
/S33

1!^» t a ··· l:| и Ч*ЯЦ » i .* л,«, . , ,

“Ч , %· ί» ^ t* * * и1 . (Il* .ш -fc г •̂♦MÄ' 4 l*Ml(Щ 9t lıfifl # *Л. ItAa It * lİL' ̂ ί ** '*'* *·* Τ !*►*♦>♦ · · · ··* ι
........ ■■ " *· ■’■' ’-■ - ·̂̂ « ■*-· *» * « V ««ιΐ 'Μ/ R Λ α Μ и ÏÏ ÎS ; fit; ϊ ftt ж

;î·'s“!; €: V □ >*«: · } ' « А in· г « - .s ϋ»;4Γΐ..5,.ίϋ Sïi r¿ 2 îU i‘S «а Й “4̂ I?İîSİİ2Sîi' f|;“
t’!J irr̂Äj» ;Ss ;:̂ί :Ь ïj ^ ί;̂ İ5 ;¿Í ;;|̂ -ί;;}·

■ ^‘і 'в іТ Іг * a 5 W

‘*̂‘:aй!д■«г?î 4ад,
'Ŝù îf »ί·’IW‘w’'■·

’ ;· : .. J u·!̂ —i* Λϊ.;,?',tr' ' « - * « ?;ïî ..t·;. Г' ■■ r'"̂ >r· ■·: ■: - r « -, ,·, -■
;,;î·—..-, - - 2Lii’ir' li ν„ι· íi i·,,··.« «,-μ·«·* i;-*S;iftL 2.йУЙ*й-:4‘® i а ϋ'·^.>ΐΤ’ΰ:ίή

Sî;l:·-! î:f’::;̂ TT;f"rÎî:“-f :·' ̂íi'rJM “’“/bíí!ίΓ.'ί::̂
**í: Чм:*'і-г^«‘«г t:» Ч-,д -η.,·/

•'»'Ч İHI ·!·4ΐ! V *i ,',ρ' s:, i ■'ïî‘ s ji 2 ' ·* ·■· ̂ -.· ·· >·'̂ - ·■ '- . ' V- "
::V 3..: :r. l··.?:·;, ü: « í í · · ; ;« : ; ï 'Ліз:.·.- : *·'

I» IS«' « МЯ «. u i · *í 325̂ i *2 - Л! 1'2.V.r''2 ‘i;,.'· ■? ,·, o

U : - ' · t :·. i% 4^^íí^r*5í i r r;

к З Я Г 2 <·"’Ί ' ■’!C ·■ ''^ '.,

V T f ' î - ί ’ ΐ Γ ϊ - ί ί · ; ' · v i ‘«i»sï'""îiâr'‘!i|·’
* г·;:... . - ' ..■ . 1-* і" Ж··!·!*:'* Ï 5 «¡ is
t; L,<i (ί ν .«·1ιι(1·41 «1 я 4/ V

i ' i ÿ , : : î ^,
’ - S ' - , :i ;.' · 'W ?“

ІгВШ ТН'£ iíi'i
» и . i » . . ; - "Μ
'■·’■ ! ·- .)? ·' 1* ? ' {; í m W
i.i Í«4 ^ · ι ‘»A" -* M(S i

ϋβ ¿1 mît t*,., Н ' Л С і Б · z z Z
>ñ. ІЛ.1 ” «· Ι·»· ■ t»

'«•.vi !* ■· * 'ii.,-*i."Î.Ï2 '*'2ÿ

EFFICIENT ALGORITHMS FOR THE MINIMUM
COST PERFECT MATCHING PROBLEM ON

GENERAL GRAPHS

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Alper Atamtiirk

December, 1993

A /p g r ALaiyiJxirL·'— ^

è 023230

o ,ç \
ib<o

'391

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, a^a thegs foj· the degree of Master of Science.

Assoc. kgul(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, <is a thesis for the degree of Master of Science.

Assoc. Prof. €^man Oğuz

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Barbaros Tansel

Approved for the Institute of Engineering and Sciences:

Prof. M ehmet^aray
Director of Institute of Engineering and Sciences

ABSTRACT

EFFICIENT ALGORITHMS FOR THE MINIMUM COST
PERFECT MATCHING PROBLEM ON GENERAL

GRAPHS

Alper Atamturk
M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Mustafa Akgiil
December, 1993

The minimum cost perfect matching problem is one of the rare combinatorial
optimization problems for which polynomial time algorithms exist. Matching
algorithms find applications in Postman Problem, Planar Multicommodity Flow
Problem, in heuristics to the well known Traveling Salesman Problem, Vehicle
Scheduling Problem, Graph Partitioning Problem, Set Partitioning Problem, in
VLSI, et cetera. In this thesis, reviewing the existing primal-dual approaches in
the literature, we present two efficient algorithms for the minimum cost perfect
matching problem on general graphs. In both of the algorithms, we achieved
drastic reductions in the total number of time consuming operations such as
scanning, updating dual variables and reduced costs. Detailed computational
analysis on randomly generated graphs has shown the proposed algorithms
to be several times faster than other algorithms in the literature. Hence, we
conjecture that employment of the new algorithms in the solution methods of
above stated important problems would speed them up significantly.

Key words: Minimum Cost Perfect Matching Problem, Primal-dual Algo
rithms, Blossom Algorithm, Fibonacci Heaps.

n

ÖZET

GENEL ÇİZGELERDE EN KÜÇÜK MALİYETLİ TAM
EŞLEME PROBLEMİ İÇİN ETKİN ALGORİTMALAR

Alper Atamtürk
Endüstri Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Mustafa Akgül
Aralık, 1993

En küçük maliyetli tam eşleme problemi, çözümü için polinom zamanlı algo
ritmaların bulunduğu ender kombinatoryal en iyileme problemlerinden biridir.
Eşleme algoritmaları Postacı Problemi, Yüzeysel Çoklu Mal Akış Problemi ile
iyi bilinen Gezgin Satıcı Problemi, Taşıt Çizelgeleme Problemi, Çizge Parçalama
Problemi, Küme Parçalama Problemi ve diğerleri için sezgisel yordamlarda
kullanılır. Bu tez çalışmasında, literatürdeki primal-dual yaklaşımları gözden
geçirdikten sonra, en küçük maliyetli tam eşleme probleminin çözümü için iki
etkin algoritma sunuyoruz. Her iki algoritmada da tarama, ikil değişken ve
indirgenmiş maliyet güncellemesi gibi zaman alıcı işlemlerin sayısında büyük
ölçüde indirime gidilmiştir. Detaylı sayısal analizler önerilen algoritmaların
rassal olarak üretilen çizgelerde literatürdeki diğer algoritmalardan birçok kat
daha hızlı olduklarını göstermiştir. Sonuç olarak, yeni algoritmaların yukarıda
değinilen önemli problemlerin çözüm metodlarında kullanıldığında, bunlarda
da kayda değer hızlanmaların olabileceğini söyleyebiliriz.

Anahtar Kelimeler: En Küçük Maliyetli Tam Eşleme Problemi, Primal-
dual Algoritmalar, Gonca Algoritması, Fibonacci Öbekleri.

111

IV

To m y father and m oth er

ACKNOWLEDGEMENT

I am indebted to Associate Professor Mustafa Akgül for his invaluable guid
ance, encouragement not only throughout this study but also during my under
graduate years. I thank to Associate Professor Osman Oğuz, Associate Pro
fessor Barbaros Tansel and Associate Professor Ömer Benli for careful reading
of the thesis.

I wish to express my deepest gratitude to my family without whom this
study would have not been possible.

I would also like to extend my sincere thanks to Levent Kandiller, for the
enthusiasm he inspired on me for the last three years.

My special thanks are to Nilgun Tene for her love, moral support and
encouragement.

Contents

1 INTRODUCTION

1.1 P re lim inaries.. 2

1.2 Matching P o ly to p e .. 3

1.3 Combinatorial Background

2 LITERATURE REVIEW 12

2.1 Edmonds’ Blossom A lgorithm .. 13

2.2 Ball and Derigs’ Algorithm.. 21

3 MULTIPLE AUGMENTATION ALGORITHM 28

4 SINGLE STAGE ALGORITHM 34

5 COMPUTATIONAL STUDIES 41

6 CONCLUSION 50

VI

List of Figures

1.1 A matching example

1.2 A fractional matching... 4

1.3 A hypomatchable and nonseparable subset of N

1.4 Matching on P before augmentation.. 7

1.5 Matching on P after augmentation .. 8

1.6 Shrinking the odd cycle r,x ,y ,z,s... 9

2.1 Fibonacci Heaps.. 15

2.2 G row ... 17

2.3 S h r in k .. 18

2.4 Expand 19

2.5 Augment 19

3.1 Marking trees, where augmenting paths are found 29

4.1 Heap Elements after an Augmentation 36

5.1 Number of SCAN Operations versus Number of N o d e s 44

Vll

LIST OF FIGURES vin

5.2 Number of UPDATE Operations versus Number of Nodes . . . 45

5.3 Number of FINDMIN Operations versus Number of Nodes . . . 46

5.4 Comparison of CPU t im e s .. 47

5.5 Comparison of CPU times (log-log sc a le)... 47

5.6 Augmentations per Stage versus Ratio of SCAN and UPDATE
Operations performed by SA to by M A .. 48

List of Tables

2.1 Worst case complexity of weighted matching algorithms............. 13

5.1 Comparison of SCAN operation by algorithms on random graphs
with varying node size, (20% edge density).................................. 43

5.2 Comparison of UPDATE operation by algorithms on random
graphs with varying node size, (20% density)...............................44

5.3 Comparison of FINDMIN operation by algorithms on random
graphs with varying node size, (20% density)............................... 45

5.4 Comparison of CPU times required by the algorithms on random
graphs with varying node size, (20% density)...................................46

5.5 Comparison of the number of UPDATE operations performed
by the algorithms on random graphs with varying edge density,
(500 n o d e s) .. 48

5.6 Comparison of the number of UPDATE operations performed
by the algorithms on random graphs with varying edge density,
(500 n o d e s) .. 48

5.7 Comparison of the number of FINDMIN operations performed
by the algorithms on random graphs with varying edge density,
(500 n o d e s) .. 49

IX

LIST OF TABLES

5.8 Comparison of CPU times required by the algorithms on random
graphs with varying edge density, (500 n o d e s) 49

Chapter 1

INTRODUCTION

The minimum cost matching problem is one of the rare combinatorial op
timization problems for which polynomial time algorithms exist. Matching
algorithms find applications in Postman Problem [10], Planar Multicommodity
Flow Problem [20], in heuristics to the well known Traveling Salesman Prob
lem [7], Vehicle Scheduling Problem [4], Graph Partitioning Problem [6], Set
Partitioning Problem [21], in VLSI [19], et cetera. In this thesis, we aimed at
finding exact fast algorithms for the problem. We present two such algorithms
in the following chapters.

The thesis is organized in six chapters. In the first chapter, we introduce the
problem, give the definition of the matching polytope and present augmenting
paths for finding matchings on graphs. Second chapter reviews two important
primal-dual algorithms for the problem. In chapters three and four, we give two
efficient algorithms, respectively. A series of detailed computational studies is
summarized in chapter five. Finally, we conclude the presentation with chapter
six.

1.1 P relim in aries

Let G = {N, E) be an undirected graph, where N is the set of nodes, E is the
set of edges and c be a real valued cost vector associated with the edges. We
will use n to denote the number of nodes and m for the number of edges of
graph G. A matching M on G is a subset of edges no two of which are incident
to a common node. An edge in M is called a matching edge·, conversely, every
edge not in Af is a free edge. A node is said to be a matched node if it is
incident to a matching edge and a free node otherwise. The size of M is the
number of edges it contains and the cost of M is the sum of its edge costs. A
perfect matching has size n /2. The problem we want to solve is that of finding
a minimum cost matching among the perfect matchings on G.

CHAPTER 1. INTRODUCTION 2

D

Figure 1.1: A matching example

In Figure 1.1 a matching on a small graph is illustrated. Dotted edges,
(A,B) and (C,F) represent the matching edges. Rest of the edges are free.
Only nodes E and D are free, others are matched nodes. Obviously, matching
M is not perfect.

CHAPTER 1. INTRODUCTION

1.2 M atch in g P o ly to p e

Let Y C N ,
A(K) = e E : i € Y, j i Y)

r (n = { { i j) e E i i e Y J € Y}

We may simply refer to A(F) as the cut edges of Y. S(Y) G /2*” is a vector
associated with the edge set A (F), where component of S{Y) is 1 if
edge is in A(F), 0 otherwise. We also define 7 (F) € R”̂ similarly for the set
r(F). If F is a singleton we simply write ^(t) instead of and A(i)
for A({i}). Furthermore let us define the incidence vector G /2”* of F C E,
where component of is 1 if A:‘* edge is in F, 0 otherwise.

Let 'Pjv (̂G) be the perfect matching polytope of G, which is the convex hull
of the incidence vectors of perfect matchings in G, i.e.

Fm {G) = conv{x^ G /2”* : Af is a perfect matching in G)

Using combinatorial properties of the problem, Pm (G) is described with a set
of linear equalities and inequalities.

First, let X be an integer vector to describe a matching, then, the minimum
cost perfect matching problem can be formulated cis:

min
s.t.:

Tc X

PI) x'^S{i) = 1 , V i G AT
X 6 {O,!}”»"*

The equalities used in PI are called the assignment equalities and when x
is a binary vector, they indicate that for every node in the graph only a single
edge incident to it should be in the matching. However, with this integer
formulation it is very unlikely to solve the problem in polynomial time, unless
P = NP. On the other hand, linear programming (LP) relaxation of PI does not
guarantee an integer solution for the problem. Mere the assignment equalities
in this case may yield a fractional solution. This is easy to see in Figure 1.2.

= (0,0,0,0.5,0.5,0.5,0.5,0.5,0.5) is an extreme solution of the LP relaxation
of PI.

CHAPTER 1. INTRODUCTION 4

x, = 0 D

D efinition 1.1 For G = {N ,E) and W d N we define G[W] = (lP,r(l'P))
and call it subgraph induced by W.

D efinition 1.2 A cutnode of a graph G — (N ,E) is a node w E N such that
G[N \ {tw}] has more connected components than G has.

D efinition 1.3 y4 graph G is called nonseparable if it does not contain any
cutnode.

D efinition 1.4 For an odd cardinality W C G with |H^| > 3, G\W] is called
hypomatchable if for every w there exists a perfect matching with respect
to G [fr\{u;}].

For X € R!J! and every IV C N with |VF| > 3 and odd, the following
inequality is valid for P m (G) :

x^j(lV) < [1/2 I H^IJ

This type of inequalities are called blossom inequalities and are due to Ed
monds [9]. Edmonds has shown that together with the assignment inequalities,
they describe Vm - Even though sufficient, they are far from being minimal.

T heorem 1.1 (E dm onds and Pulleyblank[10]) Hyperplanes represented by
the blossom inequalities for odd cardinality W C. N with | IE |> 3 are the facets
of Vm If only if G[VE] are hypomatchable and nonseparable (Figure 1.3).

CHAPTER 1. INTRODUCTION 5

Figure 1.3: A hypomatchable and nonseparable subset of N

Let us use Q to denote the set of all such facet defining subsets of N. Then,
facet defining blossom inequalities with the assignment equalities, lead to the
below given blossom characterization of the minimum cost perfect matching
problem,

mm
s.t.:

Tc X

P2) = i y i e N
x '^ i { W) < [\ ! 2 \w \ \ y w e Q

x > Q

Similarly, for IE G Q , we also have the following cut inequalities,

x'^6{W) > 1

CHAPTER 1. INTRODUCTION

to represent facets of Vm · Using the cut inequalities we can re-formulate
the problem.

min c^x
s.t.:

P3) = 1 V i e N
x'^6{W) > 1 v w e Q

X > 0

The above formulation is called the cut characterization. Actually there is
a bijective linear transformation between the two characterizations.

The dual problem of P3 is,

max
s.t.:

12içN Vi + ICweQ yw

D3) y.·+ y i+ E{yiv :(*■,;) e A(iU)} < C.J ' i { i , j) e E
yw > 0 V VP € g

Let Cij denote the reduced cost of an edge (i,j) € E., i.e.

Cij = Cij - Vi - y j - 53{yw : (*,i) € A(VP)}

Then the complementary slackness conditions of the linear program for a given
M can be stated as,

(t,i) € M ^ Cij - 0

y w > 0 = ^ |M nA(VP)| = 1

Even though linear characterization of the problem bears exponentially
many inequalities in the number of nodes, importance of it comes from the
fact that resulting complementary slackness conditions become very powerful
tools in designing efficient algorithms for the problem. Also the combinatorial
properties of the problem provides enough information so that only O(n^) of
the inequalities are encountered in solving the problem.

1.3 C om binatoria l B ackground

D efinition 1.5 A walk on G is a finite sequence of nodes and edges, where
the elements of the sequence are altematingly a node and an edge and where
the starting and ending elements are nodes of G. A path on G is defined as a
walk in which all nodes are distinct.

Even though a path is a sequence, we do not distinguish the sequence and
the set of elements in the sequence since it will not cause ambiguity in our
context.

D efinition 1.6 An alternating path is a path where edges are alternatingly
matching and free.

D efinition 1.7 An augmenting path is an alternating path whose both ends
are free nodes.

Augmenting paths play a crucial role in matchings. An augmenting path
is found by growing alternating paths; whenever one is found, the cardinality
of the matching can be increased simply by swapping the free edges and the
matched edges on the augmenting path. This is said to be an augmentation.
In figure 1.4 an example augmenting path is given. The new matching on
the same path after an augmentation is shown in figure 1.5. Thus if M is
augmented by the augmenting path P, the new matching M is

A7= A/AP

where M A P denotes the symmetric difference operation on sets M and P.

CHAPTER 1. INTRODUCTION 7

Figure 1.4: Matching on P before augmentation

Next theorem is used as a stopping criterion in finding maximum cardinality
matching.

CHAPTER 1. INTRODUCTION

Figure 1.5: Matching on P after augmentation

T heorem 1.2 (Berge[5]) A matching M in G contains the maximum number
of edges if and only if it admits no augmenting path.

D efinition 1.8 Let M be a matching in G and let P be an alternating path
with respect to M . We define the length of P as:

4 P)= IZ Z)
{ i , j } € P n M

Similarly reduced cost length of P is defined as:

{̂P)= Z Z
{ • j } e P W { i j J e P n M

Lem m a 1.1 Let P denote an augmenting path with respect to M in G, then
cost of the augmented matching M , accounts to

Z_^i= Z +

P ro o f : This holds true, by definitions of C{P) and M.

Hence, cost of the matching is increased by the length of the augmenting
path after an augmentation. Now suppose we have have a matching A/*, with
I M* 1= k and c{M*) is minimum among all matchings of cardinality k. Then
from Lemma 1.1 a, minimum length augmenting path with respect to M* will
lead to M with \ M |= A: + 1 and c(M) minimum among all matchings of
cardinality k. Lemma is also valid for the case A/ = 0 for which minimum
length augmenting path is simply an edge with minimum cost. So the problem
boils down to successively finding minimum length (shortest) augmenting paths
between pairs of free nodes until every node is matched. This solution method
is called the shortest augmenting path method.

This method of growing alternating trees is performed with ease if the graph
is bipartite. However there is a complication in non-bipartite graphs : odd
cycles. In figure 1.6 a walk on nodes p, q, r, s, t does not lead to an augmenting
path, however there is actually an augmenting path between p and t, which
is the walk on p ,q ,r ,x ,y ,z ,s ,t . Existence of odd cycles such as r ,x ,y ,z ,s
bring about a major difficulty in the identification of augmenting paths. This
difficulty is overcome by shrinking the odd cycle into a pseudonode say B. In
the same figure it is clear that after the shrinking operation the augmenting
path can easily be found.

CHAPTER 1. INTRODUCTION 9

Figure 1.6: Shrinking the odd cycle r,x,y,z,s

Definition 1.9 Given G = (N ,E) let W be a subset of N forming an odd
cycle. Gs = {{N \ W) U B ,{ E \ r(VF))), where B is a pseudonode (blossom)
obtained by shrinking W, is called the surface graph.

Note that blossoms can be nested, that is a pseudonode and some other
(pseudo)nodes in Gs can further be shrunk to form another blossom. In this
case, the new surface graph is obtained similarly. If we call the elements that
are most recently shrunk in a nested blossom B as maximal., through expan
sion of B one can retrieve those maximal elements of the nested blossom B.
Each one of the maximal elements may be a blossom or a node in G. Let il
denote those maximal elements of B. If G$ = {Ny E) is the surface graph be
fore the expansion of B, the new surface graph obtained after expansion will be

i7̂ = ((A ^ \5)U Î Î ,(^ u r (i î))

CHAPTER 1. INTRODUCTION 10

Since minimum number of maximal elements in a blossom is three, maximum
number of blossom formation is n /2 — 1. This observation will justify that a
polynomial number of the blossom (or cut) inequalities in P2(P3) become tight.
Shrinking and expanding blossoms will be explained in detail in the following
chapter.

Lem m a 1.2 Let Ps be an augmenting path found in Gs· Ps induces an aug
menting path P in G.

P ro o f ; The lemma directly falls from the fact that the blossoms on Ps are hy-
pomatchable and nonseparable. Recursive expansion of the maximal elements
of the blossoms on Ps leads to P.

At this point we will relate the augmenting paths to the generic primal dual
algorithm. It is possible to view shortest augmenting method as in instance of
the generic primal dual algorithm. Given a feasible dual solution y (possibly
y = 0) to D3 let us call EG{y) = {N, E{y)) equality subgraph, where

E{y) = {e e E : Ce = 0}

Furthermore let matching M in EG{y) that satisfying the complementary
slackness conditions be a compatible pair of y. If M is perfect, that is the
primal problem also feasible, then it is optimal. However if M is not perfect,
from theorem of alternatives, there exist a feasible direction d, strictly speaking
a ray in the dual cone for EG{y), that is the graph restricted to the edges in
E{y). So we can improve the dual solution in the direction of the ray. The
amount of improvement is however dictated by an edge in \ E{y). Let 6 be
the maximum improvement in the direction d without violating dual feasibility
for the edges in \ E(y), then

0 = min{ce : e e E \ E{y)}

Now an edge e' with Ce< = 0 will be in the new equality subgraph EG{y') =
{N, E[y')), where y' — y-\-0d. Hence maintaining the complementary slackness
conditions, at each iteration we can either find a perfect matching which is

CHAPTER 1. INTRODUCTION 11

optimal or improve the dual objective function. Equality subgraph helps us to
maintain the basic invariant of the generic primal dual algorithm, that is the
satisfaction of the complementary slackness conditions.

In the shortest augmenting path method, edges on the alternating paths are
part of the equality subgraph. Search for an edge with minimum reduced cost
to grow a path is nothing but a ratio test of reduced cost among the edges not
in the equality subgraph. Growing an alternating path amounts to improving
the dual solution. Hence the method is just a combinatorial instance of the
generic primal dual algorithm.

Expansion of blossoms turns out to be one of the most cumbersome op
erations in matching algorithms for non-bipartite graphs impeding both theo
retical and practical computational efficiency. In bipartite graphs, expansion
and shrinking are not needed since from an combinatorial point of view, odd
cycles are not encountered and from a linear programming point of view, all
the variables of the dual problem are free.

Chapter 2

LITERATURE REVIEW

Edmonds[9] presented the first efficient algorithm of O(n^) for the matching
problem, which can easily be implemented with O(n^m) complexity. After
wards, there came several other primal-dual algorithms, that are improvements
of Edmonds’ blossom algorithm. Gabow[13] and Lawler[18] have independently
shown that blossom algorithm can be implemented with O(n^) complexity.
Galil, Micali and Gabow[16] gave an O(nmlogn) algorithm using splittable
heaps. Ball and Derigs[3] presented O(n^) and O(nmlogn) algorithms that
are modifications of the previous ones. Essentially, decrease to 0(nm log n) is
achieved through utilization of elegant data structures, rather than a change
in the main algorithm. Gabow has recently given an 0(nm -|- log n) algo
rithm for the problem, which also uses quite complicated data structures [14].
There exist other solution methods for the problem such as, primal [8], scaling
[15] and cutting plane [17] algorithms; however, here we will concentrate on
primal-dual algorithms. Table 1 lists the primal dual algorithms known to us
for the minimum cost perfect matching problem.

In the following two sections we will describe our implementations of Ed
monds^ Blossom Algorithm and Ball & Derigs’ Algorithm, respectively. These
implementations are somewhat different than they were originally described.
Firstly, our implementations allow growing of many alternating trees simulta
neously, rather than one at a time. Secondly, we employ state-of-the-art data

12

CHAPTER 2. LITERATURE REVIEW 13

Year Author Complexity
1965 Edmonds O K)
1974 Gabow 0(n^)
1976 Lawler O(n^)
1983 Ball L·Derigs O(n^)
1986 Gain, Micali hGabow 0 (nm log n)
1990 Gabow 0 (nm + log n)

Table 2.1: Worst case complexity of weighted matching algorithms

structures such as Fibonacci Heaps which were not known at the time these
algorithms were first posed.

2.1 E d m o n d s’ B lossom A lgorith m

We grow alternating trees rooted at each free node to find augmenting paths
between pairs of free nodes. The collection of such alternating trees will be
called the Planted Forest, PF. Initially, PF consists of trivial trees of single free
nodes with © labels. As the trees are grown larger, nodes will assume labels
©/© alternatingly. After an augmentation, trees rooted at newly matched
nodes are moved to the Matched Forest, M F, where they are labelled 0. In the
case an odd cycle is encountered, it is shrunk to form a pseudonode. As defined
in the previous chapter, this new graph induced by the shrinking operation is
called the Surface Graph, Gs· From now on, every node in Gs will be called a
blossom. Thus some blossoms are trivial and exist in G = (Â , E), as well. Let
us use b{j) to denote the blossom in G$ that node j is in. In referring to all
the nodes j G: N that are included in b{j), we will say real nodes of b{j) and
denote them as Real(b(j)).

The Blossom Algorithm aims to find an augmenting path between a pair
of free nodes at each iteration. The search for a minimum cost augmenting
path is realized by growing minimum reduced cost alternating paths on Gs·
Actually, all of the trees rooted at a free node are grown simultaneously, so the

CHAPTER 2. LITERATURE REVIEW 14

augmenting path can be found between any of the trees. When an augmenting
path lying on two such trees is found, that is when a minimum cost augmenting
path between any two of the roots of the trees in PF is detected, the path is
augmented and both of the trees on which the augmenting path lies are carried
to M F. After this, a new iteration starts to search for another augmenting
path on the remaining alternating trees in PF.

Within an iteration, search for an augmenting path is pursued by seven
basic operations. These are Scan, Update, Findmin, Grow, Shrink, Expand
and Augment These operations basically have the same function in all of the
algorithms that will be presented here, however there exist slight modifications
from algorithm to algorithm. At this point, we present the pseudocode of the
main algorithm. Then we will describe each operation in detail.

Edm onds’ Blossom Algorithm
while PF Ih do
begin

Scan(A:),Vfc 6 PF;
Update(A:); VA: € PF
(c ,b i) ^ FindminO;
if(6 = Cyi) Grow(i,i);
if (t = 6b)
begin

if (i and j belong to the same tree)
Shrink(t,j);

else A ugm ent(t,j);
end
if (c = ec) Expand(i);

end
Recover(M F);

We utilize three Fibonacci Heaps [12] to facilitate fast Findmin operation.
Findmin outputs the minimum key (c) over all the three heaps. FihA is for
the edges which have one end in M F and one in a © labelled blossom. FihB
is for edges with both ends in different © labelled blossoms and FibC is for
keeping the dual variables of 0 labelled non-trivial blossoms in PF. For each
blossom i in M F we have an element in FibA that keeps the minimum reduced
edge from t to a © labelled blossom in PF. FibA; denotes the key in FibA for

CHAPTER 2. LITERATURE REVIEW 15

the minimum reduced cost cut edge (q, r) of i in figure 2.1, such that b{q) = t,
6(r) = j and Ibi = 0, Ibj = 0 , where /6,· denotes the label of i. In order to store
this edge, we have two entries associated with the heap element, node to keep
q and nb (neighbor) to keep r. Key is the reduced cost of edge (q, r) denoted
as Cgr. FibBj is the key in FibB for the minimum reduced cost edge from 0
labelled blossom j to another 0 labelled blossom. FibBj is half of Cki oí the
co-boundary edge (ky 1) of j in the same figure, such that b(k) = j , b(l) = p
and Ibj = Ibp = 0 . It is possible that both j and p have distinct elements in
FibB for the same edge. If such an edge causes an augmentation, we simply
delete both of the relevant elements from FibB. Finally, each non-trivial 0
labelled blossom in PF has an element in FibC with a key FibCi that is equal
to dual variable of i. In FibC, nb entries are empty since it is for dual variable
information of blossoms, rather than for reduced cost of edges.

Figure 2.1: Fibonacci Heaps

In Edmonds’ algorithm Scan is called at every iteration. By scanning each
element in the cut edges of 0 labelled blossoms in PF, the minimum reduced
cost edge (kept in Fib/[with the key being the reduced cost) from each 0
labelled blossom to a 0 labelled blossom and the minimum reduced cost edge
(kept in FibB with the key being half of the reduced cost) from each 0 labelled
blossom to another 0 labelled blossom are determined. Dual variables of 0
labelled blossoms are stored in Fibc·

CHAPTER 2. LITERATURE REVIEW 16

Scan(t)
begin

if (Ibi = ©) then
for V()b, j) e A (t): b(k) = i do
begin

if = 0) then
FibAk(j) 4- min{FibAk(j),Ckj)\

if = 0) and {b{j) ^ t) then
FibB(,Q) 4- min{FibB^j^,0.5ckj};

end
else if (Ibi = ©) and (i ^ N) then /* i is a pseudonode */

FibCi 4- y, ;
end /* Scan */

Findmin()
begin

€a ^ min,'{Fi6i4,·};
€b min,{Fi6B,·};
€c ^ min,{Fi6C,·};
6 ^ min{6yi,6B,cc};

q <— node achieving this minimum;
i 4- b{q);
j 4- b{nbi);

end /* Findmin */

After Scan, Findmin is called to find the minimum key over all of the three
heaps, e is this minimum key and q is the real node achieving this minimum.

Now that e is known, Update is called to change the dual variables of the
blossoms and the reduced costs of edges in Gs- For each 0 labelled blossom t,
yi is increased by e while reduced costs of the cut edges of i are decreased by e.
Conversely, for each 0 labelled blossom i, yi is reduced by e while reduced costs
of the cut edges are increased by e. Observe that, with this kind of an Update
operation dual feasibility is maintained for every edge and reduced costs of the
forest edges (edges in the equality subgraph) are kept zero. Reason for keeping
only half of the reduced cost of edges between different © labelled blossoms
in FibB should be clear now. If c = cb with cb = 0.5ce, after the update
Ce becomes zero since e is deducted for both of the 0 labelled blossoms the
end nodes of e are in. Also note that at each iteration dual objective function

CHAPTER 2. LITERATURE REVIEW 17

Update(t)
begin

if (Ibi = ©) then
begin

Vi ^ Vi + c;
for (k,j) G A (t): b(k) — i do

^kj ̂ ^kj
end
else if (Ibi = ©) then
begin

Vi Vi - c;
for (k,j) 6 A(t) : b(k) = i do

Ckj * - Ckj + €]
end

end /* Update */

improves as much as (| | —2 | M |) c. This claim follows from the fact that
there are (| | —2 | M |) more 0 labelled blossoms than 0 labelled ones in
PF.

mate(i)

Figure 2.2: Grow

Grow(j, i)
begin

parenti <— j;
parent^^teii) ^ »;
Ibi 0;
^̂ mote(i) ^

end /* Grow */

Grow is called if Findmin outputs an edge between a 0 labelled blossom j
and a 0 labelled blossom i. In this case, i is made a child of j and moved to
PF from M F together with its matched blossom, denoted as mate(i). Please
refer to fig 2.2.

Shrink is called if Findmin outputs an edge between two 0 labelled blossoms

CHAPTER 2. LITERATURE REVIEW 18

i and j on the same alternating tree. This is the case, when an odd cycle is
found. The odd cycle is shrunk to form a new 0 labelled blossom. Nearest
common ancestor oi i and j , denoted as nca{i,j), is the first common blossom
of paths from i and j to the root of the tree. In figure 2.3 let Pi be the path
from i to nca(t,j) and Pj be the path from j to nca{i,j).

Shrink(i, j)
begin

Shrink P i U P j U (i,j) into B ;

Update Gs",
V B 0;
lbs *— ®;

end /* Shrink */

Expand is called if Findmin outputs a non-trivial 0 labelled blossom t. In
this case, i is expanded and Gs is updated to include the maximal elements in
i. Please refer to figure 2.4 for this operation. Let j be the maximal element in
i where the unmatched edge in A(i) emanates from, and let k be the maximal
element in i where the matched edge in A(i) emanates from. Furthermore
define Pq as the path between j and k with odd number of blossoms, including
j and k. and Pe as the path between the remaining blossoms of i. Existence of
Po and Pe is guaranteed since there are odd number of maximal elements in
i. Note that primal feasibility may be violated for the edges on the alternating
path between maximal elements. This can be reconstructed simply by swap
ping the matching edges and free edges on one of the paths. Since swapping
takes place in the equality subgraph the objective function is not affected.

CHAPTER 2. LITERATURE REVIEW 19

0·#··

 ̂ ̂ ̂^ A•r ^ 1 .
P e

..... * ·^
•

*’·........ . f

• t - — 0 e e e e 4 i —
♦ ♦

Figure 2.4: Expand

Expand(i)
begin

Unshrink t;
Update Gs]
If necessary, swap matched and unmatched edges on Pq]
If necessary, swap matched and unmatched edges on Pe ‘,
Label the blossoms on Pq aJternatingly by 0 and 0 ;
Move Pe to MF·,

end /* Expand */

Augment is called if Findmin outputs an edge between two 0 labelled blos
soms i and j on different alternating trees, denoted as T, and Tj respectively
in figure 2.5. This is the case, when an augmenting path between the roots of
the trees is found. Now, define f*,· as the path from i to the root of Ti and Pj
from j to the root of Tj. Then the augmenting path is P = P,· U {i,j) U Pj.

After all the nodes are matched Recover is called to expand all the nested
blossoms. One may refer to figure 2.4 again for this operation. Let j be the

Figure 2.5: Augment

CHAPTER 2. LITERATURE REVIEW 20

Augm ent(i,j)
Swap matched and unmatched edges on P;
Ti ^ Ti \ Pi ;
T'i ^ T j \ Pi·,

Move P, T[and Tj to MF;
end /* Augment */

blossom in i where the unmatched edge in A(t) emanates from, and let k be
the blossom in i where the matched edge in A(t) emanates from. Furthermore
define Po as the path between j and k with odd number of blossoms, including
j and fc, and Pe as the path between the remaining blossoms of i. Finally, let
L be the list of maximal elements in i. Recover is very similar to expand; it
may be viewed as recursive expand operation.

Recover(i)
if i 6 A return;
else
begin

Unshrink i;
Update Gs',
Swap matched and unmatched edges on Pq such that

j is adjacent to a matched edge on Po‘,
Swap matched and unmatched edges on Pe such that

blossom adjacent to j is adjacent to a matched edge on Pe ‘,
Recover(/) ,V/ € L;

end
end /* Recover */

The algorithm performs Scan and i/pdaie operations before one of the Grow,
Shrink, Augment or Expand operations is called. Scanning and updating before
such a call can be done in 0{m) time. The other operations can easily be
performed in 0(n). Between two augmentations there are 0{n) iterations, so
the work needed to be done between augmentations is 0{nm). Since there
is a total of n /2 augmentations, we have O(n^m) complexity for the blossom
algorithm.

CHAPTER 2. LITERATURE REVIEW 21

2.2 B a ll and D er ig s’ A lgorith m

In this section, we define a new terminology called stage. A stage is the period
between two augmentations, so it consists of a series of iterations, which ends
with an Augment operation. Lawler showed the possibility of implementing
the blossom algorithm in such a way that an edge is scanned at most two
times during a stage instead twice at each iteration. The basic observation
here is that as long as label of a blossom remains the same, its dual variable
will continue either to increase or to decrease depending on its label. Change
in the reduced cost of the cut edges of that blossom will be in the reverse
direction. Within a stage, if the aggregate amount of change that should be
done in the dual variable of blossoms and in the reduced costs of the cut edges
can be maintained in an efficient way, it may be possible to use this information
to arrive at the actual dual variables and reduced costs without the need to
calculate them at each iteration. Hence, computational complexity will be
reduced to O(n^) and one will achieve considerable saving in the total number
of the Scan and Update operations between augmentations.

In this algorithm scanning of a cut edge is done only when blossom of one
of the end nodes of the edge assumes a 0 label in a stage. Observe that
once the blossom of a node assumes 0 label in PF it will remain © till the
end of the stage. Thus an edge is scanned at most twice throughout a stage.
However there exists a bit difficulty with © labelled blossoms, since blossom of
a real node that was previously © labelled may assume 0 and © labels through
successive expand and grow operations. Tackling © labelled blossoms will be
explained further in detail.

The algorithm of Ball L· Derigs[3] which is an improvement of Lawler’s orig
inal algorithm performs the same Findmin, Recover and similar Grow, Shrink,
Augment, and Expand operations cis Edmonds’. Improvement is achieved
through modification of the main algorithm and of Scan and Update opera
tions. The algorithm has two loops, inner and outer. Each call of the outer
loop is a stage and there is a total of n/2 stages throughout the algorithm.

CHAPTER 2. LITERATURE REVIEW 22

Ball &; Derigs’ Algorithm
while FF ^ 0 do
begin

Scan(A:),VA: 6 PF;
repeat

^ FindminO;
if (€ = (a) Grow(t,;);

begin
if (t and j belong to the same tree)

Shrink(t, j);
else Augment(i, j);

end
if (e = (c) Expand(i);

until [there is an augmentation)
Update(fc); VJk G PF
Full_Update();

end
Recover(MF);

For delaying the Scan and Update operations, we have a variable d,· for each
blossom i in PF. di keeps the value of e when blossom i is moved to the PF
during a stage. Rather than updating dual variables and reduced costs at each
iteration of the algorithm, amount of update needed is stored in such a way
that actual update can be performed at the end of a stage. The amount of
update to be done for the dual variable of a blossom i in PF that existed in
Gs at the beginning of a stage and for the reduced cost of the edges in A[i)
is equal to c — at any time in the stage. This amount may be viewed as a
measure of presence of blossom i in PF during the stage.

Grow(i, j)
begin

parenti *— j ;
p a r e n t ^ a t e (i)
Ibi ©;

di <- e;

end /* Grow */

As mentioned before we encounter a slight difficulty in delaying reduced

CHAPTER 2. LITERATURE REVIEW 23

cost updates of the cut edges of 0 labelled blossoms. When a 0 labelled
pseudonode is expanded, reduced cost update for some cut edges will be in the
reverse direction since the real nodes these edges emanate will now have a 0
labelled blossom in the new surface graph instead of a 0 labelled one. We will
decrease the reduced cost of these edges, which we used to increase before the
expansion. Updating the reduced cost of these edges during expand will give
an 0(nm) complexity for a stage, since we may have to update same edges over
an over again as a nested 0 labelled blossom is expanded recursively during
a stage. To overcome this difficulty, relevant updates are performed on the
realnodes. For this, we utilize w array of size 0(n). Amount of update needed
to be done on the reduced costs of these edges are kept in the entries of w
for the real nodes that the edges emanate from, w array will also be utilized
in the Shrink operation. Necessary reduced cost updates for the cut edges of

blossoms that are shrunk into a new pseudonode will be kept in the entries of
LUr Total work for updating elenientH of t u ¡3 of O(n^) roiiijiloxity throughout a

stage, since both of the shrink and expand can be called 0 (n) times per stage.

Expand(t)
begin

Unshrink i;
Update Gs;
If necessary, swap matched and unmatched edges on Pol
If nocGsisary, sw a p n ia tc h o d a n d u n m a tc h e d e d g e s on
L a b e l th e b l o s s o m s o n a l t e r n a t i n g l y by © an d m i

dj € VJ o n Po\
Wr tCr + (e - d{) Vr e Real{i);

Move Pe to MF\
end /* Expand */

Recall that during an expansion matched pairs of blossoms may be carried
t o M b \ ThiN h r i i ig s n e w e d g e s Ind.ween F F a n d M F w h i c h a r e n o t s c a n n e d

before. If we were to scan these edges and put the minimum reduced cost

edge from a new blossom in MF to a 0 labelled blossom, in FiM, complexity
of a stage becomes 0{nm) again. This is due to the fact that we may have
to scan some of these edges over and over again (at most 0(n) times) as
nested 0 labelled blossoms are expanded recursively during a stage. To solve
this problem, Lawler’s idea was to keep the reduced costs of edges between 0

CHAPTER 2. LITERATURE REVIEW 24

Shrink(i, j)
begin

for VA: on Pi U Pj do
begin

if Ibj — 0 then
yfc i/fe + (f - dik);
for Vr 6 Real(k) *— — {e — djt);

else if Ibj = 0 then
Vk Vk - ((+ dk);
for Vr € Real{k) Wr + (f — dk)\

end
for VA: on Pi U Pj do

if Ibk = 0 then Scan(A:);
Shrink Pi U Pj U (t, j) € E into B]
Update Gs]
VB 0;
lbs <— 0 ;

end /* Shrink */

labelled blossoms and 0 /0 labelled blossoms in an array. Let p and v be two
0{n) arrays and entry of p, pj be the other end of an edge from the real
node y to a 0 labelled blossom with minimum reduced cost. Vj is the reduced
cost of this edge as at the beginning of a stage. When a blossom bo is moved to
M F after an Expand operation, a search is done on Vj for every real node of bo
and a new key is inserted to FibA for a minimum reduced cost edge from bo to
a 0 labelled blossom. This is just an 0(n) work for each expand. Utilization
of these two arrays makes it possible to scan a 0 labelled blossom only once
throughout a stage, hence brings about considerable saving in the number of
Scan operation.

The Scan operation in this algorithm not only computes the keys of the
Fibonacci Heaps but also the entries of the v and p arrays. A blossom 6® is
scanned only when it first time assumes a 0 label in a stage, so db ̂ = e. We
call the cut edges of b^ to 0 and 0 labelled blossoms as candidate edges. Let us
first consider the reduced cost of an edge (j, i) between a 0 labelled blossom bo
and 0 labelled blossom 6®. Observe that at any time during the stage updated
amount of Cj·,·, which we will denote as Cji equals to Cji-{e — db^) + Wj-\-Wi, since
(e — + + is the amount of reduction we have delayed to perform on c_,,·.

CHAPTER 2. LITERATURE REVIEW 25

In this sum (e —) term reflects the delayed update after 6® first appeared in
PF, while Wj + Wi is for any update at a shrink and/or expand operation before
the appearance of 6®. Recall that w array is for complementing reduced cost
updates for which (j, i) used to be a co-boundary edge of a blossom disappeared
from the surface graph through a shrink or an expand operation. For the real
nodes of j of bo a candidate edge heis cjk = cjk + wj + u?jt, so it is valid to
compare the value cjk + wj for candidate edge (j, k) with vj — (e — db^) + Wp.
since Vj assumes the value of Cjp- at the beginning of stage, where {j,Pj) is the
edge with minimum reduced cost value from / to a 0 labelled blossom.

Now, let us look at the situation for reduced cost of an edge (/, k) between
a 0 labelled blossom 69 and a 0 labelled blossom 6®. Updated reduced cost
Cjk is equal to Cjk — (c — ¿6®) + (c “ <̂69) + + f̂c· For real nodes of j of 69,
a candidate edge {j, k) has cjk equal to cjk + (e — db^) -|- wj + Wk. That is the
justifying reason of comparing Vj — (c — ¿6®) + Wp̂ with cjk + Wk. In order to
maintain the order relationship among the elements of heaps, e is added to its
actual key value of a new element when it is inserted to one of them. This is
necessary since keys in the heaps are not updated at each iteration.

Scan(i)
begin

if (/6,· = ©) then
for V(Ar, j) G A(t) : b(k) = i do
begin

if = 0) then
FibAb(j) <- min{FibAb(j),Ckj -|- Wk -|- Wj -|- f};

if = ©) and (b(j) ^ i) then
FibBb(j) min{FibBb(j),0.!j{ckj - {e - dj) + Wk -|- -|- c};

if (Ckj + Wk< Vj - { (- db(p̂)) -I- Wp̂) then
Vj c/fj·;
Pi ^ k;

end
else if (/6,· = 0) and (i ^ N) then

FibCi *- Vi + t;
end /* Scan */

As stated above, amount of update to be done for dual variable of blossom
i in PF and for reduced cost of A(i) is c — d, at any time. Update in this

CHAPTER 2. LITERATURE REVIEW 26

U pdate(t)
begin

if (/6,· = 0) then
begin

Vi Vi + (e - di)·,
for (k, j) € A (i) : b(k) = t do

^kj * ^kj “ (f ~ ^t)i
end
else if (Ibi = 0) then
begin

Vi < - Vi - (c - di)]
for (k, j) G A (t) : b{k) = i do

Ckj Ckj + (f - dj);
end

end /* Update */

algorithm is modified to allow a cumulative increase or decrease depending on
the label of blossom i.

At the end of a stage Full. Update is called to complement the updates
on the reduced cost of the edges which we have delayed at Shrink and Expand
operations throughout the stage. With this operation all of the delayed updates
on the reduced cost of every edge are completed for the stage.

FulLUpdate()
begin

C i j C i j + W i + W j V(i, j) G E]
end /* Full_update */

During a stage an edge is scanned at most two times, that is when blossom of
its end nodes assume 0 label, which gives 0 (m) for total scanning operations.
All of the other operations in an iteration is bounded with 0(n) time . Since
each of the operations can at most be called 0 (n) times between augmentations,
complexity of a stage becomes O(n^). Thus, the overall complexity of the
algorithm is O(n^). Instead of v array, if we were to keep a splittable heap
for each 0 and 0 labelled blossom, we could complete an expand operation in
O(log n) time. When a 0 labelled blossom is expanded, its heap, which stores
the minimum reduced cost to a 0 labelled blossom, is split to form other heaps
for each of the maximal elements of that blossom that eissumes a 0 or 0 label

CHAPTER 2. LITERATURE REVIEW 27

at the new surface graph 0(log n) time. However in this case scanning of an
edge also takes 0(log n) time rather than 0(1). With the use of splittable heaps
scanning becomes the dominating operation in a stage. With a little more care
in the implementation of blossoms a stage can be done in 0(m log n) time [3].
Hence the complexity of the algorithm is 0(nm log n).

Chapter 3

MULTIPLE
AUGMENTATION
ALGORITHM

The multiple augmentation algorithm [1] is another improvement of the blos
som algorithm in reducing the number of necessary scan and dual variable/re-
duced cost update operations. Different from the other primal-dual/successive
shortest path algorithms, we may carry out more than one augmentation in a
stage, which explains the term multiple augmentation.

In order to facilitate augmentation on more than a couple of alternating
trees, we keep a root field for each blossom, which identifies the root of the
alternating tree the blossom is on. Since at the beginning each tree consists
of a single blossom, initially rootj = j,Wj € Gs· Whenever we grow a pair
of matched blossoms to a tree, we make root fields of this pair equal to their
parent’s root field. In this way one can find the root of any blossom on an
alternating tree in 0(1) time. When an augmenting path between a pair of
alternating trees is found, in order to differentiate them from the rest of PF,
we mark the roots of the trees involved, by changing the signs of their root
fields to negative. We will call such trees as marked trees. The pair of blossoms

28

CHAPTER 3. MULTIPLE AUGMENTATION ALGORITHM 29

causing the augmentation is put into the pair list PL so that the augmenting
paths may be traced back towards the roots later on at the end of the stage. In
Figure 3.1 dotted edges are the matching edges, whereas the dashed ones are
augmenting. The roots of trees on which augmenting paths are already found
are marked, denoted with the letter M in the same figure. Inscribed in squares
are those blossom pairs that are listed in PL.

Matched Forest Planted Forest

- + · +
M + ·----· ·-#

X\- + V
M -I-·----»»»«g) \

Figure 3.1: Marking trees, where augmenting paths are found

Marked trees are not carried to M E immediately. When a tree is marked,
current minimum reduced costs of the edges between blossoms on the marked
tree and 0 labelled blossoms of unmarked trees in PF are inserted to FibA,
Thus for the rest of the nodes in PF, nodes in marked trees behave as if they
are in MF] conversely, since at the beginning of the stage reduced cost of the
edges between 0 labelled blossoms and those © labelled blossoms on marked
trees were put in FibA, for the nodes in M F blossoms in marked trees behave
as they are in PF. We may still grow marked trees until the end of stage.
However cis for the other blossoms on marked trees, reduced cost of the cut
edges from those grown pairs to 0 labelled blossoms of unmarked trees are
kept in FibA as well. Note also that we will not perform any dual variable or
reduced cost update for the cut edges of those pairs at the end of a stage. The

CHAPTER 3. MULTIPLE AUGMENTATION ALGORITHM 30

The Multiple Augmentation Algorithm :
while PF 7̂ 0 do
begin

5 ^ 0 ;
Scan(A:),VA: € PF;
while (1) do
begin

<- FindminO;
if (6 = €a)

if rooti > 0 Grow(i, j);
else break;

if (6 = €b)
begin

if {i and j belong to the same tree) Shrink(t, j);
else Mark(t,y);

end
if (€ = (c) Expand(t);

end
Update(fc); € PF : rootk > 0
Full_Update();
Multiple_augment(PZ/);

end
Recover(MF);

stage will continue until there is a grow from a marked tree to an unmarked
tree in PF; that is until the first time two augmenting paths intersect. We
detect this case easily, since the root of a pair to be grown from a marked tree
has a negative value in its root field.

Our Scan operation differs from that of Ball L· Derigs in allowing to scan
the edges between marked trees and © labelled blossoms on unmarked trees.
When a 0 labelled blossom i is grown to a blossom j on a marked tree with its
mate, heap entry for i is deleted from Fib A. However, we do need the reduced
costs of edges between marked trees and unmarked trees in PF be kept in
FibA. For this reason it is necessary that we scan i to put the relevant edge
with minimum reduced cost to FibA. Note that the same blossom will not be
scanned again during a stage.

In the Mark operation we only mark the trees where the augmenting path
is found. Those trees are not moved to MF. The pair of blossoms causing

CHAPTER 3. MULTIPLE AUGMENTATION ALGORITHM 31

Scan(i)
begin

if (/6,· = ©) then
for V(ib,i) G A (i): b{k) = i do
begin

if (/i»6(i) = 0) or (roo<(,(j) marked) then
FibA f̂ ĵ) m\n{FibAbQ),Ckj + wjt + Wj + «};

if (Jbĥ j) = ©) and (b(j) i) and {rootf,(j) unmarked) then
FibBk(j) ^ min{Ft65fc(j), 0.5(citj - (e - d{,(_,·)) + + tn_,) + c};

if (Ckj + Wk < Vj - (f - ¿6(p>)) + «̂ p>) then
Vj <- Ckj·,
Vi k;

end
else
if (/6, = 0) and (rooti unmarked) then

FibCi Vi + €]
if (rooti marked) then
for V(A:,y) G A (i): b(k) = i do
begin

if (Ihu) = ©) and (rooti, ĵ ̂ unmarked) then
FibAi m\n{FibAi,Ckj - (e - ¿6(i)) + + wj + e};

if (ckj + Wj < V k - (e - d^p^^) + n(pfc)) then
Vk *- Ckj;
Pk

end
end /* Scan */

the augmentation is put into the pair list PL. We said that when a tree is
marked, current minimum reduced costs of the edges between blossoms on the
marked tree and 0 labelled blossoms of unmarked trees in PF are inserted to
FibA. Reason for this is detecting an intersection of augmenting paths. This
is the case when minimum comes from an edge between a marked tree and a
0 labelled blossom on an unmarked tree. In order to do that without scanning
the blossoms on marked trees, we extend Lawler’s idea for keeping reduced
costs of edges between 0 labelled blossoms and 0 /0 labelled blossoms in an
array, say v. In our algorithm, we additionally keep the minimum reduced
cost of edges between two 0 labelled blossoms in v array. Hence, we use the
at hand information in v array, which is obtained through scanning of new
0 labelled blossoms in PF and avoid rescanning blossoms in marked trees
during a stage. Reason for that is detecting an intersection of augmenting

CHAPTER 3. MULTIPLE AUGMENTATION ALGORITHM 32

paths. This is the case when minimum comes from an edge between a marked
tree and a © labelled blossom on an unmarked tree. At any time during a
stage, if Cij is the reduced cost of edge (i ,j) between two © labelled blossoms
6®,· and b^j at the beginning of the stage, updated reduced cost c,j is equal
to Cij — (c — — (c — d b ^ j) + Wi + W j . Hence, for q G Real(k®) and a ©

labelled blossom 6(p,)®, c,p, is u, - (e - djt®) - (e - <Î6(p,)®) + u>, + where
(q , P q) is the edge with minimum reduced cost value from g to a © labelled
blossom because v, «issumes the value of c,p, at the beginning of the stage.
With a similar argument, updated reduced cost of an edge (q , P q) , between a
0 labelled blossom and a ® labelled blossom 6(p,)® equals to u, + (c —
dfce) — (e — dj,(p̂)®) + Wq + Wp̂ . Below, T,· denotes the alternating tree rooted at
blossom i. Even though updating dual variables of blossoms on marked trees
and the reduced cost of their cut edges may be delayed to the end of the stage,
we find it convenient to update them while marking.

Mark(i, j)
begin

s ··— root,·;
t <— rootj;
roots *----s;
roott <----1‘,
P L ^ P L + [ijy,
for VA: G T, U Tt do
begin

if (Ibk = ®) then
FibAk <- min{t;, - (e - djt) - (f - db(pq)) + Wq + Wp̂ + e : q e Real(k)};

else
if (/6jt = 0) then

FibAk <- min{v, + (f - dk) - {(- d6(p,)) + «’? + «̂ p, + f : 9 € Real(k)};
end
Update(fc) VA: G T« U Tt;

end /* Mark */

At the end of a stage, dual variables of blossoms on unmarked trees and
the reduced costs of their cut edges are updated. Note that for edges between
marked and unmarked trees reduced costs are partially updated in Mark. Now
that all the augmenting paths found throughout the stage are stored via the
pair list PL, augmentation on the marked trees can be done. Multiple.augment

CHAPTER 3. MULTIPLE AUGMENTATION ALGORITHM 33

operation swaps the matched and unmatched edges on augmenting paths and
moves all of the marked trees to M E at once. Obviously, efficiency of the
algorithm increases as the number of trees marked per stage gets larger.

Multiple_augment(PL)
begin

Augment(iJ) , V [t,j] € PL]
end /* Multiple-augment */

The complexity of the algorithm is O(n^) when implemented as described
above. There are at most n/2 stages (n/2 is achieved if only a single augmenting
path is found in every stage). At each stage an edge is scanned only either when
blossom of one of its end nodes is labelled 0 or when grown to a marked tree
with 0 label. Since such blossoms remain in P F until the end of stage, scanning
of an edge occurs at most two times in a stage. Dual variable updates and all
other operations including marking are done at most in 0{n) time. Observe
that reduced cost updates of edges are performed at the end of a stage, except
for in Mark. Partial update on reduced costs for edges that have one end in
marked trees are performed while marking, but there is no second update for
those at the end of the stage. Hence overall reduced cost update in a stage
takes 0(m). Since any of the 0{n) operations can be called at most 0{n) times,
each stage takes 0{n^). For 0(nrn log n) complexity we utilize splittable heaps.

Although, update after expand can be done in 0(log n), this time scanning of
each edge takes O(\ogn) time rather than 0(1). With a little more care in the
implementation of the blossoms a stage can be done in 0(m logn). Hence, we
achieve an 0 (nm log n) complexity for the algorithm.

Chapter 4

SINGLE STAGE
ALGORITHM

Here we present a single stage primal-dual algorithm [2] for the minimum cost
perfect matching problem. That is, contrary to other approaches we do not
stop a stage to initialize shortest paths until the algorithm finds the optimal
solution. By initialization of shortest paths we mean to scan all of the blossoms
in P F and building up the three Fibonacci Heaps that will be used throughout
a stage. Dual feasibility is achieved by re-scanning some nodes, only when
the need arises. Information on the need for rescanning is kept in one addi
tional array. As a result, time consuming shortest path initializations at the
beginning of each stage is totally eliminated. Elimination of initialization pro
cess at an expense of re-scanning some blossoms throughout the algorithm has
experimentally proved to be very effective.

The single stage algorithms performs all operations in one stage. Here,
we totally eliminate the initialization of shortest paths, that is scanning of
blossoms in PF at the beginning of stages. Instead, we only scan necessary
blossoms in Pivot operation. In the following we will describe the reasons for
re-scanning when initialization of shortest paths is eliminated, and show the
possibility of maintaining dual feasibility without initialization. Then we will

34

CHAPTER 4. SINGLE STAGE ALGORITHM 35

The Single Stage Primal-Dual Algorithm ;
Scan(ifc),VA: € PF;
while PF 7̂ 0 do
begin

♦- FindminO;
if (!Pivot(f, 7)) continue;
if (e = e^) Grow(t, j);
if (t = €b)
begin

if (t and j belong to the same tree) Shrink(t, j);
else Augment_and_Update(t,j);

end
if (6 = ec) Expand(t);

end
Update(fc); 6 PF
Full_Update();
Recover(MF);

present an efficient method to allow necessary re-scanning and heap correction.

Recall that in the previous algorithms we arranged the Fibonacci Heaps as
follows: Minimum reduced cost of edges between M E and PF were kept in
FibA, half of the minimum reduced cost of edges between © labelled blossoms
in PF were in FibB, and finally dual variables of the 0 labelled non-trivial
blossoms in PF were stored in FibC. This was true since when starting a new
stage after finding an augmenting path, the heaps were re-built from scratch
each time. However, since initialization is not the case in this algorithm, FibA
and FibB may store some irrelevant information after two trees on which an
augmented path lies are moved from PF to MF. This is encountered specifi
cally in two ways:

(a) Some nodes of FibA may keep irrelevant reduced cost; i.e. reduced cost
of an edge whose both ends belong to MF.

(b) One end of an edge that was once scanned and put into FibB may no
longer hold a © label; i.e. the edge has one end in P F , the other in M F.

In figure 4.1 node b{j) is moved to M F after an augmentation. Case (a) refers

CHAPTER 4. SINGLE STAGE ALGORITHM 36

to the heap key for edge FibAt,(i), whereas case (b) refers to the heap
key for edge (k ,j) , FibBf,(̂ k). We overcome these difficulties by re-scanning
blossoms b{i) and b{k) in order to correct the key of the relevant heap node.
An important point to mention here is that these blossoms are scanned only if
their keys in the heaps are found to be minimum by Findmin.

Figure 4.1: Heap Elements after an Augmentation

Lem m a 4.1 Let FibAi^i) be the minimum key of Fib A and j the other end
of edge (i,j) associated with that key, where = 0, /¿¿.(j) = ©. If j was
moved to M F at least once after the scanning of edge (i,j) , by rescanning b{i),
FibAb(i) can be corrected.

Proof: Let b̂ be the blossom of the real node j when it is moved to PF before
scanning of edge (i,j) and let c,j be the reduced cost at that time. If j were
to remain in PF, for some e, updated reduced cost Cij would be Cij — (e — df,j).
But if j is moved before, say at e < e, then C{j — (e — ¿¡j) < c,j — {e — dt,j).
Even if j is later on moved to PF with 0 or 0 label, FibAb(i) would be less
than or equal to its correct value. Scanning operation supports the required
correction.

FibAb(i) min{FibAb(i), cu - (e - dtp)) + Wi -f to/ + c};
where b{l) is a 0 labelled blossom.

CHAPTER 4. SINGLE STAGE ALGORITHM 37

L em m a 4.2 Let FibBk(k) be the minimum key of FibB and j the other end of
edge (k ,j) associated with that key, where lbf,̂ k) = ^h(j) — ®· j moved to
M F at least once after the scanning of edge {k ,j), by rescanning b(k), FibBf,(k)
can be corrected.

Proof: Let IP and 6* be the blossoms real nodes j and k were in when they
were moved to PF before the scanning of edge {j, k). Similarly, if j were to
remain in PF, for some e updated reduced cost Ckj would be Ckj — (c — —
(e — df,j). However if j is moved to M F by augmentation before, say at e < e,

then Ckj - (c - db(̂ k)) - (f - db(j)) < Ckj - (c - dfc(A:)) - (c’ - db(j)). Since the
decrease in the reduced cost of edge {k ,j) will not be lower than in the case
when both ends having © label in PF, FibB\,(k) is less than or equal to its
correct value. The scanning operation we propose allows us to accommodate
reductions necessitated by both end blossoms of an edge. Correction will be
made in the following way:

FibBb(k) min{FibBb(k), 0.5(cfc/ - (e- db(k)) - (e- d6(/)) + Wk + w{) + c}
where b{l) is a © labelled blossom.

L em m a 4.3 In both cases, total number of necessary rescanning during the
algorithm is not more than n/2 for a blossom.

Proof: In either of the heaps correction of a key for blossom k becomes neces
sary only when nbk is moved to the M F by an augmentation. Since there are
n /2 augmentations, the result follows.

Now that we showed the heap elements can be corrected with some mod
ification in Scan operation, it remains to describe how to decide the need for
re-scanning. Now it is clear that when end points of an edge changes their
places between forests, we need to update associated values in heaps. One
naive way of doing this is checking nb's of other ends of edges that emanate
from blossoms being moved from PF to M F. So, we could know whether nb
of a heap entry is also moved or not. If nb for a blossom is no longer in PF,
then we should re-scan that blossom to correct its key value in the respective

CHAPTER 4. SINGLE STAGE ALGORITHM 38

Scan(i)
begin

if (/6,· = 0) then for y(k ,j) € A(t) :bk = i do
begin

if {Ibf,· = ©) then
FibAi min{FibAi,Ckj - (e - dj(_,)) + Wfc + wj + f};

if (ckj + Wj < vjt - (c - dfc(pt)) + «̂ 6(p*)) th en
Vk ^ Ckj',
Pk *- j;
date_nb[fc]<- f;

end
else if (Ibi = ©) then for V(fc, j) e A(t) : b{k) = » do
begin

if (/i»6(j) = 0) then
FibAk(j) <- min{FibAf,(j),Ckj - (e - d.) + f};

if {lb (̂j) = 0) and {h{j) ^ i) then
FibBf,(j) <- min{FibBt,(^j),0.5(ckj - (e - ¿60)) - (f - ¿t)) + f};

if (cA:j +Wk< Vj - ((- ¿6(p>)) + n(pj)) then
Vj Cfcj·;
Pi ^ k;
datejib[i]<— c;

end
else if (/6,· = 0) then

FibCj <- yi + e;
end /* Scan */

heap. However by doing that we would be performing a search on edges which
we were actually avoiding. In terms of computation cost of the extra work we
are to do, should be less than our gains.

For this purpose, we developed a concept of dating. Date of an operation
is the most recent c at that time. Note once more that heap key for node
i is erroneous if 6(n6,·) is moved to M F at lecist one time. Now assume that
Findmin outputs edge (¿, n6,·) with minimum key from either FibA or FibB. To
simplify notation let j be ri6,. If it is from FibA, then at the time of scanning
edge { i , j) was 0 and lbb(j) was ©. Or if it is from FibB, then at the time
of scanning edge { i , j) both of lbb{i) and lbb(j) were ®. Within the curse of the
algorithm b{j) may be moved to M F at least once. The question is how to
conclude that move to M F has been the case. At the time Findmin outputs
edge (i , j) , if /i>6(j) is not 0 , the conclusion is immediate. However after staying

CHAPTER 4. SINGLE STAGE ALGORITHM 39

some time \n M F b(j) may assume © label again. In order to overcome the
difficulty in detecting whether the heap key is correct or not we use the dating
concept and utilize an 0{n) array. This array is called as date.nb. In date_n6[i],
we keep the date at the time when edge (t, j) is scanned. If b{j) is is moved to
M F and comes back to PF with a © label after putting the relevant key to a
heap for edge then di(,·) should be larger that date.nh[\] unless e remains
constant in the intermediate iterations. But in the latter case, key value for
edge (i , j) would be the same, thus correct, even with the change of
Hence dating becomes an efficient way of detecting the need for rescanning a
blossom. All these are done in pivot operation.

Pivot((, q)
begin

if (e = €c) return 1;
if ({¡bb{nb̂) 7̂ +) or (date_nb[?] < d6(n6,)))

scan(6,);
return 0;

end /* Pivot */

A final point is incorporating the blossoms that are moved to M F after
an expand operation into the new algorithm. Recall that Lawler’s idea was to
keep the reduced cost of edges between 0 /0 labelled and © labelled blossoms
in an 0{n) V array with indices being the real nodes of 0/© labelled blossoms.
As it has been in the case of heap keys, entries of v array may contain irrelevant
information since the other end of the edge for which the reduced cost is stored
in V may have been removed from PF at least once. However this difficulty
can also be overcome with the dating concept. Furthermore one can utilize the
same date.nb array for this purpose, since indices of date.nb are the real nodes.
All one needs to do is to update date.nb\i] in Scan if pi is modified.

When an augmenting path is detected, Augment-and^Update is called. The
path is immediately augmented and minimum reduced cost edges between ©
labelled blossoms and blossoms on the trees Ti and I}, where the path is
founded are put into FibA as we did in the multiple augmentation algorithm.
Note that some of the newly inserted heap elements may be erroneous due to
un-updated v array. We prefer to enter them wrong and correct them only if

CHAPTER 4. SINGLE STAGE ALGORITHM 40

Augment_and_Update(j, j)
for VA: e T, U Tj do
begin

if (̂ Ibk = ©) then
FibAk *- min{v, - ((- dk) - {(- d5(p,)) + 1», + tOp, + f : 9 € Real{k)};

else
if (Ibk = 0) then

FibAk <- min{v, + (c - dk) - (e - dft(p,)) + tr, + Wp̂ + e : 9 € Real(k)};
end
Update(Ar) Vfcer. UTj·;
Augment(»,j);

end /* Augment_and_Update */

they appear as minimizing elements.

Now, we will show that the single stage algorithm has an O(n^) complex
ity. Each of the grow and shrink operations between augmentations is called
0{n) times and can be implemented in 0{n) [18]. An edge is scanned when
blossom of one end node is moved to P F with a © label, and to M F after an
augmentation. It may also be re-scanned at most once between two augmen
tations. Work for scanning edges is still 0{m) complexity per stage. As in the
previous algorithms, each of the 0 (n) operations can at most be called 0{n)
times in a stage. With n /2 augmentations throughout the algorithm the com
plexity is O(n^). Utiliziation of Splittable Heaps reduces the work for a stage
to O(mlogn), thereby leads to an 0 (nm log n) complexity for the algorithm.

Chapter 5

COMPUTATIONAL STUDIES

Throughout the study we have aimed at reducing the total number of time
consuming scanning and updating operations. Both of the algorithms we have
presented carried out this motivation and in the preceding chapters we have
outlined how the number of necessary computations were cut down. In this
chapter we will summarize the results of our computational experiences with
the proposed algorithms for the minimum cost perfect matching problem.

In order to compare the efficiency of our algorithms with the other primal-
dual algorithms in the literature, we have coded forest versions of the O(n^)
single augmentation algorithm of [3] (SA), Edmonds’ original O(n^m) blos
som [9] (E), the multiple augmentation algorithm [1] (MA) and the single
stage [2] (SS) algorithms in C language. Three Fibonacci Heaps are used to
store respective minimums. Shrinking and expanding blossoms are done explic
itly with dynamic data structures. All of the algorithms use common Grow,
Shrink, Expand and Recover functions. We have not included a greedy ini
tialization procedure in any of the algorithms. The programs are complied
with Gnu C compiler with -02 option and run on a SPARC Station 2 under
SunOS 4.1.3. Random input graphs are generated by the code random.c under
pub/netflow/generators/ matching directory at dimacs.rutgers.edu. The algo
rithms are tested on 20 random graphs generated for several node and edge
configurations; average of their CPU usage and of number of basic operation

41

CHAPTER 5. COMPUTATIONAL STUDIES 42

calls are noted.

We present results for three basic operations for which number of calls
vary considerably from algorithm to algorithm. These are Scan, Update and
Findmin operations. Here we will present our results in two parts. In the first
part, experiments run for random graphs of varying node size with fixed edge
density are outlined. In the second part, we will mention the results for graphs
of varying edge density with fixed node size. After presenting the savings in
the number of these operations by our algorithms, we will note the consequent
speed-up in the solution times.

In table 5.1 a comparison of number of the Scan operations the algorithms
performed on random graphs with node size varying from 100 to 1000 and with
20% edge density is presented. The number of Scan operation calls are given
in log-log scale in figure 5.1. Similarly, table 5.2 and figure 5.2 are for Update
operation, whereas table 5.3 and figure 5.3 are for Findmin operation. As the
number of nodes get larger, we observe a drastic decrease in the number of
Scan and Update calls for both of the algorithms posed. Note that the savings
are exponential in the number of nodes. In figures 5.1 and 5.2 our algorithms
give flatter functions than the ones compared with. There is a slight increase
in the number of Findmin calls which is due to erroneous heap elements. In
M A augmentations per stage is more in larger graphs, hence increased savings
in the number of these operations is achieved. This is easily seen in figure 5.6.

These figures provide a meaningful basis for healthy comparison of algorith
mic efficiency, since they are independent of hardware, compilation and data
structures used in the codes. Computational results are even more encourag
ing for larger graphs. Table 5.4 shows average run times of the algorithms
versus number of nodes for random graphs with 20% edge density. We show
CPU times required by the algorithms in the experiments graphically both in
normal and in log-log scale with figures 5.4 and 5.5 respectively.

CHAPTER 5. COMPUTATIONAL STUDIES 43

o f
nodes

of SCAN Operations
E SA MA SS 1 Б/МА

SCAN Ratio
SA/MA E/SS SA/S8 MA/SS 1

100 8024 3283 1291 882 6.21 2.54 9.82 4.02 1.58
200 33950 12696 3438 2141 9.87 3.69 15.85 6.59 1.78
300 72395 27924 5902 3226 12.26 4.73 22.44 9.63 2.03
400 130419 48896 8850 4713 14.73 5.52 27.67 11.58 2.09
500 213570 76696 12399 6387 17.22 6.18 33.44 13.37 2.16
600 287866 108970 14549 7335 19.78 7.49 39.25 16.40 2.18
700 388063 147446 17252 8707 22.49 8.54 44.56 18.96 2.22
800 496813 191354 19933 10016 24.92 9.60 49.60 21.37 2.23
900 651927 242900 22848 11698 28.53 10.63 55.72 23.24 2.19
1000 800464 300337 25210 13318 31.75 11.91 60.10 24.98 2.09

Table 5.1: Comparison of SCAN operation by algorithms on random graphs
with varying node size, (20% edge density)

At this point we give similar comparative tables 5.5, 5.6, 5.7, 5.8 for the
same operations but performed on random graphs with varying edge density
and 500 nodes. Number of calls of the operations under varying edge density
are not as sensitive as under varying number of nodes. However, we observe
that the multiple augmentation algorithm improves as the density increases.
This can be explained in the following way: as the number of edges increases
possibility of finding disjoint augmenting paths in a stage gets larger. Per
forming more augmentations in a single stage, improves the efficiency of the
algorithm.

In conclusion, experimental studies show that both the multiple augmenta
tion algorithm and the single stage algorithm successfully reduce the number
of necessary operations. Consequently, saving in the time consuming opera
tions lead our algorithms to be several times faster than the other algorithms
compared.

CHAPTER 5. COMPUTATIONAL STUDIES 44

Figure 5.1: Number of SCAN Operations versus Number of Nodes

o f
nodes

of UPDATE Operations
E SA MA SS 1 E/MA

UPDATE Ratio
SA/MA E/SS SA/SS MA/SS 1

100 8024 3276 979 352 8.20 3.34 22.80 9.31 2.78
200 33950 12680 2710 819 12.52 4.68 41.57 15.48 3.31
300 72395 27894 4783 1214 15.13 5.83 59.63 22.98 3.94
400 130419 48833 7238 1768 18.02 6.74 73.82 27.62 4.09
500 213570 76604 10188 2399 20.96 7.52 89.07 31.93 4.24
600 287866 108853 11960 2732 24.07 9.10 105.44 39.84 4.38
700 388063 147342 14268 3240 27.20 10.33 118.84 45.47 4.40
800 496813 191254 16530 3675 30.05 11.57 135.26 52.04 4.49
900 651927 242754 18975 4354 34.36 12.79 149.73 55.75 4.36
1000 800464 300126 20793 4981 38.49 14.43 160.70 60.25 4.17

Table 5.2: Comparison of UPDATE operation by algorithms on random graphs
with varying node size, (20% density)

CHAPTER 5. COMPUTATIONAL STUDIES 45

Figure 5.2: Number of UPDATE Operations versus Number of Nodes

o f
nodes

of FINDMIN Operation
E SA MA SS 1 Б/МА

FINDMIN Ratio
SA/MA E/SS SA/SS MA/SS 1

100 180 179 214 417 0.84 0.84 0.43 0.43 0.51
200 417 415 466 1024 0.89 0.89 0.41 0.41 0.45
300 608 606 689 1527 0.88 0.88 0.40 0.40 0.45
400 895 896 994 2253 0.90 0.90 0.39 0.40 0.44
500 1203 1202 1314 3042 0.91 0.91 0.39 0.39 0.43
600 1385 1373 1517 3510 0.91 0.90 0.39 0.39 0.43
700 1639 1631 1774 4173 0.92 0.92 0.39 0.39 0.42
800 1865 1845 2006 4849 0.93 0.92 0.38 0.38 0.41
900 2225 2187 2380 5671 0.93 0.92 0.39 0.38 0.42
1000 2505 2486 2693 6429 0.93 0.92 0.39 0.38 0.42

Table 5.3: Comparison of FINDMIN operation by algorithms on random graphs
with varying node size, (20% density)

CHAPTER 5. COMPUTATIONAL STUDIES 46

Figure 5.3: Number of FINDMIN Operations versus Number of Nodes

o f
nodes E

CPU Time (sec.)
SA MA SS 1 E/MA

CPU Time Ratio
SA/MA E/SS SA/SS MA/SS 1

100 2.03 0.96 0.35 0.21 5.78 2.73 9.66 4.47 1.63
200 16.80 7.99 2.31 1.58 7.26 3.45 10.63 5.03 1.46
300 58.24 28.99 7.44 4.31 7.82 3.89 13.51 6.71 1.72
400 164.29 79.90 20.22 12.96 8.12 3.95 12.67 6.16 1.56
500 363.33 171.65 37.10 23.52 9.79 4.62 15.44 7.29 1.58
600 679.73 326.32 64.22 41.17 10.58 5.08 16.51 7.92 1.56
700 1250.53 619.93 144.52 94.49 8.65 4.28 12.75 5.93 1.53
800 2055.48 1022.98 240.08 167.17 8.56 4.26 12.30 6.11 1.43
900 3496.76 1762.03 472.84 346.85 7.39 3.72 10.08 5.09 1.36
1000 5378.31 2697.57 840.06 619.26 6.40 3.21 8.69 4.38 1.34

Table 5.4: Comparison of CPU times required by the algorithms on random
graphs with varying node size, (20% density)

CHAPTER 5. COMPUTATIONAL STUDIES 47

I S lL J m t > e r o f I s J o d e s

Figure 5.4: Comparison of CPU times

s*

Figure 5.5: Comparison of CPU times (log-log scale)

CHAPTER 5. COMPUTATIONAL STUDIES 48

o f N o d » »

Figure 5.6: Augmentations per Stage versus Ratio of SCAN and UPDATE
Operations performed by SA to by MA

edge
density

^ of SCAN Operation
E SA MA SS E/MA

FINDMIN Ratio
SA/MA E/SS SA/SS MA/SS

10 207154 76741 12120 5418 17.09 6.33 38.23 14.16 2.24
20 213570 76696 12399 6387 17.22 6.18 33.44 13.37 2.16
40 194313 75569 10356 5331 18.76 7.30 36.45 14.17 1.94
80 172109 74277 8016 5411 21.47 13.73 31.81 13.73 1.48

Table 5.5: Comparison of the number of UPDATE operations performed by
the algorithms on random graphs with varying edge density, (500 nodes)

edge ^ of UPDATE Operation UPDATE Ratio
density E SA MA SS E/MA SA/MA E/SS SA/SS MA/SS

10 207154 76672 10048 2272 20.62 7.63 91.18 76.30 4.42
20 213570 76604 10188 2399 20.96 7.52 89.07 31.93 4.24
40 194313 75475 8303 2215 23.40 9.09 87.72 34.07 3.75
80 172109 74223 6176 1958 27.87 12.02 87.90 37.91 3.15

Table 5.6: Comparison of the number of UPDATE operations performed by
the algorithms on random graphs with varying edge density, (500 nodes)

CHAPTER 5. COMPUTATIONAL STUDIES 49

edge # of FINDM IN Operation FINDMIN Ratio
density E SA MA SS E/MA SA/MA E/SS SA/SS MA/SS

10 1148 1142 1245 2286 0.92 0.92 0.50 0.50 0.54
20 1203 1202 1314 3042 0.91 0.91 0.39 0.39 0.43
40 1100 1111 1233 2267 0.89 0.90 0.48 0.49 0.54
80 982 989 1104 2080 0.89 0.89 0.47 0.47 0.53

Table 5.7: Comparison of the number of FINDMIN operations performed by
the algorithms on random graphs with varying edge density, (500 nodes)

edge CPU Time (sec.·) CPU Time Ratio
density E SA MA SS E/MA SA/MA E/SS SA/SS MA/SS

10 117.70 53.42 13.49 8.76 8.72 3.96 13.43 6.09 1.54
20 363.33 171.65 37.10 23.52 9.79 4.62 15.44 7.29 1.58
40 377.58 185.82 39.11 28.76 9.68 4.73 13.11 6.46 1.36
80 619.18 351.00 63.95 50.17 9.67 5.48 12.33 7.02 1.27

Table 5.8: Comparison of CPU times required by the algorithms on random
graphs with varying edge density, (500 nodes)

Chapter 6

CONCLUSION

In this thesis we have proposed two efficient primal-dual algorithms for the
minimum cost perfect matching problem. In both of the algorithms we al
low growing of many alternating trees simultaneously. State-of-the-art data
structures such as Fibonacci Heaps are utilized for keeping ordered sets in the
implementation of the algorithms.

In the multiple augmentation algorithm when an augmenting path is found,
we mark the roots of trees involved and continue searching disjoint augmenting
paths in a stage until the first time any two of those paths intersect. Actual
augmentation on all of the marked trees is realized simultaneously at the end
of the stage. Since an edge is scanned at most two times per stage and dual
variable/reduced cost updates are delayed further than the first detection of
an augmenting path, we achieve considerable reductions in the total number of
these operations. Naturally efficiency of the algorithm increases eis the number
of augmenting paths per stage gets larger.

The single stage algorithm is a result of the study to delay the scanning and
updating operations even after the first intersection of the augmenting paths.
Once the heaps are built at the beginning of the algorithm they are kept until
the optimal solution is found. In other words, they are not re-constructed
throughout the course of the algorithm. After an augmentation blossoms of the

50

CHAPTERS. CONCLUSION 51

trees on which the augmenting path is found are scanned to put the relevant
reduced cost information of the cut edges in the heaps. Even though not
initializing the heaps after an augmentation leads to some erroneous keys in
the heaps, we showed that they can be corrected to maintain dual feasibility.
Furthermore, we have given an efficient way of correcting the heaps elements,
using a concept of dating the elements and re-scanning.

Both of the algorithms we have posed in the thesis have the same worst
case complexity with the other primal-dual algorithms in the literature as im
plemented in the same way. Using simple arrays, we get an 0{n^) complexity.
Utilization of splittable heaps reduces the bound to 0(nm log n).

From a practical point of view the algorithms turned out to be very effi
cient. Dramatic reductions in the total number of time consuming scanning
and updating operations, have lead to very fast solution times on randomly
generated graphs when compared to the other algorithms.

Even though computational studies show the effectiveness of our algorithms,
more can be done in terms of decreasing the cpu time. Better labelling tech
niques existing in the literature for keeping the blossoms and use of greedy
initialization before starting the algorithm could also reduce the computation
time.

We have said that the single stage algorithm has come up as an improvement
of the multiple augmentation algorithm in delaying operations and performing
aggregate updates. Yet we conjecture that one can do even better than the
single stage algorithm. Recall that after an augmentation we put minimum
reduced cost edges between blossoms on the trees that are moved to M F and
0 labelled blossoms in FihA\ and keep on with the stage. This was to reduce
the Scan and Update operations. However, towards the end of the algorithms
alternating trees as well as the augmenting paths get very large. Note that in
the single stage algorithm even though number of Scan and Update operations
is less than the same operations in the multiple augmentation algorithm, we
face an increase in the number of Findmin operation. This is due to the
erroneous heap keys. Possibility of encountering erroneous heap keys is larger

CHAPTER 6. CONCLUSION 52

when alternating trees are bigger. Stopping the stage at some critical point and
re-constructing heaps from scratch will lead to less erroneous heap keys, thus
less Findmin calls, at an expense of increased scanning. While for dense graphs
number of Scan operation is more critical, for sparse graphs increased Findmin
operation may become an important factor affecting CPU time. Hence, there
is a degree of freedom in the number of stages depending upon the edge density
of the graph.

Note also that both multiple augmentation and dating/re-scanning (heap
correcting) may be generalized to b—matching problems and specialized to lin
ear assignment problem. Dating/re-scanning can also be used in other primal-
dual algorithms to eliminate the initialization phase after every dual variable
update.

Multiple augmentation can efficiently be parallelized in a synchronous way,
that is each of the alternating trees may be grown by different CPU and a set of
disjoint augmenting paths found by several CPU’s may then be augmented. On
the other hand, single stage algorithm can be developed into an asynchronous
parallel algorithm, where CPU’s do not have to wait idle until the intersection
of paths. This would lead to more efficient parallel algorithm for the minimum
cost perfect matching problem on non-bipartite graphs.

Finally as mentioned earlier employment of the proposed algorithms as
subroutines in the solution methods for The Postman Problem, Planar Mul
ticommodity Flow Problem, Traveling Salesman Problem, Vehicle Scheduling
Problem, Graph Partitioning Problem and Set Partitioning Problem can speed
them up significantly.

Bibliography

[1] M. Akgül and A. Atamtiirk, A Multiple Augmentation Algorithm for the
Minimum Cost Perfect Matching Problem^ Technical Report lEOR 9308,
Bilkent University, Ankara.

[2] A. Atamtiirk and M. Akgiil, A Single Stage Algorithm for the Minimum
Cost Perfect Matching Problem^ Technical Report lEOR 9309, Bilkent
University, Ankara.

[3] M.O. Ball and U. Derigs, An analysis of alternate strategies for imple
menting matching algorithms, Networks 13 (1983) 517-549.

[4] M.O. Ball, L.D. Bodin and R. Dial, A matching based heuristic for schedul
ing mass transit crews and vehicles, Transportation Science 17 (1983) 4-31.

[5] C. Berge, Two Theorems in Graph Theory, Proc. Natl. Acad. Sei. USA,
43, (1957) 842-844.

[6] T.N. Bui, S. Chaudur, F.T. Leighton and M. Sipser, Graph bisection algo
rithms with good average case behavior, Combinatorica 7 (1987) 171-191.

[7] N. Christofides, Worst-Case Analysis of a New Heuristic for the Travelling
Salesman Problem, Report 388, Graduate School of Industrial Adminis
tration, Carnegie-Mellon University (1975).

[8] W.H. Cunningham and A.B. Marsh, A primal algorithm for optimum
matching. Mathematical Programming Study 8 (1978) 50-72.

[9] J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices, J.
Res. Natl. Bur. Standards, 69B (1965) 125-130.

53

BIBLIOGRAPHY 54

[10] J. Edmonds and E.L. Johnson, Matching, Euler Tours and the Chinese
Postman Problem, Mathematical Programming 5, (1973) 88-124.

[11] J. Edmonds and W. Pulleyblank, Facets of 1-matching polyhedra, in Hy
pergraph Seminar, Lecture Notes in Mathematics No. 411 (Springer Ver-
lag, Berlin, (1974) 214-242.

[12] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in im
proved network optimization algorithms, Journal of ACM. 34 (1987),
596-615. Also in Proc. 25’th FOCS (1984) 338-346.

[13] H.N. Gabow, Implementation of algorithms for maximum matching on
non-bipartite graphs, Ph.D. dissertation. Dept, of Computer Science, Stan
ford Univ., Stanford, California (1974).

[14] H.N. Gabow, Data structures for weighted matching and nearest common
ancestors with linking, in Proceedings of the 1st Annual ACM-SIAM Sym
posium on Discrete Algorithms. ACM, New York, (1990) 434-443.

[15] H.N. Gabow, Faster Scaling Algorithms for General Graph-Matching Prob
lems, Journal of ACM 38 (1991) 815-853.

[16] Z. Gain, S. Micali and H. Gabow, An O(EVlogV) algorithm for finding a
maximal weighted matching in general graphs, SIAM J. Comp. 15 (1986)

120-130.

[17] M. Grotschel and 0 . Holland, Solving Matching Problems with Linear
Programming, Mathematical Programming 33 (1985) 243-259.

[18] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, (Holt,
Rinehart and Winston, New York, 1976).

[19] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
(John Wiley L· Sons, Chichester, 1990).

[20] K. Matsumoto, T. Nishizeki and N. Saito, Planar Multicommodity Flows,
Maximum Matchings and Negative Cycles, SIAM J. Computing 15 (1986)

495-510.

BIBLIOGRAPHY 55

[21] G. Nemhauser and G. Weber Optimal set partitioning, matchings and
Lagrangian duality, Naval Res. Legist. Quart. 26 (1979) 553-563.

