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ABSTRACT

AGE AND GENDER NORMALIZATION IN KINSHIP
VERIFICATION

Oğuzhan Çalıkkasap

M.S. in Computer Engineering

Advisor: Hamdi Dibeklioğlu

September 2021

Kinship verification from facial images using deep learning is an interesting prob-

lem that is unsolved and gains growing attention of the research community.

However, the most recent kinship verification systems suffer from age- and gender-

related facial attributes that cause problems in kinship verification between sub-

jects of different age and gender.

In this study, we propose various methods to reduce the negative effect of the

age- and gender-related facial attributes in kinship verification to achieve a more

robust verification model. The proposed approach utilizes the comprehensive

modeling capabilities of the recent generative adversarial network architectures

to model the age and gender of subjects and reduce their effect in kinship ver-

ification, if not remove entirely. Furthermore, we conduct a thorough analysis

over individual and combined effects of age and gender normalization, performed

in both image and latent space of the generative models. Lastly, we investigate

the impact of additional emphasis on the facial identity information during the

normalization process.

Taking one of the most recent kinship verification models as our baseline,

we show that gender normalization has reduced the verification performance gap

between subject pairs with the same and different gender, up to 6%. Furthermore,

joint normalization of age and gender improves the kinship verification accuracy

up to 5% and 10% on two different in-the-wild kinship datasets. Therefore, this

thesis proposes generic approaches to improve the reliability and robustness of

kinship verification by normalizing the age and gender attributes without making

changes in the core architecture of the employed kinship verification system.
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ÖZET

AKRABALIK DOĞRULAMASINDA YAŞ VE CİNSİYET
NORMALİZASYONU

Oğuzhan Çalıkkasap

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Hamdi Dibeklioğlu

Eylül 2021

Derin öğrenme kullanarak yüz görüntülerinden akrabalık doğrulaması,

çözülmemiş ve araştırma topluluğunun artan dikkatini çeken ilginç bir problemdir.

Bununla birlikte, en yeni akrabalık doğrulama sistemleri, farklı yaş ve cinsiyete

sahip denekler arasında akrabalık doğrulamasında sorunlara neden olan yaş ve

cinsiyete bağlı doğuştan gelen yüz özelliklerinden muzdariptir.

Bu çalışmada, daha sağlam bir doğrulama modeli elde etmek hedefiyle akra-

balık doğrulamasında yaş ve cinsiyete bağlı yüz özelliklerinin olumsuz etk-

isini azaltmak için çeşitli yöntemler öneriyoruz. Önerilen yaklaşım, deneklerin

yaşını ve cinsiyetini modellemek ve tamamen ortadan kaldırmasa da akrabalık

doğrulamasındaki etkilerini azaltmak için güncel üretken çekişmeli ağ mimari-

lerinin kapsamlı modelleme yeteneklerini kullanır. Ayrıca, üretici modellerin hem

imge uzayı hem de öğrenilmiş uzayında gerçekleştirilen yaş ve cinsiyet normaliza-

syonunun bireysel ve birleşik etkileri üzerinde kapsamlı bir analiz yapıyoruz. Son

olarak, normalizasyon sürecinde yüz kimliği bilgilerini daha fazla vurgulamanın

etkisini araştırıyoruz.

En yeni akrabalık doğrulama modellerinden birini temel alarak, cinsiyet nor-

malizasyonunun, benzer ve farklı cinsiyetteki akrabalar arasındaki doğrulama per-

formansı farkını %6’ ya kadar azalttığını gösteriyoruz. Ayrıca, yaş ve cinsiyetin

ortak normalizasyonunun, iki farklı akrabalık veri setinde akrabalık doğrulamasını

%5 ve %10’a kadar arttırdığını gösteriyoruz. Bu nedenle bu tez, kullanılan akra-

balık doğrulama sisteminin çekirdek mimarisinde değişiklik yapmadan yaş ve cin-

siyet özelliklerini normalize ederek akrabalık doğrulamasının güvenilirliğini ve

sağlamlığını geliştirmek için genel yaklaşımlar önermektedir.
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Chapter 1

Introduction

Kinship means that having a blood relationship between humans, which indicates

that a variety of genetic similarities can be observed. Considering the facial at-

tributes, these inheritances might be observed as the similarity between a number

of facial parts such as nose, mouth, etc. These similarities in the appearance of

two different faces constitute clues for kinship analysis that humans perform vi-

sually during their daily lives without even noticing. For instance, when we see

an adult man and a boy sitting next to each other, we can decide whether the boy

is the son of that man based on their physical appearance. Various studies have

been conducted under different contexts to understand the human way of kinship

verification from facial images [1, 2, 3], where subjects are asked to determine

whether the people in a given pair of facial portrait images are kin or not. In

order to perform such an analysis, humans utilize different features, including the

color of eyes, hair, and facial appearance in general [4].

There are different potential application areas for kinship verification includ-

ing but not restricted to organization of large collections of family pictures, re-

semblance recognition of humans, surveillance, social media analysis, or finding

missing family members on the internet. Subsequently, kinship information is

quite valuable from diverse aspects. Although biometric verification methods

like DNA tests provide almost an accuracy of 100 percent, they are more costly,
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time-consuming, and sometimes not applicable. Therefore, automatic kinship

verification from facial images is an interesting area of research which gains in-

creasing popularity.

Figure 1.1: Kinship verification from facial images

The substantial variability across different kin pairs and kinship relations

makes this research topic particularly difficult. As the primary goal of this field’s

study has been to recognize kinship traits in images automatically, deep learning

models showed significant progress in recent years by reaching up to 88 percent

of verification accuracy in the commonly used kinship verification datasets [5].

However, most kinship verification studies point out the imbalanced verification

performance between the same and opposite gender pairs [6, 7, 8, 9], where the

verification of the pairs with the same gender outperforms the verification of pairs

with the distinct gender. Although there is a pretty limited number of comple-

mentary studies on the effect of age in kinship verification [10] due to the lack

of age labels of kinship verification datasets, we hypothesize that the age gap

of the pairs causes a similar artifact in kinship verification. We investigate the

undesirable impact of the age and gender attributes and propose several methods

to eliminate this drawback in kinship verification in a model-agnostic manner.
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1.1 Motivation

The latest research on kinship verification focuses on developing more sophisti-

cated and specialized deep learning model architectures and similarity metrics in

terms of enhancing the kin-related feature extraction quality for a better veri-

fication performance. However, there is a very limited number of work focused

on analyzing the inherent effects of age and gender in kinship verification, which

introduces a number of side-effects especially considering the age gap or gender

dissimilarities between the pairs that are to be verified.

In this study, we focus on analyzing and removing the effect of age- and gender-

related facial attributes in kinship verification. Exploiting the comprehensive

modeling capabilities of the recent generative adversarial networks, we model the

age and gender-specific facial attributes and minimize their effect in kinship veri-

fication in order to obtain a more robust system against these specific attributes.

1.2 Kinship Verification

Studies in kinship analysis can be divided into two main branches that are kinship

verification and kinship identification. Kinship verification aims at determining

whether the people in a given pair of facial portrait images are kin or not. On the

other hand, Kinship identification tries to figure out the exact kinship relation

between two individuals. Since this study is solely focused on kinship verification,

the following chapters will mainly cover the verification-oriented topics and pro-

vide complementary information from the identification domain when necessary.

The pace of study in utilizing deep learning methods in kinship verification

has accelerated since the release of several kinship verification datasets, such as

KinFaceW-I [11], KinFaceW-II [12], TSKinFace [13], Family-101 [14], Cornel-

lKin [15], UB-KinFace [16], and UvA-NEMO [17]. KinFaceW-I and KinFaceW-

II features facial portraits of four kin relationships that are Father-Son (F-S),

Father-Daughter (F-D), Mother-Son (M-S), and Mother-Daughter (M-D), which

3



are collected from unconstrained images. Facial images in KinFaceW-I differ from

KinFaceW-II as they are collected mostly from separate images. In tri-subject

kinship face database TSKinFace, kin pairs are grouped in the child-parents for-

mat, including the both parents and their child as a kin group. Family-101 has

a family structure consisting of 101 different family trees and 607 individuals.

CornellKin consists of 143 pairs of parent-child kin pairs who are mostly the

public figures or celebrities collected from the internet. UB-KinFace contains

children and their parents at various ages, comprised of 600 images of 400 people

having the same kin pairs as in KinFaceW datasets. Lastly, UvA-NEMO is dis-

tinguished from the prior image datasets, involving spontaneous and posed smile

video footage of 400 subjects. Therefore, UvA-NEMO is rather used for kinship

verification as taking the temporal cues into account as well. From among the

datasets mentioned above, KinFaceW-I and KinFaceW-II are more widely used in

image-based kinship analysis, thus we choose to use these datasets in our study.

The path of automatic kinship recognition starts with the work of Fang et al.

[15], in which facial characteristics such as skin color, location and form of face

components, and gradient histograms are used to verify kinship. They report

a kinship verification accuracy of 70.67% on the dataset they introduce that is

CornellKin.

A transfer subspace method for kinship verification is proposed by Xia, Shao,

and Fu [10], aimed at reducing the age gap between the children and parents by

simply using the younger image of the parents as an intermediate distribution

between the young children and old parent pairs. Their method achieves an

accuracy of 60% in kinship verification on the UB-KinFace dataset, which is

released along with their work.

Building upon [10], Shao, Xia, and Fu [16] utilize Gabor filters alongside metric

learning and transfer subspace learning. They enforce the gap between real kin

pairings to a minimum while the distance between non-kin pairs is kept at a

maximum. Reporting on their newly released dataset UB KinFace v2, they show

a verification accuracy of around 69%.
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Yan et al. [18] propose multiple metric learning methodologies such as multiple

distance metrics are learned using different facial descriptors that encode vari-

ous aspects of the face characteristics. Along with the likelihood of kin images

belonging together, the correlation of different characteristics of the same sam-

ple is augmented. Authors validate their method on other verification datasets,

including KinFaceW-I, KinFaceW-II, CornellKin, and UB-KinFace.

Xu and Shang [19] introduce another metric-based verification method for kin-

ship analysis. They concurrently learn multiple sparse bilinear similarity models,

utilizing sparsity-inducing norms that are formed as a joint structure. They en-

hance the gap in terms of the similarity metric between the non-kin pairs while

minimizing it for the kin pairs as they use the interactions and correlations be-

tween the multiview data to generate fused and higher-level information. Authors

report an improved verification performance compared to the prior multimetric-

learning-based methods.

A distance-based hybrid approach is proposed by Mahpod and Keller [20], in

which a multiview combined symmetric and asymmetric distance learning net-

work is trained for kinship verification. In this method, authors formulate kinship

verification as a classification problem where they employ the support vector ma-

chines to solve this classification task. A margin maximization learning technique

is used to train dual discriminative representations for parents and children. The

method is tested on KinFaceW and CornellKinFace databases, showing compa-

rable performance to the earlier state-of-the-art methods.

Several studies have attempted to create strong face representations to obtain

a better verification. Zhou et al. [21] exploits a spatial pyramid learning-based

(SPLE) feature descriptor that combines the local appearance and global spatial

information for a comprehensive representation of the facial attributes and applies

support vector machines on top of that representation for kinship verification.

The results show comparable performance to the human observers on the dataset

collected for this study by the authors.

In their work Guo and Wang [22] suggest adapting the DAISY descriptors
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in kinship verification to better express the essential features while a dynamic

method for stochastically combining family attributes is being developed. They

compare their verification results against [15] and report an improvement using

this baseline.

Zhou et al. [23] propose another feature descriptor for facial representation

that is so-called the Gabor-based Gradient Orientation Pyramid (GGOP). Au-

thors apply a Gabor wavelet to each face picture to generate a series of Gabor

magnitude (GM) feature images at various scales and orientations. Then for

kinship verification, SVM is used on top of the extracted Gradient Orientation

Pyramid (GOP) features from each GM feature picture. A performance in kin-

ship verification comparable to the human observers is noted in their experimental

results.

Kohli, Singh, and Vatsa [6] uses the local description, or the self-similarity

representation, of the pre-processed Weber face image to perform kinship clas-

sification. After extracting the key points from the normalized facial images,

self-similarity descriptors are obtained. Like in the previous works, an SVM clas-

sification head is employed on top of the descriptors to detect kinship’s presence.

By utilizing the hierarchical local regions, Xia, Shao, and Fu [24] derive binary

characteristics such as being male or female, along with the technique based on

attributes is employed for creating middle-level representations such as having

bigger or smaller eyes. After combining these attributes, kinship verification is

performed by an SVM classifier.

Puthenputhussery et al. [25] propose a SIFT flow-based genetic vector feature

extraction for encoding the kinship-oriented facial features. The authors point

out the intuitive resemblance between the extracted genetic markers and the

anthropological results in the literature. They intend to increase the similarity

of parent and child features based on SIFT flow and learn an inheritable Fisher

vector feature. These features are then evaluated by using a similarity metric

that is the fractional power cosine similarity. The performance of the approach

is validated on KinFaceW datasets.
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Method Algorithm

Fang et al. [15] Gradient orientation pyramid on Gabor features

Xia, Shao, and Fu [10] Transfer subspace learning

Shao, Xia, and Fu [16] Metric learning using Gabor filters

Yan et al. [18] Multiple distance metric learning

Xu and Shang [19] Multiple sparse bilinear similarity modeling

Mahpod and Keller [20] Multiview distance learning

Zhou et al. [21] Spatial pyramid learning-based feature extraction

Guo and Wang [22] DAISY descriptor extraction and SVM classifier

Zhou et al. [23] Gabor-based Gradient Orientation Pyramid

Kohli, Singh, and Vatsa [6] Weber face self-similarity representation

Xia, Shao, and Fu [24] Hierarchical local regional features

Puthenputhussery et al. [25] SIFT flow based genetic vector feature extraction

Zhang, Song, and Qi [26] Deep convolutional neural network

Dehghan et al. [27] Gated autoencoders

Wang et al. [28] Stacked autoencoders for project space learning

Li et al. [29] Convolutional Siamese networks

Table 1.1: Overview of kinship verification methods

Recent research has begun to use deep architectures as a result of substantial

advancements in deep learning. Unlike the traditional methods, which extract

facial features using manually designed descriptors, Zhang, Song, and Qi [26]

propose an end-to-end deep convolutional neural network model to extract high-

level facial features for kinship verification. These features are fed into the final

layer, where a softmax classifier determines the kinship score.

To distinguish parent-offspring relationships, Dehghan et al. [27] use gated au-

toencoders to merge produced characteristics with a discriminative neural layer

at the end. In essence, the relationship between the input pair of pictures is
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learned using a gated autoencoder-based generative model. Following the gener-

ative modeling, discriminative training is performed in order to determine if the

input pair pictures are kin.

Wang et al. [28] utilize stacked autoencoders to learn non-linear features fol-

lowed by a metric learning approach. They first extract the facial features from

the image pairs and feed them into a cascaded architecture of autoencoders, where

the latent space of an autoencoder is the input of the next one. Then these rep-

resentations are stacked, and metric learning is applied to find an appropriate

project space such that the distance is smaller when the input pair is kin, while

vice-versa is valid for the non-kin input. Note that the decoder part of the au-

toencoders is removed after the training phase. Authors validate their approach

on KinFaceW-I and KinFaceW-II datasets and report an overall verification ac-

curacy of 66.9% and 71.3%, respectively.

Li et al. [29] propose an approach where they train a convolutional Siamese

network with architecture-specific constraints employing a similarity metric. An

input pair of images are first fed into two convolutional neural networks that

share weights, and the L-1 distance of both network outputs is computed. This

distance is then used to compare against a learned threshold to obtain the final

kinship score. The method is validated on the KinFaceW datasets and showed

certain improvements in the verification of different kin pairs.

An overview of all the mentioned kinship verification algorithms are summa-

rized in Table 1.1.

1.3 Effect of Age and Gender in Kinship Verifi-

cation

There is a minimal number of research on the effect of age and gender in kinship

verification. Although not investigated directly, different studies highlight the

performance gap in verifying kin pairs with the same and different gender.
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Introducing the UB Kinship dataset, [10] demonstrates the kinship verification

performance is affected by the age gap between the pairs to be verified. Even

though the specific age groups of the subjects are not labeled, experiments on

the pairs child-old parent and child-young parent result in a verification accuracy

difference of about 3.3% in favor of the pairs with a less age gap, revealing the

effect of age in kinship verification.

On IIITD database, [6] shows the verification performance gap between the

pairs with a different gender. While obtaining an average verification accuracy

of 78.5% on parent-child pairs with the same gender, authors report an accuracy

of 72.2% on the dissimilar gender parent-child pairs. The same effect is also

observed in the comparison of the brother-brother, sister-sister, and brother-sister

pairs. On average, verification accuracy of brother-brother and sister-sister pairs

is noted as 75.7%, whereas the verification of brother-sister pair is only 68.7%.

In the same study, the effect of the age gap between the pairs is also mentioned.

Experiments on the UB Kinship database result in around 3% of verification

accuracy difference between the pairs child-old parent and child-young parent,

indicating the negative effect of age.

In their study, [30] note an average of about 6% and 3% accuracy difference

between the same and different gender parent-child pairs on KinFaceW-I and

KinFaceW-II, respectively. Also, the verification accuracy on child-young parents

surpasses the accuracy in child-old parent pair by 1%.

Dehghan et al. [27] highlight the accuracy difference between the same and

different gender pairs as well, reporting a performance difference of about 4.6%

and 4.4% on KinFaceW-I and KinFaceW-II, respectively.

[18] reports 5.5% and 2% better accuracies for the same gender parent-child

pairs compared to the ones with different gender on KinFaceW-I and KinFaceW-

II, respectively. A difference of 4.5% verification accuracy is shown on the UB

Kinship dataset, performing better on the pairs with a smaller age gap.

Even though using auxiliary datasets as [9] described in their work, kinship
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verification accuracies still considerably suffered from the gender. Although quite

similar verification accuracies are recorded on the KinFaceW-II dataset, authors

report an accuracy divergence of approximately 3% between the same and differ-

ent gender parent-child pairs on average on the KinFaceW-I dataset. Similarly,

experiments on the WVU dataset support the same effect of gender by yielding

6% difference in favor of similar genders, including the parent-child, brother-

brother, brother-sister, and sister-sister pairs all grouped by the gender of pairs.

They also noted a 0.5% difference between the child-young parent and child-old

parent pairs on the UB Kinship dataset.

1.4 Generative Adversarial Networks

Generative modeling is another hot topic in computer vision, which we use at

the core of our study to model the age and gender attributes from face pictures.

Since we exploit different approaches from the generative modeling domain, key

concepts and specific models necessary to understand our work are described and

summarized in this section.

In essence, generative models are trained to learn the distribution of given

data in order to generate new samples with similar characteristics to that learned

distribution. We can split generative models into two main branches, models

that aim to learn an explicit density and models that learn an implicit density.

Explicit density modeling requires an explicitly defined density model and solving

it to model the given data distribution. PixelRNN, PixelCNN, and variational

autoencoders can be given as examples to such models [31, 32, 33]. On the other

hand, Implicit density modeling implies that the learned model can sample from

a density function without explicitly defining it. To date, generative adversarial

networks [34], or GANs, are the most recent and advanced models in this class

with their ability to model highly complex distributions such as images. Further

details on specific GAN architectures and their characteristics are given in the

following subsections of this part. At the same time, more information on explicit

density models is not provided since they are out of the scope of our study.
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Figure 1.2: Overview of generative adversarial network training

Generative adversarial networks consist of two neural networks that are called

generator and discriminator [34]. Training of GANs can be described as a two-

player game, in which the generator and discriminator compete against each

other as the generator tries to deceive the discriminator by generating real-like

samples. In contrast, the discriminator is tasked to distinguish between the real

and fake samples. When optimization of the minimax objective function is com-

pleted, the generator can generate samples that appear to be real, matching the

learned distribution in the training data. An overview of a typical GAN training

is shown in Figure 1.2, where generator and discriminator weights are usually

updated in turns. Note that while updating the generator weights, discriminator

weights are frozen so that they do not receive any gradients. After the training

is completed, the discriminator network is removed, and the generator is used to

generate realistic samples using its learned latent space.
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1.4.1 Manipulation in Latent Space

Latent space in deep learning is indeed the key component behind the learning

paradigm. It is a reduced space in terms of dimensionality. The reason deep

learning models are trained on any data is to learn new meta representations in

that space instead of directly in the image pixel space. That way, if we think of

facial representations in the latent space as points, a deep learning model trained

on facial images is likely to group faces, say with eyeglasses closer to each other

in the latent space, since it learns that this is a common feature. In other words,

the model retains the characteristics of the data and simplifies its representation

to make it easier to understand.

Training generative adversarial networks on facial images, the model learns

the latent space representations of different attributes of faces that are present

in the training dataset. Using this simplified form, analysis of the features get

easier, and semantically meaningful vector operations can be performed as shown

by Radford, Metz, and Chintala [35] in Figure 1.3.

Figure 1.3: Semantically meaningful vector operations in latent space [35]
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Shen et al. [36] have conducted a comprehensive analysis on the latent space of

pre-trained generative adversarial networks and showed that semantic face editing

is possible through vector arithmetic as well as subspace projection without re-

training the generator. They prove that a well-trained generator network encodes

disentangled semantics in latent space that are usually linearly separable, and

when there exists entangled semantics, they can be decoupled by linear subspace

projection. Consequently, they validate their hypothesis by performing semantic

facial attribute manipulation such as removing eyeglasses or changing the face

pose in the latent space, utilizing GAN inversion methods, or encoder-involved

models without any extra training.

Although such semantically meaningful operations in latent space can lead

to promising applications like manipulating the facial images to add or subtract

different attributes arbitrarily, it is not that straightforward. This is because

the generative networks are usually incapable of encoding every single feature

independently in the latent space due to a number of reasons, such as insufficient

data or certain biases in the dataset. That is referred to as entanglement of

features in the latent space and is studied in several works [37, 38, 39, 40, 41, 42,

43, 44] to overcome its undesired presence. The entanglement of the features is

also visible in the example shown in Figure 1.3. Even though we expect to see a

change in only the facial expression of the generated sample, we observe that the

background of the sample is changed as well.

We perform manipulations in latent space in order to derive the normalized

age and gender attributes in our approach as described in Section 2.1.1.

1.4.2 Style Transfer

Term style transfer in computer vision is used for transforming a source image to

exhibit a particular texture style while the original content of the source image

is preserved. Style transfer plays a key role in the most recent state-of-the-

art generative adversarial networks, as the concept is adapted in the generator

architecture to model the different training data attributes.
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The first semantically high-level style transfer method is proposed by Gatys,

Ecker, and Bethge [45], where a neural algorithm of artistic style is employed for

separating and combining the image content with an arbitrary style extracted

from another image. To this end, convolutional neural networks are used to

extract high-level image information such as content and style of the images,

and the style is transferred by minimizing the distance between the generated

image’s content and style with the target content and style information. This

information is encoded in different layers of the convolutional network, and layer-

wise operations are performed to compute these distances. An example result

from the neural style transfer method is shown in Figure 1.4, content in picture

A is preserved, and the arbitrary style is applied to obtain the final image as in

B.

Figure 1.4: A neural style transfer example [45]

In their work, based on the instance normalization [46] technique, Huang and

Belongie [47] proposed the adaptive instance normalization, or AdaIN, to perform

real-time image style transfer. AdaIN merely adjusts the mean and variance of

the content input to match those of the style input given content and style input.

Encoding the style and content information as well as the style transfer operation

is done in the feature space, which is the first few layers of a fixed VGG-19 [48]

network. Recent generative networks employed AdaIN for performing a style-

based generation due to the intuition and simplicity behind the AdaIN operation.
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More details on these generator architectures are given in the next section.

In our approach described in Section 2.1.2 for age and gender normalization,

we treat these two attributes as different styles and try to eliminate their effect

while preserving the content of the source image, in our case is the facial identity.

1.4.3 Generator Architectures

This section describes specific generator architectures that we utilize to model

the age and gender of facial images.

Figure 1.5: Photo-realistic synthetic face samples [49]

As we strive to perform age and gender normalization on face images, we

can define this problem as an image-to-image translation [50]. In this context, we

want to transform the face image of a subject into a brand new image in which the

age and gender-related attributes are entirely removed or at least suppressed to

some extent. Image-to-image translation requires a dataset consisting of matched

pairs of images that we want to learn the transformation in between. Creating

such datasets is usually costly and sometimes impossible. For instance, if we’re
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going to model the transformation between male and female genders, we need

pairs of images consisting of people with the opposite genders, which is simply

impossible.

In their work, Zhu et al. [51] propose a new generative adversarial network

CycleGAN, that features a new loss term that is called the cycle consistency

loss, which eliminates the necessity of constructing a paired dataset for image-to-

image translations. A dataset consisting of images from both domains is sufficient

to learn the transformation between both domains instead of having matched

opposite gender pairs. In our study, we utilized this architecture to learn a

transformation between the male and female domains, which implies modeling

both genders.

The generator architecture of CycleGAN follows the architecture in [52], con-

sisting of three fundamental sub-networks that are encoder, transformer, and de-

coder. The encoder takes in the input image and extracts its features, which are

then fed into the transformer network that learns to transform the image to the

target domain in the latent space, and finally, the resulting image is synthesized

by decoding these transformed features into the image space using the decoder.

CycleGAN requires two generators to model the transformation between the two

genders, as the transformation from one gender to another is learned by a single

generator. A second generator is employed to learn a reverse mapping from the

synthesized version to compute the cycle consistency loss. After completing that

cycle of transformations from an original image to the opposite gender and then

back to the actual gender again, pixel-wise L-1 distance is calculated as the cycle

consistency loss term. The intuition behind this is that we should arrive at the

same location where we started before performing the transformations. Thus the

cycle loss term should be zero ideally.

PatchGANs [53, 54] are used in the discriminator network, which classifies the

reduced size patches of 70x70 images as fake or real.
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Figure 1.7: StyleGAN generator architecture [49]

Figure 1.7 demonstrates a simplified version of the StyleGAN architecture.

Unlike the other generator architectures, the latent vector is not directly fed

into the generator but first transformed by a fully connected network, as seen

on the left-hand side of the figure. The output of this transformation is the

intermediate latent space, which represents a domain-specific manifold. Then

this intermediate latent vector , ′ is fed into each layer of the generator after

being through a learned affine transformation that is denoted as A in the figure.

Starting from a constant initial image that has dimensions 4 × 4, the generator

progressively upscales it until the desired image size is reached. 2D noise vectors

are added into the generation process in order to introduce finer details that the

network learns by scaling at each level. Figure 1.5 demonstrates some synthetic

face images generated by StyleGAN trained on FFHQ [49] dataset, which look

extraordinarily realistic.
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Utilizing the powerful modeling capabilities of the StyleGAN, we exploited a

pre-trained network on facial images instead of training the network from scratch.

Regardless, one has to project an image to be manipulated into StyleGAN’s latent

space since the generator is not a conditional [57] network. There are two latent

spaces as the first latent vector and its transformed version into an intermediate

latent space. In our study, we use the intermediate space as our latent space

where we manipulated images since it is reported that this space represents more

disentangled representation of the face domain [58]. We used StyleGAN to change

the age and gender attributes of arbitrary face images by projecting them into

the generator’s latent space.

Choi et al. [59] proposed another generative adversarial network architecture

that is called StarGAN, which basically combines the ideas of [51] and [49]. By

employing the cycle loss and a similar generator architecture consisted of an

encoder, transformer, and decoder networks as in [51], image-to-image translation

is learned with an unpaired dataset of images. Furthermore, style vectors are

injected into the upscaling generator layers as in [49], providing a better modeling

capacity than CycleGAN even if having a quite similar architecture. Besides, first

introduced in [60], StarGAN outstands from the other generative networks with

its single generator architecture being capable of modeling multiple domains.

Thus, we train a single generator to model different age and gender combinations

to analyze the contribution of different age and gender normalization in kinship

verification.

In Figure 1.8, StarGAN architecture is visualized, which involves four modules

that are generator, mapping network, style encoder, and discriminator. Note

that in the figure, there are three domains for illustration purposes. However, it

is subject to change in the number of domains in training. During the training

of the generator, style vectors are either sampled from a normal distribution

or extracted from a reference image. For unconditional style generation, the

mapping network takes in a sampled latent vector and outputs the corresponding

style vectors to be fed into the generator. For transferring styles from a reference

image to the source image, the style encoder network takes in the reference image

and outputs its style vectors for all the domains. The discriminator is also a

19



multi-task network [61, 62], which determines the score of being real or fake

corresponding to each of the domains. Note that the architecture of the style

encoder and discriminator is the same as visualized in the third column of the

figure, the only difference being the networks’ output.

Figure 1.8: StarGAN architecture [59]

We use style encoder and generator networks in our experiments to generate

different combinations of age and gender.
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1.5 Approach and Contributions

Research in kinship verification has primarily focused on developing specialized

deep learning architectures and crafting similarity-oriented metrics. Instead of

following a similar path, we define our problem as suppressing the undesired ef-

fects of age- and gender-related facial cues regarding kinship verification. We

hypothesize that kinship verification performance is degraded as the age gap or

the gender differences between the subjects increase, hence, performing kinship

verification on a common surface excluding age-and-gender-related features im-

proves the verification performance of an arbitrary kinship model.

Figure 1.9: Gender normalized latent space in kinship verification

To this end, we model the age and gender attributes of facial images utilizing

generative networks and propose several methods to eliminate the undesired effect

of these attributes for an improved kinship verification performance. First, we try

to find equally spaced latent dimensions by learning the transformation between

the two genders, meaning a neutralized gender representation in the generator

latent space. Second, inspired by the neural style transfer literature, we con-

sider age and gender as different styles and minimize their effect in facial images

21



while preserving identity information. Third, we introduce an age- and gender-

normalization loss term. By iteratively producing the age-and-gender-normalized

version of the input faces as reducing this loss function, we optimize the latent

representation of each subject to discard age and gender-specific characteristics.

Fourth, we generate faces with different combinations of age and gender and learn

a pair-specific weighting of these combinations to model a kinship verification net-

work.

Figure 1.10: Age normalized latent space in kinship verification

Figure 1.9 demonstrates the objective behind normalizing the gender of the

subjects to be verified. Abbreviations F, S, and D refer to the relationship types

that are father, son, and daughter respectively. The same colors illustrate the

ground truth kinship between the subjects, whereas the different colors indicate

that there is not a kin relation. Kinship verification usually suffers from gender-

inherent facial characteristics, resulting in a deficiency in verification performance,

such as the false-negative verification of opposite gender pairs as shown on the

left-hand side of the figure. However, suppose we reduce the differences in facial

characteristics caused by gender. In that case, we can improve the verification

performance of the kinship model, which is shown on the right-hand side of the

figure as we transform and solve the verification problem in a more optimal latent
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space.

Similarly, Figure 1.10 plots the kinship verification in a standard space versus

an age-normalized space. Subscripts y and o refer to the young and old pictures

of the parent subject mother, which is denoted as M. While kinship verification

is more difficult when the age gap increases between the parent and child due

to the age-related differences in facial characteristics, verification performance

is improved in a space where the age-related discrepancy between the facial at-

tributes is reduced. As shown in the figure, younger picture of mother My is more

easily determined as the parent of her daughter D, whereas the same verification

with the older picture Mo of the mother is not correctly performed. When age is

normalized, on the other hand, two subjects are accurately verified as kin that is

shown on the right-hand side of the figure.

This is the first extensive study investigating the individual and combined

impact of age and gender in kinship verification to the best of our knowledge.

Besides improving the performance of a recent kinship verification model, we

compare the proposed approaches in normalizing the age and gender attributes

and conduct detailed experiments on demonstrating the degrading effect of age

and gender in kinship verification.

1.6 Thesis Outline

The outline of the rest of the thesis is as follows. Theoretical background and

mathematical explanations of all the proposed methods are provided in Chapter

2. Normalizing the age and gender attributes of facial images using generative

modeling is described in detail. Chapter 3 defines the used datasets, experimental

setup, analysis and comparison of the proposed methods, and detailed discussions

on our findings. The thesis is concluded in Chapter 4 with a summary of the

contributions, a brief overview of the acquired results, and finally, prospective

future paths.
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Chapter 2

Kinship Verification Through

Age and Gender Normalization

In this chapter, we describe the proposed method for reducing the effect of age and

gender-based dissimilarities in the context of kinship verification. Our method

consists of three main stages that are the generative modeling of age-and-gender-

specific facial attributes, kin relation feature extraction using each of these mod-

eled age and gender combinations, and pair-specific kin relation model weighting

followed by the posterior aggregation to determine the kinship score of the input

pair.

The design of the overall method is shown in Figure 2.1. G represents the

generative modeling block to model different age and gender combinations,  n

represent the =th kin relation model for age-and-gender-specific feature extrac-

tion, and �n denotes the =th combination’s attention module. We show that

by reducing the age and gender-related dissimilarities, the proposed method in-

creases the kinship verification accuracy of a recently introduced kinship model on

different kinship verification datasets. Our method can be utilized with any kin-

ship model by simply replacing the kin relation models with an arbitrary model.

Fundamental components will be further explained and discussed in the following

sections of this chapter.
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Figure 2.1: Kinship verification with pair-specific age and gender transformation

weighting

2.1 Generative Modeling and Normalization of

Age and Gender

The first and the core step of our method is the normalization of the age and

gender attributes of facial images before performing kinship verification on a pair

of images. Normalizing the age or gender attributes of a dataset means that all the

samples are transformed into the same medium in terms of these two attributes

so that they don’t have dissimilarities inherited by age and gender. To this end,

we model the age and gender-related attributes using the generative models and

normalize them by performing manipulations in both latent and image space. In

this phase, a variety of methods can be used for generative modeling. Hence we

propose different techniques in terms of tackling the age and gender normalization

problem.
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In this section, we describe different approaches proposed for age and gender

normalization.

2.1.1 Finding Equally Spaced Latent Dimension Between

Genders

In order to model an implicit distribution that the data possesses, generative

adversarial networks learn an embedding of this distribution that is called a

latent space. Therefore, the goal of training GANs is basically to learn this

latent space, which represents the distribution of the training data in a lower-

dimensional space. Ideally, features that are learned must be independent of

each other in latent space, meaning that all the features and their distribution

are disentangled.

In Figure 2.2, the latent space of a trained generative adversarial network is

demonstrated in its simplest form. The planes in the figure represent the bound-

aries for each of the learned attributes such as hair type, skin color, or gender.

Moving in a perpendicular direction to any of the planes yields a maximum change

in the corresponding attribute [36]. For instance, if we traverse the hair type at-

tribute between the curly hair and straight hair domains in the latent space, this

should not change the skin color attribute. Ideally, these boundaries must be

perpendicular to each other, meaning that the change in one attribute must not

affect any additional attribute values.

The number of semantics, or the hyperplanes as visualized in the Figure 2.2,

depends on the dataset and how well the generator learned about each of the

attributes the dataset contains.

For gender normalization, we suggest that we can neutralize gender by exploit-

ing a pre-trained generator model. In the latent space of the generator, we can

project any face to be as close as possible to the hyperplane which separates the

gender domains. Then this projection representing the neutralized gender in the

latent space is decoded back into the image space.
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Figure 2.2: Learned latent space consisting of different regions each of which

represents an attribute of the modeled data

This objective requires learning a transformation per gender such that

�1 : �M −→ �F̃ and �2 : �F −→ �M̃. Here, �M ∈ R3 and �F ∈ R3 denotes the

male and female domains in the image space, whereas �M̃ ∈ R
3 and �F̃ ∈ R

3 rep-

resent their synthesized versions respectively. This makes sense since there is not

any image representing the neutralized gender so that it is impossible to learn a

mapping from �M or �F to the neutral gender directly.

For modeling the afore-mentioned transformations, generator in [51] is em-

ployed due to its advantage on training with non-paired data. The generator

includes three sub-modules that are the encoder �, transformer ) , and decoder

�. An input image is first fed into the encoder to be encoded into the latent space,

then transformed to the other domain in the latent space, and finally decoded

into the image space. Thus, the functions �1 and �2 now become

�1 = �1

(
)1

(
�1(·)

) )
�2 = �2

(
)2

(
�2(·)

) ) (2.1)

where �1 : �M −→ /M , )1 : /M −→ /F̃ and �1 : /F̃ −→ �F̃.
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Here, /M ∈ R3 and /F ∈ R3 denotes the d-dimensional latent space of the

generators for both genders, where /F̃ represents the synthesized female latent

vector.

Remember that our purpose is to get gender representations in latent space as

the closest possible point to the hyperplane, which defines a boundary between the

male and female domains. Since we do not know the formulation of this boundary,

we project the neutral gender representation of the dataset onto the line formed

by an image and its counter-gender representation in the latent space. Besides,

we note that there are no constraints to enforce the linearity of the boundaries,

so that we assume the generator is trained well enough to achieve such a latent

space.

Neutral gender representation /` is computed in the latent space of �1 and �2

by encoding all the subjects into latent space and finding the mean face as in the

following equation.

/` =
1

#

#∑
�1(�M) + �2(�F) (2.2)

where # is the number of samples in the dataset.

(a) Meta female (b) Meta male

Figure 2.3: Meta faces for each gender computed in latent space of the generator
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We refer to the generic facial representation as a meta face and derive the

neutral gender by using that representation as the fundamental. Meta faces

computed in the latent space are visualized by decoding them back into the

image space and demonstrated in Figure 2.3.

Then the overall meta face is derived using the faces from both gender domains,

yielding a neutral gender representation of the dataset in Figure 2.4

Figure 2.4: Neutral gender representation computed in the latent space

Consequently, normalization of the gender is geometrically interpreted in Fig-

ure 2.5 and is described as follows.

Figure 2.5: Projection of neutral gender onto the line formed by an image and

its synthesized opposite-gender representation in the latent space
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/F denotes the original female image and /M̃ is the synthesized male version

of /F. They form a line in the latent space, where the neutral gender /` is lo-

cated somewhere that its projection remains between the opposite gender points.

Subsequently, normalized gender /6 is computed as in Equation 2.3

/6 =
−−−−→
/M̃/F ·

−−−−→
/`/F ·

−−−−→
/M̃/F

−−−−→
/M̃/F ·

−−−−→
/M̃/F

(2.3)

where

−−−−→
/M̃/F = )2

(
�2(�F)

)
− �2(�F)

−−−−→
/`/F = /` − �2(�F)

(2.4)

Finally, Equation 2.3 can be simplified as in the following

/6 =

−−−−→
/M̃/F · | |

−−−−→
/`/F | | · | |

−−−−→
/M̃/F | | · cos\

| |−−−−→/M̃/F | | · | |
−−−−→
/M̃/F | | · 1

=

−−−−→
/M̃/F

| |−−−−→/M̃/F | |
· | |−−−−→/`/F | | · cos\

(2.5)

Note that if the neutral gender /` does not lay between the gender line formed

by the both gender end points /F and /M̃ in latent space, this operation does

not work as intended. This is ensured by finding the projected normalized gender

vector
−−−−→
/6/M̃ derived from the synthesized opposite gender /M̃, and comparing its

direction with the desired normalized gender vector
−−−→
/6/F.

This comparison is described in Equation 2.6;
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−−−→
/6/F

| |−−−→/6/F | |
·
−−−−→
/6/M̃

| |−−−−→/6/M̃ | |
= −1 (2.6)

which means that directions of the two opposite middle gender projections are

opposite as the geometric interpretation shown in Figure 2.6

Figure 2.6: Projection of average gender from the female and synthesized male

points in latent space

After obtaining the gender normalized representations of �M and �F, we decode

them back to image space by

�6 = �{1,2} (/6) (2.7)

2.1.2 Identity-Preserved Style Modification for Gender

Neutralization

In this section, we propose to normalize gender by extracting the neutral gender

style vectors and blending them with the input image style vectors. This is re-

ferred to as style-mixing that is first introduced in [49]. Style vectors are powerful

representations of the specific attributes learned during GAN training. Therefore
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using them to blend different features is an intuitive and convenient way of mix-

ing diverse attributes. The point of using this technique is to preserve identity

features of the face image as we use style vector extracted from the original image

while transferring non-gender-style extracted from the neutral gender.

To this end, generator architecture in [59] is quite suitable in order to extract

the style information of the neutral gender and synthesize them with a given im-

age. This is because it is a conditional generator, which means it takes an image

as input and can extract its style vectors that are learned during training using

the style encoder sub-module. After the style vectors are extracted from both the

input image and the neutral gender, the generator is fed with the combination

of these style vectors at specific levels of the upsampling blocks. Style vectors

obtained from the identity image help retain the identity information in the syn-

thesized image, whereas the style vectors extracted from the neutral gender are

used to suppress gender-specific features that finally result in a normalization of

gender.

Let � be the input image and ~ is the corresponding domain, style extraction

can be formulated as

®B = �~ (� ) (2.8)

where ®B ∈ R3 is the extracted 3 dimensional style vector and �~ is the style en-

coder network [59]. ~ denotes the gender-specialized branch of the style encoder,

which is trained to learn the male and female distributions in latent space.

So if the identity input and the neutral gender are denoted as �id ∈ R3 and

�` ∈ R3 respectively, style vectors belonging to both images are

®Bid = �~ (�id)

®B` = �~ (�`)
(2.9)

Note that �id can either be a male �M or female �F image.
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These style vectors are then used to produce a mix of styles combining both

identity and neutral gender attributes, which are then used during gender nor-

malized image synthesis. Basically, the style vector of the neutral gender is used

at the lower resolution levels of the upsampling blocks of the generator, and the

original image styles are injected at the higher levels. This is due to the nature

of the training process of the generator, which progressively decodes the latent

representation up until the final synthesized image. That way, starting from the

transformation block output up until the decoder block output, the generator

begins building an image from its latent space by first synthesizing lower levels

of resolutions and then increasing the resolution until the final network output.

Therefore, at lower resolutions, such as 16 × 16 images are produced, the rough

shape of the face starts to be synthesized, and all the details are formed in the

subsequent layers of the decoding block. The overall process is illustrated in

Figure 2.7.

Generator illustrated on the left-hand side of the figure can be defined as a

function � , consisting of three fundamental blocks that are performing downsam-

pling, transformation and upsampling for image generation. Generator takes in

a style vector and an image as input and outputs a synthesized image where the

given style is applied as the following equation where �̃ is the synthesized image;

� (� , ®B) = �̃ (2.10)

� represents the encoder network which takes in identity and neutral gender

images and output their corresponding style vectors. Before injecting these style

vectors into the image generation process, ®B` is projected onto the ®Bid as

®B6 =
®Bid
| |®Bid | |

· | |®B` | | · cos\ (2.11)

where \ is the angle between the vectors ®Bid and ®B` in the latent space and ®B6
is the gender normalized style vector.
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Figure 2.7: Identity-preserved gender normalization by neutral gender style en-

forcement
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Given that, we synthesize the style vectors by injecting the gender normalized

style at the lower levels of the decoder block, whereas the identity style vector is

injected at the higher levels. That way, the identity-related details remain in the

synthesized face, and the neutral gender features are blended without distorting

the identity information severely.

Injecting the style vectors to the decoder network is done by the Adaptive

Instance Normalization [47] method as proposed in [49]. Basically, if we consider

a single resolution level of the decoder or the upsampling block, the style vector

of the neutral gender is injected as in Equation 2.12

®B6
:= − ` (:=)
f (:=)

+ ®B6 (2.12)

where := is the =th kernel or the feature map of the decoder block.

Finally, gender normalized style vector ®B6 is injected into � to obtain a gender

normalized version of the image, as shown in the following equation.

� (�id, ®B6) = �6 (2.13)

where �6 ∈ R3.

2.1.3 Sample-Specific Latent Representation Optimiza-

tion

All of the prior methods proposed up until here offer a general solution for gender

normalization regardless of the input image. In this section, we introduce a

sample-based approach towards gender and age normalization, where we optimize

the gender and age attributes in an iterative manner by trying to minimize a

so-called normalization loss. This requires an intensive search in latent space.
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Therefore the generative model that is to be used for this task must be powerful

enough in terms of its latent space representation.

We employed the generator architecture in StyleGAN [49], as it has a rela-

tively better latent space residing more disentangled attributes. A disentangled

latent space is crucial for performing conditional image synthesis, and [49] uti-

lizes style vectors that are trained to encode different high-level representations

of the attributes. In other words, a style vector is expected to encode different

information such as the hair type, skin color, facial shape and etc.

Since StyleGAN is an unconditional generator, one cannot simply manipulate

an arbitrary image based on a certain condition using this generator. For such

manipulation in latent space, the image must be projected to the learned latent

space of the generator. So if the image is denoted as � and the generator is � , we

need to find �−1 such that �−1 : � −→ / where / denotes the representation of

image � in the latent space. This task is not trivial, therefore [58] suggests increas-

ing the Learned Perceptual Image Patch Similarity [63] abbreviated as LPIPS for

the reconstruction of � in latent space as shown in the following equation.

LR = LP + U
∑
8, 9

L8, 9 (2.14)

where U is a pre-defined hyperparameter with value 105 which sets the weight

of noise map regularization, L8, 9 is the noise map regularization term defined in

[58], and LP is the perceptual loss that is the LPIPS distance between the target

image and the generated image at each iteration.

The perceptual loss basically helps an appropriate reconstruction of the image

at each iteration so that a better latent representation of the image is obtained.

Perceptual distance is extracted by feeding both the reconstructed and original

image into the same pre-trained deep convolutional neural network and comput-

ing their corresponding channel-wise distances. Extraction of the channel-wise

features is demonstrated in Figure 2.8 where : �= is the kernel features extracted

from the =th layer for input image � .
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Figure 2.8: Channel-wise features to compute the perceptual distance

Subsequently, if the original image is �id and the reconstructed image is �rec,

we can define LP between the original and the reconstructed image as in the

following equation.

LP =
∑
=

| |: �id= − : �rec= | |22 (2.15)

Note that the channel normalization is not included in the equation for a

simpler definition of the channel-wise distance but is employed as in [63].

Instead of directly reconstructing the face image, we propose to optimize la-

tent representation / of the image � in such a way that / yields not only the

reconstructed � but also a normalized version of it in terms of age and gender

attributes.

To this end, we introduce a new loss LN, denoting the normalization loss

defined in below equation

LN = LA + LG + LR (2.16)

where L' denotes the reconstruction loss, LA and LG denote the age normal-

ization loss and gender normalization loss respectively. Minimizing LN yields an

age-and-gender-normalized latent space representation of � , while preserving the

facial identity information enforced by the reconstruction loss term.
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We define gender normalization loss LG as in equation

LG = _G |0.5 − �g(G) | (2.17)

Here, �g : G −→ %6 is an auxiliary network that outputs the gender score %6

of input G at a certain iteration of the normalization phase, _G is the coefficient

of the gender normalization loss. Note that G can either be image � or latent

space / representation of the generated image, depending on whether the gender

network takes an image or its latent representation as input in order to determine

the neutral gender loss. These two modes of input are demonstrated in Figure

2.9 and Figure 2.10 respectively.

Gender score %6 can take up values between the range [0, 1], representing the

network’s confidence of a subject being female or male respectively.

Similarly, we define age normalization loss LA as in equation

LA = _A |0 − �a(G) | (2.18)

where 0 is the value of age that we want to normalize to, �a : G −→ %0 is an

auxiliary network that outputs the age value %0 of G at a certain iteration of the

normalization phase, _A is the coefficient of the age normalization loss.

We propose minimizing the L# using two different approaches. These ap-

proaches differ in determining the age and gender score by either using the gen-

erated image � (/ ) or directly the latent vector / itself as input. Figures 2.9 and

2.10 summarize both approaches toward the sample-specific optimization process

to obtain the gender and age normalized latent representation /# of an arbitrary

image. / is initialized as a random latent vector. Then it is updated at each iter-

ation by backpropagation minimizing the normalization loss L# . � denotes the

generator network, while �a and �g represent the auxiliary networks that output
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the age and gender score of the / at a current iteration. �p is a convolutional neu-

ral network that is used to extract features in different resolutions demonstrated

as in Figure 2.8 to compute the L% .

Figure 2.9: Sample-specific latent representation optimization using age and gen-

der feedback in image space

Besides both configurations serve to the same objective of minimizing the L# ,

we expect to reduce potential information loss or corruption caused by transform-

ing / back into the image space by employing �a and �g in a way that yields age

and gender scores directly utilizing the latent vector / as input.
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Figure 2.10: Sample-specific latent representation optimization using age and

gender feedback in latent space

2.2 Pair-Specific Weighting of Age and Gender

Transformations

In this section, we propose an attention-based transformation weighting network

that determines the kinship score by utilizing different age and gender combina-

tions of an input image pair. These combinations are also referred to as transfor-

mations in the following parts of this section.

This method brings two main benefits in kinship verification. First, instead of

utilizing a single age or gender normalized version of the input pair, we exploit a

variety of age and gender combinations, yielding a more robust kinship verifier due
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to the further reduced dissimilarities in these two attributes. Second, we assign

weights to each of these transformations using a dedicated attention module �=

attached to each of the kin models as shown in Figure 2.1. That way, we learn

to utilize all of the modeled transformations, assigning them a unique weight

indicating the importance of each age and gender combination depending on the

input pair.

Generating age and gender combinations is done by synthesizing a range of

age and gender versions of both images in the input pair while preserving their

identities for each of these synthesized versions. Therefore, given a pair of input

images {�1, �2}, � outputs synthesized age and gender versions of each subject

such as

�

(
�1, �2

)
=

{ {
�
31
1 , �

31
2

}
,

{
�
32
1 , �

32
2

}
, . . . ,

{
�
3=
1 , �

3=
2

} }
(2.19)

where 3= denotes the =th domain that can be any of the modeled age and

gender transformation such as 18 years-old male or 30 years-old female etc.

The number of domains can be increased as many as the number of age and

gender combinations synthesized in the generative modeling step. This provides

a certain flexibility in the extent of age and gender combinations employed in

this step. The more combinations are utilized, the better performance can be

expected due to the increased information.

These transformations are then fed into to corresponding kin model  =, which

is specialized for extracting the kin features 5= from a particular transformation.

For instance,  1 might extract the kin features of 18 years-old male version of

the input pair, while  2 extracts the kin features of 30 years-old female version.

Therefore, extracting 5= can be formulated as

5= =  =

(
�
3=
1 , �

3=
2

)
(2.20)
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where 5= ∈ R64x13x13.

Kin feature 5= is then used as input to two separate networks that are C=
and �=, where C= is the =th transformation’s kinship classifier which outputs

the probability of being kin ~= for a specific transformation pair, and �= is the

corresponding attention network. Hence the ~= is obtained by

~= = C= (5=) (2.21)

To obtain the weights F for all transformations, �= takes 5= as input and

outputs a weight score F= for the corresponding kin score ~=. Then each of these

weights are transformed into the probabilistic weight scores, by computing the

softmax of all attention network outputs. Finally, all the weight scores for the

transformations are obtained as shown in the following equation

F = f
(
[�1(51), �2(52), . . . , �= (5=)]

)
= f

(
[F1, F2, . . . , F=]

) (2.22)

where F= ∈ [0, 1] and f denotes the softmax function that is defined as

f (G)8 =
exp(G8)
=∑
9=1

exp(G 9 )
(2.23)

for 8 = 1, . . . , = and G = (F1, . . . ,F=) ∈ R=.

Since we finally have the kinship scores and the corresponding weights for

each of the age and gender combinations, we aggregate the weighted kinship

probabilities by computing the average posterior and obtain the final kinship

score ~ of input image pair {�1, �2} as shown in below equation
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~ =
1

#

#∑
9=1

~ 9F 9 (2.24)

where ~ ∈ [0, 1] denotes the kinship probability of the input image pair and #

is the number of age and gender combinations used to model each of the subjects.

43



Chapter 3

Experimental Results and

Discussion

3.1 Datasets

3.1.1 KFW-I/II: Kin Face in the Wild

To evaluate the effectiveness of the proposed methods in kinship verification, we

use the publicly available Kinship Face in the Wild datasets KFW-I and KFW-

II [11, 12], which consist of four types of kin relations that are father-son (F-

S), father-daughter (F-D), mother-son (M-S), and mother-daughter (M-D). Face

images in these datasets are collected without any prior restrictions, meaning that

they can differ in terms of lighting, pose, expression, ethnicity, occlusion and so

on. All images in both datasets have size of 64 × 64 containing the cropped

and aligned facial images. The fundamental difference between the datasets is

that face images in KFW-I are collected from different photos, whereas KFW-II

face images are mostly collected from the same photo. Furthermore, KFW-I is

an imbalanced dataset in terms of the number of samples in each kin relation,

with 156, 134, 116, and 127 number of pairs in F-S, F-D, M-S, M-D respectively.
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Number of pairs in KFW-II however is 250 for all the kinship types.

Kin pairs in KFW-I/II are used as positive samples, while random pairs that

do not have a kin relation are used as negative samples. These negative samples

are randomly constructed for each of the four kin relation subset. For example,

a negative M-D pair is formed by replacing the parent or child with another

random female parent or child, while the remaining subject is kept the same.

Besides, we create a new set of such negative samples for each epoch of training,

preventing network to memorize negative samples for any of the subjects thus help

generalize better. These shuffled negative samples per epoch are generated once

and kept same for all the experiments to maintain a comparable setup between

the experiments.

3.1.2 UTKFace: Large Scale Face Dataset

UTKFace dataset [26] consists of over 20.000 face images that are collected in the

wild. Along with the non-processed images, dataset provides the post processed

versions of the same images that are correspondingly aligned and cropped. Images

in the dataset are labeled by their age, gender, and ethnicity, all encoded in

the corresponding file names. The dataset consists of 47.7% female and 52.3%

male images. Considering the age intervals 0-17, 18-30, and 31-90, there are

around 4500, 7200, and 10500 samples, respectively. These labels are generated

by using the pretrained [64] network and double checked by a human annotator.

Additionally, landmarks of the faces are provided that contain 68 key points.

3.2 Experimental Setup

We utilize UTKFace for mainly modeling the age and gender that are used to

normalize these attributes for kinship verification, when we do not use a pre-

trained generator network. Separating the training of generative models and the

kinship models, we aim to show that pre-trained generative models can easily be

45



utilized for age and gender normalization based kinship verification. One of the

reasons we choose training on UTKFace is that the dataset provides labels for

both age and gender attributes of all subjects. The main reason however is that

the dataset also includes the non-aligned version of the facial images, which might

have been aligned and cropped as we needed. That is required to train a genera-

tive model in a way that learning a similar distribution to the aligned images of

KFW datasets. Thus, for aligning and cropping the UTKFace images in the same

way as the images in KFW, we first detect the mean facial landmark locations

utilizing all the KFW-I images. These landmarks are then used to compute a

translation and rotation matrices to align the UTKFace images in a similar way

to the KFW. Translation is performed by re-positioning the left eye position of

each face in UTKFace to match the mean left eye position of KFW dataset. For

scaling the faces on the other hand, we compute the distance between left and

right eye of the target and perform re-scaling to match the same distance derived

from the mean left and right eye positions of KFW. Finally, the aligned facial

image is cropped to the size of 64 × 64 to obtain the full KFW image format.

Concerning the modeling of the age, we pick three age intervals since exper-

imenting with all the specific ages is not practical. These age groups are 0-17,

18-30, and 31-90, taking the effect of aging on facial attributes and the age distri-

bution of the UTK-Face dataset into consideration. The first age group represents

the facial characteristics during the pre-adult period of the human, and the sec-

ond group refers to the next period where the human face changes in a minimal

manner, whereas the third group represents the facial attributes during the elder-

ness [65]. There is a relatively higher gap within the last age group because the

number of subjects that fall into these three age groups in the UTKFace dataset

is also somehow close, yielding relatively fair modeling for the generator during

the training.

We use JLNet [66] as our kin relation model and train the network using

the exact same parameter setup as proposed without any further hyperparame-

ter tuning, in order to observe the contribution of age and gender normalization

throughout different experiments. Note that since we only focus on kinship verifi-

cation task, we discard the kinship identification head and use only the verification
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models trained per kin relation, as in the verification experiments of [66]. Besides,

after initializing the network with random weights, we save them to be used as

our initial weights for all the experiments to reduce the effect of randomness.

Experiments for all the methods are conducted based on a 5-fold cross valida-

tion. We use kinship verification accuracy as our metric to compare the results

of all experiments. Same data augmentation techniques are employed for all the

experiments, in which we change the contrast, saturation and brightness values

of images as well as applying horizontal flip, perspective change and partial crop-

ping all performed randomly in a certain pre-defined range. Although we need to

upscale images for age and gender normalization at certain experiments due to

utilizing a pre-trained generator network that is trained on higher resolution im-

ages, we downscale the generator output back to the dataset’s original image size

of 64 × 64 before they are fed into the kinship verification models for consistency

between the experiments. Training scheme is kept the same as in [66], where we

employed a batch size of 64, used Adam [67] as the parameter optimizer, an initial

learning rate of 10−4 with a step decay of step size 40. Finally, weighted cross

entropy is used as the network loss function for each verification output, setting

the weights to [0.25, 8] for the negative and positive samples respectively. As the

only difference, we trained the model for 100 epochs which is fewer than [66] to

prevent overfitting since we did not need to train the identification module.

Considering some of the experiments required auxiliary networks and extra

procedure for modeling the age and gender, further details regarding to these

specific experiments are provided in the corresponding subsections of the chapter.

3.3 Gender Normalization in Kinship Verifica-

tion

In this section, we evaluate the contribution of gender normalization in kinship

verification, conducting an analysis using three different approaches to assess the
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effect of gender. Our first approach is to normalize genders of all the subjects in

the dataset, meaning that all of the genders are represented in a neutralized man-

ner rather than being male or female. To further support the idea that gender-

related dissimilarities degrade kinship verification performance, we conduct two

additional experiments in the context of gender normalization, by transforming

all the subjects to one of the genders, male or female. Hence, we assert the idea

that gender has an impact on kinship verification and we can reduce its effect by

simply representing all the samples on a common surface even though we do not

normalize gender of all the subjects.

In order to normalize gender in the image space, we employ the methods

described in Sections 2.1.1, 2.1.2, and 2.1.3. Concerning the sample-specific nor-

malization method, since the generator is trained on a spatially aligned facial

images with a size of 256× 256, we first align the KFW images at the same loca-

tion concerning the facial key points and upscale them to be compatible with the

pre-trained StyleGAN architecture. This process requires facial landmark detec-

tion, so we employ [68] for the landmark detection and align faces to the same

location as in [49]. In practice, landmark detection algorithm cannot detect all

the faces, especially for the face images that are too small such as KFW. Thus,

although we are able to align majority of the faces in the dataset, some of them

are not appropriately aligned due to an imperfect landmark detection. These

non-aligned images are not used for the gender normalization due to their diver-

gent distribution that mismatches the distribution modeled by the pre-trained

generator. To avoid experimenting with the lacking number of data, we still in-

clude these non normalized subjects in our training. To this end, we ensure that

any gender normalized subject would not match its non-normalized pair, so that

replace the normalized subject with its original version which has its pair failed

in the alignment step. This prevents the experiment being contaminated while

help use of all the samples in the dataset.

For implementing the gender network �g, we performed transfer learning with

a pre-trained facial recognition network called SE-ResNet [69], that is trained on

VGGFace2 [70]. Using SE-ResNet as the feature extractor we trained a gender

classifier on CelebA-HQ [56] dataset. Note that �a is not required for this part
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of the experiments.

By using the gender classifier as a feedback in the gender normalization loss

term as employed Equation 2.17, gender score converges to a normalized value

that is 0.5, since the gender labels can take 0 or 1 for female and male respectively.

Figure 3.1: Overall normalization loss during the gender normalization process

for an example subject

Figure 3.2: Gender score inferred by �g during the gender normalization process

for an example subject

Figures 3.1 and 3.2 shows the value of overall loss and the corresponding gender
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score for each iteration of the gender normalization for a single subject, demon-

strated for a better comprehension of the process. In essence, gender normalized

reconstruction of the subject’s latent representation proceeds with high oscilla-

tions as seen in Figure 3.1 and the gender score converges to 0.5 until the end

of the process. Notice that, this is the procedure for normalizing the gender to

obtain the neutralized gender version of the subjects. As explained previously,

other two approaches concerning the analysis of gender involve transforming the

gender of child or parent for F-D and M-S kin pairs. To this end, instead of

normalizing the gender scores of the subjects to 0.5, we converge them to either

0 or 1.

Concerning the neutral gender representation needed for the methods in Sec-

tions 2.1.1 and 2.1.2, we utilize the meta face computed from over 60k images in

the latent space of [51]. That representation is utilized in the projection of the

neutral gender to find the equally distanced gender point in the latent space as

described in Section 2.1.1. Besides, the same representation is used in extracting

and normalizing the neutral gender style vector as explained in Section 2.1.2.

Table 3.1 shows the results of different gender-focused experiments described

so far. Baseline indicates the kinship verification experiment results published in

[66] that is the model trained without gender normalization. Latent Projection

shows the results for the same network trained with employing the gender normal-

ization method of finding the equally spaced latent dimensions, Style Modification

is the method for gender normalization by the style vector modification, and fi-

nally Sample-Specific shows the results of which the sample-specific gender nor-

malization method is utilized. Rows Child Gender and Parent Gender on the

other hand indicate the results of gender transformation in only F-D and M-S

pairs. Child Gender means the parents’ gender in the F-D and M-S pairs are

transformed into the children’s gender. By contrast, Parent Gender means the

children’s gender in the those pairs are transformed into the parents’ gender.
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KFW-I KFW-II

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Baseline 0.6608 0.7309 0.7207 0.5897 0.6755 0.6800 0.7140 0.6860 0.7060 0.6965

Latent Projection 0.6612 0.7217 0.7123 0.5905 0.6714 0.6850 0.7100 0.6820 0.7080 0.6962

Style Modification 0.6510 0.7014 0.7026 0.5807 0.6589 0.6750 0.7080 0.6780 0.7010 0.6905

Sample-Specific 0.7093 0.7212 0.7481 0.6451 0.7181 0.7720 0.8000 0.8030 0.7880 0.7907

Child Gender 0.7426 0.7698 0.7404 0.6853 0.7345 0.7920 0.7650 0.7570 0.7740 0.7720

Parent Gender 0.7393 0.7635 0.7287 0.6674 0.7247 0.7900 0.7670 0.7580 0.7840 0.7747

Table 3.1: Gender normalization in kinship verification analysis.

Latent Projection shows the results kinship verification results of the net-

work that is trained as employing the gender normalization method of finding

the equally spaced latent dimensions, Style Modification is the method for gender

normalization by the style vector modification, and Sample-Specific shows the

results of which the sample-specific gender normalization method is utilized.

Experiment results show that except the first two methods, gender normaliza-

tion has improved the kinship verification accuracy on both datasets KFW-I/II.

As for the kinship verification mean accuracy, sample-specific gender normaliza-

tion increase the accuracy about 4.3% for KFW-I and about 9.5% for KFW-II

compared to the baseline. We do not obtain a similar improvement using the first

two methods, even resulting in a slight performance decrease when we employ the

style vector modification method. Besides not improving the opposite gender pair

verification, these two methods cause varying performance drop in the pairs with

the similar gender. This can be explained as when these methods are applied,

they somehow distort the kinship-oriented features rather than normalizing the

gender-only characteristics of the faces. When we further investigate the effec-

tiveness of these two methods, we observe that the first method where we find

an equally spaced latent dimensions modifies the facial images in a quite limited

extent. Second method where we applied style modification on the other hand,

leads to a more notable changes in the facial images, in which the identity charac-

teristics are effected in a varying magnitude. Thus, the experiment results show
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a similar pattern in which the first normalization method does not notably effect

the verification performance while the second method degrades the performance

to some extent.

Similar improvement to sample-specific gender normalization is also observed

for the verification performance where we converged parent or child gender to their

opposite for F-D and M-S pairs. For the case where parent gender is converged to

child gender, there is a 6% and 7.5% accuracy improvements on the corresponding

datasets. In parallel, for the case where child gender converged to parent gender

there are improvements of 5% and 7.8% for KFW-I and KFW-II respectively.

On the other hand, if we take a detailed look at the pair-wise scores, there

is a certain verification performance gap for the baseline in favour of the pairs

with same gender compared to the pairs with opposite gender on both datasets,

especially on KFW-I. This difference notably decreases when we employ gender

normalization or reduces its effect by converging to a single gender. For F-D

pair, gender normalization based verification increases accuracy from about 66%

to 71% on KFW-I, while the same pair accuracy raises from 68% to 77% on

KFW-II. Performance on M-S pair shows a similar improvement, enhancing the

baseline score of 59% to 64.5% on KFW-I and 70.6% to 78.8% on KFW-II. The

magnitude of improvement naturally differs between the datasets, since there are

higher number of samples present in KFW-II, hence the influence of normalization

is clearer.

Table 3.2 highlights this improvement by providing more insight on similar

and dissimilar gender pair verification accuracies and their difference for each of

the experiments. Concerning the results of baseline on KFW-I, similar gender

kin pairs F-S and M-D has an average accuracy of 72.6% while F-D and M-S

has an accuracy of 62.5%. By contrast, these accuracies are 73.5% and 67.7%

correspondingly for the sample-specific gender normalized verification. All in all,

divergence in the verification of different kin pairs is reduced from 10% to 5− 4%

interval for all the gender experiments, indicating that the verification deficiency

due to gender dissimilarities is considerably diminished. Although the baseline

performs quite the same on KFW-II by means of similar and dissimilar gender
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pairs, we still observe improvements in verification with dissimilar genders as they

even surpass the performance of pairs with similar gender. Note that the negative

values in table indicate that the verification performance of dissimilar gender pairs

are better than the performance of the pairs with same gender. Lastly, although

the performance difference between the similar and dissimilar gender pairs seems

to be decreased for the first two gender normalization methods, it should be noted

that the overall performance is dropped and thus this is not a desirable case.

KFW-I KFW-II

`B `3 `B − `3 `B `3 `B − `3

Baseline 0.7258 0.6252 0.1006 0.7000 0.6930 0.0070

Latent Projection 0.7170 0.6258 0.0912 0.6960 0.6965 −0.0005

Style Modification 0.7020 0.6158 0.0862 0.6930 0.6880 0.0050

Sample-Specific 0.7346 0.6772 0.0574 0.8015 0.7800 0.0215

Child Gender 0.7551 0.7140 0.0411 0.7610 0.7830 −0.0220

Parent Gender 0.7461 0.7033 0.0428 0.7625 0.7870 −0.0245

Table 3.2: Gender normalization effect on similar and dissimilar gender kin pairs.

`B denotes the the mean accuracy of same gender kin pairs F-S and M-D, whereas

`3 is the mean accuracy of different gender kin pairs F-D and M-S. `B − `3 repre-

sents the accuracy difference between the `B and `3

For the following parts of the experiments, we employ only the best performing

gender normalization which is the sample-specific normalization method, unless

otherwise is stated.
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3.4 Age Normalization in Kinship Verification

In this part of the experiments, we analyze the effect of age in kinship verification.

The main purpose here is to show that if we remove the age-related dissimilarities

in human face by preserving the identity, we can learn a better kin model which

is robust to detect kinship probability of pairs with photos in different ages.

To this end, we normalize the age of all the subjects, by transforming them

to three different age groups that are 18, 35 and 55 years old. These ages are

selected due to their expressiveness in terms of different periods of a human face

during its aging. For this experiment, we do not leave any subject out of the

normalization like we did in the parent and child gender experiments since this

is not required in case of analyzing the effect of age. But remember that non-

aligned faces cannot be used for the age normalization as well, due to avoiding a

distribution mismatch with the generative model. Lastly, we also experiment with

an independent age transformer network introduced in [71], in order to compare

with the age normalization method we propose.

Similar to the gender normalization, we employ the method that is demon-

strated in Figure 2.9 for age normalization, with removing the �g network for

analyzing the age-only affect on verification. Since we use the same generator,

all the images are re-scaled and aligned before the age normalization process as

in Section 3.3.

For implementing the network �a, we use [69] again as our backbone and train

an age regression network by means of transfer learning from facial recognition

task to age prediction. Hence, �a consist of a 2-layer fully connected network

on top of [69] that is employed as the facial feature extractor. The network is

trained on UTKFace [26] dataset which consist of over 20.000 facial images with

ages varying from 0 to 116 years old. We up-scale images to size 224 × 224 to

be consistent with the generator which would be required for the normalization

phase. During training of �a, we apply online data augmentation by random

horizontal flip and random crop. Concerning the training setup, we freeze the

pre-trained [69] except the last convolutional block, which is fine-tuned by a
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learning rate of 0.00001 for extracting the age-related features. For the fully

connected layers attached for regression, however, we employ a higher learning

rate of 0.0001 since they are trained from scratch unlike the feature extractor. We

use a batch size of 64, maximum number of epochs 50 bound to early stopping

with patience of 6 epochs. Learning rate decay on plateau with a decay rate of

2 is applied to prevent learning from stagnating. L1 distance is used as the loss

metric for training the age regression network.

Using the trained �a and minimizing the age normalization loss in Equation

2.18, the age of the subject is normalized by converging to the desired age value

for each of the experiments. For instance, if we transform all the subjects to their

18 years-old version, parameter 0 in Equation 2.18 is assigned the value 18. For

a better comprehension of the age normalization process, the total normalization

loss, L1 distance to the desired age value, and the age value at each iteration are

showed for a single subject in the following figures.

Figure 3.3: Total normalization loss for an example subject during the age nor-

malization process

Demonstrated in the figure above, overall normalization loss is computed ac-

cording to the Equation 2.16, excluding the gender normalization term for the

sake of the age-normalization-only experiments. The normalization loss decreases

and finds a local minima as we continue to iterate up to a certain point. Note
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that we held the number of iterations smaller than the case where we normalized

the gender of a subject, since it converges faster for the age normalization.

Figure 3.4: Distance to the target age, in this case 18 years old, computed by

subtracting the current age value inferred by �a from the target age during the

age normalization process for an example subject

L1 distance to the target age for the same specific subject also decreases in

parallel with the overall loss, as long as the normalization process continues. For

this case, subject is 13 years older than the target age at the beginning, which is

then normalized to have a minimal distance to the normalization target so that

the process is finished with a distance of between 0 − 1 years to the target.

Age value measured at each step of the normalization process shown in figure

above also recaps that the subject is predicted as 30 years old before starting to

the normalization and then gradually converges to the target age, which is 18

years old, until the end of the process.
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Figure 3.5: Age value per iteration inferred by �a during the age normalization

process for an example subject

Table 3.3 shows the results of age normalization based kinship verification

using the verification accuracy as the evaluation metric. Group 1 denotes the

experiment in which the age of all subjects are normalized to 18 years old, whereas

Group 2 and Group 3 represents the age normalization at 35 and 55 years old

respectively. We also conduct a separate age normalization experiment using a

pre-trained age transformation network that is recently introduced in [71] without

making any modifications for the comparison purposes. Since the network is

trained on different range of ages instead of exact age values, we transform all

the subjects to the age interval of 15-17 using this network. The result of this

experiments can be found in the last row of the table.

Experiment results show that age normalization improves the kinship verifica-

tion accuracy on both datasets KFW-I/II compared to the baseline performance.

Considering the overall performance on kinship verification, normalization at all

three age groups improve the accuracy by at least 4.2% for KFW-I, and 9% for

KFW-II.
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KFW-I KFW-II

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Baseline 0.6608 0.7309 0.7207 0.5897 0.6755 0.6800 0.7140 0.6860 0.7060 0.6965

Group 1 0.7167 0.7083 0.7519 0.6940 0.7177 0.7840 0.7960 0.8140 0.7900 0.7960

Group 2 0.7241 0.7149 0.7481 0.7027 0.7225 0.7880 0.7880 0.7980 0.7700 0.7860

Group 3 0.7207 0.718 0.7559 0.6940 0.7221 0.7760 0.7960 0.8080 0.7820 0.7905

Or-El et al. [71] 0.6272 0.7120 0.7161 0.5891 0.6611 — — — — —

Table 3.3: Age normalization in kinship verification analysis

Again, the magnitude of improvement between the two datasets differ because

of different number of subjects present, the dataset with more samples exhibiting

the normalization effect distinctly. While normalization at age group 2 performs

slightly better than the remaining age groups for KFW-I, normalization at age

group 1 outperforms the rest for the KFW-II dataset. Possible reasons for that

are mentioned in the following paragraphs. In general, the improvements in age

normalization seems within the ±1% range in comparison to the improvements

in gender normalization that are reported in Table 3.1.

Focusing on the pair-wise verification scores at KFW-I, normalization at age

group 2 outperforms the rest for F-D and M-S kin pairs, whereas the best per-

formance for F-S and M-D pairs obtained by the age group 3 normalization.

The most significant improvement compared to the baseline is in M-S kinship

verification, as the accuracy is increased from 59% to about 70%. Nevertheless,

improvements between the normalization at different age groups differ slightly

so that yielding a rather consistent enhancement trend. For the experiments on

KFW-II on the other hand, we observe that normalization at age group 1 leads a

better verification performance for M-D and M-S pairs, whereas there is not any

group that performs superior than the normalization at the other ages for pairs

F-D and M-S.

Improvements between different age groups vary due to a number of reasons
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including the mismatching age distribution between the datasets and the kin

pairs. Although there is not ground truth information for KFW datasets by

means of subject ages, the higher performance boost in M-S pair verification might

imply a more divergent age profile of the mother and son pictures compared to

the other kin pairs. Besides, the quality of normalization at different age groups

highly depends on the distribution learned by the generative model, which directly

effects the kinship verification performances reported.

Lastly, the age normalization performed by the pre-trained [71] results in the

worst verification performance in our experiments. We observe that for KFW

datasets, the age transformation by the network distorts pretty much the iden-

tity characteristics of faces as shown in the appendix of this thesis, even if we

align images to match the learned distribution before they are fed into the net-

work. Since identity is more-or-less corrupted in such a manner, performing the

verification worse than baseline is indeed a natural consequence.

3.5 Age and Gender Normalization in Kinship

Verification

We observed that the age and gender normalization enhance the kinship verifica-

tion performance by analyzing their sole effect in the previous sections. Therefore,

in this section we investigate their combined efficacy in verification. In addition,

we study the impact of age and gender normalization in latent space, unlike the

previous experiments that are realized only in image space. Our intention is to

reduce the loss of information in various steps caused by the additional recon-

structions, such as networks �a and �g predicting the age and gender scores in

the reconstructed images at every iteration. Here reconstruction means that a

latent vector being transformed to the image space by the generator network. An

example to this can be seen in Figure 2.9, whereby the generator reconstructs the

updated latent vector / as an image which is then fed into the networks �a and

�g for age and gender prediction. To this end, as well as analyzing the combined

59



effect of age and gender normalization in kinship verification, we also investigate

the potential performance gain by evaluating the age and gender directly in latent

space by changing networks �a and �g such that they can directly take the latent

vector as their input. Note that we employ only the best performing approaches

in the following experiments for the sake of avoiding redundant complexity in the

analysis.

3.5.1 Normalization in Image Space

In this part of the experiments, we analyze the combined effect of age and gen-

der normalization on kinship verification in image space using the methods that

are explained in sections 2.1.3 and 2.2, implemented using the generative model

architectures [58] and [59] respectively.

To investigate the simultaneous normalization of age and gender as proposed

in Section 2.1.3, we normalize the subjects to the same three different age groups

in Section 3.4 as well as to the neutral gender. The images are normalized using

the complete loss term in Equation 2.16 unlike the previous experiments in which

we employed only the age or gender loss terms within the normalization loss. The

networks �a and �g are held the same with the previous experiments and used

together as shown in Figure 2.10 to compute the age and gender losses.

Experiment results in Table 3.4 show that the simultaneous normalization of

the age and gender improves the kinship verification accuracy on both datasets

compared to the baseline. Besides, we observe that the simultaneous normaliza-

tion of the age and gender performs slightly worse than the experiments where we

normalize the age and gender on KFW-I. However, this is not the case for KFW-

II, as the gender normalized versions of the age groups 2 and 3 yield a better

verification performance. So we may infer that for KFW-I, compared to the nor-

malization of only one attribute, normalizing the age and gender simultaneously

might have effected the facial identity rather than yielding a beneficial normal-

ization that is supposed to improve the verification performance. For KFW-II

on the other hand, simultaneous normalization of age and gender results in an
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improvement on verification although it is as minor as only about 1%.

KFW-I KFW-II

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Baseline 0.6608 0.7309 0.7207 0.5897 0.6755 0.6800 0.7140 0.6860 0.7060 0.6965

Gender-Neutral Group1 0.7054 0.7115 0.7327 0.6815 0.7060 0.7780 0.7900 0.7900 0.7860 0.7860

Gender-Neutral Group2 0.7019 0.7244 0.7601 0.6850 0.7178 0.7920 0.8060 0.8100 0.7800 0.7970

Gender-Neutral Group3 0.7170 0.7308 0.7319 0.6850 0.7162 0.7840 0.7880 0.8100 0.7860 0.7920

Table 3.4: Sample-specific normalization of age and gender simultaneously

In the following set of experiments, we analyze the benefit of pair-specific

weighting of different age and gender combinations that is proposed in Section

2.2. As a reminder, unlike the previous methods where we normalized the age

and gender to have a common value for all the subjects, in this method we

utilize different combinations of age and gender attributes of input pairs for the

kinship verification. For modeling these combinations, we train a StarGAN [59]

model with certain modifications. The motivation of utilizing this model was

that training a single generator is sufficient to model multiple domains, such as

age and gender, unlike the other architectures requiring a dedicated generator to

model the every single domain.

Concerning the age and gender combinations, we choose to model each gender

combination of 3 different age intervals that are 0-17, 18-31 and 31-90. These in-

tervals are selected taking two facts into consideration. First, we want to model

discretized phases of human face during its aging from childhood to elderness.

Second, we need to take imbalanced age distribution of UTKFace dataset into

account, hence, select these age groups to prevent modeling an age interval better

or worse than another. Consequently, we construct the architectures such that

style encoder network extracting 6 different style vectors of the afore-mentioned

age and gender combinations from an input image, mapping network that gen-

erates 6 style vectors from a random latent vector, and the discriminator as a

multi-task network that outputs the real or fake score for each of the generated
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combinations.

Since the generative model introduced in [59] is trained on CelebA-HQ dataset

with over 30.000 images of size 256 × 256, we reduce the model capacity due to

the fewer number of samples and the smaller image size in UTKFace dataset.

Therefore, we employ three encoder and decoder blocks and two bottleneck blocks

in the generator architecture, containing about half the size of the original network

configuration. Besides, dimension of style vectors and hidden dimension of the

mapping network are reduced to 16 and 256 respectively. All these design choices

are made to prevent overfitting to the training data, as we require model to

generalize well to infer on a completely new dataset it has never seen. As for the

training configuration, we used Adam optimizer for parameter updates, learning

rate of 10−6 for the mapping network and 10−4 for the discriminator, encoder and

generator networks. Weight decay of 10−4 is used to help better generalization

and the batch size is selected as 8 for the training. Once we train the model, we

freeze the weights and obtain the generative network denoted as � in Figure 2.1.

In order to implement the kinship models  =, we train them separately using

a particular age and gender combination of the input pair that is generated by � .

This help each kin model to specialize on a specific age and gender combination,

modeling the age-and-gender-specific kinship features of that specific combina-

tion. Training configuration is held the same as described in Section 3.2 for each

 =.

Before aggregating all these age and gender combinations for kinship verifi-

cation, we first analyze the individual impact of each of these age and gender

normalized pairs on verification. First two columns of the Table 3.5 denote the

transformed gender and age attributes of the normalized pairs respectively. Ex-

periment results in the table show that normalization at any age and gender

combination increase the overall kinship verification performance on both datasets

compared to the baseline. Consistent with the previous experiments, improve-

ments are more obvious for the KFW-II dataset compared to KFW-I. In terms of

kinship verification at KFW-I, we observe that the normalization to age interval

31-90 outperforms the rest of the age groups with any gender combination. By
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contrast, this is not the case for KFW-II as normalization to the younger age

intervals yielded better verification performance. This might point out to the dif-

ferent age distribution of the subjects in these datasets rather than the modeling

performance of the generator. Therefore, we might infer that the age distribution

of subjects in KFW-I is relatively older compared to the KFW-II, considering

the best verification accuracy obtained by normalization at older ages on KFW-I

and younger ages on KFW-II. In order to validate that interpretation, we employ

a pre-trained age regression network [72] to compute the age difference between

the datasets. Supporting our reasoning, the inference results revealed an average

of 9.5 years age difference between the KFW-I and KFW-II.

Focusing on the improvements in pairs with dissimilar genders, normalization

to 18-30 years old male results in best performance in F-D verification on both

datasets compared to the other combinations. For M-S verification on the other

hand, normalization to 31-90 years old male considerably surpasses the remain-

ing combinations at KFW-I, and yields in almost the same accuracy with the

best performing normalization at 0-17 years male with only 0.2% of an accuracy

difference. Since the improvements in the verification of kin pairs with dissimilar

genders is notably higher when we normalized subjects to the male domain, the

reason can be explained as the generator learned the male domain better than

the female.

KFW-I KFW-II

Gender Age F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

M 0-17 0.6724 0.7437 0.6924 0.6025 0.6778 0.7180 0.7640 0.7740 0.7900 0.7615

M 18-30 0.6907 0.7083 0.7007 0.6324 0.6830 0.7420 0.7700 0.7740 0.7800 0.7665

M 31-90 0.6682 0.7148 0.7244 0.6543 0.6905 0.7380 0.7600 0.7560 0.7880 0.7605

F 0-17 0.6682 0.7310 0.7239 0.6018 0.6812 0.7320 0.7580 0.7820 0.7820 0.7635

F 18-30 0.6499 0.7120 0.7399 0.6413 0.6858 0.7320 0.7560 0.7720 0.7660 0.7565

F 31-90 0.6724 0.7183 0.7716 0.6196 0.6955 0.7320 0.7540 0.7900 0.7760 0.7630

Table 3.5: Performance of individual kin models trained on a specific age and

gender combination. M denotes male and F denotes female.
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Concerning the pairs with similar genders at KFW-I, we observe that all the

age and gender combinations decrease the verification accuracy of F-S pair com-

pared to the baseline, except the normalization at age interval of 0-17 years old.

Given that, we can assume the age distribution of F-S pairs might be closer to the

0-17 years old age interval so that normalization within this interval help increase

the verification performance. A similar pattern is observed for the M-D pair in

which we obtain higher verification accuracies as the normalization at older age

intervals further improve the performance, hence the reason can be explained as

the age distribution of M-D pairs is older than the F-S pairs. For similar genders

at KFW-II, we also observe that normalization at younger ages results in higher

accuracy for F-S verification, whereas normalization at older age interval yields a

better performance in M-D verification so that we can make a similar inference.

Using the same pre-trained age regression network [72] we employed in validating

the average age difference between the two datasets, we also confirm that the

parents in F-S pairs are 6.4 and 10.2 years younger than the parents in M-D pairs

in average, concerning the KFW-I and KFW-II datasets respectively.

Up to this point, we analyzed the improvement in kinship verification employ-

ing different age and gender combinations individually. Since we observe a solid

increase in verification performance with all the normalization values, we then

aggregate all of these age and gender versions. That way, we expect to benefit

from every single age and gender combination of the input image pair simultane-

ously when predicting the kinship probability. To analyze the combined effect of

all the age and gender normalized versions in kinship verification, we first exper-

iment with rather naive approaches such as aggregating the kinship probabilities

each  outputs, by means of majority voting, joint posterior, and the average

posterior. For predicting the kinship score using the majority voting, all the kin

models  predict a kinship probability using the corresponding age and gender

combination on which they are trained for, then the input pair is inferred as kin

if the majority of the models output a kinship probability that is greater than

0.5. Concerning the joint and average posteriors on the other hand, since the

output of each kin model is an independent posterior probability, we infer the

final kinship probability as either the product of these posteriors or the mean of
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them respectively.

KFW-I KFW-II

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Mean Kinship Score 0.6644 0.7310 0.7439 0.6283 0.6919 0.7200 0.7640 0.7700 0.7680 0.7555

Majority Voting 0.6940 0.7115 0.7323 0.6509 0.6972 0.7420 0.7740 0.7760 0.8000 0.7729

Joint Posterior 0.6978 0.7179 0.7480 0.6509 0.7036 0.7400 0.7760 0.7840 0.7980 0.7745

Average Posterior 0.7015 0.7211 0.7441 0.6552 0.7055 0.7420 0.7780 0.7840 0.7940 0.7745

Table 3.6: Different approaches for kin score aggregation of each kin model

Experiment results of these approaches are reported in the table above. As ex-

pected, we observe that using all the age and gender normalization combinations

led to an improvement of 1% to 3% in kinship verification accuracy compared

to the verification using individual combination of age and gender normalization

that are shown in Table 3.5. Moreover, considering the performance of different

aggregation methods, majority voting performs worse than the joint and average

posteriors on both datasets even if by a quite small margin. Therefore we can

conclude from the results in Table 3.6 that utilizing all the age and gender com-

binations may result in a more robust kinship verification, while there are not

any significant difference between the aggregation methods that we experiment.

As we observe certain improvements in verification after combining all the age

and gender versions, we finally experiment with the pair-specific weighting of the

kin models that are trained on particular age and gender normalized versions

of the input pair as proposed in Section 2.2. To this end, instead of combining

the age and gender versions by the naive approaches as discussed above, we

implement the attention networks � in Figure 2.1 to obtain a pair-specific and

dynamic combination of each kinship score that the kin models output.
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KFW-I KFW-II

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Baseline 0.6608 0.7309 0.7207 0.5897 0.6755 0.6800 0.7140 0.6860 0.7060 0.6965

Attention on Original Data 0.6685 0.7309 0.7324 0.6472 0.6947 0.6950 0.7200 0.7040 0.7240 0.7107

Attention on Normalized Data 0.7090 0.7214 0.7436 0.6720 0.7115 0.7580 0.7880 0.7920 0.8020 0.7850

Table 3.7: Kinship verification performance of pair-specific attention on age and

gender combinations

Experiment results for pair-specific weighting of kin models are shown in the

table above. Besides a minor improvement in the overall verification accuracy

compared to the results shown in Table 3.6, employing pair-specific attention

further reduce the verification performance gap between the similar and dissimilar

genders on both datasets. The reason can be explained as the attention network

learns which kin model should have the most influence on output according to the

different age and gender features extracted by each of the kin models. Therefore

it is expected to improve the verification performance of the pairs with relatively

lower accuracy, since the network emphasize on the most eligible age and gender

normalized version of the input pair by assigning a higher weight than the rest of

the age and gender combinations. While adding only the attention mechanism to

the training of the network using the original data results in a slight improvement

compared to the baseline, that enhancement in kinship verification performance

considerably increases when the age and gender combinations are employed in

the training, approving the effect of age and gender in kinship verification.

3.5.2 Normalization in Latent Space

In addition to our study on age and gender normalization in image space, we

analyze the effect of normalization in latent space to kinship verification. To this

end, we use the same generative modeling backbones that we analyzed in Section

3.5.1 to obtain comparable results.
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Recall that for achieving the sample-specific normalization in image space, we

minimize the loss function in Equation 2.16, where we compute the age and gender

losses using the inference of networks �a and �g in image space. To realize sample-

specific normalization in the latent space instead, we follow the implementation

shown in Figure 2.10 and described in Section 2.1.3.

For convenience, we do not experiment with all the different age groups that

are studied in Table 3.4 and keep only the best performing normalization scheme

where the subjects are normalized to the neutral gender and to the age of 35.

Furthermore, we perform some further analysis to investigate the possible defi-

ciencies in identity information that might have been introduced during the age

and gender normalization. To this end, we conduct three additional experiments

as the following. First, we amplify the influence of perceptual loss in the over-

all normalization loss in Equation 2.16 by increasing its coefficient. Second, we

employ an additional loss term that is the cosine similarity between the origi-

nal image and its normalized version computed in the latent space. Third, we

increase the coefficients of both perceptual and cosine similarity losses.

Results of the aforementioned experiments are reported in Table 3.8. As we

can see, normalization in latent space provides almost the same overall improve-

ment in kinship verification accuracy compared to the same normalization in

image space as shown in the third row of Table 3.4. On the other hand, exper-

iments with different loss function configurations show that there is a trade-off

between the normalization and preserving the facial identity information more

aggressively using the loss coefficients. The most visible effect of increasing the

coefficient of the perceptual loss is that it yields a performance drop in M-S veri-

fication at KFW-I and an increase in M-D verification at KFW-II. This might be

indicating that the normalization of age and gender does not degrade the identity

information in general, and solely increasing the influence of perceptual loss only

suppresses the efficiency of the normalization.

Employing the additional loss term cosine similarity results in a considerable

performance decrease in F-D verification while an increase in M-S verification.

Recall that the perceptual loss is computed using the feature maps of a neural
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network while the cosine similarity loss is obtained directly in the latent space.

Since cosine similarity in latent space mostly indicates the encoded facial similar-

ity in the embedded space of the generator, we can explain the contradicting effect

in F-D and M-S pairs as the side effect of normalization in corrupting the identity

information for the M-S pair. As for the F-D pair, normalization yields rather the

expected improvement than the undesired effect of repressing the identity-related

information.

KFW-I KFW-II

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Gender and Age Normalized 0.7165 0.7275 0.7487 0.6853 0.7195 0.7840 0.7940 0.7960 0.7960 0.7925

+ Higher Perceptual Loss 0.7205 0.7213 0.7481 0.6681 0.7145 0.7820 0.7900 0.8060 0.7920 0.7925

+ Cosine Similarity 0.6868 0.7212 0.7210 0.7109 0.7100 0.7780 0.7980 0.8060 0.7960 0.7945

+ Higher Cosine Similarity and Perceptual Loss 0.7316 0.7216 0.7561 0.6721 0.7204 0.7900 0.7980 0.8100 0.7840 0.7955

Table 3.8: Sample-specific normalization of age and gender in latent space

Combined effect of employing the cosine similarity and increasing the percep-

tual loss coefficient provides slightly better verification performance, especially

for the pairs F-D and M-D.

Lastly, we analyze the effect of normalization in latent space using the Star-

GAN backbone for generative modeling. To this end, we interpolate between the

genders and an age style vector in latent space to find a brand new style vec-

tor which encodes the style representation of the input subject that is age and

gender normalized. This make sense since each style vector contains semantic in-

formation about the specific characteristics of the face, therefore, we can compute

the neutral gender version of each age group unlike the experiments in Table 3.5

where we need to combine a specific gender with an age group.

Experiment results in Table 3.9 shows that normalization in latent space also

enhances the kinship verification performance of the baseline on both datasets.

Although we cannot directly compare the results with normalization in image

space due to the normalized gender, we can still draw some insights by analyzing
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these experiments.

Concerning the experiments on KFW-I, normalization in latent space in gen-

eral leads to better verification accuracies compared to the different age and gen-

der normalization combinations shown in Table 3.5. Verification of the pairs with

dissimilar gender is higher than the most combinations in Table 3.5, as we might

expect since the neutral gender representation in latent space is utilized. For the

M-D pair, normalization in latent space results in always a better verification

except the normalization to 31-90 years old female in image space. Nevertheless,

we see the same pattern in normalization at latent space as the M-D pair tends

to give better results when normalized to the older ages. Similarly, F-S pair ver-

ification is consistently better when the subjects are normalized to younger ages

in both image space and latent space normalization.

KFW-I KFW-II

Gender Age F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Neutral 0-17 0.6721 0.7410 0.7441 0.6413 0.6996 0.7680 0.7540 0.7620 0.7600 0.7610

Neutral 18-30 0.6687 0.7379 0.7407 0.6510 0.6995 0.7600 0.7420 0.7780 0.7480 0.7580

Neutral 31-90 0.6778 0.7380 0.7527 0.6673 0.7089 0.7580 0.7400 0.7740 0.7550 0.7570

Table 3.9: Age and gender normalization by style vector interpolation in StarGAN

latent space

Considering the experiments on KFW-II, normalization to neutral gender in

latent space increases the verification performance for F-D pair, but decreases it

for the M-S pair for all the age groups. Although the M-S pair normalization de-

grades the verification accuracy compared to the image space normalization, the

results are consistent by means of improvement in M-S accuracy when normalized

to the 0-17 age group. Concerning the F-S and M-D verification, normalization

to neutral gender in latent space does not show any significant improvement as

expected, since they are already on the same surface in terms of gender. Again,
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results show consistent improvement changes in terms of the age, as the normal-

ization to younger age for F-S and to older age for M-D pairs leads to a relatively

better verification.

KFW-I KFW-II

Baseline 0.6755 0.6965

Latent Projection 0.6714 0.6962

Style Modification 0.6589 0.6905

Sample-Specific Optimization 0.7178 0.7970

Pair-Specific Weighting 0.7115 0.7850

Table 3.10: Summary of change in kinship verification accuracy employing the

proposed normalization methods

All in all, we observe that the methods which employ vector operations in the

latent space results in a very limited change or even reduced the accuracy due

to altering the identity-related facial characteristics. On the other hand, age and

gender normalization by sample-specific optimization and pair-specific weighting

yields a considerable increase in kinship verification performance compared to the

baseline.
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Chapter 4

Conclusion

The individual and combined impact of age- and gender-related facial attributes

in kinship verification have been investigated. Several methods have been pro-

posed to eliminate their undesired effect in this context. The proposed approach

utilizes the extensive modeling capabilities of generative adversarial networks to

model and removes the age and gender attributes, enhancing the verification

performance of an arbitrary kinship model on two benchmark datasets without

making any changes in the hyperparameters or the architecture.

We have first proposed normalizing the gender-specific features from the facial

images by learning a transformation between the male and female gender domains,

then finding an equally-spaced latent dimension to represent the faces in a gender-

neutralized manner. To do so, we have used the neutral gender representation in

latent space and projected the subjects’ faces onto this representation to obtain

their gender-neutralized versions.

In another approach, inspired by the style transfer literature, we have ex-

tracted the style vectors of faces and synthesized gender-neutral versions of the

same identities by combining these style vectors with the ones extracted from the

neutral-gender representation. This is an intuitive way of mixing diverse facial

attributes that blend facial identity styles with neutral gender styles.
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Moreover, we defined generating an age-and-gender-normalized version of the

subject as an optimization problem. To this end, we iteratively generate a nor-

malized version of the input face, minimizing the proposed age and gender nor-

malization loss. The overall normalization loss involves perceptual similarity and

the age and gender normalization loss terms to preserve the identity information

at a reasonable scale while yielding the desired normalization of these two at-

tributes. The age and gender normalization losses are computed by employing

auxiliary networks’ logits that perform age regression and gender classification,

respectively. These inferences are computed both in the image and latent spaces

in order to compare their efficiency against each other. Image-space models are

trained on public datasets that contain age and gender labels, while the models

that perform inference in latent space are trained in the latent space of the corre-

sponding pre-trained generator. Normalizing the age and gender with this method

has achieved the best kinship verification performance due to the sample-specific

optimization of the images. However, this is expectedly the most computationally

costly method among all the proposed approaches.

Furthermore, the normalization performance is subject to the performance

of age and gender networks that are employed to compute the corresponding

loss terms. Our experiments with normalizing only the age or gender using this

approach showed that the individual contribution of age or gender normalization

contributes to the performance improvement in kinship verification in a similar

magnitude. Concerning the benefit of computing the normalization loss in the

image or the latent space, we observed that the normalization in the latent space

slightly provided better performance in terms of kinship verification.

Unlike the previous approaches in which we directly normalized the age and

gender attributes, we performed kinship verification utilizing the subjects’ pair-

specific weighted age and gender combinations. Therefore, we have modeled both

genders along with the three different age groups using a multi-domain generator.

Synthetic age and gender combinations of the image pairs are used for pre-training

specialized kinship models, which are then trained using an attention network that

assigns weights to these combinations according to the extracted kinship features

from each pair. That way, the model dynamically determines how much each age
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and gender combination of the input pair would contribute to the final kinship

score. Extensive experiments are conducted to validate the efficiency of this

approach by analyzing the individual kinship models that are trained on different

age and gender combinations. Each model increased the verification accuracy

at various scales, improving even more when the attention model is attached to

combine all the information out of different age and gender combinations of the

input face pair. This approach yielded the second-best improvement in kinship

verification after the sample-specific normalization of age and gender attributes.

All in all, we have shown that the differences stemmed from age- and gender-

related facial attributes degrade the kinship verification performance. By normal-

izing the gender, we have reduced the verification performance gap between the

similar and distinct gender kin pairs by about 6% on KFW-I. Furthermore, com-

bined normalization of age and gender has improved overall kinship verification

accuracy up to 10% on KFW-II. To the best of our knowledge, this is the first

study that comprehensively explores the impact of age and gender in kinship veri-

fication and proposes several methods to remove their degrading effect on kinship

verification performance. Future research approaches might include finer-grained

modeling of age and gender to improve the separation of these characteristics

from kinship-related features.
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Appendix A

Supplementary Figures

Figures that show different stages of age and gender normalization methods are

added to the appendix for reference.
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Figure A.1: Age and gender combinations of UTKFace samples generated by

StarGAN. First row is the original face images from the dataset.
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Figure A.2: Age and gender combinations of UTKFace samples generated by

StarGAN continued.
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Figure A.3: Random F-D and F-S pair samples from KFW-I dataset that different

age and gender combinations are generated. Each row contain one subject and

their image in the following order. Original, 0-17 female, 0-17 male, 18-30 female,

18-30 male, 31-90 female, 31-90 male

86



Figure A.4: Random M-D and M-S pair samples from KFW-I dataset that dif-

ferent age and gender combinations are generated. Each row contain one subject

and their image in the following order. Original, 0-17 female, 0-17 male, 18-30

female, 18-30 male, 31-90 female, 31-90 male
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Figure A.5: Sample-specific gender normalization examples on randomly gener-
ated samples. Subjects are gender neutralized from the domains female and male
as illustrated in the respective rows.
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Figure A.6: Normalization by equally-spaced latent dimension finding using the

CycleGAN backbone. Random samples from CelebA dataset are gender normal-

ized to show the relatively small effect in verification. The effect of normalization

is smaller than the other methods we proposed, hence it yielded a minimal effect

in kinship verification as discussed in the experiments section.
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Figure A.7: Normalization by style vector modification. Random samples that are
gender normalized to show the negative effect in verification. We observe that this
normalization method results in a normalized faces in a relatively smaller space
since all of the output are somehow similar in terms of the general facial shapes
for both male and female domains. Therefore the effect in kinship verification
has downgraded the performance as discussed in the experiments section.
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