of this factor is that higher β causes a higher variance in

flight block times, which causes longer flight durations resulting in more idle time

put in the schedule with higher overall idle time costs. Similarly idle times in

the original schedule are utilized more, decreasing the unnecessary idle time costs

of the original schedule. Overall fuel cost increase is not affected by β levels, so

the decrease in idle time cost improvements reflect to total cost improvements as

well.

Factor D, i.e. the connection density of the network, has a similar effect as

Factor C. More passenger connected flights result in a higher need for idle times,

and therefore total cost improvements decrease, since idle time cost savings is a
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strong advantage of our model.

Overall, it is important to observe that a 2% increase in fuel costs allows for

a 60% improvement in total idle costs. This is because fuel cost is a huge part of

total airline operational costs, and also cruise time controllability results in great

savings from unecessary idle times.

Five replications for each factor combination is done to see if random values

have any effect on objective values. The comparisons for cost improvements for

different replications are given in Table 5.7, from where it can be seen values are

not affected significantly from different random values.

Another measure of interest is the service level of the schedules. Results show

that only significant factor affecting service level values is β. Overall average of

the service level is 94%. A higher setting of β causes the average service levels to

drop to 92.7%, where a lower setting of β results in service levels of 95.3% on the

average. Note that these are actually good passenger connection performances

for the published schedule, and our model can achieve less costs preserving these

values. In fact, it will be shown later that our model achieves higher service levels

if total cost is allowed to be as much as the original schedule costs.

5.1.1 Scenario Analysis

The extensive computational study results intrigues several questions on model

behavior and performance. In this part, some insights into model dynamics are

provided by realizing different scenarios.

5.1.1.1 What if time compression is not allowed?

Since the model works by balancing incorporating idle time into the schedule and

speeding of the aircraft for flights, the performance of the model when speeding

is not allowed is wondered. Fuel costs are expected to decrease to the same

level with the costs of the original schedule, whereas idle costs are expected to
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Idle Time Cost Fuel Cost Total Cost

Rep. Min Avg Max Min Avg Max Min Avg Max

1 56.2 63.8 76.2 0.9 2.1 3.7 7.8 13.6 20.9

2 54.8 64.8 75.6 0.9 2.0 3.1 7.8 13.9 21.1

3 54.4 62.8 75.8 1.0 2.0 3.5 7.6 13.4 20.9

4 52.1 62.8 74.9 1.1 2.2 3.6 7.4 13.3 20.6

5 56.4 63.4 74.4 1.1 2.1 3.3 7.8 13.4 20.7

Table 5.7: Cost comparison for different replications (%)

increase. The cost values are compared with the original schedule costs for two

cases; the model with speeding allowed and not allowed. Since replications do

not affect results, the comparison is done for a single set of replications, with

15% compression allowed in one case and compression is not allowed in the other

case. The results in Table 5.8 show that even without cruise time controllability,

a better utilization of idle times by the model result in important idle cost and

total cost improvements. The reason for that is because our model acts as a global

optimization tool, the network propagation effects could be considered resulting

in a better placement of idle times.

With Compression No Compression

A C D Fuel Idle Time Total Fuel Idle Time Total

0 0 0 3.2% 74.4% 20.7% - 58.9% 18.1%
0 0 1 2.7% 63.2% 17.6% - 44.0% 13.6%
0 1 0 3.3% 68.6% 16.9% - 53.7% 14.8%
0 1 1 2.3% 58.8% 14.9% - 42.3% 11.8%
1 0 0 1.1% 66.9% 11.3% - 58.9% 10.7%
1 0 1 1.5% 59.2% 9.6% - 44.0% 8.0%
1 1 0 1.4% 61.3% 8.9% - 52.5% 8.4%
1 1 1 1.7% 56.4% 7.8% - 39.2% 6.5%

Table 5.8: Computation results when compression is not allowed

As expected, fuel cost increases when speeding option is available, which also

gives an advantage to balance the amount of idle time put into schedule, therefore

resulting in better idle cost savings.
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5.1.1.2 What if variability was higher?

Another issue to wonder is what will happen to model performance when vari-

ability was further increased. The expectation is that benefits of the model will

be less significant as in the case of different beta values in Table 5.6 and service

levels will be much lower. For this analysis, Factor C is taken to be 0.07, which

is the highest possible value such that each βi > 1 for flight i ∈ J needed to have

finite expected values as proved in Proposition 3.1. All other factors are taken as

their low level values. Computation for a single parameter set resulted in a ser-

vice level of 0.88, which is very low compared to average service levels that were

achieved previously. Delay costs of the original schedule increased significantly

since higher variance caused the block times of flights to increase. Also in the

same case, when total cost of the model is taken to be equal to original schedule

total cost, the model resulted in a service level of 0.98.

5.1.2 Aircraft Utilization

Computational results proved some additional benefits apart from the objective

values. The results showed that for the available 31 aircraft paths in the data, the

model improves makespan for almost all paths, and there is a timewise improve-

ment in average makespan in all factor combinations. The average makespan

improvement is taken for each different factor and replication combination. The

mean of this improvement over all cases is 41.5 minutes, with a minimum of 28

minutes and a maximum of 59 minutes achieved in one case. Average number of

paths for which the makespan improved is 30.5, with a minimum of 28 paths and

a maximum of 31 paths, meaning all available paths. This gives the airlines the

flexibility to add additional flights to the end of aircraft paths, which may not

be possible for the original schedule. Lessening of idle times affect not only the

costs, but also creates additional utilization opportunities.
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5.2 Schedule for 4-Hub Data

To generate this schedule, data was taken from the BTS database and was fil-

tered to include aircrafts which originate their first flight from four different hub

locations and return to them at least once the same day. This way, we could

consider a schedule for 4-hub locations. The airports that are considered as hubs

are Dallas-Fort Worth International Airport (DFW), Chicago O’Hare Interna-

tional Airport (ORD), Miami International Airport (MIA) and New York John

F. Kennedy International Airport (JFK). This schedule has 469 flights operated

by 141 different aircraft.

In Table 5.9 a comparison among different cost components between model

objectives and original schedule are given. The comparison is only done for two

factors A and C which are the fuel cost and β, respectively. Factor B, i.e. speed

compression, is taken as 15% for all runs since we saw that compression level

does not affect results as the compressions on flights did not hit the boundaries.

Similarly, factor D, the connection density is taken as 50% throughout, since

there are many possible connections in a 4-hub problem and 100% passenger

connection is not realistic. We showed that replications did not affect results in

the single hub study. Still, we did 3 replications for each factor combination when

calculating the results. We also did not calculate total cost improvement without

delay costs seperately in this case since it was shown earlier that the model has

cost improvement even when delay costs are taken as zero.

Idle Time Cost Fuel Cost Total Cost
Improvement Increase Improvement

Min Avg Max Min Avg Max Min Avg Max
A 0 59.0 61.1 62.8 2.7 2.8 3.1 14.6 15.6 16.4

1 52.2 54.6 56.4 1.1 1.2 1.3 7.7 8.2 8.8
C 0 55.9 59.3 62.8 1.2 2.0 3.1 8.6 12.5 16.4

1 52.2 56.4 60.7 1.1 2.0 2.9 7.7 11.3 14.9

Table 5.9: Comparison of Factor Effects (Values are in %)

It can be seen that results are very promising in the 4-hub case as well. Idle
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time cost savings are approximately 60%, where fuel cost increase is approxi-

mately 2%. This result is very similar to the single hub case. Intiutively, one

might think that increasing the size of the schedule will deteriorate improvement

percentages. This is because the bulk cost from fuel will increase highly when

number of flights go up and improvements in idle time costs may not be as signif-

icant as before. However, the results show that cost savings from idle time even

out nicely throughout the schedule and the improvement rates are not affected

badly from increasing data size.

The results show that idle time cost improvement is decreased by increasing

unit fuel costs. This is because speeding becomes more expensive in this case,

and the model depends more on idle time to achieve robustness. Similarly, less

speeding means lesser increase in total fuel costs, which can be observed in the

results as well. Total cost improvement is also affected negatively from increasing

fuel costs. Around 80% of total costs are from fuel costs, so doubling the unit

fuel cost caused total cost improvements to be almost half of the previous values.

Results for Factor C are similar to the outcomes in the single hub schedule as

well. Fuel cost increase is not affected by increasing β, where idle time and total

cost improvements are decreased. As stated previously, this is because increased

variability results in more idle time inserted in the schedule. Also, the amount

of unnecessary idle time in the original schedule is decreased since with higher

variability, the idle times are utilized better. The decrease in idle time cost

improvements also reflect to total cost improvements.

Changing levels of β also affects the service level of the schedules. For the

case of low β, the average service level of the schedules is 0.93, where it is 0.96

for the case of high β setting. It is reasonable that higher variability results in

smaller service levels.

It is also interesting to observe how the additional utilization arising from

shortened makespans change for the 4-hub schedule case. For the 141 paths,

there were time savings on 135 of the paths on the average. The average of this

improvement over all cases is 33 minutes, with a minimum of 25 minutes and a

maximum of 45 minutes achieved. This craeates additional aircraft utilization
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opportunities, like adding a new flight at the end of a given path.

5.3 Computation Time Analysis

All computations are conducted on an Intel Core i5 2410M computer with

2.30Ghz processor and 4.00 GB RAM. Problem is modeled in Java language

using IBM ILOG Cplex Optimizer. Model is solved by CPLEX 12.1. In the

following subsections, time analysis for the single hub and 4-hub schedules are

provided.

5.3.1 Single Hub Study

Computation times are very reasonable for all factor settings. Overall average,

minimum and maximum values of computation times in CPU seconds can be seen

in Table 5.10. If we analyze the results we see that factors A and B do not affect

Cpu Time (sec.)

Factor Level Min Avg Max

A 0 2.4 6.2 12.1

1 2.3 6.1 12.1

B 0 2.3 6.2 12.1

1 2.4 6.1 11.7

C 0 2.3 3.9 6.4

1 4.7 8.4 12.1

D 0 2.3 4.0 6.9

1 4.7 8.3 12.1

Table 5.10: CPU time analysis for the single hub schedule

computation times. Factor A is the unit fuel cost and it is simply a coefficient

term in the model so changing it does not change computation time. Factor B is

the compression level which is the maximum amount of compression allowed for

flights. We observed that compression in flights did not hit this boundary even
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in the low setting. Therefore, the change of this compression cap does not have

any affect on computation times.

The results are different for factors C and D however. Factor C is β, and

increasing it has an affect on problem complexity as variability increases. Factor

D corresponds to connection level. Increasing it from 50% to 100% doubles the

amount of passenger connected flights and increasing the number of connections

also increases the problem complexity. To visualize this, flights can be considered

as nodes and that there will be an arc for every passenger connection.

Overall, the average time for all runs is 6.6 CPU seconds. This is a very good

result for a problem of that size having 31 paths and 114 flights. As it can be

seen, the second order conic formulation of the chance constraints result in exact

and fast solutions.

5.3.2 4-Hub Study

Computation results prove to be very good time wise for the 4-hub case as well.

The size of the problem in this case is 141 paths and 469 flights. Overall average,

minimum and maximum values of computation times in CPU seconds can be seen

in Table 5.11. The average time for all runs is 47.5 CPU seconds in this case. It

Cpu Time (sec.)

Factor Level Min Avg Max

A 0 30 48.1 65.6

1 31.9 47.4 62.6

C 0 30 32.4 34.2

1 59.7 63 65.6

Table 5.11: CPU time analysis for the 4-hub schedule

can be observed that changing unit fuel costs does not affect computation times.

However, changing β significantly affects times, almost doubling them. This is

reasonable as β affects variability and increases problem complexity where unit

fuel costs are merely a coefficient in the model and do not add complexity to the

problem.
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5.4 Summary

This chapter was devoted to the computational study of the proposed model.

First, the parameters and factors that are used in the study were described and

their chosen values are explained. The study that was conducted on airport

congestion coefficients was presented, which provides a measure of the congestion

of a given airport.

Afterwards, the computational study that was conducted on the published

daily schedule of an US carrier filtered for single hub is presented. The schedule

that was output from our model and the original published schedule are compared

in cost terms and service levels. Following that, a scenario analysis is presented

where model performance is evaluated for more extreme cases of data.

Finally, computational studies were also conducted on a 4-hub daily schedule

and fast solutions were achieved to this larger problem as well. The chapter

is concluded with CPU time analysis done separately for two different sizes of

schedules.



Chapter 6

Conclusions and Future Work

Airline scheduling is a complex process that involves series of operations such

as schedule generation, fleet assignment, aircraft maintenance routing and crew

assignment. Since airline operations are expensive, global optimization tools to

generate accurate schedules are very important for airline companies. Schedules

are usually generated with the assumption that everything goes as planned aim-

ing maximum utilization and minimum costs. However in the airline industry,

disruptions are very expensive. For example, even a simple delay in a flight results

in crews and a lot of passengers missing their connecting flights and wastes op-

erational time of the aircraft. So uncertainties need to be foreseen and schedules

should be generated to be less vulnerable to these.

Optimization in airline industry shifted from deterministic models to models

with uncertainty that can work under different realizations of data conditions.

Main tools for managing disruptions in airlines are building robust schedules or

building rescheduling models that aim to recover the schedule after a disruption.

Robust schedules are less fragile to disruptions and they are easier to recover

if a disruption occurs. The trade-off for incorporating this flexibility into the

schedules is increasing costs. For example, putting slack time into a schedule

to have a buffer for delays results in expensive and otherwise profit generating

aircraft to be sitting idle for that period of time. The aim is to find a balance of

robustness and costs.

56
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This thesis is on a robust airline scheduling model that uses tools such as

idle time insertion and cruise speed controllability on a combined network of

aircraft and passenger connecting flight information to guarantee given connection

service levels with minimum costs. This study has many contributions to airline

scheduling and optimization literature.

6.1 Summary of Thesis

We developed a global optimization tool that satisfies given passenger connection

levels and avoids flight delays while minimizing the sum of fuel and idle time

costs. The method used in achieving this is balancing scheduled idle time with

cruise time controllability, and as far as we know this is the first time that these

mechanics are combined. Fuel costs are nonlinear functions of flight speed where

idle time costs are constant for unit time spent. Structure of these cost functions

allows for achieving less costs when these tools are combined compared to em-

ploying them alone. Moreover, idle time in a schedule means loss of efficiency

and not utilizing aircraft for that period. Combining speed controllability with

idle time insertion results in less idle times put in the schedule, which allows for

increased aircraft utilization.

The contributions of the study are not limited to that. Modeling the variabil-

ity in the data is one of the major parts of robust schedule building. In this thesis,

flight block times are considered in two separate parts as cruise and non-cruise

times. Cruise times are subject to controllability where variability exists in non-

cruise times. The variability in non-cruise times are assumed to be Loglaplace

random variables and are modeled with chance constraints on passenger connec-

tion service levels. These chance constraints are then expressed in their closed

form equations and then they are transfered to second order conic equations.

Previous literature has examples of chance constrained robust scheduling models

but these constraints were solved using approximations. By using a conic formu-

lation, we can solve even large problems as a 4-hub daily schedule exactly and

under minutes of time.
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Another important contribution in this study is that the congestion informa-

tion of airports are used to arrange the aircraft turnaround times and the vari-

ability on each flight. Each airport is assigned a congestion coefficient. For every

flight, the non-cruise time variability is adjusted using the congestion coefficients

of the origin and destination airport of the flight by changing the random variable

parameter accordingly. For the turnaround time, the congestion coefficient of the

turnaround location is used.

Remember that maintaining a desired level of passenger connection service

levels is one of the objectives of this study. However, passenger connection service

levels are allowed to be different for each flight as long as their weighted average

is above the desired level. This gives a better chance to assess these connections

according to their priority. We chose the number of connecting passengers as a

measure to assign weights. By our methodology, flights with more connecting

passengers are prioritized to achieve higher service levels since they have higher

weights.

Since cruise speed decisions highly affect the network and needs to be decided

globally, the tool we developed will prove many benefits for airlines. Moreover,

any airline practitioner can run this model using commercial solvers in seconds of

time. The model will help reducing the effects of propagated delay and guarantee

desired passenger connection service levels.

6.2 Future Work

The benefits of this research can be extended forward with further research. A

direct extension to our study would be a modification of the random variable

distribution. Following the research in Arıkan and Deshpande (2012), the random

variable in this study is assumed to be a Loglaplace random variable. However,

it is also mentioned in the thesis that there are other distribution functions that

have closed form expressions that would allow them to be represented as conic

equations. Therefore, our work could be extended to see the properties and
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performance of the model under a different random distribution.

We presented a model that offers a robust schedule with minimized costs

and guaranteed service levels using the tools of idle time insertion and cruise

time controllability. In our work, it is assumed that flight routing decisions and

fleet assignments are known a priori. Another important area for development

is incorporating routing and fleet assignment decisions to the decision process as

well. In our model, the flight sequences of aircraft paths are assumed to be known.

The results show that the computation times for the model are small, which is

a very big advantage for extending the model to include routing decisions and

aircraft assignments. If the conic structure of our model could be preserved, exact

solutions to this enlarged problem may be obtained in acceptable times. Another

option could be to combine our methodology with a heuristic to solve the extended

problem in short time if solving exactly turns out to be time demanding.

In this airline robust scheduling study, we tried to control the variability in

the system with chance constraints. Other methods could be applied to treat

the uncertainty. Scenario analysis which analyzes a large number of cases be-

fore finalizing the decision is a widely used technique to deal with uncertainty.

Stochastic programming that considers a number of different scenarios at once to

output a solution can also be an interesting point of view to the problem.

The airline scheduling process is a large sized complex process with many

different subproblems. It is important to integrate as much of these subproblems

to obtain better solutions that address the whole network with all interacting

parts. For example, crew costs are a major part of the operating costs in airline

industry. In our work, we did not take crew assignments and crew schedules into

consideration. A problem integrating crew scheduling problem with ours that

employs idle time insertion and cruise time controllability is a promising problem

for future studies.

A possible other work is to integrate the aircraft maintenance routing problem.

It is required by regulations that all aircraft go to maintenance after flying for a

period of time. We did not consider the maintenance requirements in our model

since we work with daily schedules. However, it would be a good extension for
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models that consider schedules with extended periods such as weekly or monthly

since the model works with changing departure times of the flights.
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Appendix A

Computational Results

A.1 Single Hub Study

Table A.1: Costs for the schedule generated by the model

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

1 0 0 0 0 1 676,830 72,304 749,135

2 0 0 0 0 2 673,756 72,054 745,811

3 0 0 0 0 3 675,525 72,901 748,427

4 0 0 0 0 4 674,135 78,555 752,689

5 0 0 0 0 5 673,870 76,537 750,407

6 0 0 0 1 1 670,980 110,272 781,252

7 0 0 0 1 2 673,758 104,973 778,731

8 0 0 0 1 3 669,672 113,041 782,713

9 0 0 0 1 4 672,819 108,669 781,489

10 0 0 0 1 5 670,666 108,632 779,298

11 0 0 1 0 1 675,436 72,977 748,413

12 0 0 1 0 2 674,562 65,304 739,886

Continued on next page
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Table A.1 – continued from previous page

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

13 0 0 1 0 3 673749 80491 754240

14 0 0 1 0 4 674,170 77,101 751,271

15 0 0 1 0 5 674,329 81,010 755,339

16 0 0 1 1 1 669,073 103,809 772,882

17 0 0 1 1 2 670,643 103,234 773,878

18 0 0 1 1 3 668,937 107,594 776,531

19 0 0 1 1 4 672,266 107,022 779,289

20 0 0 1 1 5 669,418 102,903 772,321

21 0 1 0 0 1 678,970 69,154 748,124

22 0 1 0 0 2 675,000 70,728 745,728

23 0 1 0 0 3 677,551 70,296 747,848

24 0 1 0 0 4 678,075 72,832 750,907

25 0 1 0 0 5 675,641 74,254 749,895

26 0 1 0 1 1 670,986 110,270 781,257

27 0 1 0 1 2 674,086 104,542 778,629

28 0 1 0 1 3 671,102 111,506 782,608

29 0 1 0 1 4 675,022 106,369 781,392

30 0 1 0 1 5 672,205 106,851 779,056

31 0 1 1 0 1 677,280 70,519 747,799

32 0 1 1 0 2 674,704 65,098 739,802

33 0 1 1 0 3 674,703 79,251 753,955

34 0 1 1 0 4 678,403 71,042 749,445

35 0 1 1 0 5 676,267 78,198 754,465

36 0 1 1 1 1 670,052 102,757 772,809

37 0 1 1 1 2 670,882 102,954 773,837

38 0 1 1 1 3 669,282 107,229 776,511

39 0 1 1 1 4 672,378 106,905 779,284

40 0 1 1 1 5 669,587 102,702 772,289

Continued on next page
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Table A.1 – continued from previous page

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

41 1 0 0 0 1 1,321,527 98,288 1,419,816

42 1 0 0 0 2 1,321,144 93,661 1,414,805

43 1 0 0 0 3 1,322,966 95,993 1,418,959

44 1 0 0 0 4 1,323,616 98,994 1,422,610

45 1 0 0 0 5 1,324,223 95,982 1,420,205

46 1 0 0 1 1 1,327,334 120,754 1,448,088

47 1 0 0 1 2 1,326,078 119,705 1,445,783

48 1 0 0 1 3 1,328,866 120,953 1,449,820

49 1 0 0 1 4 1,327,542 122,591 1,450,134

50 1 0 0 1 5 1,329,085 118,435 1,447,520

51 1 0 1 0 1 1,323,509 93,801 1,417,310

52 1 0 1 0 2 1,321,717 86,422 1,408,139

53 1 0 1 0 3 1,324,605 97,195 1,421,800

54 1 0 1 0 4 1,326,665 93,902 1,420,568

55 1 0 1 0 5 1,327,493 96,536 1,424,029

56 1 0 1 1 1 1,331,000 109,229 1,440,230

57 1 0 1 1 2 1,327,779 112,807 1,440,587

58 1 0 1 1 3 1,329,337 113,726 1,443,063

59 1 0 1 1 4 1,327,220 119,493 1,446,714

60 1 0 1 1 5 1,331,327 108,576 1,439,903

61 1 1 0 0 1 1,322,213 97,357 1,419,570

62 1 1 0 0 2 1,321,169 93,659 1,414,828

63 1 1 0 0 3 1,322,965 95,993 1,418,958

64 1 1 0 0 4 1,324,454 97,933 1,422,387

65 1 1 0 0 5 1,324,239 95,981 1,420,220

66 1 1 0 1 1 1,327,352 120,753 1,448,106

67 1 1 0 1 2 1,326,076 119,705 1,445,781

68 1 1 0 1 3 1,328,855 120,955 1,449,810

Continued on next page
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Table A.1 – continued from previous page

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

69 1 1 0 1 4 1,327,520 122,594 1,450,114

70 1 1 0 1 5 1,329,074 118,435 1,447,509

71 1 1 1 0 1 1,323,807 93,418 1,417,225

72 1 1 1 0 2 1,321,733 86,421 1,408,154

73 1 1 1 0 3 1,324,625 97,206 1,421,832

74 1 1 1 0 4 1,327,228 93,328 1,420,556

75 1 1 1 0 5 1,327,502 96,538 1,424,040

76 1 1 1 1 1 1,331,023 109,219 1,440,242

77 1 1 1 1 2 1,327,759 112,809 1,440,569

78 1 1 1 1 3 1,329,339 113,726 1,443,066

79 1 1 1 1 4 1,327,211 119,494 1,446,705

80 1 1 1 1 5 1,331,322 108,576 1,439,898

Table A.2: Costs for the original published schedule

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

1 0 0 0 0 1 654,808 290,244 945,558

2 0 0 0 0 2 654,808 290,244 945,558

3 0 0 0 0 3 654,808 290,244 945,558

4 0 0 0 0 4 654,808 290,244 945,558

5 0 0 0 0 5 654,808 290,244 945,558

6 0 0 0 1 1 654,808 290,244 945,558

7 0 0 0 1 2 654,808 290,244 945,558

8 0 0 0 1 3 654,808 290,244 945,558

9 0 0 0 1 4 654,808 290,244 945,558

10 0 0 0 1 5 654,808 290,244 945,558

11 0 0 1 0 1 654,808 249,306 907,662

Continued on next page
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Table A.2 – continued from previous page

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

12 0 0 1 0 2 654,808 249,306 907,662

13 0 0 1 0 3 654,808 249,306 907,662

14 0 0 1 0 4 654,808 249,306 907,662

15 0 0 1 0 5 654,808 249,306 907,662

16 0 0 1 1 1 654,808 249,306 907,662

17 0 0 1 1 2 654,808 249,306 907,662

18 0 0 1 1 3 654,808 249,306 907,662

19 0 0 1 1 4 654,808 249,306 907,662

20 0 0 1 1 5 654,808 249,306 907,662

21 0 1 0 0 1 654,808 290,244 945,558

22 0 1 0 0 2 654,808 290,244 945,558

23 0 1 0 0 3 654,808 290,244 945,558

24 0 1 0 0 4 654,808 290,244 945,558

25 0 1 0 0 5 654,808 290,244 945,558

26 0 1 0 1 1 654,808 290,244 945,558

27 0 1 0 1 2 654,808 290,244 945,558

28 0 1 0 1 3 654,808 290,244 945,558

29 0 1 0 1 4 654,808 290,244 945,558

30 0 1 0 1 5 654,808 290,244 945,558

31 0 1 1 0 1 654,808 249,306 907,662

32 0 1 1 0 2 654,808 249,306 907,662

33 0 1 1 0 3 654,808 249,306 907,662

34 0 1 1 0 4 654,808 249,306 907,662

35 0 1 1 0 5 654,808 249,306 907,662

36 0 1 1 1 1 654,808 249,306 907,662

37 0 1 1 1 2 654,808 249,306 907,662

38 0 1 1 1 3 654,808 249,306 907,662

39 0 1 1 1 4 654,808 249,306 907,662

Continued on next page
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Table A.2 – continued from previous page

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

40 0 1 1 1 5 654,808 249,306 907,662

41 1 0 0 0 1 1,309,616 290,244 1,600,367

42 1 0 0 0 2 1,309,616 290,244 1,600,367

43 1 0 0 0 3 1,309,616 290,244 1,600,367

44 1 0 0 0 4 1,309,616 290,244 1,600,367

45 1 0 0 0 5 1,309,616 290,244 1,600,367

46 1 0 0 1 1 1,309,616 290,244 1,600,367

47 1 0 0 1 2 1,309,616 290,244 1,600,367

48 1 0 0 1 3 1,309,616 290,244 1,600,367

49 1 0 0 1 4 1,309,616 290,244 1,600,367

50 1 0 0 1 5 1,309,616 290,244 1,600,367

51 1 0 1 0 1 1,309,616 249,306 1,562,471

52 1 0 1 0 2 1,309,616 249,306 1,562,471

53 1 0 1 0 3 1,309,616 249,306 1,562,471

54 1 0 1 0 4 1,309,616 249,306 1,562,471

55 1 0 1 0 5 1,309,616 249,306 1,562,471

56 1 0 1 1 1 1,309,616 249,306 1,562,471

57 1 0 1 1 2 1,309,616 249,306 1,562,471

58 1 0 1 1 3 1,309,616 249,306 1,562,471

59 1 0 1 1 4 1,309,616 249,306 1,562,471

60 1 0 1 1 5 1,309,616 249,306 1,562,471

61 1 1 0 0 1 1,309,616 290,244 1,600,367

62 1 1 0 0 2 1,309,616 290,244 1,600,367

63 1 1 0 0 3 1,309,616 290,244 1,600,367

64 1 1 0 0 4 1,309,616 290,244 1,600,367

65 1 1 0 0 5 1,309,616 290,244 1,600,367

66 1 1 0 1 1 1,309,616 290,244 1,600,367

67 1 1 0 1 2 1,309,616 290,244 1,600,367

Continued on next page
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Table A.2 – continued from previous page

Run Factors Replication Costs

# A B C D # Speeding Idle Time Total

68 1 1 0 1 3 1,309,616 290,244 1,600,367

69 1 1 0 1 4 1,309,616 290,244 1,600,367

70 1 1 0 1 5 1,309,616 290,244 1,600,367

71 1 1 1 0 1 1,309,616 249,306 1,562,471

72 1 1 1 0 2 1,309,616 249,306 1,562,471

73 1 1 1 0 3 1,309,616 249,306 1,562,471

74 1 1 1 0 4 1,309,616 249,306 1,562,471

75 1 1 1 0 5 1,309,616 249,306 1,562,471

76 1 1 1 1 1 1,309,616 249,306 1,562,471

77 1 1 1 1 2 1,309,616 249,306 1,562,471

78 1 1 1 1 3 1,309,616 249,306 1,562,471

79 1 1 1 1 4 1,309,616 249,306 1,562,471

80 1 1 1 1 5 1,309,616 249,306 1,562,471

Table A.3: Service levels and CPU times

Run Factors Replication

# A B C D # Service Level CPU Time

1 0 0 0 0 1 0.96 2.372

2 0 0 0 0 2 0.93 2.543

3 0 0 0 0 3 0.98 2.589

4 0 0 0 0 4 0.95 2.387

5 0 0 0 0 5 0.97 2.386

6 0 0 0 1 1 0.94 4.82

7 0 0 0 1 2 0.94 5.195

8 0 0 0 1 3 0.96 5.569

9 0 0 0 1 4 0.96 5.804

10 0 0 0 1 5 0.94 5.272

Continued on next page
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Table A.3 – continued from previous page

Run Factors Replication

# A B C D # Service Level CPU Time

11 0 0 1 0 1 0.93 5.258

12 0 0 1 0 2 0.9 5.304

13 0 0 1 0 3 0.95 6.38

14 0 0 1 0 4 0.94 6.287

15 0 0 1 0 5 0.94 5.944

16 0 0 1 1 1 0.91 10.234

17 0 0 1 1 2 0.92 11.778

18 0 0 1 1 3 0.93 11.747

19 0 0 1 1 4 0.93 12.106

20 0 0 1 1 5 0.92 10.889

21 0 1 0 0 1 0.96 2.45

22 0 1 0 0 2 0.93 2.371

23 0 1 0 0 3 0.98 2.527

24 0 1 0 0 4 0.95 2.48

25 0 1 0 0 5 0.97 2.496

26 0 1 0 1 1 0.94 4.868

27 0 1 0 1 2 0.94 5.148

28 0 1 0 1 3 0.96 5.273

29 0 1 0 1 4 0.96 5.678

30 0 1 0 1 5 0.94 5.881

31 0 1 1 0 1 0.93 5.132

32 0 1 1 0 2 0.9 4.945

33 0 1 1 0 3 0.95 6.895

34 0 1 1 0 4 0.94 5.21

35 0 1 1 0 5 0.94 6.1

36 0 1 1 1 1 0.91 10.265

37 0 1 1 1 2 0.92 11.498

38 0 1 1 1 3 0.93 11.435

Continued on next page
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Table A.3 – continued from previous page

Run Factors Replication

# A B C D # Service Level CPU Time

39 0 1 1 1 4 0.93 11.513

40 0 1 1 1 5 0.92 11.076

41 1 0 0 0 1 0.96 2.34

42 1 0 0 0 2 0.93 2.449

43 1 0 0 0 3 0.98 2.464

44 1 0 0 0 4 0.95 2.433

45 1 0 0 0 5 0.97 2.512

46 1 0 0 1 1 0.94 5.133

47 1 0 0 1 2 0.94 5.397

48 1 0 0 1 3 0.96 5.133

49 1 0 0 1 4 0.96 6.38

50 1 0 0 1 5 0.94 5.429

51 1 0 1 0 1 0.93 4.882

52 1 0 1 0 2 0.9 4.727

53 1 0 1 0 3 0.95 5.912

54 1 0 1 0 4 0.94 5.101

55 1 0 1 0 5 0.94 5.039

56 1 0 1 1 1 0.91 11.544

57 1 0 1 1 2 0.92 11.029

58 1 0 1 1 3 0.93 12.137

59 1 0 1 1 4 0.93 12.028

60 1 0 1 1 5 0.92 11.045

61 1 1 0 0 1 0.96 2.528

62 1 1 0 0 2 0.93 2.761

63 1 1 0 0 3 0.98 2.59

64 1 1 0 0 4 0.95 2.387

65 1 1 0 0 5 0.97 2.543

66 1 1 0 1 1 0.94 5.195

Continued on next page
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Table A.3 – continued from previous page

Run Factors Replication

# A B C D # Service Level CPU Time

67 1 1 0 1 2 0.94 4.664

68 1 1 0 1 3 0.96 5.258

69 1 1 0 1 4 0.96 5.491

70 1 1 0 1 5 0.94 6.1

71 1 1 1 0 1 0.93 6.037

72 1 1 1 0 2 0.9 4.789

73 1 1 1 0 3 0.95 6.131

74 1 1 1 0 4 0.94 5.148

75 1 1 1 0 5 0.94 5.367

76 1 1 1 1 1 0.91 11.435

77 1 1 1 1 2 0.92 11.372

78 1 1 1 1 3 0.93 11.669

79 1 1 1 1 4 0.93 10.28

80 1 1 1 1 5 0.92 10.436

A.2 4-Hub Study

Table A.4: Costs for the schedule generated by the model

Run Factors Replication Costs

# A C # Speeding Idle Time Total

1 0 0 1 2,876,478 422,594 3,299,072

2 0 0 2 2,877,855 428,477 3,306,333

3 0 0 3 2,885,933 418,306 3,304,240

4 0 1 1 2,875,377 399,674 3,275,052

5 0 1 2 2,875,285 409,261 3,284,546

6 0 1 3 2,882,122 392,245 3,274,367

Continued on next page
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Table A.4 – continued from previous page

Run Factors Replication Costs

# A C # Speeding Idle Time Total

7 1 0 1 5,664,672 490,205 6,154,877

8 1 0 2 5,665,008 496,258 6,161,266

9 1 0 3 5,673,900 491,905 6,165,805

10 1 1 1 5,661,093 466,831 6,127,925

11 1 1 2 5,659,872 476,310 6,136,182

12 1 1 3 5,668,645 463,844 6,132,489

Table A.5: Costs for the original published schedule

Run Factors Replication Costs

# A C # Speeding Idle Time Total

1 0 0 1 2,799,926 1,124,293 3,947,806

2 0 0 2 2,799,926 1,124,293 3,947,806

3 0 0 3 2,799,926 1,124,293 3,947,806

4 0 1 1 2,799,926 997,142 3,847,139

5 0 1 2 2,799,926 997,142 3,847,139

6 0 1 3 2,799,926 997,142 3,847,139

7 1 0 1 5,599,852 1,124,292 6,747,733

8 1 0 2 5,599,852 1,124,292 6,747,733

9 1 0 3 5,599,852 1,124,292 6,747,733

10 1 1 1 5,599,852 997,142 6,647,065

11 1 1 2 5,599,852 997,142 6,647,065

12 1 1 3 5,599,852 997,142 6,647,065
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Table A.6: Service levels and CPU times

Run Factors Replication

# A C # Service Level CPU Time

1 0 0 1 0.96 30

2 0 0 2 0.97 31.7

3 0 0 3 0.95 32.6

4 0 1 1 0.93 63.7

5 0 1 2 0.94 65.6

6 0 1 3 0.93 64.7

7 1 0 1 0.96 34

8 1 0 2 0.97 31.9

9 1 0 3 0.95 34.2

10 1 1 1 0.93 59.7

11 1 1 2 0.94 62.6

12 1 1 3 0.93 61.7



Appendix B

Quantile Functions

Even though we study loglaplace random variable following the research in Arıkan

and Deshpande (2012), it is possible to use another probability distribution to

denote non-cruise times. We derived the quantile functions of several basic dis-

tributions to be a reference for future studies. Note that not all of them are

conic representable. Ben-Tal and Nemirovski (2001) is an excellent source for the

properties of conic representable functions.

Exponential Distribution

If X is exponential with parameter λ:

F−1(p, λ) =
− ln(1− p)

λ

for 0 ≤ p ≤ 1.

Weibull Distribution

If X is Weibull with scale parameter λ and shape parameter k:

F−1(p, λ, k) = λ k
√
− ln(1− p)

for 0 ≤ p ≤ 1.

Cauchy Distribution

If X is Cauchy with location parameter α and scale parameter β:

F−1(p, α, β) = α− β

tan(πp)
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for 0 ≤ p ≤ 1.

Lognormal Distribution

If X is lognormal with parameters α and β (here α is the mean and β is the

standard deviation);

FX(x) = Φ

(
ln(x)− α

β

)
where φ is the standard normal cdf. If we plug the right side in the chance

constraint we get:

FX(x) = Φ

(
ln(xj − xi − TPij − si − Lti(µtii))− α

β

)
= γij

In Integral Form

For X being a lognormal random variable with parameters α and β:

Pr(X < k) =

∫ k

−∞

1

xβ
√

2π
e

−(ln(x)−α)2

2β2 dx

Quantile Function

F−1(p) =

∫ p

0

(
1

β
√

2π
exp

(
−1

2

(
ln(p)− α

β

)2
))

dp

Gamma Distribution

If X is gamma with parameters α and β, the cumulative distribution function is:

F (x, α, β) =

∫ x

0

βα

Γ(α)
xα−1e−xβ

which can be written as:

F (x, α, β) =
γ(α, x/β)

Γ(α)
=

∫ x/β
0

tα−1e−tdt

Γ(α)

Then, we need to put the right side of the constraint in place of x. There is no

closed-form expression for the Gamma quantile.



Vita

Aslıgül Serasu Duran was born on April 19, 1989 in Trabzon, Turkey. She gradu-

ated from Ankara Atatürk Anadolu Lisesi in 2005. She attended Bilkent Univer-

sity and graduated from the Industrial Engineering Department with high honors

in 2010. In 2010, she attended Industrial Engineering Department of Bilkent Uni-

versity as a research assistant. Since then, she has been working with Prof. M.

Selim Aktürk on her graduate study. She had been on the grant 2210 awarded by

The Scientific and Technological Research Council of Turkey (TUBITAK) during

her M.S. study.

79


