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GRÖBNERIAN DICKSON POLYNOMIALS

MÜFİT SEZER AND ÖZGÜN ÜNLÜ

(Communicated by Bernd Ulrich)

Abstract. Let F be a finite field and k be a positive integer. We compute
the reduced Gröbner basis for the Hilbert ideal of GLk(F ) in terms of Dickson
invariants of its subgroups.

Introduction

Let F be a finite field with q elements and GLk(F ) be the general linear group
of a k < ∞ dimensional vector space over F . The ring of invariants of the natural
action of GLk(F ) on R := F [x1, x2, . . . , xk] was computed by Dickson [2] and
was found to be a polynomial ring on certain polynomials that are called Dickson
invariants. Since the Dickson invariants form a homogeneous system of parameters
for R, R is a free module over the invariant ring. A nice generating set for R as a
module over the invariant ring was given by Campbell et al. [1] and Steinberg [3],
where it is shown that there exists a basis for R consisting of monomial factors of
a single monomial. An important ingredient of [1] is the study of the Hilbert ideal,
which is the ideal in R generated by positive degree invariants. Among other things,
Campbell et al. computed the lead term ideal of the Hilbert ideal with respect to
lexicographic order and gave an algorithm that produces its reduced Gröbner basis.
They also introduced a family of polynomials that approximate this basis; see [1,
§§5, 6]. The purpose of this paper is to describe the Gröbner basis in question more
explicitly. In fact, we show that for each 1 ≤ i ≤ k, the i-th element in the Gröbner
basis is a polynomial in the Dickson invariants of GLi(F ), and we compute this
polynomial; see Proposition 4. We do this by proving a suitable relation among the
Dickson invariants in R.

For a nice account of Dickson invariants we refer the reader to [5], and for a
background on the Gröbner basis we recommend [4].

The Gröbner basis

We denote the general linear group GLk(F ) simply by G. We call the ring of
invariants which is generated by the Dickson invariants the Dickson algebra and
denote it by RG. The corresponding Hilbert ideal is denoted by RG

+ · R. We use
the graded lexicographic order with x1 < x2 < x3 < · · · < xk on R and the leading
monomial of a polynomial f in R will be denoted by LM(f). For i in {1, 2, . . . , k}
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we define Gi as the subgroup of G that stabilizes xj for i < j ≤ k. In particular
Gk = G and G0 = 1. One way to construct the Dickson invariants is via the
polynomial

fx1,x2,...,xk
(t) =

∏
(a1,a2,...,ak)∈F k

(t+a1x1+· · ·+akxk) =
k∑

i=0

dk,i(x1, . . . , xk)tq
i ∈ R[t].

Then by [2], RG = F [dk,i(x1, . . . , xk) | 0 ≤ i ≤ k−1] and the invariant polynomials
dk,i(x1, . . . , xk) for 0 ≤ i ≤ k − 1 are the celebrated Dickson invariants. Note that
the degree of dk,i(x1, . . . , xk) is qk − qi.

More generally, for a positive integer s and polynomials m1, m2, . . . , ms in R we
define

fm1,m2,...,ms
(t) =

∏
(a1,a2,...,as)∈F s

(t + a1m1 + a2m2 + · · · + asms)

=
s∑

i=0

ds,i(m1, . . . , ms)tq
i

∈ R[t].

For s in {1, 2, . . . , k}, instead of fx1,x2,...,xs
(t) we will simply write fs(t), and

instead of ds,j(x1, x2, . . . , xs) we will write ds,j . Then, in our notation, the Gs

invariant of the subalgebra F [x1, x2, . . . , xs] is equal to F [ds,0, ds,1, . . . , ds,s−1]. For
s in {1, 2, . . . , k} set

gs,0 = 1,

and for v in {1, . . . , k − s + 1} define

(1) gs,v = −
( min{v−1,s−1}∑

j=0

dqv−1

s,s−j−1 gs,v−j−1

)
.

Note that gs,v is in RGs for v in {1, . . . , k − s + 1}. For all s in {1, 2, . . . , k} we
further define

gs = −gs,k−s+1.

We first compute the leading monomials of gs,v for s in {1, 2, . . . , k} and v in
{1, . . . , k − s + 1}.
Lemma 1. Fix s ∈ {1, 2, . . . , k}. For v ∈ {1, . . . , k − s + 1} we have LM(gs,v) =
xqs+v−1−qs−1

s . In particular, LM(gs) = xqk−qs−1

s .

Proof. We have
∑s

i=0 ds,it
qi

=
∏

(a1,a2,...,as)∈F s(t+a1x1 +a2x2 + · · ·+asxs). Since
xs appears in qs − qs−1 terms in the above product, the leading monomial of ds,s−1

is xqs−qs−1

s . Similarly for 0 ≤ j < s − 1 the degree of ds,j is greater than qs − qs−1

and so no monomial in ds,j is a power of xs.
Note that the assertion of the lemma holds trivially for v = 0. Also for s = 1,

we have g1,v = −dqv−1

1,0 g1,v−1; hence the assertion again follows easily by induction
on v. More generally, we write

gs,v = −
(
dqv−1

s,s−1 gs,v−1 + · · ·
)
.

Note that

LM(dqv−1

s,s−1 gs,v−1) = LM(dqv−1

s,s−1) LM(gs,v−1) = x(qs−qs−1)(qv−1)
s xqs+v−2−qs−1

s

= xqs+v−1−qs−1

s
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because LM(gs,v−1) = xqs+v−2−qs−1

s by induction. Since no monomial in ds,j is a
power of xs for j < s−1, and gs,v +dqv−1

s,s−1 gs,v−1 lies in the ideal in F [x1, x2, . . . , xs]

generated by ds,0, ds,1, . . . , ds,s−2, it follows that LM(gs,v) = LM(dqv−1

s,s−1 gs,v−1),
which completes the proof. �

We now prove a relation.

Lemma 2. For any s in {1, 2, . . . , k},
k−s+1∑

v=0

dk,s+v−1 gs,v = 0.

Proof. For s in {1, 2, . . . , k} we consider

fk(t) =
∏

(a1,a2,...,ak)∈F×k

(t + a1x1 + a2x2 + · · · + akxk)

=
∏

(as+1,as+2...,ak)∈F×(k−s)

fs(t + as+1xs+1 + · · · + akxk)

=
∏

(as+1,as+2...,ak)∈F×(k−s)

(fs(t) + as+1fs(xs+1) + · · · + akfs(xk))

= ffs(xs+1),...,fs(xk)(fs(t))

=
k−s∑
i=0

(
dk−s,i(fs(xs+1), . . . , fs(xk))

s∑
j=0

(dqi

s,jt
qi+j

)
)
.

Denote dk−s,i(fs(xs+1), . . . , fs(xk)) by As,i. Considering the coefficients of tq
v

on
both sides of the above equation we get

dk,v =
∑

i+j=v

0≤i≤k−s

0≤j≤s

As,i dqi

s,j =
min{k−s,v}∑

i = max{0,v−s}
As,i dqi

s,v−i.

Therefore
k−s+1∑

v=0

dk,s+v−1 gs,v =
k−s+1∑

v=0

⎛
⎝

min{k−s,s+v−1}∑
i=max{0,v−1}

As,i dqi

s,s+v−1−i

⎞
⎠ gs,v

=
k−s∑
i=0

i+1∑
v=max{0,i−s+1}

As,i dqi

s,s+v−1−i gs,v

=
k−s∑
i=0

As,i

i+1∑
v=max{0,i−s+1}

dqi

s,s+v−1−i gs,v

=
k−s∑
i=0

As,i

⎛
⎝gs,i+1 +

min{i,s−1}∑
v=0

dqi

s,s−v−1 gs,i−v

⎞
⎠ = 0,

as desired. �

We are now ready to state our main result.
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Theorem 3. The set {g1, g2, . . . , gk} is the reduced Gröbner basis for the Hilbert
ideal RG

+ · R.

Proof. By Lemma 1, the leading monomials of gi for 1 ≤ i ≤ k are relatively prime
and no monomial in gi is divisible by a leading monomial of gj for i �= j. Therefore
it is enough to show that the ideal I generated by {g1, g2, . . . , gk} is equal to RG

+ ·R.
Observe that the assertion of Lemma 2 is equivalent to

dk,s−1 +
k−s∑
v=1

dk,s+v−1 gs,v = gs

for any s in {1, 2, . . . , k}. So it follows that I ⊆ RG
+ · R. Conversely notice that

dk,k−1 = gk. Furthermore, assuming that dk,k−1, dk,k−2, . . . , dk,j ∈ I one gets
dk,j−1 ∈ I by putting s = j in the above equation. This shows by induction that
dk,k−1, dk,k−2, . . . , dk,0 ∈ I. Hence RG

+ · R ⊆ I. �
In the context of Equation 1, define m = min(s, v). By an ordered (s, v)-partition

we mean a sequence of positive integers i1, i2, . . . , in with n ∈ Z≥0, i1 + i2 + · · · +
in = v and 1 ≤ ij ≤ m. We let Ps,v denote the set of all (s, v)-partitions. For
p = i1, i2, . . . , in ∈ Ps,v, define

fp =
∏

1≤j≤n

dqej

s,s−ij
,

where e1 = v−1 and ej = v−1−
∑j−1

k=1 ik for n ≥ j ≥ 2. Furthermore, d(p) := n is
called the length of p. We describe gs,v in terms of Dickson invariants of dimension
s in the next proposition. Recall that the s-th Gröbner basis element gs is equal to
−gs,k−s+1.

Proposition 4. For s ∈ {1, 2, . . . , k} and v ∈ {1, 2, . . . , k − s + 1} we have

gs,v =
∑

p∈Ps,v

(−1)d(p)fp.

Proof. We fix s and proceed by induction on v. For v = 1, we have only one
element in Ps,1, which is the partition 1 = 1 whose length is one, and therefore∑

p∈Ps,1
(−1)d(p)fp = −ds,s−1 as required. Note that Equation 1 is equivalent to

gs,v = −
( m∑

j=1

dqv−1

s,s−j gs,v−j

)
.

Then gs,v−j =
∑

p∈Ps,v−j
(−1)d(p)fp for 1 ≤ j ≤ m by induction. For p =

i1, i2, . . . , in ∈ Ps,v−j we have

−dqv−1

s,s−j(−1)d(p)fp = −(−1)d(p)dqv−1

s,s−j

∏
1≤j≤n

dqej

s,s−ij
= (−1)d(p′)fp′ ,

where p′ = j, i1, i2, . . . , in ∈ Ps,v. It follows that the terms in the summation
−(

∑m
j=1 dqv−1

s,s−j gs,v−j) are all in the form (−1)d(p′)fp′ for some p′ ∈ Ps,v. Conversely
every ordered partition p′ = j, i1, i2, . . . , in in Ps,v can be obtained by adding j as
the first element to the ordered partition i1, i2, . . . , in in Ps,v−j . Furthermore,
this process is injective. It follows that for each p′ ∈ Ps,v, the term (−1)d(p′)fp′

appears exactly once in the summation −(
∑m

j=1 dqv−1

s,s−j gs,v−j). This completes the
proof. �
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