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ABSTRACT

AUTOMATIC METHOD FOR GENERATION OF
SEMEME KNOWLEDGE BASES FROM MACHINE

READABLE DICTIONARIES

Ömer Musa Battal
M.S. in Electrical and Electronics Engineering

Advisor: Aykut Koç
September 2023

The minimal semantic units of natural languages are defined as sememes. Sememe
Knowledge Bases (SKBs) are organized word collections annotated with appro-
priate sememes. As external knowledge bases, SKBs have successful applications
in multiple high-level language processing tasks. However, the construction of
mainstream SKBs is performed by linguistic experts over extended periods, which
restricts their prevalent usage. We present MRD4SKB as an automatic SKB
generation method from readily available Machine Readable Dictionaries (MRDs).
Construction of MRDs is more straightforward than SKBs, and many prominent
MRDs are present in various forms. Consequently, the presented MRD4SKB is
viable as a fast, flexible, and extendable method for SKB construction. Several
variants of MRD4SKB, based on matrix factorization and topic modeling, are
proposed to generate SKBs automatically. The performance of the automatically
generated SKBs is evaluated and compared with that of other SKBs, which are
constructed manually or semi-manually.

Keywords: Sememe, machine readable dictionary, sememe knowledge base, machine
learning.
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ÖZET

MAKİNE OKUNABİLİR SÖZLÜKLERDEN SEMEME
BİLGİ TABANI ÜRETİMİ İÇİN OTOMATİK YÖNTEM

Ömer Musa Battal
Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Aykut Koç
Eylül 2023

Doğal dillerin asgari semantik birimleri sememeler olarak tanımlanır. Sememe
Veri Tabanları (SVT), uygun sememeler ile şerh düşülmüş düzenli kelime der-
lemeleridir. Harici veri tabanları olarak SVT’ler, birçok yüksek seviye dil işleme
görevinde başarılı uygulamalara sahiptir. Buna karşın, ana akım SVT’lerin inşası
dilbilim uzmanları tarafından uzun süreler içinde icra edilir, ki bu da onların
yaygın kullanımını kısıtlar. MRD4SKB’yi kolayca bulunabilen Makine Okunabilir
Sözlüklerden (MOS) otomatik SVT üretimi için bir yöntem olarak sunuyoruz.
MOS’ların inşası SVT’lerinkine kıyasla daha dolambaçsızdır ve farklı formatlarda
birçok seçkin MOS bulunmaktadır. Bu nedenle, sunulan MRD4SKB hızlı, es-
nek ve genişletilebilir bir SVT inşa yöntemi olarak uygulanabilirdir. Otomatik
SVT üretimi için MRD4SKB’nin matrix faktörizasyonu ve konu modellemesine
dayalı çeşitli biçimleri önerilmektedir. Otomatik olarak üretilen SVT’lerin perfor-
mansları değerlendirilmekte ve diğer elle yahut yarı-elle inşa edilmiş SVT’lerinki
ile karşılaştırılmaktadır.

Anahtar sözcükler : Sememe, makine okunabilir sözlük, sememe bilgi tabanı,
makine öğrenmesi.
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Chapter 1

Introduction

The most minor elements of natural languages that can stand by themselves are
defined as words. However, words are not the most minor indivisible semantic units.
‘Sememes’ are defined as the most basic semantic units of natural languages [3]. To
demonstrate this concept with some examples, the word school can be regarded
as a composition of the meanings of education and building. Similarly, the
word hospital can be regarded as a composition of the meanings of medicine

and building. The terms education, medicine, and building are considered
sememes in the given examples, and their combinations are used to annotate
the words school and hospital. The sememe annotation method in the given
examples is relatively simple but still practical. More complex and hierarchical
sememe annotation methods exist, which are used in specific contexts for varying
intents. The prominent example of this is the HowNet [4].

The usefulness of sememes has been demonstrated in various natural language
processing (NLP) tasks [5]. An assortment of these works will be given as follows.

• word similarity computation: Sememes have been utilized in Chinese lexical
fusion, which can be considered a specialized word similarity task [6]. Chinese
lexical fusion occurs when a fusion form with the same meaning duplicates
a pair of words in a sentence. This fusion form generally consists of rarer

1



words, which hinders downstream NLP tasks like reading comprehension,
summarization, and machine translation. Sememe knowledge is used to
capture the semantic similarity between the original and fusion forms of
these word pairs in a sentence to avoid degradation in downstream task
performance.

• word representation learning: Sememes have been used in the skip-gram
framework to learn word representations [7]. Word sememes are utilized to
accurately capture the exact meaning of a word within a specific context
through an attention mechanism.

• sentiment analysis: Sememes have been employed in the sentiment analysis
of Chinese online social reviews [8]. First, a topic model is trained on the
review dataset. The trained topic model then identifies the topics of a
document, and sememes are used to classify these topics based on their
sentiment polarity.

• definition generation: Sememes have been utilized in automatically gen-
erating definitions for specific words. In one of the previous works, an
encoder-decoder framework is used [9]. The encoder maps words and se-
memes into a sequence of continuous representations. The decoder then
attends to the output of the encoder and generates the definitions. In an-
other work, meanings of words are explicitly decomposed into their semantic
components through sememes, and these decompositions are then used as
discrete latent variables for a definition generation model [10].

• lexical simplification: Replacing complex words in a sentence with simpler
alternatives of equivalent meaning is defined as lexical simplification, and
sememes have been used for this purpose [11]. Two words are considered
semantically equivalent if sememe annotations of one of their senses are the
same. This approach is used for finding complex words to substitute with
simpler words of identical meaning.

• lexicon expansion: Sememes have been used for automatically expanding
the lexicon of a popular word counting software tool named Linguistic
Inquiry and Word Count (LIWC) [12]. Sememe information is used for
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distinguishing word meanings to address the polysemy and indistinctness
problems encountered during lexicon expansion. An attention mechanism
is also employed to assign weights to the sememes to utilize the sememe
information better.

• text classification: Sememes have been employed in Chinese question clas-
sification task [13]. The questions are generally classified based on what
kind of answer is given to them, which is conceptualized as Question Focus
Words (QFW). The sememes of the QFWs are used for performing finer
classifications of Chinese questions.

• language modeling: Sememe-Driven Language Model (SDLM) has been
proposed for language modeling task [14]. In SDLM, the next word is
predicted using an estimate of sememe distribution given the textual context.
Each estimated sememe is regarded as a semantic expert, and the most
probable senses, and their corresponding word, are jointly identified by these
semantic experts to predict the next word in the sequence.

• sarcasm detection: Sememe and Auxiliary Enhanced Attention Model
(SAAG) has been presented for Chinese sarcasm detection [15]. Sememe
knowledge is used for enhancing the representation learning of Chinese words
at the word level. The representation of text expression is then progres-
sively and dynamically constructed based on the sememe-enhanced word
representations to detect sarcasm.

Integration of linguistic knowledge into recurrent neural networks (RNNs) has
been a topic of research [16–19]. This line of work opened the way to incorpo-
rating sememe information into neural network models such as RNNs [20] and
transformers [21] in order to increase their performance on NLP tasks.

Every sense of each word can be expressed as a combination of suitable sememes,
provided that a well-constructed predefined sememe set exists [3]. However, the
construction of this predefined set of sememes is a challenging task. Moreover,
even after the base sememe set is constructed, annotating words with proper
sememes is non-trivial. These tasks have formerly been performed manually by
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linguistic experts over the years [4, 22]. Involving groups of linguistic experts is
not uncommon in the field of NLP [23]. However, this strategy is not always
optimal. Creation of manual datasets for NLP tasks such as text alignment is
not trivial, even for experts [24]. Furthermore, the manually prepared datasets
usually end up being small-sized and domain-specific. Another method for dataset
construction is by crowd-sourcing. Nevertheless, producing high-quality data for
complex tasks may require educating the crowd workers, which can be costly [23].
When these facts are taken into account, it comes as no surprise that automatic
or semi-automatic dataset construction methods have been used in several NLP
tasks [25–28]. The task of sememe annotation has been automated to various
extents. Annotating words with sememes from a predefined set is called lexical
sememe prediction, and there are numerous methods of automating this task
present in the literature [1, 29–37]. Using a controlled defining vocabulary as an
initial sememe set and then performing sememe annotations from them to create
an SKB is also introduced [38]. Despite this, fully automatic initial sememe set
generation using regular MRDs remains a feat yet to be achieved.

We present MRD4SKB as a method of using a machine-readable dictionary
(MRD) to generate a set of predefined sememes and the corresponding sememe
annotations for the words in the same MRD to construct a sememe knowledge
base (SKB) that represents the target language optimally. Utilizing available
well-established MRDs to construct SKBs automatically eliminates the need for
complicated manual work that requires linguistic expertise, which can stimulate
further sememe-related NLP research. Using our method to construct the base
set of predefined sememes happens to perform the lexical sememe prediction task
as a by-product, which is crucial for establishing an SKB.

A basic description of MRD4SKB can be given as a set of consecutive steps.
First, a term-document matrix is constructed from the MRD of interest using the
preprocessing methods explained in Section 3.1. Then, appropriate dimensionality
reductions are applied to this term-document matrix as column reductions. Two
main approaches are proposed to perform matrix dimensionality reduction. In the
first approach, a customized Kronecker-product-based matrix reduction method
is used, details of which are explained in Section 3.2. In the second approach, We
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utilize topic modeling methods such as Non-Negative Matrix Factorization (NMF),
Latent semantic analysis (LSA), and Latent Dirichlet Allocation (LDA), details
of which are described in Section 3.3. The rest of the thesis is organized in the
following manner. Further information on SKBs and previous work regarding them
is presented in Chapter 2. We explain the details of our proposed MRD4SKB
method in Chapter 3. Experimental results and evaluations are presented in
Chapter 4. The thesis concludes in Chapter 5.
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Chapter 2

Sememe Knowledge Bases (SKBs)

SKBs are knowledge bases (KBs) principally constructed to comprise sememe
annotations of words. The sememes are chosen from a predefined sememe set,
which is also a part of the SKB. This predefined set of sememes can be regarded
as the periodic table for a natural language, or the indivisible atoms of meaning, as
an analogy. An SKB strives to define the words in a vocabulary by compounding
these sememes properly, using weighted and hierarchical means. HowNet is the
most famous SKB in the literature [4]. HowNet is the result of the manual efforts
of linguistic experts over the years. Fig. 2.1 displays a sample entry from the
HowNet.

Figure 2.1: An example of a word annotated with HowNet [1].
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The word bank is annotated with sememes in the given manual sememe anno-
tation entry example. Two senses of the word bank are annotated: “river bank”
and “financial bank”. Each of these senses is manually annotated with appropriate
sememes selected from the base sememe set of HowNet, which consists of about
2, 500 sememes. The sememe set of HowNet is manually determined by extracting,
analyzing, merging, and filtering the semantics of thousands of Chinese characters.
In HowNet, sememe annotations are performed hierarchically, which contains
further information on the meaning of the annotated senses. HowNet was initially
designed and constructed in the 1990s and was published in 1999 [22]. Moreover,
its original authors have kept it frequently updated since its publication through
manual efforts.

SKBs are utilized to enhance the performances of machine learning models in
numerous NLP tasks [5]. Some of these can be listed as follows.

• SKBs have been utilized in improving the sequence modeling ability of
RNNs [20]. Three sememe incorporation methods are designed and employed
in typical RNNs such as LSTM, GRU, and their bidirectional variants.

• SKBs have been used in constructing sememe enhanced transformer models
[20]. Sememe knowledge is incorporated into transformer models through
sememe embeddings, auxiliary sememe prediction task, and their hybrid
combination. It has been shown that sememe incorporation substantially
improved the model’s robustness against adversarial examples.

• SKB-based semantic relatedness measures have been applied in word sense
disambiguation (WSD) [39]. Concept Relevance Calculator (CRC) is pro-
vided as part of HowNet and is used to construct sense colonies or bags of
concepts. Then, a machine learning tool named Conditional Random Fields
(CRFs) is used for WSD, utilizing the constructed sense colonies.

• SKBs have been utilized in annotating information structures in Chinese
texts [40]. An information structure is constructed as a combination of SKB
definitions and dependency relations. Incorporation of SKB information
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to corpora is intended to contribute to improving text understanding and
machine translation.

• An unsupervised neural framework has been proposed that leverages sememes
for aspect extraction [41]. A framework analogous to an auto-encoder is
used, where sememes are leveraged to form input sentence representations
through various attention mechanisms.

• SKBs have been beneficial for modeling semantic compositionality (SC),
which refers to the concept of decomposing the meaning of a complex
linguistic unit into the meanings of its constituents [42]. Sememe information
is integrated into SC models for learning representations of multi-word
expressions that better correlate with human judgment.

• SKBs have been used in reverse dictionary models [43]. A reverse dictionary
takes the description of a word as input and outputs the target word, which
is the opposite task of a regular forward dictionary. Sememe annotations
obtained from SKBs have been used to design a sememe predictor, which is
utilized for predicting the target word from a given input description.

In addition, SKBs have been utilized in language modeling [14], quantifying word
semantic similarities [44], and lexical fusion recognition [6]. Furthermore, a basis
for the theoretical implications of semantic compositionality, an important NLP
topic, can be provided through SKBs [45].

Advanced expertise in linguistics and laborious effort are required for building
SKBs, as seen in the case of HowNet. Extending an existing SKB with sememe
annotations of previously unannotated words is called lexical sememe prediction.
The task of lexical sememe prediction is studied through numerous approaches
[1, 29, 32–37]. Some of these methods utilize dictionaries as well [30, 31]. To
construct an SKB, rather than extending an existing one, the EDSKB approach
was previously proposed [38]. EDSKB uses a manually crafted dictionary named
Controlled Defining Vocabulary (CDV) as the initial sememe set. CDV consists of a
well-chosen list of words used to construct all definitions in the broader dictionary,
which is deemed suitable for being an initial set of sememes. Preprocessing
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and tokenizing steps are applied to all dictionary definitions, and tokens not
contained in the predefined sememe set are removed. The remaining tokens are
then taken as the sememe annotations of the words in the dictionary [38]. In
order to further reduce the number of annotated sememes per term, the authors of
EDSKB additionally introduce dependency parsing to create alternative SKBs [46].
Although an SKB can be constructed by the EDKSB method, reliance on a
manually prepared CDV as the initial sememe set limits its utility. Moreover, it
leaves the automatic generation of the initial sememe set as an open problem.
It is, therefore, desirable to generate both the predefined sememe set and the
corresponding sememe annotations through a single automatic method. In theory,
such a method can choose the optimal set of initial sememes that would represent
the semantics of the language. Additionally, the automatic building of the initial
sememe set creates the opportunity to use more extensive dictionaries for which
a manually constructed CDV does not exist. With this motivation, we propose
the MRD4SKB method as an approach that generates the initial sememe set and
performs the necessary sememe annotations to build an SKB automatically in the
next section.
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Chapter 3

Automatic Sememe Knowledge
Base Generation

MRD4SKB is a computational method for generating SKBs from any machine-
readable dictionary (MRD) in a fully automatic manner. An MRD database
with machine-readable formatting that contains words, their definitions, and
possibly other related information [47]. Since humans rely on dictionaries to learn,
use, and study languages, Constructing dictionaries is almost always necessary
for any natural language. Hence, significant effort is spent on building MRDs,
many provided and published online. WordNet [48] and Wiktionary [49] are
among the most popular and established MRDs. In addition to manual dictionary
creation, automatic construction of dictionaries [50] and reverse dictionaries [51]
are both researched in the NLP field. Various NLP tasks utilize MRDs, such
as language model enhancement [52]. The size and content of MRDs can vary
considerably, so selecting an MRD should be appropriately made while considering
the requirements of the particular application.

Dictionary construction is much more straightforward compared to coming up
with a predefined set of sememes and annotating words with them. Sememes
are restrictive, whereas a dictionary definition can use the entire vocabulary.
We assume here that a comprehensive dictionary should contain most of the
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words necessary to encompass the semantic space of a language. Therefore, the
dictionary should already contain almost all sememes within itself. The problem
then remains to extract these sememes, and the matching sememe annotations,
from the dictionary. We first construct a document-term matrix from the chosen
MRD to base our further work. We then propose two primary methodologies
to extract sememes and sememe annotations from the generated document-term
matrix in separate sections.

3.1 Construction of MRD Document-Term Ma-
trix

An essential part of this work is to model an MRD with a document-term matrix.
A document-term matrix is a matrix of the frequency of terms within a collection
of documents. In the traditional definition, the matrix rows correspond to the
documents in the collection, and the columns represent the individual terms. The
matrix entries specify the occurrence of a specific term in the specified document.
The transposition of this matrix is appropriately called a term-document matrix,
in which the row and column definitions are interchanged. We will be using the
document-term matrix format in this work. It should come as no surprise that an
MRD can be considered a collection of documents. In this case, the documents
are the definitions of individual words provided by the dictionary. Each document
is titled with the word it defines, which is itself another term. Due to polysemy, a
word can have multiple senses, meaning it can also have multiple documents. We
performed word sense disambiguation (WSD) on the MRD by applying the Lesk
algorithm to avoid two documents having the same word as their title [53]. As a
result, each word in the MRD is labeled by a sense number, corresponding to a
sense of that particular word in the MRD itself. We then use these distinguishable
sense-labeled words as the terms of the MRD. A mathematical representation of

11



the MRD can then be presented as follows:

t1 : [t1,1, t1,2, · · · , t1,st1
] = d1

...

ti : [ti,1, ti,2, · · · , ti,sti
] = di

...

tm : [tm,1, tm,2, · · · , tm,stm
] = dm,

(3.1)

where m is the total number of terms that have definitions in the MRD, and ti is
the i’th term, which has a total number of sti

words in its definition document
di. After this construction, tokenization, lemmatization, and stop-word removal
steps are applied to documents di in order to produce a preprocessed (m × n)
dimensional document-term matrix D, where n is the total number of different
terms used in all definitions of the MRD combined. The preprocessing steps utilize
the algorithms and modules from the SpaCy software library [54].

The ith row of D, which will be denoted as D(i,∗), corresponds to a term t′
i that

has a definition in the MRD, and will be called the definition vector of t′
i. The

jth column of D, which will be denoted as D(∗,j), corresponds to a term t′′
j that

is used in at least one definition in the MRD, and will be called the occurrence
vector of t′′

j . The rows and columns of D, which have the following properties:

D(i,∗) = 0,

D(∗,j) = 0,
(3.2)

are removed from D as part of pre-processing. These correspond to a term t′
i with

the null definition vector and a term t′′
j with the null occurrence vector.

Let t′ and t′′ denote the lexically ordered sets of all t′
i’s and all t′′

j ’s of D,
respectively. Then let the lexically ordered set t be defined as their intersection
as:

t = t′ ∩ t′′. (3.3)
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Note that the definition of t above allows the following to hold:

t′
i = t′′

j = tk, ∃!{i, j, k}, ∀k, (3.4)

which means that, given a column term t′′
j , if t′′

j ∈ t is satisfied, then tk = t′′
j can

instead be used, and if t′′
j /∈ t, then no such tk exists. Similar also holds for row

terms t′
i.

We introduce the following matrix indexing notation, which will be useful later:

D(i,∗) = D(t′
i,∗),

D(∗,j) = D(∗,t′′
j ),

D(i,j) = D(t′
i,t

′′
j ),

(3.5)

where matrix D is not indexed by integers, but by the corresponding terms.

The automatic SKB generation algorithm starts with the following initial
condition: the terms t′′

j from columns of the matrix D are set as sememes, and
Dt′

i,∗ is the sememe annotation row vector for the term t′
i. However, the direct

application of this proposition has an obvious issue. The width of the original
document-term matrix D is impractical as an SKB because its width is excessive.
A wide SKB matrix produces many sememes with little or too specific semantic
content. Annotating terms from a large sememe pool like this is effectively useless.
In other words, column terms of the initial matrix can not be regarded as sememes.
Ideally, a matrix M should be obtained from D, which should be as narrow as
possible but not narrower. Even in the case of manual extraction by linguistic
experts, the questions of “What is the optimal number of sememes?" and “What
are these ultimate sememes?" are open problems. With this in consideration, the
semantic content of sememes should not be too specific, but the composition of
sememes should allow for building the semantic representations of specific terms.
Hence, a dimensionality reduction process should be applied to matrix D to obtain
a narrower matrix M.
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3.2 Kronecker-Product Based Matrix Reduction

Various dimensionality reduction methods exist, such as PCA [55] and non-negative
matrix factorization [56]. These methods achieve dimensionality reduction by
creating a new feature space. Determining what the dimensions of this new
feature space correspond to requires an interpretation step. In order to avoid this
interpretation step, we propose an iterative matrix reduction method customized
to suit our purposes in this application. The state of the document-term matrix
M at lth iteration will be denoted as M(l), and the dimension of the matrix will
be denoted as (m(l), n(l)), where l will start from 0. Note that M(0) = D, which is
the original MRD document-term matrix.

In our dimensionality reduction step, we remove the columns with the least
total frequency from the matrix M, thereby narrowing it. To this end, we use the
following column selection procedure:

1 ·M(l) = C(l),

min
i

(C(l)
(1,i)) = c(l),

arg min
i

(C(l)
(1,i)) = i

(l)
min → t′′

i
(l)
min

,

(3.6)

where C is the (1, n(l)) column sum vector, 1 is the (1, m(l)) matrix of all ones,
c(l) is the minimum column sum, and t′′

i
(l)
min

is the term or terms corresponding to
this minimum column sum. The t′′

i
(l)
min

are the least frequently used terms over all
definitions, so their semantic contents are assumed to be either not very significant
or too specific to be considered as a sememe. Thus, we must remove them from
the list of possible sememe candidates. However, the direct removal of these
columns has a detrimental effect on the semantic content of the remaining part
of M. To preserve the semantic content through information diffusion, if the
following condition is met:

t′′
i
(l)
min

∈ t⇒ t′′
i
(l)
min

= tk, ∃!k, (3.7)

14



the following update step is added to our proposed method:

∆l =µMt′
i,t

′′
i
(l)
min

Mt′′
j ,∗

Mt′
i,∗ ←Mt′

i,∗ + ∆l , ∀t′
i,

(3.8)

where µ is a semantic relation factor to be described later, and ∆l is the delta
element of our update step. The update step in Eq. 3.8 is performed right before
the reduction step in each iteration. The components of the delta element ∆l in
the update step are justified as follows, where we will use tj = t′′

i
(l)
min

to simplify
notation. Mti,tj

denotes the semantic relation between term ti and sememe
candidate tj. Mtj ,∗ is interpreted as the semantic compositionality vector of the
sememe candidate tj, which is originally the definition vector obtained from the
preprocessed MRD document-term matrix. Note that this sememe candidate is a
failed one; it will be removed and not considered in the following iterations.

Finally, µ is a semantic relation factor, taking values in the range [0, 1]. The
purpose of this factor is to retain part of the lost semantic content by removing a
sememe candidate column from the SKB matrix M. It achieves this by diffusing
the information within this sememe candidate to other definition rows containing
it. For instance, if the sememe candidate hospital were removed, other definition
rows containing this sememe candidate would lose information. Adding the
definition row vector of the term hospital to these definition row vectors with a
factor of µ diffuses the information contained in this sememe candidate to other
terms and reduces the loss of semantic content in the final SKB. Higher values of µ

would result in a higher rate of information diffusion, but it would risk suppressing
the information content from the original sememes of the terms. Therefore, the
value of µ should be fine-tuned.

A useful feature of this update step is that Eq. 3.8 turns out to be equivalent
to a simple Kronecker product when applied to the entire matrix M for a single
sememe candidate tj, as the following:

M′(l) =


M(l) + µ(M∗,tk

⊗Mtk,∗), if Eq. 3.7 holds,

M(l), otherwise.
(3.9)
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In either case, the column reduction step is performed as follows to obtain the
next iteration:

M(l+1) = M’(l) · JT

(i(l)
min,n(l)), (3.10)

where J(i,n) is defined as a (n− 1)× n matrix that comes from removing the ith

row from the identity matrix In. The advantage of the Kronecker product is its
computational efficiency when applied to sparse matrices.

Decreasing the matrix size and increasing its density is achieved by the iterative
application of the Kronecker-based column reduction explained above. However,
if no stopping condition is specified, the reduction algorithm will conclude in an
SKB matrix M with 0 columns. This is not desirable since all information content
will be lost at that point. Two stopping conditions are proposed to avoid this
issue. The first stopping condition is a threshold of minimum column sums of M,
the value of which is tuned through experiments. This method ensures that all
remaining final sememe candidates are lower-bounded in terms of their semantic
content over all defined terms in the dictionary. The second stopping condition is
the maximum number of final sememes. Heuristically, existing manually crafted
SKBs such as HowNet use an approach established on the semantic representation
capabilities of the finite set of commonly used Chinese characters. The average
Chinese speaker needs to know around 2, 000 characters to be recognized as fluent,
and HowNet also contains around that many sememes in their hand-made SKB [4].
Considering this, the importance of the total number of sememes in an SKB is
recognized. Thus, we use the final number of sememes as a parameter to be tuned
through our experiments. Definitions of our two proposed stopping conditions are
given below mathematically:

c(l) < C,

n(l) < N,
(3.11)

where C and N are the threshold values for their corresponding variables. We use
a single sememe prediction experiment to determine values for these thresholds as
a validator. The values which maximize the validation performance in the selected
validator task are subsequently fixed. We then report the results using these
optimized hyperparameter values in other intrinsic and extrinsic experiments.
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The MRD4SKB variant that utilizes Kronecker product-based matrix reduction
will hereafter be referred to as the MRD4SKB_KP method. An algorithmic
description of it can be summarized in Algorithm 1.

Algorithm 1: MRD4SKB_KP algorithm
Input : (n×m) document-term matrix of MRD, D;

discount factor µ;
maximum number of sememes N

Output : (n× s) term-sememe matrix of SKB, M
M = D
colsums = colsum(M)
n = width(M)
while n > N do

colsums = colsum(M)
minterms = argmin(colsums)
deltamtx = 0
for minterm in minterms do

deltamtx += kron(M.col[minterm],M.row[minterm])
end
M += µ × deltamtx
M.drop(M.col[minterms])
n = width(M)

end
return M

In the MRD4SKB_KP algorithm, the semantic relations between the terms
are captured by the Kronecker product. The strength of the semantic relation
between the terms is adjusted by the discount factor µ. The number of sememes
left in the final SKB matrix M is controlled by the final parameter N .

The matrix M that results from applying the MRD4SKB_KP algorithm can be
regarded as a word vector space, where each vector space dimension corresponds to
a known sememe. The dimensions are primarily uninterpretable in a common word
vector space, which hinders its explainability. Furthermore, a connection between
the matrix M and common word embeddings can be established by introducing
the sememe embedding concept. In Sememe Prediction with Aggregated Sememe
Embeddings (SPASE) method [29], a sememe annotation matrix relates the word
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embedding vectors and sememe embedding vectors, as given below:

wi =
∑

sj∈Sw2

Mij · sj, (3.12)

where Swi
is the sememe set of the word wi, and Mij represents the weight of

sememe sj for word wi. SPASE attempts to decompose a word embedding matrix
W into sememe annotation matrix M and sememe embedding matrix S, with
word embeddings that are pre-trained and fixed during training, which can also
be written as W = M× S. In SPASE, the matrix M is taken from a manually
constructed SKB. Our method automatically constructs the SKB and the sememe
annotation matrix M. Although sememe embeddings are beyond the scope of this
manuscript, they need to be noted as a future topic of interest.

In addition to being fully automatic, our proposed method has another ad-
vantage. Current methods in the literature that embed sememes to RNNs use
binary word sememe annotations, like in the case of SPASE. This is because
most SKBs contain binary sememe annotations for words, where each word is
annotated with a composition of sememes with binary weights. In contrast, the
SKB matrix M automatically constructed with our proposed method does not
necessarily produce binary sememe annotation weights because of the semantic
relation factor µ. Therefore, the generated sememe annotations can be directly
used to decompose a word into its sememes as a weighted sum. This is useful
because, for a particular word, some sememes may be more semantically relevant
than others. For example, recall the word hospital that was given as an example
in the Introduction. To keep the example relevant, annotate this word by the
hypothetical sememes medicine, building, doctor, and patient. If a binary
annotation approach is used, no distinction between these annotated sememes can
be made. However, it can be argued that the sememes medicine and building

are more important semantic components of the word hospital compared to
the other two. Therefore, assigning a weight to each of these sememes, used as
annotations for a particular word, is helpful, and our method can readily perform
it. Furthermore, if a binary annotation is necessary for specific tasks, a basic
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thresholding can be easily performed as follows:

Sti
= {tj|Mti,tj

≥ k,∀tj}, (3.13)

where Sti
is the sememe set of the term ti, and k is the binary sememe annotation

threshold, taking non-negative real values. k = 0 case keeps all sememe annota-
tions, and increasing this value reduces the annotated sememe counts in general.
In the experiments that require binary sememe annotation, we add this k value
as a hyperparameter to be tuned in the experimental setup.

3.3 Topic Modeling Based Matrix Reduction

In the previous section, we explained a Kronecker Product-based method for
automatically generating an SKB from a term-document matrix obtained from a
preprocessed MRD. The presence of a term-document matrix and recognizing an
analogy between sememes and topics made us consider utilizing topic modeling
methods for generating SKBs from MRDs. We present our alternative topic
modeling-based MRD4SKB method variants in this section.

Topic modeling is a statistical tool for extracting latent variables from large
datasets [2,57]. It is frequently used in text-mining applications to discover hidden
semantic structures of a corpus of collected documents. Studying the development
of ideas in a scientific field could be given as an example application [58]. Topic
modeling is based on the hypotheses that documents are about one or more topics
(statistical mixture hypothesis) and that documents about similar topics use
similar terms (distributional hypothesis). A topic model captures this intuition in
a mathematical framework by utilizing term-document statistics of the corpus.
This framework is visualized in Fig. 3.1.

In topic modeling, corpus statistics are generally captured by a term-document
matrix in a bag-of-words (BoW) fashion, discarding the order of the terms. The
construction of a term-document matrix from a corpus (specifically, an MRD) was
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Figure 3.1: Framework of topic modeling [2].

previously discussed in Section 3.2. Tf-idf is a commonly used pre-transformation
to refine the statistics represented through the term-document matrix by re-
weighting the matrix elements with a combination of term frequency (tf) and
inverse document frequency (idf) [59]. Tf-idf computation is defined as:

tf(t, d) = ft,d∑
t′∈d ft′,d

, (3.14)

idf(t, D) = log N

1 + |{d ∈ D : t ∈ d}|
, (3.15)

tf-idf(t, d, D) = tf(t, d) · idf(t, D), (3.16)

where t and d denote terms and documents, respectively, ft,d is the raw count of t

within d, and N is the total number of documents in corpus D. The denominator
of idf(t, D) is the number of documents where term t appears, and 1 is added to
avoid division by zero.

After obtaining the term-document matrix and possibly performing tf-idf on it,
topic modeling is mainly concerned with using this matrix as input and generating
two output components by introducing topics: a term-topic matrix and a topic-
document matrix. The term-topic matrix contains the weights of the corpus terms
on each introduced topic, and the topic-document matrix contains the distribution
of these topics on the corpus documents. Obtained topic information can then be
used in various NLP tasks, such as sentiment analysis [60], text summarization [61],
and text categorization [62].

In MRD4SKB, we use these topic-modeling-related matrices in their transposed
forms. The preprocessed MRD matrix D is used as the document-term matrix.
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The generated document-topic matrix is denoted as M, and the topic-term matrix
is denoted as T, where the relation among these matrices is the following:

D = MT. (3.17)

Note that we intentionally used the same variable M for the automatically
generated SKB matrix and the generated document-topic matrix, as we will
be using the document-topic matrix as our generated SKB in topic modeling
methods. Here, documents correspond to definitions of the terms in the MRD,
and topics are assumed to be the selected base sememe set of the SKB. We utilize
the topic-term matrix T to obtain precise sememe terms for each topic. The
sememe si corresponding to document-topic vector M(∗,i) and topic-term vector
T(i,∗) is defined by:

si = t′′
j where j = arg max

j
(T(i,j)), (3.18)

where we used our notation in Eq. 3.3 for t′′
j . After this procedure, the resulting

labeled document-topic matrix M becomes the automatically generated SKB.

There are various methods of obtaining topic model outputs from term-
document matrices, such as the Non-Negative Matrix Factorization (NMF), Latent
Semantic Analysis (LSA), probabilistic LSA (pLSA), and Latent Dirichlet Alloca-
tion (LDA). The following subsections briefly describe how each method works
and how the document-topic matrix M and the topic-term matrix T are built.
Once these are clarified, we use the procedure in the previous paragraph to finalize
the automatically generated SKB.

3.3.1 Non-Negative Matrix factorization (NMF)

NMF is a group of algorithms where the term-document matrix D is factorized
into two matrices M and T, where all three matrices have non-negative elements
as follows [63]:

D = MT, (3.19)
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where D is non-negative by definition, and M and T are initialized as non-negative.
Then, the following updates are performed on M and T until they stabilize, with
n as the index of iteration:

Tn+1
[i,j] ← Tn

[i,j]

(
(Mn)T D

)
[i,j](

(Mn)T MnTn
)

[i,j]

, (3.20)

Mn+1
[i,j] ←Mn

[i,j]

(
D (Tn+1)T

)
[i,j](

MnTn+1 (Tn+1)T
)

[i,j]

. (3.21)

In MRD4SKB, we use the matrices M and T as they were denoted before.
This method will be referred to as MRD4SKB_TM_NMF.

3.3.2 Latent Semantic Analysis (LSA)

LSA method uses truncated Singular Value Decomposition (SVD) to obtain the
topic outputs from the term-document matrix D as follows:

D = MΣTT , (3.22)

where M and T are orthogonal matrices and Σ is a diagonal matrix. The following
gives the derivation of SVD:

DDT =
(
MΣTT

) (
MΣTT

)T
=

(
MΣTT

) (
TT T ΣT MT

)
= MΣTT TΣT MT = MΣΣT MT

DT D =
(
MΣTT

)T (
MΣTT

)
=

(
TT T ΣT MT

) (
MΣTT

)
= TΣT MT MΣTT = TΣT ΣTT ,

(3.23)

which implies that M contains the eigenvectors of DDT while T contains the
eigenvectors of DT D. The corresponding eigenvalues are the diagonal entries
of ΣT Σ, or Σ2, since Σ is diagonal. The truncation operation is performed by
ordering the eigenvalues in descending order in Σ and removing the smallest
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eigenvalue entries with their corresponding eigenvectors in M and T, thereby
reducing the dimension of the representation.

In MRD4SKB, we use the matrices M and T as they were denoted before.
This method will be referred to as MRD4SKB_TM_LSA.

3.3.3 Probabilistic LSA (pLSA)

pLSA [64] method uses the term-document matrix to model the probability of
each word-document co-occurrence as a mixture of conditionally independent
multinomial distributions:

P (w, d) =
∑

c

P (z)P (d | z)P (w | z)

= P (d)
∑

z

P (z | d)P (w | z),
(3.24)

where w, d, and z denote a word, a document, and a topic, respectively. Then, we
use this model to generate words for documents as described below in Algorithm
2.

Algorithm 2: pLSA generative procedure.
for document d in D = d1, · · · , dM do

for word w in d = w1, · · · , wN do
Choose z ∼ p(z | d)
Choose w ∼ p(w | z)

end
end

Fig. 3.2 describes the same generative procedure in plate notation for a
graphical model. In plate notation, observable variables are grayed out, whereas
other variables are latent. Rectangles in the notation denote repetitions with the
specified counts.

The model has a total number of zd+wz parameters, which are learned through
the Expectation Maximization (EM) algorithm [65] by comparing the statistics of
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Figure 3.2: Plate notation of pLSA [2]. d denotes a document, z denotes a topic,
w denotes a word, M is the number of documents, and N is the total number of
words in all documents.

the generated documents with the original documents in the corpus.

In MRD4SKB, the matrix of document-topic distributions corresponds to our
M matrix, and the matrix of topic-term vectors corresponds to our T matrix.
This method will be denoted as MRD4SKB_TM_pLSA.

3.3.4 Latent Dirichlet Allocation (LDA)

LDA [66] is another generative statistical model used in topic modeling. The
generation process is more involved than pLSA, but using the EM algorithm for
parameter learning remains the same. In LDA, the probability distributions p(z | d)
and p(w | z) are assumed to be multinomial distributions. These distributions are
determined by Dirichlet distributions of parameter α and η, respectively. LDA is
a generalization of pLSA, where pLSA is shown to be equivalent to LDA under
a uniform Dirichlet prior distribution [67]. The generation algorithm and the
plate notation for LDA generative process are given in Algorithm 3 and Fig. 3.3,
respectively.

In MRD4SKB, the matrix of document-topic distributions corresponds to our
M matrix, and the matrix of topic-term vectors corresponds to our T matrix.
This method will be denoted as MRD4SKB_TM_LDA.

The topic modeling methods explained in this section are used in MRD4SKB
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Algorithm 3: LDA generative procedure.
Choose θi ∼ Dir(α) for i ∈ {1, · · · , M}
Choose βk ∼ Dir(η) for k ∈ {1, · · · , K}
for word wi,j in i ∈ {1, · · · , M}, j ∈ {1, · · · , N} do

Choose zi,j ∼ multinomial(θi)
Choose wi,j ∼ multinomial(βzi,j

)
end

Figure 3.3: Plate notation of LDA [2]. α and η are the Dirichlet priors, θ and β
are the multinomial distribution coefficients, z denotes a topic, w denotes a word,
K is the number of topics, M is the number of documents, and N is the total
number of words in all documents.

for decomposing the MRD term-document matrix into a term-topic and a topic-
document matrix. The documents are the definitions, and the terms are the
individual words within the MRD in this context. It should be noted that
depending on the particular MRD, the set of all terms used in the definitions, t′,
and the set of all words defined in the dictionary, t′′, may not be identical. Ideally,
every term used in a definition should be defined in a complete and consistent
MRD. However, it is not practical to have such an assumption for real-world
MRDs. Therefore, an intersection of these terms, t, is used in our term-document
matrices, as previously defined in Eq. 3.3.

The topic-document matrix represents the topic distribution of the documents
after applying topic modeling to the term-document matrix. Each document
corresponds to a definition entry from the MRD. The obtained topics for a
document represent the sememes of the word defined by that particular definition
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entry. Determination of sememe terms from the topic vectors is accomplished as
described in Eq. 3.18. This set of MRD4SKB variants will hereafter be referred
to as MRD4SKB_TM.
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Chapter 4

Experiments and Results1

In our experiments, we utilized two MRDs extracted from the definitions of
WordNet [68] and the Wiktionary [49]. The MRDs are preprocessed with SpaCy
[54]. In order to obtain the term-document matrices of MRD4SKB, lemmatization,
and stop-word removal steps are applied to the MRDs. The compact word-sememe
matrices that resulted from this procedure are regarded as SKBs. We then utilized
these SKBs in specific NLP tasks to enhance their performance.

The results of the experiments will be reported in tables throughout this section.
The hyperparameters used in variants of our proposed MRD4SKB_KP models
are provided in square brackets in the following order:

MRD4SKB_KP [mrd, N, µ, k],

where mrd is the used MRD descriptor (wn: WordNet, wk: Wiktionary), N is
the number of sememes to be determined, µ is the semantic relation factor, and k

is the binary sememe annotation threshold. For the MRD4SKB_TM methods,
the following notation is used:

MRD4SKB_TM_tmm[mrd, N ],
1Source codes, data, and information to reproduce our experiments will be available at

https://github.com/koc-lab/mrd2skb.
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where tmm is the utilized topic modeling method (NMF, LSA, pLSA, LDA), and
mrd and N denote the same parameters as given before.

We present the quantitative and qualitative results of our experiments in
the following sections. Moreover, the hyperparameter analysis of the proposed
methods will be presented as well.

4.1 Quantitative Results

First, as part of the intrinsic evaluation, an established consistency assessment
method named Consistency Check with Sememe Annotations (CCSA) is used
to evaluate the consistency of sememe annotations in SKBs generated by the
proposed MRD4SKB process [69]. In CCSA, a small set of senses are subjected
to the sememe prediction task. The sememe prediction is performed using the
sememe annotations of other senses in the SKB, based on collaborative filtering [70].
Superior sememe prediction performance in this task indicates that semantically
related senses are annotated with similar sememes. This, in turn, means that the
SKB allows consistent sememe annotations, and thus is an appropriate model
for representing the semantics of the natural language. In our experiments, the
performance of our proposed MRD4SKB variants is compared with a set of
baselines. In addition to the manually crafted SKB HowNet, two versions of
the semi-automatically built EDKSBs are selected for comparison [38]. Sememe
annotation consistency results of our experiments are displayed with mean average
precision (MAP) and F1 metrics in Table 4.1.

Beyond the intrinsic evaluation task, four extrinsic evaluation tasks have been
performed as part of our experiments. Language Modeling (LM) is the first
extrinsic evaluation task. Long short-term memory (LSTM) [71] based language
models enhanced with sememe knowledge are used in this task. Integration of SKB
data into the base language models is achieved by a method named Sememe-Driven
Language Model (SDLM) [72]. Two LSTM variants are used as base language
models: Tied LSTM [73] and Averaged Stochastic Gradient Descent (ASGD)
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Table 4.1: CCSA Results.
SKB MAP ↑ F1 ↑
HowNet 0.93 0.91
EDSKB 0.88 0.86
EDSKB_s 0.95 0.91

MRD4SKB_KP[wn, 2000, 0.2, 0.2] 0.88 0.84
MRD4SKB_KP[wn, 2000, 0.2, 0.8] 0.86 0.85
MRD4SKB_KP[wn, 2000, 0.5, 0.8] 0.87 0.88
MRD4SKB_KP[wn, 3000, 0.5, 0.8] 0.93 0.90

MRD4SKB_KP[wk, 2000, 0.2, 0.2] 0.85 0.83
MRD4SKB_KP[wk, 2000, 0.2, 0.8] 0.83 0.82
MRD4SKB_KP[wk, 2000, 0.5, 0.8] 0.84 0.82
MRD4SKB_KP[wk, 3000, 0.5, 0.8] 0.88 0.84

MRD4SKB_TM_NMF[wn, 1000] 0.80 0.78
MRD4SKB_TM_LSA[wn, 1000] 0.82 0.80
MRD4SKB_TM_pLSA[wn, 1000] 0.83 0.81
MRD4SKB_TM_LDA[wn, 1250] 0.87 0.83

Weight-Dropped LSTM (AWD LSTM) [74]. For the evaluations, two benchmark
LM datasets are utilized: the Penn Treebank (PTB) [75], and WikiText-2 [76].
Models incorporated with the original HowNet and EDSKB variants are used
as baselines in addition to the vanilla models. LM task perplexity results for
both validation and test sets of the benchmark datasets are provided in Table
4.2 for Tied LSTM-based models and in Table 4.3 for AWD LSTM-based models,
respectively.

The second extrinsic task is Natural language inference (NLI). The SNLI
dataset is utilized for this task, which consists of pairs of sentences containing a
premise and a hypothesis [77]. Based on their relations, these sentence pairs are
manually classified as one of the following labels: “entailment", “contradiction",
or “neutral". Different RNN architecture variants were used as base models in
our tests. These RNN architectures are LSTM, Gated recurrent unit (GRU) [78],
and their bidirectional variants [79]. SKB information is incorporated into these

29



Table 4.2: SDLM Tied LSTM Perplexity (↓) Results.
Dataset PTB WikiText-2
Model Valid Test Valid Test
Tied LSTM 63.92 63.98 53.10 51.41
+HowNet 58.93 58.95 48.43 47.28
+EDSKB 58.81 58.82 43.48 42.15
+EDSKB_s 60.17 60.15 45.18 42.59

+MRD4SKB_KP[wn, 2000, 0.2, 0.2] 59.23 59.23 45.31 45.47
+MRD4SKB_KP[wn, 2000, 0.2, 0.8] 59.12 59.08 45.09 45.25
+MRD4SKB_KP[wn, 2000, 0.5, 0.8] 59.28 59.32 45.12 45.58
+MRD4SKB_KP[wn, 3000, 0.5, 0.8] 58.87 58.96 44.63 44.12

+MRD4SKB_KP[wk, 2000, 0.2, 0.2] 59.35 59.45 45.62 45.49
+MRD4SKB_KP[wk, 2000, 0.2, 0.8] 59.20 59.13 45.55 45.38
+MRD4SKB_KP[wk, 2000, 0.5, 0.8] 59.40 59.45 45.34 45.71
+MRD4SKB_KP[wk, 3000, 0.5, 0.8] 59.34 59.51 44.92 44.82

+MRD4SKB_TM_NMF[wn, 1000] 59.70 59.81 45.70 45.92
+MRD4SKB_TM_LSA[wn, 1000] 59.62 59.79 45.65 45.77
+MRD4SKB_TM_pLSA[wn, 1000] 59.58 59.65 45.59 45.71
+MRD4SKB_TM_LDA[wn, 1250] 59.47 59.51 45.56 45.64

RNN models using a method called SememeCell [20]. We used this method to
embed the sememe information from our automatically generated MRD4SKBs
into the base models. As usual, The vanilla RNN models infused with HowNet
and EDSKB data are used as baselines. Additionally, two other baselines were
utilized. A Pseudo SKB is used as one baseline, created by annotating words with
random labels instead of sememes. Integrating unmodified dictionary definitions
directly into the RNNs is used as another baseline. The test results of SNLI are
shown in Table 4.4.

The third extrinsic task is Sentiment Analysis (SA). The CR dataset was used
to evaluate this task [80]. The dataset contains approximately 8, 000 product
reviews. Each review is manually labeled either “positive" or “negative" based on
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Table 4.3: SDLM AWD LSTM Perplexity (↓) Results.
Dataset PTB WikiText-2
Model Valid Test Valid Test
AWD LSTM 58.89 59.24 45.29 44.13
+HowNet 58.95 58.92 46.84 45.29
+EDSKB 56.94 57.13 42.44 41.25
+EDSKB_s 58.63 58.59 43.85 43.95

+MRD4SKB_KP[wn, 2000, 0.2, 0.2] 58.16 58.20 43.57 43.61
+MRD4SKB_KP[wn, 2000, 0.2, 0.8] 58.04 58.17 43.49 43.58
+MRD4SKB_KP[wn, 2000, 0.5, 0.8] 57.98 58.11 43.40 43.42
+MRD4SKB_KP[wn, 3000, 0.5, 0.8] 57.84 57.99 43.15 43.31

+MRD4SKB_KP[wk, 2000, 0.2, 0.2] 58.27 58.24 43.57 43.63
+MRD4SKB_KP[wk, 2000, 0.2, 0.8] 58.23 58.22 43.61 43.64
+MRD4SKB_KP[wk, 2000, 0.5, 0.8] 58.39 58.25 43.56 43.52
+MRD4SKB_KP[wk, 3000, 0.5, 0.8] 58.22 58.27 43.44 43.47

+MRD4SKB_TM_NMF[wn, 1000] 58.73 58.67 43.82 43.90
+MRD4SKB_TM_LSA[wn, 1000] 58.65 58.62 43.76 43.88
+MRD4SKB_TM_pLSA[wn, 1000] 58.63 58.58 43.71 43.75
+MRD4SKB_TM_LDA[wn, 1250] 58.52 58.48 43.65 43.72

the conveyed emotion. The models built and used in the SNLI task are also used
in the CR task. Table 4.5 provides the accuracy results for the CR dataset.

The fourth and final extrinsic task is Textual Adversarial Attacking (TAA),
which helps reveal the vulnerabilities and improve the robustness of neural network
models [81]. In adversarial attacks, adversarial examples are created maliciously
by perturbing the original model input to fool a model [82]. Textual adversarial
attacking uses word-level attacks based on word substitution in general, showing
better attack performance overall [83].

We use a sememe-based word substitution strategy for TAA, which regards two
words as substitutes if one sense of each word has the same sememes, according
to an SKB [84]. Several baseline methods are incorporated. Using synonym-based
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Table 4.4: SNLI Accuracy (↑) Results.
Model LSTM GRU BiLSTM BiGRU
vanilla 80.66 82.00 81.30 81.61
+Pseudo 81.28 80.90 81.91 82.07
+HowNet 81.87 82.90 82.55 83.15
+Definition 81.62 82.80 81.10 83.22
+EDSKB 82.82 83.18 82.54 83.55
+EDSKB_s 81.78 82.10 82.11 82.35

+MRD4SKB_KP[wn, 2000, 0.2, 0.2] 81.46 81.34 81.41 81.73
+MRD4SKB_KP[wn, 2000, 0.2, 0.8] 81.58 81.48 81.62 81.91
+MRD4SKB_KP[wn, 2000, 0.5, 0.8] 81.63 81.94 81.51 81.84
+MRD4SKB_KP[wn, 3000, 0.5, 0.8] 81.85 82.87 81.76 82.13

+MRD4SKB_KP[wk, 2000, 0.2, 0.2] 81.20 81.14 81.28 81.54
+MRD4SKB_KP[wk, 2000, 0.2, 0.8] 81.17 81.26 81.50 81.74
+MRD4SKB_KP[wk, 2000, 0.5, 0.8] 81.11 81.79 81.46 81.67
+MRD4SKB_KP[wk, 3000, 0.5, 0.8] 81.42 81.64 81.53 81.80

+MRD4SKB_TM_NMF[wn, 1000] 81.02 81.10 81.08 81.48
+MRD4SKB_TM_LSA[wn, 1000] 81.07 81.05 81.28 81.54
+MRD4SKB_TM_pLSA[wn, 1000] 81.13 81.20 81.33 81.59
+MRD4SKB_TM_LDA[wn, 1250] 81.21 81.34 81.45 81.65

word substitution utilizing WordNet, using definition-based word substitutions uti-
lizing BERT-based word vectors, and using other sememe-based word substitutions
utilizing other SKBs: HowNet, EDSKB, and EDSKB_s [38].

BiLSTM and BERT models are used as victim models [84]. Sentiment analysis
with SST-2 dataset, which contains 10000 labeled sentences from movie reviews,
is used as the evaluation task [85]. The effectiveness of an attack method is deter-
mined by its attack success rate (ASR), and the quality of its adversarial examples
is assessed using three metrics: word modification rate (%M), grammatical error
increase rate (IGE), and perplexity given by GPT-2 (PPL) [86]. Lower is better
in these three metrics in terms of adversarial example quality. TAA test results
are given in Table 4.6 and 4.7.
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Table 4.5: CR Accuracy (↑) Results.
Model LSTM GRU BiLSTM BiGRU
Vanilla 74.17 76.37 77.62 78.76
+Pseudo 73.96 75.44 76.16 78.20
+HowNet 76.47 78.57 77.66 76.25
+Definition 76.29 78.20 77.19 77.77
+EDSKB 77.51 79.68 78.95 78.88
+EDSKB_s 75.09 77.54 76.90 78.18

+MRD4SKB_KP[wn, 2000, 0.2, 0.2] 75.88 77.41 77.47 77.91
+MRD4SKB_KP[wn, 2000, 0.2, 0.8] 76.54 78.73 77.92 78.11
+MRD4SKB_KP[wn, 2000, 0.5, 0.8] 76.25 79.01 77.84 78.17
+MRD4SKB_KP[wn, 3000, 0.5, 0.8] 77.18 77.98 78.24 78.42

+MRD4SKB_KP[wk, 2000, 0.2, 0.2] 75.64 77.31 77.39 77.82
+MRD4SKB_KP[wk, 2000, 0.2, 0.8] 76.48 78.58 77.77 77.90
+MRD4SKB_KP[wk, 2000, 0.5, 0.8] 76.02 78.61 77.84 78.07
+MRD4SKB_KP[wk, 3000, 0.5, 0.8] 76.82 77.58 78.01 77.94

+MRD4SKB_TM_NMF[wn, 1000] 75.01 77.24 77.12 77.05
+MRD4SKB_TM_LSA[wn, 1000] 75.14 77.32 77.18 77.07
+MRD4SKB_TM_pLSA[wn, 1000] 75.17 77.38 77.34 77.17
+MRD4SKB_TM_LDA[wn, 1250] 75.34 77.46 77.39 77.25

4.2 Discussion of Results

The intrinsic and extrinsic task evaluation results were presented throughout
Tables 4.1 to 4.7. In each table, the best scores of manually and semi-manually
crafted SKBs are emboldened, whereas the best scores of the fully automatically
generated SKBs generated by the proposed MRD4SKB methods are underlined.
Upward and downward arrows are placed next to the metric names to indicate
whether higher or lower values are better for a particular metric in each table.
Upon closer examination, proposed MRD4SKB methods are observed to perform
on par with methods that require linguistic expertise and special dictionaries. The
quantitative results indicate that the Kronecker product-based MRD4SKB_KP
method with 3, 000 topics performs best among the MRD4SKB approaches.
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Table 4.6: TAA ASR and Quality Results for BiLSTM.
Attack Method ASR (↑) %M (↓) %IGE (↓) PPL (↓)
+Synonym 79.00 10.45 7.59 593.09
+Definition 90.00 8.76 7.56 518.71
+Hownet 93.60 9.02 2.57 468.92
+EDSKB 26.50 8.27 3.77 538.46
+EDSKB_s 94.00 8.29 1.27 507.34

+MRD4SKB_KP[wn, 2000, 0.2, 0.2] 91.14 9.02 4.26 527.91
+MRD4SKB_KP[wn, 2000, 0.2, 0.8] 91.27 8.90 4.24 526.88
+MRD4SKB_KP[wn, 2000, 0.5, 0.8] 91.61 8.87 4.04 525.81
+MRD4SKB_KP[wn, 3000, 0.5, 0.8] 92.08 8.82 3.47 521.14

+MRD4SKB_KP[wk, 2000, 0.2, 0.2] 88.96 9.34 4.46 538.16
+MRD4SKB_KP[wk, 2000, 0.2, 0.8] 89.32 9.11 4.40 535.71
+MRD4SKB_KP[wk, 2000, 0.5, 0.8] 89.90 9.04 4.30 535.05
+MRD4SKB_KP[wk, 3000, 0.5, 0.8] 90.27 9.02 4.28 532.31

+MRD4SKB_TM_NMF[wn, 1000] 88.19 9.54 5.42 548.99
+MRD4SKB_TM_LSA[wn, 1000] 88.35 9.48 5.15 547.46
+MRD4SKB_TM_pLSA[wn, 1000] 88.70 9.43 4.89 545.33
+MRD4SKB_TM_LDA[wn, 1250] 90.00 9.36 4.62 544.82

MRD4SKB methods that utilized WordNet as the MRD had higher performance
in general. Hence, the properties of the MRD are seen to have a noticeable effect on
the quality of the auto-generated SKBs. The best-performing MRD4SKB method
is observed to outperform HowNet and EDSKB_s in most extrinsic task results,
except for the CCSA and TAA results. The performance of best-performing
MRD4SKB methods remains slightly below that of EDSKB in quantitative tasks,
but this is offset by fully automatizing the SKB generation process. The initial
set of sememes in our SKBs is selected automatically without dependence on
linguistic experts or a manually prepared CDV. Moreover, the proposed MRD4SKB
methodology can efficiently utilize different MRDs for constructing SKBs, which
was not achievable with previous approaches.
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Table 4.7: TAA ASR and Quality Results for BERT.
Attack Method ASR (↑) %M (↓) %IGE (↓) PPL (↓)
+Synonym 81.30 9.22 8.00 576.82
+Definition 86.30 8.03 7.18 538.00
+Hownet 91.20 8.25 2.08 503.06
+EDSKB 29.70 8.10 3.36 485.00
+EDSKB_s 93.30 7.66 1.07 544.51

+MRD4SKB_KP[wn, 2000, 0.2, 0.2] 88.36 8.42 3.82 517.22
+MRD4SKB_KP[wn, 2000, 0.2, 0.8] 89.61 8.41 3.15 517.19
+MRD4SKB_KP[wn, 2000, 0.5, 0.8] 90.13 8.29 2.79 516.06
+MRD4SKB_KP[wn, 3000, 0.5, 0.8] 90.25 8.21 2.74 514.91

+MRD4SKB_KP[wk, 2000, 0.2, 0.2] 86.69 9.08 4.10 535.45
+MRD4SKB_KP[wk, 2000, 0.2, 0.8] 86.72 9.07 4.02 528.44
+MRD4SKB_KP[wk, 2000, 0.5, 0.8] 87.54 8.91 3.97 525.26
+MRD4SKB_KP[wk, 3000, 0.5, 0.8] 87.64 8.80 3.83 519.59

+MRD4SKB_TM_NMF[wn, 1000] 84.55 9.83 4.86 549.47
+MRD4SKB_TM_LSA[wn, 1000] 85.67 9.35 4.66 539.07
+MRD4SKB_TM_pLSA[wn, 1000] 85.78 9.25 4.54 538.46
+MRD4SKB_TM_LDA[wn, 1250] 85.89 9.13 4.31 537.55

4.3 Qualitative Examples

Sample qualitative examples are provided from our autogenerated SKBs. Two
examples of sememe annotations with the proposed MRD4SKB and other baseline
methods are presented in Table 4.8.

The word hospital is the first qualitative example. The Oxford Dictionary
defines this word as “a large building where people who are ill or injured are
given medical treatment and care”. This word has only one sense. Examining the
sememe annotations in the table reveals that while HowNet can express the general
meaning of a word, more specific sememe entries are produced by dictionary-based
methods. Sememe entries like health and surgical that were annotated by
the MRD4SKB_KP are examples of more specific entries. The word tweet is
the second qualitative example. The Oxford Dictionary has two senses for this
word. The first sense is defined as “the short, high sound made by a small bird”.
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Table 4.8: Qualitative Results.
Word SKB Sememes

hospital

Hownet InstitutePlace, medical, doctor, disease
EDSKB medical, large, injure, receive, people, treatment, build, sick
MRD4SKB_KP health, receive, treatment, care, given, institution, medical, people, surgical
MRD4SKB_TM_NMF treatment, given, people
MRD4SKB_TM_LSA treatment, given, people
MRD4SKB_TM_pLSA receive, treatment, given, institution, surgical
MRD4SKB_TM_LDA health, receive, treatment, given, institution

tweet

Hownet InstitutePlace, ProperName, produce, software, LookFor, document, information, internet

EDSKB Sense 1: bird, make, high, small, short, sound
Sense 2: service, message, network, short, send, use, social

MRD4SKB_KP Sense 1: bird, small, sound, weak
Sense 2: computer, message, popular, short, social, text

MRD4SKB_TM_NMF Sense 1: bird, small, sound
Sense 2: short, social, site

MRD4SKB_TM_LSA Sense 1: small, sound
Sense 2: short, social

MRD4SKB_TM_pLSA Sense 1: small, sound
Sense 2: popular, short, social

MRD4SKB_TM_LDA Sense 1: small, sound
Sense 2: popular, short, social, site

The second sense is defined as “a message sent using the Twitter social media
service”, a more modern-time definition than the first. It is observed that HowNet
successfully covers the second sense but falls short of covering the first sense. As
in this example, more word senses can be expressed in a dictionary-based SKB,
depending on the utilized MRD. The number of generated sememes per word is
generally lower for topic modeling-based MRD4SKB approaches. This is partly
expected, as the number of topics was lower in the MRD4SKB_TM methods,
compared to MRD4SKB_KP methods. Using more topics in the topic modeling-
based methods were impractical due to convergence issues encountered during
implementation. Therefore, the number of sememes was limited to around 1, 500
in the MRD4SKB_TM methods. The number of sememes in the MRD4SKB_KP
method could reach around 3, 000 in comparison. It should be noted that MRDs
contain relatively small documents. Hence, alternative short-text topic modeling
approaches can be considered for future research.
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4.4 Analysis of Hyperparameters

In order to obtain the best performance on intrinsic and extrinsic tasks using
our MRD4SKB methods, hyperparameter fine-tuning is performed. The task of
NLI is chosen for the hyperparameter optimization. The SNLI dataset and the
LSTM base model are selected for this purpose. Then, keeping the rest of the
experimental setup fixed, a single parameter of the MRD4SKB model is altered.
The effect of these changes on the task performance metrics is then analyzed. The
performance metric becomes the SNLI accuracy for the selected optimization task.

First, the effect of the number of sememes in the initial sememe set, N , on the
task performance is examined. Results of this examination are given in Fig. 4.1.
The effect of the number of sememes on task performance is considerably high, as
there is a wide variation in performance for different values of N . The total number
of distinct sememes in the SKB can be considered as the dimensionality of the
semantic space represented by the SKB. Since each term comprises a combination
of these sememes in the SKB, the initial sememe set essentially acts as a basis for
this semantic space.

Low N values create dense representations, where components of the semantic
space get highly coupled with each other. On the other end of the spectrum,
overly sparse representations are generated using high values of N . In this case,
very few elements are contained within distinct components of the semantic
space, and the semantic connections between the terms can not be captured.
The best performing N value for MRD4SKB was 3, 000 among the searched
values. This number remarkably matches the number of sememes in the manually
constructed HowNet, reassuring the validity of our method. HowNet utilizes the
most commonly used Chinese words as its initial sememe set, and our experiments
indicate that the number of commonly used Chinese words is close to optimal for
the number of sememes in an SKB.

Next, the effect of the semantic relation factor, µ, on task performance is
examined. Results are shown in Fig. 4.2. It is observed that a semantic relation
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Figure 4.1: Accuracy results of MRD4SKB_KP models with varying number
of total sememes, N , on the test set of SNLI.

factor of µ = 0.5 works well for our application.

The effect of the binary sememe annotation threshold, k, on the performance
is also examined. Results are displayed in Fig. 4.3. In the extreme case when
k = 1, only the sememes directly used in the definition of a term can be used
in the sememe annotation of that term, and no indirect sememes can be used.
The results demonstrate that semantic compositionality should be utilized in
moderation during the generation of the SKB to maximize the performance on
extrinsic tasks.

Finally, the effect of the number of sememes, N , on the performance of topic
modeling-based methods is examined. In the topic modeling-based methods, the
number of sememes is equivalent to the number of topics. Results are reported
in Fig. 4.4. Using higher numbers of topics in topic modeling-based approaches
frequently caused convergence issues, and most of these methods had the best
performance at around 1, 000 topics. In general, the performance of topic modeling-
based methods remained lower than that of the Kronecker product-based method
on the hyperparameter evaluation task.
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Figure 4.2: Accuracy results of MRD4SKB_KP models with varying semantic
relation factor, µ, on the test set of SNLI.
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Figure 4.3: Accuracy results of MRD4SKB_KP models with varying binary
sememe annotation threshold, k, on the test set of SNLI.
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Chapter 5

Conclusions

We proposed MRD4SKB, a fully computational and automatic framework for
constructing SKBs from arbitrary MRDs. Matrix factorization and topic modeling-
based alternatives of our proposed MRD4SKB methodology are presented.
Through intrinsic and extrinsic evaluation tasks and using two different En-
glish language MRDs, the validity of the SKBs automatically generated with
our MRD4SKB methods are experimentally demonstrated. The performance of
the constructed SKBs on various NLP tasks is demonstrated. The effects of the
specified hyperparameters are individually analyzed. Quantitative examples show
what to expect from SKBs constructed with our proposed methods.

Our framework could automatically produce SKBs, that outperform the manu-
ally created HowNet and are on par with other baseline SKBs that rely on special
manually prepared CDVs. Moreover, our automatized approach is generic and
can be applied to different MRDs without requiring a specially crafted dictionary.

Construction of SKBs from readily available MRDs through a fully compu-
tational and automatic framework can unlock directions of research that were
not previously possible. Furthermore, such a framework can expedite existing
research on improving a wide range of high-level NLP tasks by incorporating
sememe knowledge.
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