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Abstract—We discuss a novel variational principle in quantum mechitics delining maximum cntantrl(,d stales
in terms of quantum fluctuations of observables specilying these states.

There are a few reasons to study ‘maximum entan-
gled states (MES)SpeCIﬁCdliy First of all, 4 number of
important quantum communication and computing
protocols, such as quantum teluportdtuon [1], are based
on the use of MES, Then, if MES of a given-system are
known, all other entanoled (but not maximum entan-
gled) states of this systemcan be-constructed from the
MES by means of ‘stochastic focal transformations
assisted by classical communications (SLOCC) i2,3].
Finally, MES can be described in the succinct and ele-
gant form of d new variational principle [4]-and thereby
illuminate the physical nature of-the phenomenon.

The.main objective-of this note is to discuss the vari-
ational principle for MES {4] and t0 demonstrafe how
this principle can be employed to determine MES in
different physical systems.

It should be stressed that the various definitions of
entanglement are mostly intuitive and contain acciden-
tal together with essential. An example-1s provided by
the definition elaborated by the NSF Workshop on
Quantum Information Science [5]:

{Quantum entanglement is a subtle nonlocil corre-
lation among the parts of a quantum system that has no
classical analog. Thus, entanglement is best character-
ized and guantified as a feature of the system that can-
not be created through Iocal operations that act on the
different parts sepamtely, or by means of classical com-
munication. }

"This definition contains an a priori assumption of
nenlocality that leads to.a.loss of generality. In particu-
lar, it leaves-aside the smgle—pamclc entanglement [6],
as weil as entanglement in the Bose-Einstein conden-
sate of atoms, where the requirement.of nonlocality is
meaningless because. of the strong overlap of wave-
functlo,ns of different atoms [7].

The absence of a classical analog is a coinmon fea-
ture of almost all definitions of entanglement. In the
best way, this is expressed. in the figurative definition,
which is ascribed to Aser Peres (for reference see [8]):

{Entanglement is a ‘trick that quantum magicians
use to produce phenomena that cannot be imitated by
classical magicians.}
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Probably, the characteristic feature of MES
most experts. agree with is their maximal-remot
from what 1§ ca!l,ed ‘classical reality” [4].

Note that this is.a question of remoteness frof
classical reality and not of its violation, describ
Bell’s type of mequahues and Greenbcroer-H"
Zeilinger (GHZ) conditions, which can be manil
by unentangled states {9, 10].

The main difference between the quantum and.
sical levels of understanding of physical sy:
(“physical reality”) is the existence of quantur fi
ations. (uncertainties) that vanish for classical s
The reason for the existence of quantum ﬂl!CIUd
lies in the very heart of quantum mechanics, in:
preting physical observables as operators with spi
algebraic properties (commutation relations)
Thus, the remoteness of a quantum state from clas
reality can be specified by the maximum of the
variance describing the range of quantum fluctua
of all essential measuremems [4].

Consider a physical system § defined in the H
space IHI(S ). Let. {M,} be the set of all essential mea
ments completely specifying the state y of the 3
in H(S). The choice of the essential observ
depends on the physical measurements we are g01
perform over the systém, or on the Hamiltonians, w
are accessible for nianipulations with states W e

The set of essential measurements is usvally as;
ated with the dynamic symmetry- group of the Hi
space 9, 10]. For example, in the case of an N-
system defined in the space

N

H(S) = Wy = @H,,

=1
where [H, is the two-dimensional Hilbert space of s
of' spm L the dynamic symmetry group is

G = SUR)xXSUQR)x ... xSU(2) =



His; the Jocal measurements { M} are given by

ratois oy (@ = 1,2,3)[12] forming arep-
5f infinitesimal generators of thie Lie alge-
12, ). The corresponding dynamic sym-

N N
JTexee’ = []sU2.€) @)

=1 =1

plexification of G (2). Thus, in space (1),
essentid] measurements provided by the

fors Gy (i=1, ... N, x=1,2,3).

ilt of a quantum measurement is provided
1value

o [, )
yariance

_ {(wl'(AM.-).‘N{), 55

Tr(p(AM;)°]

(AM)* = (M, - (MY’

al variance deéscribing the remoteness of a
te¢ in HI(S) from the cldsslcal reality takes

V= zvi(.M-})- 6)

‘our definition 4], the maximum of the

6) corresponds to the averaging in the
I 'of (6) over MES:

- {(‘J’MESK,AM i~)1|\!"MEs>’
Trpaes(AM)’].

M
d purs denote the pure and mixed MES,

quation (7) represents a néw variational prin-
4], which specifies MES as the manifes-
quantum fluctuations at their extreme.

fefinition, MES represent an exact antithesis
_states, which manifest the minimum scale
ictuations and, therefore, are maximally
ssical reality [13, 14].

mition (7) can be expresseéd in a different
portant case when the-enveloping algebra
1Y.SICS
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ure and mixed states, respectively. Here,
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Structare of the three-dimensional matrix (] in the case of
Ihree qubils. Vertices -of the: cube are associated with the
-coelficients. Wi, L, inEq. (1D aN=3.

of the Lie algebra L(M,) of all essential measurements
containg a uniquely defined Casimir operator (scafar),

C =M=

where | is the unit operator iri H(S). Since V(M) 20
always, it follows from.(5) and (6) that the maximum in
(7) is achieved if

Vi (My = 9

This propetty of MES was notlced in [15]. It immedi-

atély fotlows from (5)-(7) and (9) that the maximum
total variance has the form

V., = C. (10)

As an illustrative example of considerable interest, we
examine the system of N qubits. Hereafter, we consider

Cxi, (8

-pure states. The obtained results can be easily general-

ized to-the case of mixed states through the use of the
result from (16] that the mixed states can be treated.as

‘pure states of a certam doublet consisting of the system
and its “mirror-image.”

Denote the base vectors in M in (1) by € = 1),

where [ = 0, 1. Then, an arbltrary pure state in (1) takes
the form

|y = E\I"f (AN 4 ®e, ®.. 8¢ . (n

The coefficients ;. , form a muitidimensional
matrix [Wy] (conccmmg. mu]nd:m_ensronal matrix dand
determinants, see [17]). In the case of N =3 qubits, for
example, {y] is acube, as shown in the figure.

The local measurements, provided in the case of
qubits by the Pauli matrices, have the form

) . + .
G] = (eojeij + H.C.)v
53] o Lt : qr
o = i(e, e ~He.) (12)
G _ ot *
vG; = e(’!eoj € "e 1,
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where j =1, ..., N. Since
V(xj [GU)] = [L

the rhaximum total variance in the system of N qubits
‘takes the valug

\‘/,m‘x('ssz)‘ = 3N. (13)
Forexample, GHZ states of three qubits
. |
|[GHZy) = 7—5(90,00,%- i‘ci,elset-) (14)

obey condition (9) and have \/(0]—143) V(82,30 = 9.
Hence, (14) is MES. At the same time, the simple. sep-

arable state, say €,,eg €, , has the minimum total vari-
ance V,,;,(85,5) = 6 and, hence, belongs to-the class of
coherent states of three qubits.

To stress the [act that the variational principle (7)
defines MES by the extreme of quantum fluctuations,
we consider the so-called W state of three qubits [2)

(15)

1
W2 = Tg(-e(i,ellel;,'+ €1,€p,6y, + ."'-x',_eg-_‘e_(_)al

Definitely; this is not MES because
V(W3) = 8+2/3<Vul(Sy3) = 9.

At the same time, this state manifests quite-a high level
of quantum fluctuations, which strongly ex(.eeds that of

coherent states with V(S ») = 6. Nevertheless, thé W'

state: (15) does not ‘manifest entanglément at all;
because the only entanglement monotorie for three
qubits, which is the 3-tangle [18], has zero value in this
case. [19].

This means that the remoteness of states from clas-
sical reality provided by the total variance (6) cannot be
used as a measure of entanglement.

Before we begin to discuss.the posslb]e choice-of a
universal measure of entanglement, it should bé noted
that condition (9) can alse.be expressed in terms of .the
properties of the matrix’ [‘lp] in (11). Namely, state (11)
obeys condition (9) iff the paralle] slices of the matrix
[w] aie mutually orthogonal and have the same norm
(4,9, 101 N

In the case of two qubits, the parallel slices are pro-
vided by the rows and colurang -of the (2 X 2) matrix
[y]. In the case of three qubits, these are thé parallel
faces of the cube shown in Fig. 1, and so on.

As regards the quantifying entanglement, there have
been numerous attempts to define a proper measure of
entangled states. The main requirements are as follows.

(1) The measure should be zero in the case of unen-
tangled states and achieve the maximum for MES.

2. The measure should be an entanglement. mono-

tone [20], i.e., 4 function which does. not increase under

the set of local transformations.-
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These conditions, together with the definition of
MES and the poselbnhty to construct any entangled
state from MES by means of SLOCC {2, 3], make it

possible to'discuss the measure of entanglement within

the geomemc invariant theory [9]. Concerning geomet-
ric invariant theory, see [21]. Physical applications of
this theory are discussed in [22]. In particular, a new
universal measure of entanglement based on the
notions of geometric invartant theory can be introduced
(4, 91 This i is the length of minimal -vector in complex
orbit of the state y e H(S$):

min [g?q!l (16)

RE C

Here, g denotesa transformation from the complexified
dynamic symimetry group G* in H(S). This measure (16)
obeys the above requirements. In particular, in-the case of
the two-qubit state (state (11) with N = 2), (16) is defined
to be the determinant of [y], which is just the concurrence:
[23]. In the case of three qubits (N = 3.in (11)), measure
(16) gives Cayley’s hyperdeterminant [17)

p(y) =

Dly] = ‘I‘ﬁoo‘l*"fu ‘*.':‘l’(;m Wuo +‘¥’-§w‘|’:126|
+ ng._lw;)q = 2[Wooa( Woor Wiso + VooV o
FWonn Wi )Win + Yoo Yoro Vi1 W10
+ Woor Worr Vi Wioo + WoroWon ¥ i01 Wi )
+4(WoooWon Wiot Wriio + Woor WoroWioo W)

which is the only entanglement monotone of this sys-
tem. It should be noted that (17) coincides with the
sguare root of the 3-tangle [19]. Measure (16) can also
be calculated in the case of four qubits (all. geometric
invariants of four qubits have been calculated recently
[24]).

Although the variational principle (7) has'a general
meaning, our consideration so far has applied to sys-
tems of qubits. Consider now a more complicated case
of qutrit systems defined in the Hilbert space

(17

H#;N = ® H3>

I:;" ]

(18}

where H, is the: [hrec-d_iménsional state spanned by the
vectors € = {{), where'l = 0, 1, 2. An example is pro-
vided by the spin-1 systems.

For qutrit systems, a single-particle MES is allowed. '
(4, 10]. Choosing the measurements as the infinitesimal -
generators of the SL(2, C) algebra in three dimensions

M, = _l._[(% +e,)e, +He. ]

7

- _ .
1M, = ‘J—i[.-.(eo-ez)e-f—l-l-.c.] (19
-M:, = l;foe;—ez,e;,-
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asily see that the variational principle (7)
in the: form of condition (9) defines the sin-
states

L1 it
—=(eg+te "ey)
2

(20)
. F(Qy + P22
(e e0+e o) tily e o e,
notes the coefficients in
3
s = Y ey @n
I=1

biteary phases of the corresponding com-
fficients ;. In the last state in (20),

2yl + v =

in (21) have a maximum total variance
while the coherent single-quirit state has
tal variance minV, , = 1. Thus, 4 single
finitely many MES with respect to mea-

hysical point of view, the subseript / in
yrespond to-the internal-degrees of free-
e. Asa possible reallzauon the states of
ns with.respect to up and down quarks
oned here [4]. Namely, the quark states
¢oherent, while the quarks in #° are in
eme. of quantum fluctuations, which is
riationdl principle for MES (7), sheds
that a n° meson is much Jéss stable thari

e vadational principle (7) allows the
gle-particle MES if the-number of inter-
eedom ‘exceeds two. It also follows
hat-a singlé qubit is not able to mani-

the two-qutrit system defined in the
nal Hilbert space

52 = Hy @ . (22)
). has the form
2‘!’1.@51, Re,. (23)

e increase in the number of degrees
ity also enlarges the possible chou:e
[10). In the case of qutrits, in-addition
1008e the measurements correspond-
mietry S U/(3) and provided by the
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assumed, sothat!+ ) =0if /=
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eight independent operators out of the nine operators of

the form

B +
€€ —€p Gy

{M} = 4 %(e-,eﬂl + H.c.) L 24)

| P .
2—i(e1e:.+l ""H.C-_)

the eyclic permutations of subscripts are
2. It is clear that mea-

Here,

surements (24) also include-(19),

Using (9), it is a straightforward matter to see that
there are mﬁmte]y many MES of the type of (23) with

respect to (24} in the space (22). An important example

15 provided by the states

l i, e
ly,) = ﬁ(eﬂleoﬁc"o’e,!ei‘:-l-'e m"ev ). (25)
where:
0, =2 g=01,2

These states were introduced in'the context of the quan-~

tum phase of the angular momentum of photons in [25]

and as the states of “blphotons [26). These states were
also discussed in connection with three-state quantum

cryptography [27).

It is easy to construct a basis of MES in the Hilbert.
space (22) bevmmncr with states (25) and wsing. the
local cyclic permutatlon operator [4] of the form

B = ege;, +¢,€; +e5€5. (26)
Acting by (26) on the state of the first party in (25)
once, we get
@n

1 9 iy,
—(e,ep,+e¢ ‘e;€ +e

B

Acting by (26) on the:stdte of the first party once more;
we obtain

o =

€p,€2,)-

iqb, Zigh, .
—={e,,¢, +e ‘e e, +e %1.6:2_)- (28)

Ng =

g = ¢
It is easily-seen that states (27) and (28) obey conditions
(9) and that states (’)5) (27, and (28) are mutually

orthogonal. Thus, they form a basis of MES in space
(22) of two qutrits.

In the case of a two-quirit system, measure (16)
coincides with the det[y] of the (3 X 3) matrix of coef-
ficients in (23).

The Jocal cyclic permutation operator (26) can be

iised to create MES from a certain generic MES in other
cases as well [4]. For example, in the case of qubits,



138

(26) coincides with 6, in (12), while the generic MES
can be chosen in GHZ form,

1 :
752‘(60100-1 te e
In the general case of qudits (d degrees of freedom per
party), lhe local cyclic permutatlon operdtor can be rep-
resented as the (d x d) matrix of the form

(010 0)
| 001 0
c@ - .
060 |1
(100 o

which obeys the condition ‘€7 =1.

In summary, we have andlyzed the new variational
principle (16) in quantaum mechanics defining MES -of
physical systems in tertns of the extreme of quantum
fluctuations of all essential measurements: specifying
‘either the pure or mixed state of the:system. Ina sense,
this princ¢ipleis simikar to the maximum eatropy princi-
ple in statistical mechanics.

It should be stressed that the definition in terms. of
the variational principle has a number of heuristic
advantages. First of all, it defines quantum entangle-
ment as-a physical phenomenon irrespective of infor-
mation processing and other possible applications of
entanglement. This, in turn, makes it possible. to sepa-
rate the essential from accidental and discard the ines-
sential requirements, such -as-the nonlocality, nonsepa-
rability, and violation of classical realism.

This also leads to. an expansion of the notion of

entanglement to the branches of quantum physies that

are not directly. connected with the information’ pro-
¢éssing and quantum c¢omputation. The above consid-
ered example of entangled quark states in n" mesons
should be mentioned here

‘The révelation of the physical nature of maximum
entanglerent provided by the maximum scale of quan-
tum fluctuations of thie corresponding States gives a
clue in the problem of stabilization of entanglement.
Namely, to:make a persistent MES of a given ‘system,
we should first exert influence upon thc system fo
achieve the state with the maximum scale of quantum
fluctuations, Then, we should decrease the energy of
the systemuptoa (Iocal) minimgm. under the condition
of retention of the fluctuation scale. The posslb}e real-
izations of this approach were discussed in [28, 29] for
atomic entanglement.

Finally, the mathématical structure hidden behind
the variational principle for maximum entanglernent
establishes centacts between the notion of entangle-
ment and geometric invariant theory. In particular, it
opens a natural way of classifying entangled states in
terms of the complex orbits of states [3, 9, 24], as well

KLYACHKO, SHUMQVSKY

14. A. Perclomay, Generalized Colerent States arid’

17. 1. M. Gelfand, M. M. Kapranov, and A. V. Zel

as of the quannﬁcatlon of entanglement throngh:
of measure (16).
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