
DETERMINISTIC AND STOCHASTIC
TEAM FORMATION PROBLEMS

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

industrial engineering

By

Nihal Berktaş

January 2021

Deterministic and Stochastic Team Formation Problems

By Nihal Berkta§

January 2021

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.

Oya i<'ara§an (Advisor)

Hande Yaman Paternotte(Co-Advisor)

- - - P'
Ozlem Qavu§ iyigiin

Sa.kine Batun

Mehmet Selim 'Akturk

Ignacio E. Grossmann

Approved for the Graduate School of Engineering and Science:

, Ezhan Kara§an
Director of the Graduate School

ii

ABSTRACT

DETERMINISTIC AND STOCHASTIC TEAM
FORMATION PROBLEMS

Nihal Berktaş

Ph.D. in Industrial Engineering

Advisor: Oya Karaşan

Co-Advisor: Hande Yaman Paternotte

January 2021

In various organizations, physical or virtual teams are formed to perform jobs

that require different skills. The success of a team depends on the technical

capabilities of the team members as well as the quality of communication among

the team members. We study different variants of the team formation problem

where the goal is to build the best team with respect to given criteria. First, we

study a deterministic team formation problem which aims to construct a capable

team that can communicate and collaborate effectively. To measure the quality

of communication, we assume the candidates constitute a social network and

we define a cost of communication using the proximity of people in the social

network. We minimize the sum of all pairwise communication costs, and we

impose an upper bound on the largest communication cost. This problem is

formulated as a constrained quadratic set covering problem. Our experiments

show that a general-purpose solver is capable of solving small and medium-sized

instances to optimality. We propose a branch-and-bound algorithm to solve larger

sizes: we reformulate the problem and relax it in such a way that it decomposes

into a series of linear set covering problems, and we impose the relaxed constraints

through branching. Our computational experiments show that the algorithm is

capable of solving large-sized instances, which are intractable for the solver.

Second, we consider a two-stage stochastic team formation problem where the

objective is to minimize the expected communication cost of the team. We as-

sume that for a subset of pairs the communication costs are uncertain but they

have a known discrete distribution. The first stage is a trial stage where the

decision-maker chooses a limited number of pairs from this subset. The actual

cost values of the chosen pairs are realized before the second stage. Hence, the

uncertainty in this problem is decision-dependent, also called endogenous, be-

cause the first stage decisions determine for which parameters the uncertainty

will resolve. For this problem, we give two formulations, the first one contains

iii

iv

a set of non-anticipativity constraints similar to the models in the related lit-

erature. In the second, we are able to eliminate these constraints by changing

the objective function into a quadratic one, which is linearized by a set of extra

binary variables. We show that the size of instances we can solve with these for-

mulations using a commercial solver is limited. Therefore, we develop a Benders’

decomposition-based branch-and-cut algorithm that exploits decision-dependent

nature to partition scenarios and use tight linear relaxations to obtain strong

cuts. We show the efficiency of the algorithm presenting results of experiments

conducted with randomly generated instances.

Finally, we study a multi-stage team formation problem where the objective

is to minimize the monetary cost including hiring and outsourcing costs. In

this problem, stages correspond to projects which are carried out consecutively.

Each project consists of several tasks each of which requires a human resource.

We assume that due to incomplete information there is uncertainty in people’s

performances and consequently the time a person needs to complete a task is

random for some person-task pairs. When a person is assigned to a task, we

learn how long it takes for this person to finish the task. Hence, the uncertainty

is again decision-dependent. If the duration of a task exceeds the allowable time

for a project then the manager must hire an external resource to speed up the

process. We present an integer programming formulation to this problem and

explain that the size of the formulation strongly depends on the number of random

parameters and scenarios. While this deterministic equivalent formulation can

be solved with a commercial solver for small-sized instances, it easily becomes

intractable when the number of random parameters increases by one. For such

cases where exact methods are not promising, we investigate heuristic methods to

obtain tight bounds and near-optimal solutions. In the related literature, different

Lagrangian decomposition methods are developed for such stochastic problems.

In this study, we show that the convergence of existing methods is very slow, and

we propose an alternative method where a relaxation of the formulation is solved

by a decomposition-based branch-and-bound algorithm.

Keywords: team formation problem, quadratic set covering, branch-and-bound,

reformulation, decision-dependent uncertainty, decomposition.

ÖZET

DETERMİNİSTİK VE RASSAL EKİP KURMA
PROBLEMLERİ

Nihal Berktaş

Endüstri Mühendisliği, Doktora

Tez Danışmanı: Oya Karaşan

İkinci Tez Danışmanı: Hande Yaman Paternotte

Ocak 2021

Günümüz ürünlerinin ve servislerinin karmaşıklığı çok farklı alanlarda bilgi,

beceri ve deneyim gerektirmektedir. Bu nedenle şirketler, üniversiteler, has-

taneler, belediyeler gibi çok çeşitli kurumlarda ekipler halinde çalışılır. Ekip

tarafından yapılan işin kalitesi üyelerin teknik bilgi ve becerilerine bağlı olduğu

kadar aralarındaki iletişim kalitesine de bağlıdır. Bu tezde amacın en iyi ekibi

oluşturmak olduğu çeşitli ekip kurma problemleri inceliyoruz. İlk olarak, etkili

bir şekilde iletişim kurabilen ve işbirliği yapabilen gerekli yeteneklere sahip bir

ekip oluşturmayı amaçlayan bir ekip oluşturma problemi üzerinde çalışıyoruz.

Kişiler arası iletişim kalitesini ölçmek için, kişilerin bir sosyal ağın parçası olduğu

varsayıyor, bu ağdaki yakınlıklarını kullanarak bir iletişim maliyeti tanımlıyoruz.

Problemimizde iletişim maliyetlerinin toplamını en aza indirgerken ve en büyük

iletişim maliyetine de bir üst sınır koyuyoruz. Bu problemi, kısıtlı karesel bir küme

kapsama problemi olarak formüle ediyoruz. Sayısal analizlerimiz, genel amaçlı bir

tamsayılı programlama çözücüsünün küçük ve orta ölçekli örnekleri çözebildiğini

gösteriyor. Daha büyük boyutları çözmek için bir dal-sınır yöntemi geliştirildi. Bu

yöntemde önce problem yeniden formüle edildi, ardından bir dizi doğrusal küme

kapsama problemine ayrışacak şekilde gevşetildi. Dallanma yoluyla gevşetilmiş

kısıtlamalar dayatıldı. Analizlerimiz, dal-sınır yönteminin çözücü için zor olan

büyük boyutlu örnekleri çözebildiğini gösteriyor.

İkinci olarak, amacın takımın beklenen iletişim maliyetini en aza indirmek

olduğu iki aşamalı bir rassal takım oluşturma problemini ele alıyoruz. Bazı

bireyler arasında iletişim maliyetlerinin belirsiz olduğunu, ancak bu maliyet-

lerin bilinen bir ayrık dağılıma sahip olduklarını varsayıyoruz. Problemin ilk

aşaması, karar vericinin iletişim maliyeti rassal olan çiftler arasından sınırlı sayıda

seçtiği bir deneme aşamasıdır. Seçilen çiftlerin gerçek iletişim maliyet değerleri

ikinci aşamadan önce öğrenilir. İlk aşama kararlar değişkenleri, belirsizliğin hangi

v

vi

parametreler için ortadan kalkacağını belirlediği için bu problemdeki belirsizlik

karara bağlıdır. Bu problem için iki formülasyon veriyoruz; ilki ilgili literatürdeki

modeller ile benzer bir dizi beklentisizlik kısıtları içermektedir. İkincisinde,

tanımladığımız karesel amaç fonksiyonu bu beklentisizlik kısıtlarına ihtiyacı or-

tadan kaldırıyor. Ekstra ikili karar değişkeni tanımlayarak bu karesel fonksiy-

onu doğrusallaştırıyoruz. Çözücü kullanarak bu formülasyonlarla çözebileceğimiz

örneklerin boyutunun sınırlı olduğunu gösteriyoruz. Bu nedenle daha büyük

örnekleri çözebilmek için, Benders ayrıştırma yöntemi tabanlı bir dal-kesi algo-

ritması geliştirildi. Algoritmada güçlü kesiler elde etmek için ikinci aşama prob-

leminin güçlendirilmiş bir doğrusal gevşetmesi kullanıldı. Ayrıca karara bağlı

yapıdan yararlanılarak algoritmanın her yinelemesinde daha küçük bir senaryo

seti yaratılarak çözüm zamanı azaltıldı. Rastgele oluşturulmuş örneklerle yapılan

analizlerin sonuçları ile algoritmanın etkinliğini gösterildi.

Son olarak bu tezde, amacın işe alım ve dış kaynak masrafları ile personel

ücretlerinin en aza indirmek olduğu çok aşamalı bir ekip oluşturma problem-

ini inceliyoruz. Bu problemde aşamalar, ardışık olarak yürütülen projelere

karşılık gelir. Her proje, her biri bir insan kaynağı gerektiren birkaç görevden

oluşur. Eksik bilgi nedeniyle insanların performanslarında belirsizlik olduğunu

ve dolayısıyla bir kişinin bir görevi tamamlaması için ihtiyaç duyduğu sürenin

bazı kişi-görev çiftleri için rassal olduğunu varsayıyoruz. Bir kişi bir göreve

atandığında, bu kişinin görevi bitirmesinin ne kadar sürdüğünü öğrendiğimizi

kabul ediyoruz. Dolayısıyla, belirsizlik burada yine karara bağlıdır. Bir görevin

süresi bir proje için izin verilen süreyi aşarsa, yöneticinin süreci hızlandırmak

için harici bir kaynak kiralaması gerekir. Bu problem için bir tamsayılı program-

lama formülasyonu sunuyoruz ve formülasyonun boyutunun büyük ölçüde rassal

parametrelerin ve senaryoların sayısına bağlı olduğunu açıklıyoruz. Bu determin-

istik eşdeğer formülasyon, küçük örnekler için ticari bir çözücü ile çözülebilirken,

rassal parametrelerin sayısındaki bir birim artışla çözülemez hale gelmektedir.

Kesin yöntemlerin umut verici olmadığı bu tür durumlarda, sıkı sınırlar ve iyi

çözümler elde etmek için sezgisel yöntemler ararız. İlgili literatürde, bu tür ras-

sal problemler için farklı Lagrangian ayrıştırma yöntemleri geliştirilmiştir. Bu

çalışmada, mevcut yöntemlerin yakınsamasının çok yavaş olduğunu gösteriyoruz

ve formülasyonun gevşetmesinin ayrıştırma tabanlı bir dal-sınır algoritması ile

çözüldüğü alternatif bir yöntem öneriyoruz.

Anahtar sözcükler : ekip kurma problemi, karesel küme kapsama, dal-sınır, karara

bağlı belirsizlik, ayrtıştırma.

Acknowledgement

First and foremost, I would like to express my gratitude to my advisors Prof.

Hande Yaman and Prof. Oya Karaşan for their guidance and advice during my

Ph.D. studies. Hande Yaman has been my academic role model since I was a

sophomore in Bilkent University and I have learned so much from her as her

student and advisee. I am very grateful to Oya Karaşan who always supported

me during my graduate studies. I consider myself lucky to have such mentors.

I would like to thank the members of my thesis committee Assist. Prof. Sakine

Batun and Assist. Prof. Özlem Çavuş İyigün for their valuable comments during

the progress of this dissertation in the last four years. I am grateful to Prof.

Selim Aktürk for accepting to be in my dissertation examination committee and

his insightful comments. I would like to thank Prof. Nilay Noyan for her guidance

in Chapter 4 of this thesis.

I am indebted to Prof. Ignacio Grossmann who gave me the opportunity

to visit Carnegie Mellon and devoted his valuable time as if I am one of his

Ph.D students. He is the kindest person I have met, always ready to help me

with his wisdom and academic knowledge. I am extremely grateful to him for his

guidance in Chapter 5 of this thesis and also for accepting to be in the examination

committee.

I gratefully acknowledge the financial support provided by The Scientific

and Technological Research Council of Turkey (TÜBİTAK) with grant number

BİDEB-2214A for funding this research.

I would like to thank my ”old gang” Burcu Tekin, Merve Meraklı, Nil Kara-

caoğlu, and Huseyin Gürkan who supported me throughout this journey although

we are usually miles away from each other. I am grateful to my friends Ece

Demirci, Gizem Özbaygın, Esra Koca, Burak Pac, Ramez Kian, Milad Maleki,

and Parinaz Toufani for making the hours in the office enjoyable. I would like to

thank Kübra Şahin and Beyza Çelik for the fun they brought to my life. Many

thanks to my dear friend Yeliz Dingler who helped me to keep my body and soul

healthy during the hard times.

Halenur Şahin, Irfan Mahmutoğulları, Halil İbrahim Bayrak, Cemal İlhan,

Cansu Gülcan, Haşim Özlü, and Başak Yazar deserve special thanks for their

vii

viii

friendship and support. Most of the laughs I had in the last few years have been

with them.

I have had the chance to meet many wonderful people while at Carnegie Mellon

so I would like to thank David Bernal, Can Li, Özgün Elçi, Paulina Ortiz, Akang

Wang and Zedong Peng who make my visit enjoyable despite the pandemic.

I am grateful to my parents Hatice and İzzet for believing in me and supporting

me even when I doubt myself. Many thanks to my brother İhsan, my sisters Seda

and Aylar, and of course my dear niece Ela for their love and encouragement.

Last but not least, I would like to thank my husband who has been my col-

league, reviewer, editor, therapist and motivator besides being my best friend.

Thank you for your love, patience and everlasting support.

Contents

1 Introduction 1

2 Literature Review 7

2.1 Team Formation Problems . 7

2.2 Decision-dependent Uncertainty 12

3 A Branch-and-Bound Algorithm for Team Formation Problem 16

3.1 Problem Definition and Formulation 17

3.2 Branch-and-Bound Algorithms . 21

3.2.1 Reformulation, Relaxation, and Decomposition 22

3.2.2 Branching Strategy . 27

3.2.3 Upper Bounds . 28

3.2.4 The Algorithm . 29

3.2.5 Example . 31

3.2.6 Branch-and-bound Algorithm for DC-TFP-SD 34

3.3 Experiments . 35

3.3.1 Datasets and Instance Generation 35

3.3.2 Computational Results . 37

3.4 Conclusion . 45

4 Stochastic Team Formation Problem 47

4.1 Problem Definition and Value of Learning 48

4.2 Formulations . 52

4.3 Branch-and-Cut Algorithm . 57

4.3.1 The Decomposition and Cuts 58

4.3.2 Scenario Reduction . 61

ix

CONTENTS x

4.3.3 The Algorithm . 63

4.4 Experiments . 64

4.4.1 Data Generation and Pre-process 65

4.4.2 Comparision of CF and IF 66

4.4.3 Experiments on Different Versions of the Branch-and-Cut

Algorithm . 69

4.5 Conclusion . 75

5 Multi-Stage Stochastic Project Team Formation 76

5.1 Problem Definition and Formulation 77

5.2 Value of Stochastic Solution in Multi-stage Problems with Endoge-

nous Uncertainty . 83

5.3 A Decomposition-based Branch-and-Bound Algorithm 85

5.3.1 The Relaxation and Branching 86

5.3.2 Scenario Groups and Upper Bounds 91

5.4 Experiments . 93

5.5 Conclusion . 105

6 Conclusion 107

6.1 Future Research . 110

List of Figures

3.1 Collaboration network and corresponding Jaccard distances 18

3.2 Example network, optimal solutions of the subproblems and the

master and the bounds at the root node 32

3.3 The branch-and-bound tree . 33

3.4 The percentage of pairs whose shortest distance is at most d in the

IMDb (left) and DBLP (right) networks 37

4.1 A social network with uncertain edges {2,3} and {3,4} 50

5.1 An illustrative example with three stages/projects 77

5.2 A scenario tree [1] . 84

5.3 Lower bound improvements of various algorithms over an instance

with |T | = 4, |I| = 10, |K| = 5, |Kt| = 4 for t ∈ T , m = 8 97

5.4 Lower bound improvements of the branch-and-bound algorithms

over the instance with |T | = 4, |I| = 10, |K| = 5, |Kt| = 4 for t ∈ T 98

5.5 Comparison of decomposition algorithms over an instance with

|T | = 4, |I| = 12, |K| = 6, |Kt| = 4 for t ∈ T , m = 9 and at least

two-hours of running time . 99

5.6 Comparison of decomposition algorithms with an instance with

|T | = 3, |I| = 15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 9 and at least

two-hours of running time . 102

5.7 Comparison of decomposition algorithms with an instance with

|T | = 3, |I| = 15, |K| = 6, |Kt| = 4 for t ∈ T , m = 9 and at least

two-hours of running time . 102

xi

LIST OF FIGURES xii

5.8 Comparison of bbseq9 and seq9 with an instance with |T | = 3,

|I| = 15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 10 and 3-hours of

running time . 103

5.9 Comparison of bbseq9 and seq9 with an instance with |T | = 3,

|I| = 15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 9 where 104

5.10 Comparison of bbseq9 and seq9 with an instance with |T | = 3,

|I| = 15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 9 where the relaxation

noCNACs is solved within 1 hour 105

List of Tables

3.1 Communication cost matrix for the people in the collaboration

network . 18

3.2 Results for the TFP-SD on the IMDb instances. 39

3.3 Results for the TFP-SD on the DBLP instances. 40

3.4 Detailed results of the branch-and-bound algorithm for the TFP-

SD on the DBLP instances. 41

3.5 Results of the branch-and-bound algorithm for the TFP-SD on

IMDbr and DBLPr: the IMDb and DBLP instances with randomly

generated skill matrices. 42

3.6 Results for the DC-TFP-SD on the IMDb instances where the

bound on the diameter is taken as the optimal diameter 43

3.7 Results for the DC-TFP-SD on the IMDb instances 43

3.8 Results for the DC-TFP-SD on the DBLP instances 44

3.9 Results of the branch-and-bound algorithm for the DC-TFP-SD

on the DBLP instances . 45

4.1 Scenarios of the small example . 51

4.2 Comparison of IF and CF . 67

4.3 Comparison of continuous relaxations of IF and CF 68

4.4 Comparison of multi-cut and single-cut versions 70

4.5 Comparison of formulations and different versions of the algorithm 71

4.6 Computational details of algorithms for one instance 72

4.7 Comparison of different versions of the algorithm with larger in-

stances . 73

4.8 Results on F-o version of the algorithm with two-hour time limit . 74

xiii

LIST OF TABLES xiv

5.1 Comparison of two formulations 83

5.2 Results of full formulation and its relaxation 94

5.3 Bound improvements of the branch-and-bound algorithms over the

instance with |T | = 4, |I| = 12, |K| = 6, |Kt| = 4 for t ∈ T , m = 9 100

5.4 Average heterogeneity and bounds of different algorithms 101

Chapter 1

Introduction

The complexity of products and services in today’s world requires various skills,

knowledge, and experience from different fields while the pace of consumption

demands agility in the production and development phases. To be able to meet

these requirements, people are working in teams both physically and virtually

in various organizations such as governments, non-governmental organizations,

universities, hospitals, and business firms. The quality of the work done depends

on the technical capabilities of the team members as well as the dynamics of the

team such as its diversity, people’s personality, and familiarity.

The teamwork can be done physically together as in the cases of surgical teams

and construction teams, or the team members can work virtually, which is mostly

seen in the software development business. In addition to the classical organiza-

tions that build physical and virtual teams for projects, there is a new concept of

outsourcing called Team as a Service. The companies that use this model build

a team according to the needs of a given project and provide managerial service

throughout. The concept is claimed to provide the agility that companies need

in today’s fast-moving market as it reduces the burden on the core permanent

employees by offering a self-sufficient team [2]. Furthermore, both companies

and individuals use platforms such as freelancer 1, upwork 1 and also github1 and

1

stackoverflow 1 to find appropriate team members for their projects. As the es-

tablishment of these online platforms indicates, the way that people are recruited

and teams are built change over time and so as the means of communication and

the way they collaborate. A significant amount of people are working remotely

nowadays. Moreover, teams are built and dispersed more often compared to the

past because of the increase in project-based work and increase in pace of work

in general.

There are numerous factors affecting the performance of a team such as the

size, diversity, personality and familiarity and there is abundant literature on this

topic in the fields of management science, organization science and psychology as

summarized in surveys [3] and [4]. All these factors determine the effectiveness

of the collaboration and consequently the quality of the teamwork. Hoegl and

Geumenden [5] regard communication as the most elementary component of their

TeamWork Quality concept, which is developed to measure the collaboration in

teams. The study of Jones [6] is among others that emphasize the significance of

the communication in teamwork, especially in virtual teams.

Ineffective communication is one of the major factors behind unsuccessful

projects and teamwork in general. Approximately half of the errors and fail-

ures are directly related to communication in medical decisions as shown in Joint

Commission’s 2014 report [7] and in business projects, as revealed in Project Man-

agement Institute’s 2013 report [8]. While with empirical studies the scientific

community tries to detect the key features of successful teams and understand the

importance of communication, business firms have started to devote resources to

improve teams’ performance through online applications that ease project team

communication, through new team and working concepts such as agile and scrum

teams [9], and through team building games that strengthen bonds such as The

Go Game2. Such investments and trainings are strategical long term plans that

aim to sustain effective communication throughout the organization. Sometimes

organizations may require more direct and fast methods to build teams with

strong communication. Examples could be a surgical team for a complex surgery

1freelancer.com, upwork.com, github.com, stackoverflow.com/talent
2thegogame.com/team-building-games

2

or a project team in a consultancy firm that will work for an important client.

Motivated by the importance of communication in the quality of teamwork,

in Chapter 3 and Chapter 4, we study team formation problems focusing on

communication. Our work in Chapter 3 is also motivated by the abundance of

online platforms and it assumes that team member candidates constitute a social

network. The decision-maker here could be an individual who requires a team

for a project or it could be a company that uses a Team as a Service model

and wants to create a team for a client. In this work, we adopt the problem

definition of Lappas et al. [10]. The project consists of several tasks so it requires

team members with the necessary skills to perform these tasks. The skills of

the candidates are assumed to be known and represented by a binary skill matrix

built by considering minimum expertise levels. The aim is to select team members

and form a capable team that can communicate effectively.

To build a team that is good at communicating, we require a measure for the

communication. In the literature, different methods are utilized to quantify com-

munication using people’s personalities, peer evaluations and/or work history.

There are empirical studies indicating positive effects of team members’ famil-

iarity on the performance of the team. In general, familiarity is one’s knowledge

about the other members of the team . Huckman et al. [11] define team famil-

iarity as the average number of times that each team member has worked with

every other team member. For the teams working in a software service company,

the authors show the existence of a positive and significant relation between team

familiarity and operational performance. Analyzing software development teams

of a telecommunications firm, Espinosa et al. [12] find that team familiarity is

more beneficial when coordination is more challenging due to team size or dis-

persion. The study of Avgerinos and Gokpinar [13] on productivity of surgical

teams also shows that the benefit of familiarity increases as the task gets more

complex.

Motivated by these studies, in Chapter 3, to quantify the communication cost

between two people in the social network we use a metric that is inversely pro-

portional to their familiarity, which depends on the number of times they worked

3

before. Hence, pairs with higher familiarity have lower communication costs.

This definition of communication cost between two people is also used by Lappas

et al. [10], and by many others who study team formation in social networks.

Clearly, the familiarity of team members is not the only factor that affects the

team performance. For example, diversity is considered as a positive factor since

it boosts creativity [14]. These concepts are not mutually exclusive and can be

considered simultaneously if desired, either by taking them into consideration

while assigning a value to the communication costs or by additional constraints.

After assigning a value to the communication cost between two people, we

need to define the communication cost of whole team. Different cost functions

are defined and optimized in the related literature. We propose to minimize the

sum of all pairwise communication costs and to impose an upper bound on the

highest one. We show that the problem can be formulated as a quadratic set

covering problem with packing constraints. Using the existing real datasets, it

is shown that small and medium-sized instances can be solved using a general-

purpose solver but memory problems occur for large instances. We present a novel

branch-and-bound algorithm, which is very effective in solving these instances.

The algorithm is based on a reformulation of the problem, which we relax in a

way that it decomposes into a series of linear set covering problems and can be

solved efficiently. The relaxed constraints are imposed through branching.

In Chapter 4, we study a two-stage stochastic team formation problem where

for some pairs, the cost of communication is not known with certainty but the

possible values it can take and their respective probabilities are known. The first

stage is a trial stage, which gives an opportunity to observe the communication

of such pairs. A capable team with minimum expected communication cost is

built in the second stage in the light of the observations. There is a limit on

the number of pairs that can be observed during the first stage. This can be

regarded as allocating a budget for learning and the decision-maker can decide

on this limit/budget according to the available resources. This type of problem

is more likely to occur in a project-based company, which creates a team for each

job and has the opportunity to observe the communication among its employees

by assigning small tasks, which corresponds to the trial stage in the problem.

4

Hence, the number of candidates in consideration in this problem is much smaller

than the ones in the problem in Chapter 3, where we consider social networks of

thousands of people. In Chapter 4, we have a smaller setting since we consider

building a team in a department of a company, where capable people are limited

to tens, not thousands. For this reason, we generate and use random instances

in this problem, rather than using real social networks. Furthermore, we do not

make any assumptions about how communications costs are quantified.

The uncertainty in the problem studied in Chapter 4 is decision-dependent or

endogenous because we assume the resolution of uncertainty for the pairs that are

selected in the first stage. For this problem, the value of the stochastic solution

concept does not apply, and therefore we define a concept called value of learning,

which is a measure of improvement we get by the information obtained in the

first stage. We present two mathematical formulations for the two-stage stochas-

tic team formation problem and show their equivalence. In the first formulation,

we use the same modeling approach in the related literature and it contains a

higher number of non-anticipativity constraints. The second formulation does

not have these constraints but has a quadratic objective function, which is lin-

earized by defining an extra set of binary variables. By generating instances with

different sizes, we show that for small-sized instances these formulations can be

solved by a commercial solver in reasonable time. To be able to solve larger sizes,

we propose a Benders’ decomposition-based branch-and-cut algorithm where the

duality-based optimality cuts are obtained by a stronger linear relaxation of the

second stage problems. This stronger relaxation does not only generate stronger

cuts but also decreases the computational burden of solving the integer problems

by providing integral solutions often. The algorithm is capable of solving prob-

lems with thousands of scenarios because at each iteration it works on a smaller

scenario set, which we are able to create thanks to the decision-dependent struc-

ture.

In Chapter 5, we study a multi-stage team formation problem where each

stage corresponds to a project. While in the first two problems the focus is on

the quality of communication among the members, in the last one the concern is

monetary. The aim is to minimize the expected hiring and outsourcing costs for

5

the whole horizon while having qualified team members to complete the required

tasks. We assume randomness in the time required by a person to finish a task.

Similar to the problem in the previous chapter, the uncertainty here is endogenous

because we assume that the true value of a random parameter is learned once

the related decision is made in the previous stages. This might be an interesting

problem for an individual who manages several projects and mostly recruits peo-

ple online using the platforms mentioned before. With each project, the manager

evaluates the performance of the team members and decides whether to hire the

same person for the following projects.

Unfortunately, it is not possible to develop an alternative formulation to this

problem in the way it is done for the two-stage problem in Chapter 4. Hence the

formulation of the problem consists of a large number of non-anticipativity con-

straints. The performance of commercial solvers is very sensitive to the number

of random parameters present in an instance. We show that instances of very

limited size can be solved to optimality directly with a general-purpose solver.

For larger sizes, we investigate efficient methods to obtain near-optimal solutions.

On randomly generated instances, we test the existing decomposition methods

and show that they fail to give tight bounds in reasonable time. We also show

that with a different relaxation and decomposition approach the bound can be

improved but it requires more computational time. As an alternative, we propose

a decomposition-based branch-and-bound algorithm, which exploits the combi-

natorial structure of the problem and uses scenario groups.

6

Chapter 2

Literature Review

In this chapter, we provide an overview of the related literature for the problems

studied in the thesis. We start with a summary of team formation problems,

which are studied in different fields such as knowledge discovery and data min-

ing, concurrent engineering and project management. Then we present the liter-

ature on stochastic programming with decision-dependent uncertainty explaining

existing solution methods.

2.1 Team Formation Problems

In general, the team formation problem (TFP) concerns an optimal selection of

team members for a single or multiple projects with respect to a set of criteria. In

operations research (OR) literature, the earliest related study belongs to Zakarian

and Kusiak [15], which is on constructing multi-functional teams for product

design and development. They first propose a methodology to prioritize types of

team members with respect to engineering characteristics and then provide an

integer programming formulation where the objective is to maximize the total

priority weights of the teams. The total number of teams and the number of

teams a person can join are limited in this study. Boon and Sierksma [16] give

7

a matching model for sports team formation problem where candidate players

and positions are matched to maximize sum of player-position weights. The

weights indicate the performance of the players for the positions so the aim is

to form a team having maximum level of performance. Agust́ın-Blas et al. [17]

study the problem of building teaching groups in a university by rearranging a

matrix that represents skill levels of people for the resources. There is a minimum

required knowledge level for each team member and also for the whole team.

Their objective is to maximize the mean knowledge of the teams. Although these

studies deal with team formation problems in different areas, all three focus on

the technical performance of the team, which is defined as the sum of members’

performances. In these studies the communication among the team members or

their personalities are not taken into consideration.

In the studies of Chen and Lin [18], Fitzpatrick and Askin [19], and Zhang and

Zhang [20], in addition to the technical skills of team members, their personal

characteristics are taken into consideration. Well-known personality tests such

as Myers-Briggs and Kolbe Conative are used to determine personality types of

candidates, which serves as a tool to measure their ability to work with each

other. In their project team selection problem, Baykaşoğlu et al. [21] incorpo-

rate the concern of ability to work together by having a constraint that prevents

two people, who do not want to work with each other, from being teammates.

Gutiérrez et al. [22] study a multiple team formation problem and model in-

terpersonal relations via the sociometric matrix, which consists of -1, 0 and 1’s

representing the negative, neutral and positive relations, respectively. They de-

fine an efficiency function for a project that inputs people’s skills and relations,

and the goal is to create teams with the maximum weighted sum of efficiencies.

The authors present computational experiments where a constraint programming

approach and two heuristic methods are compared.

To the best of our knowledge in the operations research literature, the study

by Wi et al. [23] is the first one to use social networks in team formation to quan-

tify the quality of communication among people. The authors form a network by

generating fuzzy familiarity scores among candidates using collaboration data.

They formulate a nonlinear program whose objective is a weighted sum of the

8

performance, the familiarity and the size of the team, and a genetic algorithm

is proposed in the study. In the multi-objective member selection problem by

Feng et al. [24], one objective is related to the individual performances of the

team members while two others are related to the collaborative performances,

which can be identified by cooperation, communication, knowledge sharing, mu-

tual trust etc. Farasat and Nikolaev [25] use edge, 2-star, 3-star and triangle

network structures to measure the collaborative strength of the team. The objec-

tive is to maximize the weighted sum of structures in multiple teams and the skills

of people are not considered. The authors formulate the problem as an integer

program but report memory problems for instances having more than 16 people

and 5 teams. An algorithm based on depth neighborhood search is proposed and

compared with a genetic algorithm.

Apart from the studies [23] [24] [25] mentioned above, the TFPs where a

social network is considered are mainly studied in the knowledge discovery and

data mining (KDD) field, initiated by the work of Lappas et al. [10] and followed

by many others. This line of work is motivated by the existence of numerous

online social networks and the advances on social network analysis. It utilizes a

social network in which the edge weights are considered as measures of the effort

required for candidates to communicate as team members. Clearly, a lower weight

for edge {i, j} implies that candidates i and j can collaborate more effectively.

Lappas et al. [10] study two variants of the problem with different communication

cost functions. The first is the diameter of the team, which is the largest distance

between any pair of team members where the distance between two people is

taken as the shortest path weight in the network. The second function is the

cost of a minimum-cost Steiner tree that spans the team members. Following

this study, other functions are defined and used for the problem. The studies of

Kargar and An [26], Kargar et al. [27] and Bhowmik et al. [28] are among the ones

that define the communication cost of the team as the sum of distances, which is

the sum of the shortest path lengths between all pairs of team members. In [26]

leader distance is defined as the sum of shortest path lengths between the leader

and the person chosen for each required skill. Given a team, the bottleneck cost is

defined by Majumder and Datta [29] as the maximum edge weight in a tree that

9

minimizes this and that spans the team members. Dorn and Dustdar [30] and

Gajewar and Sarma [31], on the other hand, use communication cost functions

that are related to the density of the team’s subgraph. In all of these studies in

KDD field, approximation algorithms, greedy heuristics and metaheuristics are

developed and tested.

The work we present in Chapter 3 is closer to the ones in KDD field in terms

of the problem definition, but in terms of modeling and solution methodology

it is quite different because we present an integer programming formulation for

the problem and develop an exact branch-and-bound algorithm. Although team

formation problems are modeled as integer programs in OR field, in those studies

the models are either solved to optimality for very small examples or heuristic

methods are applied. In our work, we show that our algorithm is able to solve

large instances to optimality.

In Chapters 4 and 5 we study stochastic team formations problems. To the

best of our knowledge there are no similar studies in the literature in terms

of the problem setting. Therefore, we will mention the closest studies in the

literature. In Chapter 4, we study a two-stage stochastic team formation problem

where the stochasticity stems from the uncertainty in communication cost among

people. There are a couple of studies that address uncertainty in the TFPs and

the probabilistic aspect chosen in those studies is related to the availability or

reliability of a team member. Therefore, the terms robust and recoverable are

used in these studies. The aim of the study by Crawford et al. [32] is to find a

minimum cost team who still covers the required skills after k agents are removed.

The cost of the team is defined as a linear function of agents’ individual costs.

Demirović et al. [33] study a similar problem where they define a cost of recovery

if the team becomes incapable after the removal of k members. Fathian et al.

[34] categorize candidates as reliable and unreliable where the latter can leave

the team with a known probability. The problem is to decide which main and

back-up agents to assign to each position in order to maximize the quality of

collaboration.

10

In Chapter 5, we study a multi-stage stochastic project team formation prob-

lem where each stage corresponds to an independent but similar project. Each

project consists of tasks that require resources to be completed. This problem

can be considered as a variant of human resource allocation or personnel selection

problem where, in simple terms, the aim is to minimize cost or maximize profit

by assigning resources to tasks. It has many fields of applications such as pro-

duction management, project management, healthcare and education. Most of

the studies, especially in project management, are conceptual and focused on de-

termining inputs and performance measures. In modeling and solution-oriented

studies, various types of assignment models are suggested for the problem [35].

Among these studies that consider multiple projects, the work by Certa et al.

[36] on human resource optimization for R&D project assumes that projects are

performed simultaneously. In the study of Gutjhar et al. [37] the projects are

done consecutively but they are selected from a portfolio. Chen et al. [38] study a

problem where an IT product development job is divided into projects consisting

of tasks and both tasks and projects have precedence relations. Furthermore, the

majority of the research in this field defines multiple objectives, which are mostly

related to project quality, cost, time and team member relations.

The problem investigated in Chapter 5 considers randomness in task durations

due to incomplete information on people’s competencies. Rahmanniyay et al.

[39] study a multi-objective multi-stage project team formation problem with

uncertainty in time requirements. In their problem, a stage corresponds to a

work unit, which is part of a single project. Once hired, people can work on

several tasks in different stages but they have limited available time throughout

the project. This type of uncertainty in activity duration is also considered

in resource-constrained scheduling problems where a single job requires several

activities with precedence relations. The works of Bruni et al. [40] and [41] are

examples of such problems. To model the uncertainty and solve the problem,

each of these studies follows a different method, namely stochastic programming,

chance constraints and robust optimization, but in all of them the uncertainty

is assumed to be exogenous, that is, the decisions do not have any effect on

the values of parameters or their time of resolution. In contrast in Chapter 5,

11

we assume that the uncertainty in durations is due to lack of information, and

consequently once a resource is allocated to a task, the true value of the task

duration for that resource reveals.

2.2 Decision-dependent Uncertainty

In this section we review the studies on endogenous or decision-dependent un-

certainty in stochastic programming literature. But we note that the decision

dependence is studied in robust optimization as well, in the context of adjustable

robust optimization where the decision is a function of observed data and also by

defining decision dependent uncertainty sets.

Uncertainty is decision-dependent or endogenous when the decision can di-

rectly change the probability distribution of the random variables or it affects

whether the uncertainty is relevant to the problem and the time it is resolved

[42]. The study of Ahmed [43] on network design, server selection, and facility

location problems and the work of Peeta et al. [44], where the failure probabilities

of roads depend on the investments made, are examples of the first type endoge-

nous uncertainty where the decision changes the structure of the distribution.

The study of Goel and Grossmann [45] on gas field development planning, clin-

ical trial planning by Colvin and Maravelias [46], project portfolio optimization

by Solak et al. [47] are examples of the second type where the decision controls

the resolution of the uncertainty. In these studies the uncertain parameter has a

discrete distribution and a vector of realizations constitutes a scenario.

As the resolution of uncertainty directly depends on the first stage decision in

the stochastic problems with endogenous uncertainty, the modeling requires more

effort compared to the exogenous case. The most common type of modeling used

for these problems is disjunctive programming as in [45], [48], [49], [50]. In these

studies, they linearize the disjunctions. On the other hand, in [51] and [47] the

problem is formulated as a linear program directly.

12

Goel and Grossmann [45] study gas field development planning where the size

of reserve is resolved immediately if the site is chosen to be drilled. It is an

example of multi-stage stochastic programming problem with endogenous uncer-

tainty and full resolution. They devise a decomposition-based algorithm where

they use a restricted model which forces the platform installation decisions to be

the same under all scenarios. This model is relaxed so that it decomposes by

scenario and it gives an upper bound since the problem is maximization. Lower

bounds are obtained by generating feasible solutions from the restricted model.

The solution of the expected value problem is used to generate different platform

installation decisions. Goel et al. [52] propose a branch-and-bound algorithm

based on Lagrangian relaxation for the same problem. At each node of the tree,

they solve a Lagrangian dual problem which is obtained by dualizing some of

the non-anticipativity constraints and completely relaxing others. The violated

constraints are imposed by branching. Also at each node, feasible solutions are

generated from the relaxation heuristically and lower bounds are obtained.

In the disjunctive models in these studies, the authors define a boolean vari-

able for scenario pairs and each stage. The variable becomes true if the scenarios

are not distinguishable at the stage with respect to the previous decisions. If

not, then the decisions under these scenarios must be the same. So they use two

sets of disjunctions: one to relate the Boolean variable to previous decisions and

another to force decisions to be the same under indistinguishable scenarios when

the boolean variable is true. The relaxation is obtained by relaxing the disjunc-

tions and dualizing the non-anticipativity constraints of the first stage. A similar

solution methodology is developed for the multi-stage process network optimiza-

tion problem by Tarhan and Grossmann [49] where the uncertainty in the process

yields resolves gradually. Tarhan et al. [53] used gradual resolution framework

for the oil/gas field development problem considering nonlinear reservoir behavior

as well.

Solak et al. [47] study a multi-stage project portfolio management problem

where the investment requirements of the projects reveal gradually. They use a

sample average approximation method where Lagrangian relaxation is used to

13

solve the sample problems. Boland et al. [54] study the open pit mine pro-

duction scheduling problem with endogenous uncertainty. The authors present

a mixed-integer linear programming model and ways to reduce number of non-

anticipativity constraints. They suggest that non-anticipativity constraints can

be regarded as lazy constraints when they are large in number. It means the solver

starts with a model that does not have any non-anticipativity constraints. When-

ever a feasible solution is found, it checks whether a non-anticipativity constraint

is violated and adds it to the model if it is. Similarly, Colvin and Maravelias

[51] consider endogenous uncertainty in the result of clinical trials and propose

a branch-and cut-algorithm where non-anticipativity constraints are added only

when violated. In all of these studies, problem specific and/or general reduction

strategies are developed to decrease the number of non-anticipativity constraints

in the model. Later Boland et al. [55] show how a minimum sufficient set for

these constraints can be generated.

Gupta and Grossmann [56] develop a new Lagrangian decomposition algorithm

to solve large-scale multistage stochastic programs with endogenous uncertainties

using scenario grouping. The idea is to keep a subset of non-anticipativity con-

straints and dualize or relax the rest of them. Then the model decomposes into

scenario groups instead of scenarios. Christian and Cremaschi [57] present two

heuristic approaches for multi-stage stochastic problems with endogenous uncer-

tainty. First one is based on a shrinking horizon approach where the problem is

solved using two-stage approximations. These approximations are obtained by

removing all non-anticipativity constraints except for the current time period.

The second heuristic is a knapsack decomposition algorithm.

Apap and Grossmann [58] consider both endogenous and exogenous uncer-

tainty in a multi-stage setting and present two solution methods. The first is

a sequential scenario decomposition heuristic in which endogenous subproblems

are solved to determine and fix binary investment decisions, and then the model

is solved to find feasible solutions. The second method is based on Lagrangian

decomposition.

In Chapter 4 and Chapter 5, we study stochastic problems with endogenous

14

uncertainty and develop different modeling and algorithmic techniques to solve

these problems.

15

Chapter 3

A Branch-and-Bound Algorithm

for Team Formation Problem

In this chapter, we study a deterministic team formation problem where we adopt

the problem definition of Lappas et a. [10] and use a social network to quantify

and minimize the communication cost among team members.

In Section 3.1, we formally define the team formation problem and provide

quadratic and linear mathematical models. In Section 3.2, we present a branch-

and-bound algorithm that uses a relaxation that can be solved by solving a series

of linear set covering problems and utilizes a novel branching rule compared

to existing branch-and-bound methods for quadratic 0-1 optimization problems.

This section also includes an application of the algorithm on a toy problem. In

Section 3.3, we first introduce our datasets and explain our instance generation

method. Then we present the results of an extensive computational study. We

conclude this chapter with a brief summary and final remarks in Section 3.4.

The results of this chapter are published in INFORMS Journal on Computing

[59].

16

3.1 Problem Definition and Formulation

In this section we formally define the team formation problem, explain how the

communication costs are computed and provide mathematical models.

Let K be the set of required skills for a given task and let N be the set of

candidates. We assume that the skills of the candidates are known. We need

to select team members such that for each skill there is at least one person in

the team having that skill. Such teams are called capable teams. An undirected

collaboration network of the candidates, G = (N,E), is given. In a collaboration

network, two people (nodes) are connected by an edge if they have collaborated

before. Edge {i, j} has weight cij. These weights are commonly calculated in the

following way: let i and j be two people and Pi and Pj be the sets of projects

they have taken part in, respectively. Then |Pi ∩ Pj| is the number of their

collaborations and the weight of edge {i, j} is taken as 1 − (|Pi ∩ Pj|/|Pi ∪ Pj|)
which is the Jaccard metric, a well-known dissimilarity measure [60]. Thus for a

pair of nodes, this metric assigns a distance between zero and one, such that the

pairs whose common work over total work ratio is higher has a smaller distance.

According to this definition the Jaccard distance between any two people with

no collaboration equals to one. Instead of taking the distance between all such

unconnected pairs as one, Lappas et al. [10] and the others use the shortest path

distances among these pairs. This method differentiates the unconnected pairs

who have neighbours that collaborated often from the ones who have distant

connections. We follow the same approach and define the cost of communication

between i and j, denoted by pij, to be equal to cij if Pi ∩ Pj 6= ∅, to be equal to

the weight of the shortest path between i and j if Pi ∩ Pj = ∅ and to be equal

to a sufficiently large number if there is no path between them. By construction,

all communication costs are nonnegative.

Before moving on to the problem definition, we demonstrate the cost calcula-

tion procedure on a small example. In Figure 3.1, on the left, we have a collabora-

tion network where the nodes represent people, and the shapes indicate the skill

they have. The number next to each node is the total number of projects that

17

1

5

26

3

4

4

3

5 46

3

2 1 1

3

1

2

1

1

1

(a) Collaboration network

1

2

3 4

56

0.778 0.857 0.875

0.571

0.875

0.6

0.8

0.833

0.833

(b) Jaccard distances

Figure 3.1: Collaboration network and corresponding Jaccard distances

1 2 3 4 5 6

1 0 0.778 1.349 1.657 0.875 0.857
2 - 0 0.571 1.171 1.653 0.875
3 - - 0 0.6 1.433 1.4
4 - - - 0 0.833 0.8
5 - - - - 0 0.833
6 - - - - - 0

Table 3.1: Communication cost matrix for the people in the collaboration network

the person has worked on. The number on each edge shows the number of collab-

orations of the people corresponding to the end nodes of the edge. The numbers

on the edges of the network on the right are the Jaccard distances calculated

from the collaboration data for the pairs who have common work. Calculating

the shortest paths distances, we write the distance (communication cost) matrix

of the whole network in Table 3.1.

In the presence of such a social network, the team formation problem (TFP) is

defined as finding a capable team with minimum communication cost. With com-

munication costs computed as described above by Jaccard distances, minimizing

the sum of the distances amounts to maximizing the average familiarity of the

team. In general familiarity is defined as the knowledge about the other mem-

bers of the team. Team familiarity can be expressed in numbers as the average

number of times that each team member has worked with every other member

18

of the team. There are empirical studies in the literature indicating the positive

effects of team familiarity on the performance of teams. The results of the study

by Huckman et al. [11] on a software service company indicate a positive and

significant relation between team familiarity and operational performance. An-

alyzing software development teams of a telecommunications firm, Espinosa et

al. [12] find that team familiarity is more beneficial when coordination is more

challenging because of team size or dispersion.

The study by Avgerinos and Gökpınar [13] on productivity of surgical teams

also shows that the benefit of familiarity increases as the task gets more complex.

Moreover, the performance analysis in the study suggests that the bottleneck

pair, that is, the pair with the lowest familiarity, significantly reduces team pro-

ductivity. In terms of the communication cost measures, the least familiar pair

on a team amounts to the nodes whose distance equals the diameter of the team.

Motivated by the results of these studies, we choose to study the problem where

we minimize the sum of distances and bound the diameter. We call this problem

the diameter-constrained TFP with sum-of-distances objective (DC-TFP-SD).

In the remaining part of this section, we provide mathematical models for the

DC-TFP-SD. For each person i ∈ N , we define a binary variable yi to be one if

this person is in the team and zero otherwise. We define parameter aik to be one if

person i ∈ N possesses skill k ∈ K and to be zero otherwise. We let set C be the

set of pairs of people in conflict, i.e., the set of pairs whose communication cost

exceeds the allowed diameter, and we eliminate teams that include such pairs.

The DC-TFP-SD can be modeled as follows:

min
∑
i∈N

∑
j∈N :i<j

pijyiyj (3.1)

s.t.
∑
i∈N

aikyi ≥ 1 ∀k ∈ K, (3.2)

yi + yj ≤ 1 ∀{i, j} ∈ C, (3.3)

yi ∈ {0, 1} ∀i ∈ N. (3.4)

The covering constraints (3.2) ensure that each required skill is covered; that is,

there is at least one person in the team who has that skill. The family of packing

19

(conflict) constraints (3.3) forbids conflicting pairs in the team. The objective

function is the sum of communication costs of team members. We can write the

objective function in quadratic form as yTPy where P is the communication cost

matrix. P is a matrix with nonnegative elements and all entries in the diagonal

are zero. We do not make any assumption about positive semi-definiteness of this

matrix so the continuous relaxation of this quadratic problem could be convex or

not.

We can use variables zij = yiyj for all i, j ∈ N with i < j to linearize the

objective function:

min
∑
i∈N

∑
j∈N :i<j

pijzij (3.5)

s.t. (3.2) - (3.4)

zij ≥ yi + yj − 1 ∀i, j ∈ N : i < j, (3.6)

zij ≤ yi ∀i, j ∈ N : i < j, (3.7)

zij ≤ yj ∀i, j ∈ N : i < j, (3.8)

zij ≥ 0 ∀i, j ∈ N : i < j. (3.9)

Constraints (3.6)-(3.9) are to linearize zij = yiyj and force zij to be one when

both yi and yj are equal to one, and to be zero otherwise [61]. Because the

objective function coefficients are nonnegative, constraints (3.7) and (3.8) can be

dropped without changing the optimal value. One can use constraints zij = 0 for

all {i, j} ∈ C instead of constraints (3.3), which gives similar results in terms of

computation time. Using both constraints together proved to be less effective.

If C = ∅, then we obtain the team formation problem with sum of distances

objective (TFP-SD). The optimal solution of the TFP-SD on the network in

Figure 3.1, with pij’s taken as in Table 3.1, is the team {2,3,4} with cost 2.342.

The optimal solution of the DC-TFP-SD with a diameter limit of 0.9 is the team

{4,5,6} with cost 2.466.

20

3.2 Branch-and-Bound Algorithms

The DC-TFP-SD is a quadratic set covering problem with side constraints (pack-

ing constraints (3.3)). One of the earliest studies on the quadratic set covering

problem is by Bazaraa and Goode [62] where the authors propose a cutting plane

algorithm. Besides this study, the literature on the quadratic set covering is lim-

ited to a study of polynomial approximations by Escoffier and Hammer [63]; a

linearization technique by Saxena and Arora [64], which does not guarantee op-

timality, as shown by Pandey and Punnen [65] and a study by Punnen et al. [66]

on comparing different representations of the problem.

As listed in the surveys of Loiola et al. [67] on the quadratic assignment prob-

lem and Pisinger et al. [68] on the quadratic knapsack problem, the formulations

of 0-1 quadratic problems can be based on mixed-integer, convex quadratic, or

semidefinite programming, and mostly they are too large to be solved in their

current forms. Therefore, they are relaxed and embedded into an algorithm such

as a branch-and-bound, cutting plane, dual ascent algorithm, or a combination

of those. Most recent studies with semidefinite relaxations include [69], [70],

and [71] on the quadratic assignment problem and [72] on the quadratic mini-

mum spanning tree. Among the studies based on mixed-integer programming,

see, for instance, a constraint-generation algorithm for the quadratic knapsack

[73], a branch-and-cut algorithm for the capacitated vehicle routing problem with

quadratic objective [74], and a branch-and-price algorithm for the quadratic mul-

tiple knapsack [75].

As can be seen from this brief review, the quadratic set covering problem has

attracted very little attention as opposed to other quadratic 0-1 problems. In this

section, we first present a branch-and-bound algorithm for the TFP-SD, which is

a quadratic set covering problem, and then extend it to the DC-TFP-SD, which

is a quadratic set covering problem with side constraints.

21

3.2.1 Reformulation, Relaxation, and Decomposition

For ease of decomposition, we define variable zij for all i, j ∈ N such that i 6= j

instead of i < j. We apply the idea of the well-known reformulation-linearization

technique (RLT) of Adams and Sherali [76] to derive the following inequalities

from the original covering constraints by multiplying each one with variable yj:∑
i∈N\{j}

aikzij ≥ (1− ajk)yj ∀k ∈ K, j ∈ N.

The right-hand side of this constraint is equal to one when person j is in the team

but does not have skill k. Hence, the constraint implies that, in this case, at least

one person having skill k must be in the team. We can rewrite these constraints

as follows: ∑
i∈N\{j}

aikzij ≥ yj ∀k ∈ K, j ∈ N : ajk = 0. (3.10)

We call these new constraints RLT constraints. By adding these into our

previous model and making slight changes we obtain the following reformulation

of the TFP-SD:

min
1

2

∑
i∈N

∑
j∈N\{i}

pijzij

s.t. (3.2), (3.4), (3.10)

zij ≤ yj ∀i, j ∈ N : i 6= j, (3.11)

zij = zji ∀i, j ∈ N : i < j, (3.12)

zij ≥ yi + yj − 1 ∀i, j ∈ N : i < j, (3.13)

zij ∈ {0, 1} ∀i, j ∈ N : i 6= j. (3.14)

In the reformulation, we use constraints zij ∈ {0, 1} rather than zij ≥ 0 for all

i, j ∈ N with i 6= j even though the latter constraints are also sufficient to have

a correct formulation. However, in what follows, we will relax some constraints

and the integrality of z variables will not be implied in the relaxed problem.

22

There are many studies on using RLT to solve quadratic problems. In the

works of Adams et al. [77] and Hahn et al. [78], different levels of RLT are used

for the quadratic assignment problem. In these studies, Lagrangian relaxation is

applied to the reformulations and embedded into a branch-and-bound algorithm.

The technique is also used for the quadratic knapsack problem by Billionnet and

Calmels [79], Caprara et al. [80], Pisinger et al. [68], and Fomeni et al. [81].

The main distinction between these reformulations and ours is that constraints

of type 3.13 are redundant in these reformulations because of problem and cost

structure, whereas in our case they are necessary.

We are interested in the relaxation of the reformulation obtained by removing

constraints (3.12) and (3.13). Let (y∗, z∗) be an optimal solution of the relaxation.

Because constraints (3.12) are relaxed, z∗ij may not be equal to z∗ji. Furthermore,

we might get a solution where z∗ij 6= y∗i y
∗
j or z∗ji 6= y∗i y

∗
j or both, since we relaxed

constraints (3.13). To remove such infeasibilities, we branch by creating two

nodes: at one node we allow at most one of i and j to be in the team and at the

other node we force both to be in the team by adding a new set of constraints.

Suppose now that we are at node ` of the branch-and-bound tree. Let C1
` be the

set of pairs who are not allowed to be in the team together, and C2
` be the set of

pairs who are forced to be in the team at node `. Then the relaxation we solve

at node `, called R`, is as follows.

min
1

2

∑
i∈N

∑
j∈N\{i}

pijzij

s.t. (3.2), (3.4), (3.10), (3.11), (3.14)

yi + yj ≤ 1 ∀{i, j} ∈ C1
` , (3.15)

yi = yj = 1 ∀{i, j} ∈ C2
` , (3.16)

zin + zjn ≤ yn ∀{i, j} ∈ C1
` , n ∈ N \ {i, j}, (3.17)

zin = zjn = yn ∀{i, j} ∈ C2
` , n ∈ N \ {i, j}, (3.18)

zij = zji = 0 ∀{i, j} ∈ C1
` , (3.19)

zij = zji = 1 ∀{i, j} ∈ C2
` . (3.20)

Constraints (3.15) and (3.19) ensure that pairs in C1
` are not in the team

23

together. Constraints (3.17) guarantee that a person cannot be in the team with

i and j at the same time for {i, j} ∈ C1
` . Constraints (3.16) and (3.20) ensure that

i and j are both in the team for {i, j} ∈ C2
` . Constraints (3.18) guarantee that

if person n is in the team then he/she is in the team together with both i and j

for {i, j} ∈ C2
` . In short, at node ` constraints (3.15)-(3.20) fix the infeasibilities,

which occur due to lack of constraints (3.12) and (3.13), for the pairs of nodes in

sets C1
` and C2

` .

Next we show that R` can be solved by solving |N |+1 linear set covering prob-

lems with side constraints. A similar result for the quadratic knapsack problem

can be seen in [80].

Proposition 1 The relaxation R` can be solved by solving |N |+1 linear set cov-

ering problems with side constraints as follows. For each n ∈ N , we solve the

linear set covering problem (Prn), which will be referred to as subproblem n:

vn = min
∑

i∈N\{n}

pinζ
n
i (3.21)

s.t.
∑

i∈N\{n}

aikζ
n
i ≥ 1 ∀k ∈ K : ank = 0, (3.22)

ζni + ζnj ≤ 1 ∀{i, j} ∈ C1
` : i, j 6= n, (3.23)

ζni = ζnj = 1 ∀{i, j} ∈ C2
` : i, j 6= n, (3.24)

ζni = 0 ∀{i, n} ∈ C1
` , (3.25)

ζni = 1 ∀{i, n} ∈ C2
` , (3.26)

ζni ∈ {0, 1} ∀i ∈ N \ {n}. (3.27)

with optimal solution ζ̄n and optimal value vn. Then the optimal value of R` can

be computed by solving the following master problem:

ν = min
1

2

∑
j∈N

vjyj

s.t.
∑
j∈N

ajkyj ≥ 1 ∀k ∈ K,

yi + yj ≤ 1 ∀{i, j} ∈ C1
` ,

yi = yj = 1 ∀{i, j} ∈ C2
` ,

24

yj ∈ {0, 1} ∀j ∈ N.

Moreover the solution (y∗, z∗), where y∗ is an optimal solution of the master

problem and z∗ij = y∗j ζ̄
j
i for all i, j ∈ N : i 6= j, is an optimal solution for R`.

Proof. It is sufficient to observe that in R`, for a given vector y, the problem

of computing the best z decomposes into subproblems, one for each n ∈ N with

yn = 1. When yn = 1, the best values of zin’s are zin = ζ̄ni for all i ∈ N \ {n}.
Then the best y can be computed by solving the above master problem. �

We note that we can also multiply constraints (3.2) with (1−yj) for j ∈ N and

obtain valid inequalities
∑

i∈N\{j} aik(yi−zij) ≥ 1−yj for k ∈ K after substituting

zij = yiyj for i ∈ N \{j} and yj(1−yj) = 0. However, if we add these constraints

to our reformulation, then the relaxed problem does not decompose any more.

We also would like comment on the meaning of the subproblem and master

problem defined in Proposition 1. Subproblem n forms a team with respect to

person n by finding a teammate for the skills n does not have so we can say that

variable ζni in subproblem n indicates whether i is in n’s team or not. Subproblem

n builds a team around n such that the sum of communication costs between n

and his/her teammates is minimum. Hence the objective value of subproblem n,

vn, is a lower bound on n’s contribution to a capable team’s overall communication

cost. The master problem use this lower bound as the cost of each person and

forms a capable team with minimum cost. And the teams in the sub and master

problems respect the constraints about the pairs who are not allowed to be in the

team (C1
`), and who are forced to be in the team (C2

`).

In our branch-and-bound algorithm, we propose to work with a weaker relax-

ation R′` which is obtained by dropping constraints (3.17) and (3.18) in R`. The

relaxation R′` can be solved by solving for each n ∈ N the relaxed subproblem

Pr′n, which is obtained by subproblem Prn by dropping constraints (3.23) and

(3.24), with optimal solution ζ̄ ′
n

and optimal value v′n, and then by solving the

relaxed master problem, whose optimal value is ν ′ and in which vj is replaced by

v′j in the objective function.

25

At the root node ` = 0, R′0 is the same as R0 and is solved by solving |N |+ 1

linear set covering problems. We need less computation at the other nodes as we

explain next in Proposition 2.

Proposition 2 At node ` of the branch-and-bound tree where ` is not the root

node, the relaxation R′` can be solved by solving at most three linear set covering

problems with side constraints if the optimal solutions and optimal values of the

subproblems at the parent node are available.

Proof. Let `′ be the parent node of node `. Suppose that the we obtained the

current node by adding {i′, j′} to C1
` , i.e., C1

` = C1
`′ ∪ {i′, j′} and C2

` = C2
`′ . Then

we add the constraint yi′ + yj′ ≤ 1 to the master problem, ζj
′

i′ = 0 to the relaxed

subproblem Pr′j′ , ζ
i′

j′ = 0 to the relaxed subproblem Pr′i′ , and the other subprob-

lems remain unchanged. If the optimal solution of Pr′i′ (respectively, Pr′j′) at

node `′ satisfies ζ i
′

j′ = 0 (respectively, ζj
′

i′ = 0), then it is also optimal for subprob-

lem Pr′i′ (respectively, Pr′j′) at node `. Otherwise, we solve these subproblems

and then we solve the master problem with the additional constraint yi′ +yj′ ≤ 1.

If the current node is obtained by adding {i′, j′} to C2
` , then again we may need

to solve the relaxed subproblems Pr′i′ and Pr′j′ with the additional constraints

ζ i
′

j′ = 1 and ζj
′

i′ = 1, respectively, and then the master with yi′ = 1 and yj′ = 1. �

As in R`, the solution (y∗, z∗), where y∗ is an optimal solution of the relaxed

master problem and z∗ij = y∗j ζ̄
′j
i for all i, j ∈ N : i 6= j, where ζ̄ ′

j
is an optimal

solution of the relaxed subproblem Pr′j′ is an optimal solution for R′`.

The lower bound we get from R′` may not be as good as the lower bound of

R`, and consequently, the branch-and-bound tree may be larger. However, our

preliminary analysis has shown that this approach is faster because the time spent

at each node is significantly smaller.

26

3.2.2 Branching Strategy

We should be able to eliminate a solution of the relaxation if it is not feasible

for the original problem. We do this by branching. In Observation 1 we present

different cases of infeasibility.

Observation 1 If the optimal solution (y∗, z∗) to the relaxation R′` at node ` is

not feasible for the original problem at node `, then there exists at least one pair

{i, j} satisfying one of the following conditions:

• y∗i = y∗j = 1 and z∗ij = z∗ji = 0 (type 1 pair), or

• y∗i = y∗j = 1, z∗ij = 1, and z∗ji = 0 (type 2 pair), or

• y∗i = 1, y∗j = 0, z∗ij = 0, and z∗ji = 1.

We only branch on type 1 or type 2 pairs, by prioritizing the former. If the

current solution is not feasible, we branch on the first type 1 pair we find. If none

exists, we branch on the first type 2 pair (see Algorithm 1). Next, in Proposition

3, we show that branching on only type 1 and type 2 pairs is sufficient.

Proposition 3 If the optimal solution (y∗, z∗) to the relaxation R′` at node ` is

not feasible for the original problem at node `, then there exists either a type 1

pair or a type 2 pair or (y∗, z̄) where z̄ij = y∗i y
∗
j for all i, j ∈ N such that i 6= j is

an alternate optimal solution to the relaxation R′`.

Proof. Suppose that there is no type 1 or type 2 pair in (y∗, z∗) and the so-

lution (y∗, z̄) is not an alternate optimal solution to the relaxation R′`. Then

by Observation 1 there exists at least one pair {i, j} such that y∗i = 1, y∗j = 0,

z∗ij = 0 and z∗ji = 1. Because (y∗, z̄) is not an alternate optimal solution, for one

of such pairs, setting zji to zero violates a constraint. Then there exists a skill

k that is covered uniquely by j in the relaxed subproblem Pr′i because otherwise

27

setting zji to zero would be feasible. Since y∗j = 0, skill k is covered by another

candidate, say candidate t, in the relaxed master problem. Therefore, y∗t = 1.

However, ζ̄ ′
i
t and consequently z∗ti must be zero because k is covered uniquely by

j in the subproblem Pr′i. Then {i, t} is a pair with y∗i = y∗t = 1 and z∗ti = 0 and

is either a type 1 or type 2 pair. This contradicts our assumption. �

Algorithm 1 BranchPair(y∗, z∗)

1: for i ∈ N : y∗i = 1 do
2: for j ∈ N : j > i, y∗j = 1 do
3: if z∗ij = z∗ji = 0 then
4: pair ← {i, j};
5: break
6: if pair=null then
7: for i ∈ N : y∗i = 1 do
8: for j ∈ N : j > i, y∗j = 1 do
9: if z∗ij 6= z∗ji then

10: pair ← {i, j};
11: break
12: Return pair

3.2.3 Upper Bounds

There are two ways to update the upper bound in our algorithm: via the sub-

problems and via the master problem.

Proposition 4 Let Nj = {i ∈ N : ζ̄ ′
j
i = 1} ∪ {j}, where ζ̄ ′

j
is an optimal

solution to the relaxed subproblem Pr′j for j ∈ N , and N ′ = {i ∈ N : y∗i = 1}
where y∗ is an optimal solution of the relaxed master problem solved at any node

of the branch-and-bound tree. Then uj = 1/2
∑

i′∈Nj

∑
j′∈Nj\{i′} pi′j′ for j ∈ N

and u0 = 1/2
∑

i′∈N ′
∑

j′∈N ′\{i′} pi′j′ are upper bounds for the optimal value.

Proof. For each j ∈ N , because of constraints (3.10) in the relaxed subprob-

lem, Nj is a capable team. Similarly, because of constraints (3.2) in the master

28

problem, N ′ is also a capable team. Their sum of distances values give upper

bounds. �

At each node, after solving the relaxed subproblems and the master problem we

update the upper bound and the incumbent solution if we find a better solution.

3.2.4 The Algorithm

The branch-and-bound algorithm is presented in Algorithm 2. The current lower

and upper bounds are denoted as LB and UB. At each node `, we keep the

optimal solution of the subproblem `.ζ̄ ′
n

of Pr′n, its optimal value `.v′n for all

n ∈ N , the optimal value of the relaxed master problem `.ν ′ and its optimal

solution (`.y∗, `.z∗).

The initial step is to create the root node, 0, at which, we solve the relaxed

subproblems Pr′n for all n ∈ N and then the relaxed master problem whose op-

timal value becomes the first lower bound. Because we preprocess our instances,

we do not need to check for feasibility at the root node. As explained in Propo-

sition 4, each time a relaxed subproblem or a relaxed master problem is solved,

we check whether we can update the upper bound and the incumbent solution,

team T . If LB < UB, then we initialize the queue, Q, by adding the root node.

The algorithm runs until the lower bound is equal to the upper bound. We

follow the best-first search rule for choosing the next node to process, breaking

ties arbitrarily. Let ` be a node in Q with the lowest lower bound. We remove

` from the queue and find its branch pair, say {i, j}. We create child nodes `1

and `2 and solve relaxations R′`1 and R′`2 as explained in Proposition 2. Node

`1 (respectively, `2) is added to the queue only if `1.ν
′ (respectively, `2.ν

′) is less

than the current upper bound.

Throughout the algorithm, when a relaxed subproblem or a relaxed master

problem is infeasible, its objective value is set to infinity. Therefore, if R′` is

29

infeasible, then `.ν ′ = ∞. In this case, we discard node ` because it does not

satisfy `.ν ′ < UB. This amounts to pruning by infeasibility. Furthermore, if the

solution (y∗, z∗) of relaxation R′` is feasible for the original problem or it is not

feasible but (y∗, z̄) where z̄ij = y∗i y
∗
j for all i, j ∈ N such that i 6= j is an alternate

optimal solution to R′`, then `.ν ′ ≥ UB because these solutions are used to update

the upper bound. This corresponds to pruning by optimality. If the node is not

pruned by infeasibility or optimality and `.ν ′ ≥ UB, then the node is pruned by

bound. Hence, if a node is added to the queue, then it satisfies `.ν ′ < UB and

has at least one type 1 or type 2 branch pair.

Algorithm 2: Branch-and-Bound

1: UB :=∞, T = ∅
2: Create root node 0 with 0.ν ′ :=∞, C1

0 := ∅, C2
0 := ∅

3: for n ∈ N do

4: Solve Pr′n

5: 0.ζ̄ ′
n

:= ζ̄ ′
n

and 0.v′n := v′n . update UB and T if possible

6: Solve the relaxed master problem

7: 0.y∗ := y∗, 0.z∗ := z∗, 0.ν ′ := ν ′, LB := ν ′ . update UB and T if possible

8: if LB < UB then Q := {0}
9: while LB < UB do

10: ` = arg min
`′∈Q

{`′.ν ′}, Q := Q \ {`}

11: {i, j} := BranchPair(`.y∗, `.z∗)

12: Create node `1 : `1.v
′
n = `.v′n, `1.ζ̄ ′

n
= `.ζ̄ ′

n ∀n ∈ N ,

13: `1.ν
′ :=∞, C1

`1
:= C1

` ∪ {i, j}, C2
`1

:= C2
`

14: if `.ζ̄ ′
i
j = 1 then

15: Solve Pr′i

16: if feasible then `1.v
′
i := v′i, `1.ζ̄ ′

i
:= ζ̄ ′

i

17: else `1.v
′
i :=∞ . update UB and T if possible

18: if `.ζ̄ ′
j
i = 1 then

19: Solve Pr′j

20: if feasible then `1.v
′
j := v′j, `1.ζ̄ ′

j
:= ζ̄ ′

j

21: else `1.v
′
j :=∞ . update UB and T if possible

22: Solve relaxed master problem

30

23: if feasible then

24: `1.y
∗ :=y∗, `1.z

∗ :=z∗, `1.ν
′=ν ′ . update UB and T if possible

25: if `1.ν
′ < UB then Q := Q ∪ {`1}

26: Create node `2 : `2.v
′
n = `.v′n, `2.ζ̄ ′

n
= `.ζ̄ ′

n ∀n ∈ N ,

27: `2.ν
′ =∞, C1

`2
:= C1

` , C2
`2

:= C2
` ∪ {i, j}

28: if `.ζ̄ ′
i
j = 0 then

29: Solve Pr′i

30: if feasible then `2.v
′
i := v′i, `2.ζ̄ ′

i
:= ζ̄ ′

i

31: else `2.v
′
i :=∞ . update UB and T if possible

32: if `.ζ̄ ′
j
i = 0 then

33: Solve Pr′j

34: if feasible then `2.v
′
j := v′i, `2.ζ̄ ′

j
:= ζ̄ ′

j

35: else `2.v
′
j :=∞ . update UB and T if possible

36: Solve relaxed master problem

37: if feasible then

38: `2.y
∗ :=y∗, `2.z

∗ :=z∗, `2.ν
′ :=ν ′ . update UB and T if possible

39: if `2.ν
′ < UB then Q := Q ∪ {`2}

40: LB := min
`′∈Q
{`′.ν ′}

41: Return UB and T

3.2.5 Example

We illustrate the branch-and-bound algorithm on a small example. We would

like to solve TFP-SD on the social network given in Figure 3.2. There are five

candidates, and the shortest path lengths are as shown on the edges. The project

requires three skills, and the skills of people are indicated by the shape of nodes.

At the root node of the branch-and-bound tree, we solve relaxation R0 = R′0,

which requires solving five subproblems and then a master problem. In Figure

3.2 we summarize the information we get from these problems in the table next

to the network. For example, the first row shows that the optimal solution of

subproblem 1 is ζ̄1
2 = ζ̄1

3 = 1. The team consisting of people 1, 2 and 3 has a

31

1

5

2 3

4

0.8 0.9

1.5 1.3

1.4

0.9

1.6 1.2

0.7

0.8

problem team cost
Pr′1 {1,2,3} 3.1
Pr′2 {1,2,4} 3.2
Pr′3 {2,3,5} 3.7
Pr′4 {2,4,5} 3.3
Pr′5 {2,3,5} 3.7

master {1,2,4} 3.2
lb=2.55 ub=3.1

Figure 3.2: Example network, optimal solutions of the subproblems and the mas-
ter and the bounds at the root node

cost 3.1. This is the upper bound we get from this subproblem and actually it

is the best bound among all subproblems so the corresponding solution becomes

the incumbent. The solution of the master problem is y∗1 = y∗2 = y∗4 = 1 and

y∗3 = y∗5 = 0 with objective value of 2.55. This becomes the lower bound. We

check whether we can use the solution of the master problem to update the upper

bound. The team {1,2,4} costs 3.2, which is greater than the upper bound we

get from subproblem 1 so the incumbent stays as {1,2,3}.

The entire branch-and-bound tree is illustrated in Figure 3.3. Next to each

node, we summarize the solution and bound information in a table, similar to the

one in Figure 3.2. it is best bound among all subproblems so the corresponding

solution becomes the incumbent.

The solution of the master problem is y∗1 = y∗2 = y∗4 = 1 and y∗3 = y∗5 = 0 with

objective value of 2.55. This becomes the lower bound. We check whether we can

use the solution of the master problem to update the upper bound. The team

{1,2,4} costs 3.2, which is greater than the upper bound we get from subproblem

1 so the incumbent stays as {1,2,3}.

At node 1, we only solve the relaxed master problem since the solution of

the relaxed subproblem 1 (respectively, 4) already satisfies ζ̄ ′
1
4 = 0 (respectively,

32

Figure 3.3: The branch-and-bound tree

ζ̄ ′
4
1 = 0). The optimal solution of the relaxed master problem is team {1,2,3}, and

the lower bound we get at this node is 2.75. We do not update the upper bound

because no better solution has been found. At node 2, we solve both relaxed

subproblems, update v′1 and v′4, and solve the relaxed master problem. Because

the lower bound we get at this node is greater than the current incumbent, we

prune the node by bound. The algorithm continues with node 1, and the next

branch pair becomes {1,3}, which is a type 2 pair. We create node 3 and problem

R′3 with C1
3 = {{1, 4}, {1, 3}} and C2

3 = ∅. We solve the relaxed subproblem 1

at this node, update v′1, and solve the relaxed master problem. The lower bound

at this node becomes 2.85. At node 4, we create problem R′4 with C1
4 = {{1, 4}}

and C2
4 = {{1, 3}}. We solve the relaxed subproblem 3, update v′3, and then solve

the relaxed master which gives the same lower bound as node 3. We can continue

with either of them, so we choose node 3, and the branch pair is {2,5}. At node

5, we create problem R′5 with C1
5 = {{1, 4}, {1, 3}, {2, 5}} and C2

5 = ∅. We solve

relaxed subproblem 5 and update v′5, but the relaxed master problem becomes

33

problem team cost
Pr; {1,2>4} 3.2
Pr~ {2,4,5} 3.3
Pr~ {2,3,5} 3.7

mast er {2,4,5} 3.3
lb=2.85 ub=3.1

CJ={ {1,4},{1, 3},{2, 5}}
Cl=0

Prune by
infeasibility

problem team cost
Pr; {1,2,3} 3.1
Pr2 {1,2,4} 3.2
Prf, {2,3,5} 3.7

master {1,2,3} 3.1
lb=2.75 ub=3.1

CJ={{l ,4}}
ci={{l , 3}}

CJ= { {1,4} , {1,3}}
G1={{2,5}}

C?={{l ,4},{2,3}}
Cf={{l ,3}}

problem team cost
Pr2 {2,4,5} 3.3
Pr~ {2,4,5} 3.3
Pr~ {2,3,5} 3.7 Prune by

master {2,4,5} 3.3 infeasibility
lb=3.25 ub=3.1

problem team cost
Pr; {1,2,4} 3.2
Pr2 {1,2,4} 3.2
Pr4 {1,2,4} 3.2

master {1,2,4} 3.2
lb=3.2 ub=3.1

problem team cost
Pr; {1,2,3} 3.1
P r2 {1,2,4} 3.2
Prf, {1,2,3} 3.1

master {1,2,3} 3.1
lb=2.85 ub=3.1

CJ={{1, 4}}
CJ ={{1, 3}, {2, 3}}

problem team cost
P r; {1,2,3} 3.1
P r 2 {1,2,3} 3.1

Prune by P rf, {1,2,3} 3.1
optimality master {1,2,3} 3.1

lb=3.1 ub=3.1

infeasible, and we prune the node. Continuing in this manner, the algorithm

terminates at node 8, proving that the upper bound 3.1 found at the root node

is actually the optimal value.

3.2.6 Branch-and-bound Algorithm for DC-TFP-SD

We can use a similar branch-and-bound algorithm to solve the DC-TFP-SD by

making two adjustments. The first adjustment is in the relaxation that we solve

to compute a lower bound, and the second adjustment is in the way we update

upper bounds.

Recall that C is the set of pairs in conflict, and we forbid them by constraints

(3.3) in the formulation of the DC-TFP-SD. Also, recall that R′` is the weaker

relaxation of the reformulation of the TFP-SD at node ` of the branch-and-bound

tree.

For the DC-TFP-SD, we can treat the conflict constraints (3.3) like the con-

straints we use in branching and add them to the master and the related sub-

problems. However, our preliminary analysis has shown that it is better to work

with further relaxation. We define R′′` to be the relaxation obtained by adding

constraints (3.19) for all {i, j} ∈ C to R′`. In other words, we add the conflict

constraint for pair {i, j} ∈ C to the subproblems i and j and not to the other

subproblems nor the master. As a result, we have weaker lower bounds but we

work with a smaller master problem.

The second adjustment is in the upper bounding procedure. In Proposition

4, we define the set Nj for j ∈ N and N ′ by the solutions of subproblem j and

master problem, respectively. For the TFP-SD, the teams defined by these sets

were capable so their cost values, uj for j ∈ N and u0 gave upper bounds. In the

DC-TFP-SD, these are still capable teams, but they might have a pair in conflict.

Thus, the second adjustment in the algorithm is to check the feasibility of these

teams. If these teams have no pairs in conflict, their cost values are upper bounds

for the optimal value of the DC-TFP-SD.

34

Using the relaxation R′′` and this upper bounding procedure, we obtain valid

lower and upper bounds. Next, we prove that if the optimal solution (y∗, z∗) that

we obtain by solving R′′` does not satisfy the conflict constraints (3.3), then there

exists a type 1 pair that we can branch on.

Proposition 5 Let (y∗, z∗) be the optimal solution of R′′` . If there exists a pair

{i, j} ∈ C for which (y∗, z∗) violates the conflict constraint (3.3), i.e., y∗i = y∗j =

1, then {i, j} is a type 1 branch pair.

Proof. Suppose that (y∗, z∗) violates the conflict constraint (3.3) for pair

{i, j} ∈ C. Then y∗i = y∗j = 1. Since the subproblems for i and j contain con-

straints (3.19), we have z∗ij = z∗ji = 0. Then {i, j} is a type 1 pair. �

3.3 Experiments

In this section, we first introduce the social networks used in our computational

study and explain how we generate our instances. Then we present the perfor-

mance results of our branch-and-bound algorithm and its comparison with the

mathematical models.

3.3.1 Datasets and Instance Generation

Wi et al. [23] use collaborative data from an R&D institute and form a social

network of 45 researchers to test their genetic algorithm. Farasat and Nikolaev

[25] use existing social network datasets to test their heuristics, and the number of

nodes in these networks varies from 15 to 500. By contrast, larger social networks

are preferred in knowledge discovery and data mining literature. We follow the

latter course and use the IMDb and DBLP datasets in our computations.

IMDb is used by Anagnostopoulos et al. [82] and Kargar and An [26]. We

35

create our instances using the same part of the database used in the comparative

study by Wang et al. [83]. The collaboration and skill information is provided by

one of the authors on his website1. The nodes of the network are the actors who

appeared in the movies from the year 2000 to 2002. There are 1021 actors; that

is, |N | = 1021. The skills are the genres of the movies and there are 27 skills.

The social network contains an edge between actors i and j if they have worked

together in a movie, and the weight of the edge is equal to the Jaccard distance,

as explained in Section 3.1.

DBLP is the most common database used to generate instances for the TFP.

It provides bibliographic information of papers published in major computer sci-

ence journals and proceedings. We generate a social network from this database

searching the papers published between the years 2010-2016. We narrow the

search space by specifying journals and conferences. Because there is no keyword

information for the papers in the database, we search the titles of the papers for

some keywords and treat these keywords as the skills of the authors. There is

an edge between two authors if they have at least two common papers in whole

history. With this setting, we end up with 58 skills and a collaboration network,

which has 12855 nodes and 53890 edges whose weights equal to the Jaccard dis-

tances. In both networks, we compute the shortest path lengths between all pairs,

and if there is no path between i and j, we make the communication cost between

i and j, pij, equal to a sufficiently large number. In Figure 3.4, to give an idea

about the magnitudes and distribution of the communication costs, we plot the

percentage of pairs whose distance is at most d for each network.

For both social networks, we have created instances in the following way. The

number of required skills, m, comes from the set {4, 6, 8, 10, 12, 14, 16, 18, 20} and

100 random instances are generated for each m. The data sets and the instances

used in the computational experiments are available in our Github repository2.

1http://home.cse.ust.hk/faculty/wilfred/wangxinyu/
2https://github.com/nihalberktas/TFP-data

36

Figure 3.4: The percentage of pairs whose shortest distance is at most d in the
IMDb (left) and DBLP (right) networks

3.3.2 Computational Results

The mathematical models and the branch-and-bound algorithms are implemented

in Java using CPLEX 12.7 and run on a personal computer with an Intel(R)

Core(TM) i7-6700HQ 2.6 GHz and 16 GB of RAM. All computational times

reported in the tables are wall-clock times in seconds.

For each instance, it is sufficient to consider people who have one of the required

skills. Therefore, we preprocess the input data and shrink the social network by

removing people who do not possess any of the required skills. We call the

remaining nodes in the network as the qualified ones and their number is denoted

by qno in what follows. For the diameter-constrained version of the problem, we

are able to reduce the network further by eliminating a person if he/she cannot

cover all the skills together with the people who are at most allowed diameter

away from him/her. We do this elimination iteratively until there is no one to

remove from the network. After this preprocessing, the network only involves

people who are capable of forming a feasible team respecting the bound on the

diameter. The number of candidates after preprocessing is denoted by fno.

In addition to the quadratic formulation (3.1), (3.2), (3.4) (denoted by QP); the

37

100 100
---e--- I M D b ---e--- D BLP

80 80

~ ~
"iil ·;a
Q.

60 0. 60 '-" '-"
0 0
(l)

l
(l)

J
C
(l)

8
40 C

(l)
0 ...

40

~ (l)

0.

20 20

00 2 4 6 8 10 12 00 2 4 6 8 10 12 14
d d

mixed-integer formulation (3.2), (3.4)-(3.9) (denoted by MIP); and the branch-

and-bound algorithm, we implemented a branch-and-cut algorithm for the TFP-

SD to overcome the memory problems for larger instances. In the mixed-integer

formulation, the constraints (3.6), (3.7) and (3.8) grow quadratically in the size of

the problem. Because the objective coefficients are nonnegative in our instances,

it is sufficient to use only constraints (3.6) but even in this case, we have mem-

ory run-outs in the model generation phase for large instances. When we use

the original mixed-integer formulation without constraints (3.7) and (3.8) and

add constraints (3.6) using the lazy cut pool (the constraints in this pool are

only checked when an integer feasible solution is found and violated constraints

are added to the formulation), a large number of lazy constraints are added and

consequently, this approach takes more time than solving the mixed-integer for-

mulation directly. However, when we add the RLT constraints (3.10), only a small

number of lazy constraints are generated and this improves the solution times.

The cuts can also be applied at the fractional solutions by putting constraints

(3.6) to the user cut pool besides the lazy cut pool but the computation times are

longer in this case. Therefore in our branch-and-cut implementation (denoted by

B&C), we solve the mixed-integer programming formulation (3.2), (3.4), (3.5),

(3.9), (3.10) by putting constraints (3.6) to the lazy cut pool.

We report the average solution times of all solution procedures for the TFP-SD

on the IMDb instances in Table 3.2. The averages are taken over 100 instances for

each m. We present more detailed results for our branch-and-bound algorithm:

nodes is the number of nodes evaluated, lb-gap = 100(opt − lb)/opt and ub-

gap = 100(ub− opt)/opt, where lb and ub are the lower and upper bounds at the

root node, respectively, and opt is the optimal value. To show the strength of

the linear programming relaxation of the mixed-integer formulation (3.2), (3.4)-

(3.9), we also report LP -gap = 100(opt − LP)/opt, where LP is the optimal

value of the linear programming relaxation. As it can be seen in Table 3.2, the

continuous relaxation is very weak. When we add the RLT constraints (3.10) to

the continuous relaxation, the optimality gap improves tremendously. In 98% of

IMBDb instances, this relaxation gives an integral, and consequently, an optimal

solution. It is denoted by LP-RLT in Table 3.2 where we present the average

38

Table 3.2: Results for the TFP-SD on the IMDb instances.

QP MIP LP-RLT B&C B&B

m qno time time LP-gap time gap time time nodes lb-gap ub-gap

4 422.51 6.66 7.14 63.6 2.43 0.22 0.81 1.13 2.08 2.12 0
6 541.81 22.63 23.21 77.75 4.68 0.49 1.74 2.66 14.11 4.12 0.05
8 653.41 28.5 29.54 77.07 7.74 0.36 3.16 4.19 24.6 5.95 0.06
10 731.82 30.41 31.12 75.47 15.66 0.86 5.63 5.92 41.97 10.27 0.3
12 791.51 32.6 33.47 75.9 22.42 0.86 7.59 7.28 52.36 12.31 0.22
14 838.48 43.13 44.7 74 37.66 1.02 10.62 9.83 111.34 13.31 0.5
16 879.02 51.81 53.04 72.76 54.03 1.17 15.57 12.27 157.72 13.58 0.18
18 917.68 83.76 81.04 71.92 84.32 1.43 18.77 14.31 164.98 15.13 0.77
20 947.69 77.98 78.54 71.23 134.32 1.65 24.93 13.93 167.69 16.24 0.7

solution time and the gap, which is calculated as 100(opt− LP -RLT)/opt.

The performances of the quadratic and mixed-integer formulations for the

TFP-SD turn out to be very similar for the IMDb instances. On average, the

optimal solution is reported within a minute or two by the solver with both

mathematical models. This is expected because in its default setting, the solver

linearizes the quadratic formulation and solves it as an mixed-integer problem.

Changing the solver settings for the quadratic formulation does not improve the

solution times. When we compare these solution times with the branch-and-

bound algorithm, we clearly see the efficiency of the algorithm as it reaches the

optimal solution six times faster than the models, on average. The instance with

the longest solution time requires more than 1300 seconds for both formulations,

and it is solved in 19 seconds by the branch-and-bound algorithm. The longest

time the branch-and-bound algorithm spends for an IMDb instance is actually

48.19 seconds. With the branch-and-cut, we are able to solve 98.6% of the in-

stances within a minute while this percentage is 78% for both quadratic and

mixed-integer formulations. When the number of required skills, m, is low, this

method is as efficient as the branch-and-bound algorithm; but as m grows, the

branch-and-bound algorithm outperforms the branch-and-cut as well. Analyzing

the detailed results, we observe that for all instances with m = 4 the first incum-

bent found by the branch-and-bound algorithm is optimal. Although the quality

degrades as the instances get larger, the initial upper bound is at most 1% away

from the optimal in 93.55% of the instances.

39

Table 3.3: Results for the TFP-SD on the DBLP instances.

QP MIP LP-RLT B&C B&B

m qno solved time solved time solved time solved time solved time

4 1650.5 10 343.04 10 359.75 10 185.87 10 53.95 10 9.84
6 2239.8 4 336.79 4 352.96 5 81.67 10 142.59 10 20.65
8 2896.5 2 386.29 2 2508.42 4 453.93 8 279.39 10 36.56

In Table 3.3, we present the results for the TFP-SD on the DBLP instances.

Because the DBLP network is a larger one, we could not obtain a solution from

the mathematical models for most of the instances. Therefore, we only include

the results for m = 4, 6 and 8 in this table to compare the performances. In

general, we observe memory problems when the number of qualified people, qno,

exceeds 2100 and m is greater than 4. The column solved indicates the number

of instances that can be solved to optimality out of 10. The average solution

times are given for the instances solved. We see that with the mixed-integer and

quadratic formulations we can only solve four instances with m = 6 and two

instances with m = 8. The instances solved without memory problems are the

same for the mixed-integer and the quadratic formulations, however, the solution

times with the quadratic formulation are lower than those of with the mixed-

integer formulation. This difference in the solution times is unexpected since

the solver linearizes the objective function and solves the quadratic formulation

as a mixed-integer problem as well. Examining the log file of the solver, we

realize that given the quadratic formulation, the solver generates an additional

cut, which seems to speed up the branch-and-cut process.

LP-RLT, the continuous relaxation that is strengthened by the RLT con-

straints, gives integral solutions to the DBLP instances for which the memory is

sufficient. By strengthening the mixed-integer formulation with RLT constraints

and putting constraints (3.6) to the lazy cut pool in the branch-and-cut frame-

work enables us to solve more instances within less time. However, eventually,

this method also fails with memory problems as the size of instances increases.

Having average solution times under a minute, the efficiency of the branch-and-

bound algorithm is clearly seen in this table. Its longest solution time among

these instances is actually 62.2 seconds.

40

Table 3.4: Detailed results of the branch-and-bound algorithm for the TFP-SD
on the DBLP instances.

time

m qno solved min avg max std nodes lb-gap ub-gap

4 1540.22 100 0.48 8.59 42.43 9.02 20.08 4.97 0.05
6 2255.9 100 1.53 20.68 67.55 13.59 30.54 6.47 0.27
8 2963.26 100 1.88 37.69 107.27 21.57 110.52 8.16 0.48
10 3604.4 100 6.75 59.86 191.79 17.10 239.10 7.99 0.69
12 4189.49 99 20.65 89.41 275.92 49.05 480.52 8.56 0.89
14 4789.13 99 35.60 249.25 4921.88 633.18 3374.63 8.79 0.89
16 5298.52 99 47.47 274.76 3571.15 482.30 3099.22 8.62 0.66
18 5857.6 97 66.48 482.83 4743.17 707.73 5637.57 9.25 0.76
20 6412.48 91 114.81 680.89 4998.51 1030.91 6439.47 9.32 0.82

We present detailed results of the branch-and-bound algorithm on the DBLP

instances in Table 3.4. We also consider larger m values here. The column titled

solved indicates the number of instances solved to optimality within a two-hour

time limit over 100 instances for each m. The computational details presented in

the table are for the instances that are solved within the time limit. We present

the minimum, average, and maximum solution times for each m and also the

standard deviation of these times under the columns titled min, avg,max, std, re-

spectively. The algorithm is able to solve all DBLP instances with m = 4, 6, 8, 10

within the limit, and actually, the highest solution time among these instances

is around 3 minutes. When m = 12, there is only one instance that cannot be

solved within two hours, and as m increases, we have a few more. Among all, the

algorithm is able to solve 43% of the instances in a minute and 97.8% of them

in an hour. Similar to the results with the IMDb instances, the upper bound at

the root node is very close to the optimal solution. Approximately at 69% of the

instances, this upper bound is at most 1% away from the optimal value.

In the IMDb and DBLP instances we use, because of the way skills are defined

and assigned, it might be possible that closer nodes in the network have more

skills in common. To investigate whether the performance of the algorithm is

affected by such a possible correlation between distances and skills, we generated

purely random skill matrices that do not have any connection to the distances.

As before, we generate 100 instances for each m value. In Table 3.5, we present

41

the results on these instances for the TFP-SD, where the new sets are denoted

by IMDbr and DBLPr.

Table 3.5: Results of the branch-and-bound algorithm for the TFP-SD on IMDbr

and DBLPr: the IMDb and DBLP instances with randomly generated skill ma-
trices.

IMDbr DBLPr

m qno min avg max std qno min avg max std

4 531.91 0.50 1.95 3.23 0.59 1602.76 1.30 11.14 26.41 5.32
6 693.47 1.43 3.96 10.89 1.13 2247.75 5.25 21.67 41.12 7.23
8 794.86 2.79 5.44 15.22 1.30 2878.79 9.23 34.54 74.43 10.18
10 863.80 4.44 6.91 9.75 0.85 3485.32 16.41 55.12 152.94 19.98
12 912.65 6.55 9.40 26.72 3.08 4065.39 30.42 80.16 161.53 25.24
14 949.29 8.99 12.86 62.74 6.10 4587.13 55.27 142.26 866.07 95.97
16 971.96 11.87 18.30 88.25 9.19 5112.02 71.10 248.54 1239.47 214.24
18 986.62 15.23 30.20 215.19 28.92 5591.90 89.30 396.69 1735.91 362.95
20 997.61 20.20 48.58 421.12 62.72 6018.28 115.99 580.47 3718.81 704.72

Each one of these instances is solved within the two-hour time limit by the

branch-and-bound algorithm. The solution times of the random IMDbr instances

are higher than those of the original ones presented in Table 3.2 when we compare

the corresponding rows for each m. However, we must observe that the average

number of qualified people, qno, for each m is also higher in the new set of

instances.

In the rest of this section, we present the results of the computational ex-

periments for the diameter-constrained version of the problem, the DC-TFP-

SD. In what follows, QP represents the quadratic formulation ((3.1)-(3.4)), MIP

represents the mixed-integer formulation ((3.2)-(3.9)), and B&B represents the

branch-and-bound algorithm developed for the DC-TFP-SD.

In Table 3.6, we present the solution times for the DC-TFP-SD, where we use

the optimal diameter values as the diameter bounds. We remind that qno is the

number of qualified people given the required skills and fno is the number of

people after preprocessing given the bound on the diameter. Because of prepro-

cessing, the network is reduced significantly, and therefore, the solution times of

all methods are very small. For example when m = 20, the network consists of

more than 900 qualified people on average but the number of candidates reduces

42

Table 3.6: Results for the DC-TFP-SD on the IMDb instances where the bound
on the diameter is taken as the optimal diameter

QP MIP B&B

m qno fno time time time nodes lb-gap ub-gap

4 422.51 8.69 0.01 0.01 0.02 0.67 0.45 0.00
6 541.81 20 0.02 0.02 0.09 4.57 0.64 0.05
8 653.41 41.52 0.06 0.09 0.30 6.54 1.36 0.00
10 731.82 69.77 0.13 0.18 0.28 13.77 2.01 0.01
12 791.51 91.99 0.24 0.31 0.44 22.31 2.61 0.12
14 838.48 119.16 0.49 0.56 0.65 22.04 2.70 0.04
16 879.02 152.62 0.89 0.98 1.10 45.02 3.67 0.06
18 917.68 178.94 1.18 1.35 1.49 69.81 3.93 0.08
20 947.69 216.11 1.80 2.07 2.20 104.34 4.71 0.09

to approximately 200 people when we exclude the people who cannot build a

team respecting the bound on the diameter. Therefore the solution times are

only 1 or 2 seconds for all methods.

Table 3.7: Results for the DC-TFP-SD on the IMDb instances

D=2 D=3

m feas fno MIP QP B&B feas fno MIP QP B&B

4 94 250.01 8.26 5.38 0.47 97 317.16 15.24 7.86 0.72
6 88 266.10 10.94 7.80 0.76 92 375.60 25.60 16.67 1.47
8 79 265.19 11.75 8.48 0.95 87 402.48 28.89 19.74 1.89
10 66 279.82 13.10 9.47 1.28 79 427.18 36.49 20.97 2.43
12 60 255.93 13.11 8.97 1.31 74 424.51 34.69 20.47 2.71
14 48 208.94 11.65 7.59 1.28 68 389.79 30.79 17.85 2.85
16 36 208.03 10.97 7.84 1.30 60 382.97 29.96 17.21 2.76
18 24 165.79 10.72 6.73 1.49 54 353.80 23.37 15.22 3.22
20 14 192.79 16.30 8.42 1.47 45 349.62 21.74 16.03 3.81

We continued the experiments of the DC-TFP-SD with the IMDb instances

with varying bounds on the diameter. In Table 3.7 we present the results with

D equal to 2 and 3. Under the column feas, the number of feasible instances is

given over 100 instances for each m. In the IMDb instances, the optimal diameter

is usually less than 2, and therefore, the number of candidates that remain after

preprocessing is greater with D = 2, 3 than with D taken as the optimal diameter.

43

Thus, as the bound on the diameter increases, so does the size of the network,

and we start to observe differences in the performances of the solution methods.

When the bound on diameter is taken as its optimal value, all solution procedures

are able to find optimal solutions within 1 or 2 seconds. When we take the bound

as 2 and 3, the solution times of MIP and QP become 15 seconds on average while

it is still a couple of seconds for the branch-and-bound. To be more specific, the

maximum solution times of MIP, QP, and B&B with D = 2 are 60, 43, 12 and

with D = 3 they are 197, 189, 23 seconds, respectively.

Table 3.8: Results for the DC-TFP-SD on the DBLP instances

D=2 D=3

MIP QP B&B MIP QP B&B

m feas solved time solved time solved time feas solved time solved time solved time

4 9 9 64.48 9 98.61 9 1.47 10 10 303.60 10 340.22 10 5.15
6 5 5 37.95 5 48.09 5 1.43 10 10 318.63 10 285.92 10 6.87
8 3 3 81.08 3 113.66 3 3.36 10 9 328.54 10 535.28 10 10.04
10 1 1 244.01 1 415.34 1 22.41 8 7 161.45 8 661.48 8 9.78

For the DBLP instances, formulation of TFP-D due to memory errors, there-

fore we used 1, 2, 3, and 4 as the bound on the diameter. To be able to compare

the solution procedures we first present the results of the first 10 instances with

m = 4, 6, 8 and 10 for D = 2 and D = 3 in Table 3.8. For these instances, the

average solution time of MIP is a few minutes and usually less than that of QP.

Nevertheless, QP is able to solve all these instances while we encounter memory

errors with MIP when D = 3 and m exceeds 6. The B&B algorithm, by contrast,

is able to solve each of these instances under 30 seconds.

In Table 3.9, we present the results for all DBLP instances using the branch-

and-bound algorithm for the DC-TFP-SD with D = 1, 2, 3, 4. The averages of

solution times are taken over the instances that are solved within two hours of

time limit and there are only 16 unsolved instances among 1791 feasible ones.

The algorithm is able to solve 79% and 96% of the feasible instances within one

and ten minutes, respectively.

44

Table 3.9: Results of the branch-and-bound algorithm for the DC-TFP-SD on
the DBLP instances

D=1 D=2 D=3 D=4

m feas solved time feas solved time feas solved time feas solved time

4 35 35 0.08 83 83 1.87 99 99 4.06 100 100 6.60
6 7 7 0.02 64 64 1.48 97 97 7.51 100 100 15.11
8 1 1 0.03 36 36 6.60 92 92 12.26 100 100 27.02
10 0 0 0 21 21 15.24 82 82 22.42 98 98 35.14
12 0 0 0 14 14 10.64 78 78 124.95 96 96 51.77
14 0 0 0 9 9 9.76 68 67 56.31 94 94 131.83
16 0 0 0 2 2 5.51 56 54 139.12 93 91 176.08
18 0 0 0 2 2 3.57 49 48 267.20 90 87 297.41
20 0 0 0 0 0 0.00 38 35 187.83 87 83 366.99

3.4 Conclusion

In this study, we formulated the team formation problem as a quadratic set cov-

ering problem with packing constraints. In terms of the problem definition, our

study is close to the ones in data science literature but none of those studies gave

a mathematical formulation to the problem. In operations research literature,

the closest studies, ([23], [24], [25]), had a multi-objective structure and although

the problems were formulated as integer programs, heuristics were suggested as

solution methods. We showed that the quadratic and mixed-integer programming

formulations of the problem can be solved by a commercial solver for instances

up to 2000 candidates. To solve larger sizes to optimality, we developed a novel

branch-and-bound algorithm. The algorithm uses a relaxation that can be solved

by solving a series of linear set covering problems and utilizes a different branching

rule compared to existing branch-and-bound methods for quadratic 0-1 optimiza-

tion problems. With computational experiments we showed that the algorithm

is capable of solving large sizes that are intractable for the solver. The same ap-

proach can be used to solve other binary quadratic problems, however the success

depends, among other things, on how quickly the relaxation (the corresponding

0-1 linear problems) can be solved.

In terms of application, the present work can be extended in several ways.

45

First, the communication cost may be quantified with respect to tasks in which

case the problem also requires assigning people to tasks. Second, the uncertainty

in the communication costs can be incorporated into the decision-making process

using robust optimization and stochastic programming. This can be done in a

single-stage setting where the worst-case or expected communication cost can

be minimized or it can be done in a multi-stage setting where decisions can be

updated over time to improve the performance of the team. In the next chapter,

we tackle a two-stage team formation problem in which uncertainty is present in

the communication costs.

46

Chapter 4

Stochastic Team Formation

Problem

In this chapter, we study a two-stage stochastic team formation problem where

the quality of communication is uncertain for some pairs in the candidate pool

but the first stage allows observing the communication of a limited number of

such pairs. Then according to their observations, the decision-maker builds a

team, which is capable of the required tasks and can communicate effectively.

In classical two-stage stochastic programming, the actual realization of the

random variables are assumed to be known after the first stage, hence the uncer-

tainty resolves completely in the second stage. The uncertainty in this problem is

endogenous or decision-dependent because the resolution of uncertainty depends

on the decisions. Among the random communication costs, we only learn the true

value of the ones that are chosen to be observed in the first stage. This means

that we assume an immediate resolution in this problem.

In Section 4.1, we formally define the two-stage stochastic team formation

problem. In Section 4.2 we give two mathematical formulations for the prob-

lem and prove their equivalence. In Section 4.3, we present our Benders’

47

decomposition-based branch-and-cut algorithm. First, we explain the decom-

position structure, the strengthening process and cuts, then we describe how

the number of problems solved at each iteration is decreased by the creation of

new scenario sets. We conclude this section by the summary of the proposed

algorithm. In Section 4.4, we first explain the instance generation process and

pre-process applied to the instances, then we provide the results of our com-

putational experiments where we compare performances of both mathematical

formulations and different versions of the algorithm. The chapter is concluded

with a brief summary and possible extensions in Section 4.5. The work in this

chapter is based on [84].

4.1 Problem Definition and Value of Learning

As we mention in Section 2.1, different methods are chosen to quantify the com-

munication cost among team members such as personality tests, familiarity scores,

and direct evaluations of candidates. It is difficult to single out the best method

to quantify communication, each having its own advantage, and we leave this up

to the decision-maker. With respect to the method the decision-maker sees fit,

they will require some type of data such as answers to questionnaires or collabo-

ration information. Unfortunately, it is not always possible to obtain such data

completely, especially when there are new people in the respective community,

whether it is a company or an online platform. Therefore, the communication

costs of the pairs, for which sufficient data is missing, are subject to uncertainty.

When there is uncertainty in the communication costs, an opportunity to ob-

serve and learn the true cost value may lead to a better team selection. As

explained in Chapter 1, the quality of communication has a significant impact

on the performance of a team. When there is uncertainty in the communication

costs, if we build a team considering the expected or estimated communication

costs, we may end up with a team with poor communication. In this case, we

can either continue with this team or after identifying the pairs who cannot col-

laborate effectively, we can replace one or more team members accordingly. In

48

the first option, we accept the performance of the team will be limited so we

will encounter some drawbacks such as low work quality or lengthened project

duration. In the second option, by changing the team members we might have

a better team in terms of communication. However, these changes disrupt the

project and it may decrease the work pace as the new members will require time

to be familiar with the tasks.

Instead of building the team and making a change in the team structure during

the project, it might be more preferable to obtain more information about the

communication costs and make a more educated decision. In other words, with

an opportunity to observe some of the uncertain communication costs we can

make a better team selection. In a company, this can be done by assigning small

tasks to people in pairs so that their communication can be observed before the

construction of the actual team. This amounts to putting more effort in the

beginning of team formation process rather than dealing with changes in team

members during the project.

With this motivation, we study a two-stage problem; in the first stage a limited

number of communication costs are observed and a capable team with minimum

expected communication cost is built in the second stage. In this study, the pairs,

whose communication cost is uncertain, are represented by a set and the possible

cost values are represented by scenarios. In other words, the communication costs

are taken as discrete random variables. In what follows, we explain the two-stage

stochastic team formation problem in more detail, introducing the notation first

and describing the type and resolution of uncertainty next, over a small example.

There is a project that requires a team with a set of required skills. Let K

be the set of those skills and let N be the set of candidates among which team

members are selected. We assume that the skills of the candidates are known

and represented by parameter aik, which equals to one if person i ∈ N possesses

skill k ∈ K and to zero otherwise. A team is capable if for each required skill,

there is at least one team member possessing that skill. Let E = {{i, j} : i, j ∈
N, i < j} and M ⊂ E be the set of pairs whose communication cost is random.

We assume that possible values these costs can take and respective probabilities

49

are known, and we create the scenario set S as the cross product of all possible

realizations. We define parameter csij as the communication cost between i and

j under scenario s ∈ S. We use c̄ij to represent the mean communication cost

between i and j. For the pairs whose communication cost is known with certainty,

the value of the corresponding parameter is the same under all scenario, that is,

c̄ij = csij for all {i, j} ∈ E \M . The communication costs are assumed to be

independent, hence the probability of scenario s, ps, is equal to the product

of individual communication cost probabilities. Clearly (N,E) constitutes an

undirected complete graph, where csij is the cost or weight of edge {i, j} under

scenario s. Therefore, we will sometimes use the terms random or uncertain edges

to refer to the pairs whose communication cost is random.

In the first stage, the decision is to choose the uncertain pairs to be observed

and the budget allows us to select u pairs. After observing the true cost values of

these pairs, we form a capable team with the minimum expected cost in the second

stage. We define the communication cost of a team as the sum of all pairwise

communication costs. Next, we illustrate the problem on a small example and

introduce the concept of value of learning.

In Figure 4.1 we have a network where four nodes represent four candidates.

We want to form a capable team for a project that requires three skills and the

shapes of nodes indicate the skill each person has. In this example, we have two

capable teams: {1, 2, 3} and {1, 3, 4}. The values on the solid edges are the true

communication costs of the corresponding pair. The values on the dashed edges

1

2

4

3
3

2.5 3.5

2.8

1 4

2 2

2.5

0.5 0.5

0.4 0.6

Figure 4.1: A social network with uncertain edges {2,3} and {3,4}

50

s ps cs23 cs34

1 0.2 2.5 1
2 0.3 2.5 4
3 0.2 3.5 1
4 0.3 3.5 4

Table 4.1: Scenarios of the small example

are the mean values of the random costs. The possible values these costs can take

are written with the respective probabilities. The cost of edge {2, 3} is 2.5 or 3.5

with equal probabilities and the cost of edge {3, 4} is 1 with probability 0.4 and

4 with probability 0.6. So we have M = {{2, 3}, {3, 4}} and we have 4 scenarios

summarized in Table 4.1.

Taking u = 1 we will solve the problem by enumeration. First, we note that

the expected cost of the team {1, 2, 3} is 7 and that of {1, 3, 4} is 7.3. Because

u = 1, we can either observe {2, 3} or {3, 4} in the first stage. If we select {2, 3}
and its true cost reveals to be 2.5 then we know that the cost of the team {1, 2, 3}
is 6.5. Since this is less than 7.3 the optimal solution is {1, 2, 3}. If the true cost

of 3.5 then the cost of {1, 2, 3} is 7.5, which is greater than 7.3. In this case, the

optimal solution is to select the team {1, 3, 4}. Both of these possibilities being

equally likely, the expected cost of this solution becomes 0.5×6.5+0.5×7.3 = 6.9.

If {3, 4} is selected in the first stage, with probability 0.4 its true cost is 1, in

which case the cost of the team {1, 3, 4} is 5.5. This is better than 7 so we choose

this team. With probability 0.6, the cost of edge {3, 4} is 4, which makes the cost

8.5 for the team {1, 3, 4}. Then in this case the best team becomes {1, 2, 3}.
The minimum expected cost of this first stage solution is 0.4×5.5+0.6×7 = 6.4.

Therefore, the optimal first stage decision is to select {3, 4}.

Recall that the expected costs of the possibles teams were 7 and 7.3 so if we

chose without any observation we would choose the team {1, 2, 3} with expected

cost 7. With this learning opportunity, we decreased the cost to 6.4. We call this

difference between the expected value problem and two-stage stochastic problem

as the value of learning (VE). This definition can be regarded as the adaptation

51

of the value of stochastic solution (VSS) concept to our problem. In classical

two-stage stochastic programming with complete recourse, VSS is defined by the

difference between the result of using an expected value solution (EEV) and the

recourse problem solution [85]. And EEV is calculated by solving the mean value

problem, fixing the first stage solutions and solving for each scenario in the second

stage independently. EVV, and consequently VSS, do not apply to our problem

since the first stage does not have a meaning alone. The expected value of perfect

information (EVPI) concept, which is the difference between the result of recourse

problem and wait-and-see, however, does apply to our problem. In our example,

EVPI is zero because the result of wait-and-see solution is 6.4, same as the result

of the stochastic problem.

4.2 Formulations

In our problem, the resolution of uncertainty depends on the first stage decisions.

In the example presented in the previous section, since u = 1, we are allowed to

observe only one of the random edges. When we choose to observe edge {2,3},
we have no information on edge {3,4}. Consequently, we are not capable of dis-

tinguishing scenarios 1 and 2, and also 3 and 4, because we have only learned

the true cost of edge {2,3}. Therefore, the second stage decisions under scenarios

1 and 2, and 3 and 4, must be identical. In the literature of the problems with

type 2 endogenous uncertainty, this is enforced by a set of constraints called con-

ditional non-anticipativity constraints. The name comes from their similarity to

non-anticipativity constraints used in multi-stage stochastic programming. Reg-

ular non-anticipativity constraints ensure that the decisions under the scenarios,

which have the same history up to the current stage, are identical. In problems

with endogenous uncertainty, these constraints are enforced on pairs of scenar-

ios, which are indistinguishable after the observations in the previous stages.

Because of this condition on indistinguishability, they are called conditional non-

anticipativity constraints and abbreviated as CNAC. As we will explain in detail,

these constraints are very large in nature and lead to computationally hard integer

programming formulations. Therefore, in this study, we develop an alternative

52

integer programming model which do not require these constraints.

We define binary variable wij to be one if edge {i, j} ∈ M is selected to be

observed in the first stage and zero otherwise. In the second stage, we have binary

variable ysi which is one if person i ∈ N is in the team under scenario s ∈ S, and

zero otherwise. We also define zsij = ysi y
s
j for all {i, j} ∈ E, and for all s ∈ S.

Next, we define the sets which are used to write the CNACs. Let Dss′ to be the

set of edges that distinguishes scenarios s and s′, i.e., Dss′ = {{i, j} : csij 6= cs
′
ij}.

We could write the CNACs for all scenario pairs but since some constraints imply

the others it is sufficient to write the constraints for a subset of the scenario pairs.

We denote this subset by L. As proved in the study by Gupta and Grossmann

[56], and later generalized by Boland et al. [55], when the scenario set is defined

by the cross product of all possible realizations, to have the minimum number of

pairs, we can define L by the pairs which have only one different parameter, that

is, L = {{s, s′} : s, s′ ∈ S, s < s′, |Dss′| = 1}. Then in line with the models in the

literature, we can formulate our problem with the CNACs as follows:

min
∑
s∈S

∑
{i,j}∈E

psc
s
ijz

s
ij (4.1)

st.
∑
{i,j}∈M

wij = u, (4.2)

∑
i∈N

aiky
s
i ≥ 1 ∀k ∈ K, s ∈ S, (4.3)

zsij ≤ ysi ∀i, j ∈ N : i < j, s ∈ S, (4.4)

zsij ≤ ysj ∀i, j ∈ N : i < j, s ∈ S, (4.5)

zsij ≥ ysi + ysj − 1 ∀i, j ∈ N : i < j, s ∈ S, (4.6)

zsij ≥ 0 ∀{i, j} ∈ E, s ∈ S, (4.7)

ysi ∈ {0, 1} ∀i ∈ N, s ∈ S, (4.8)

wij ∈ {0, 1} {i, j} ∈M, (4.9)

ysi − ys
′

i ≤ wmn ∀i ∈ N, {s, s′} ∈ L, {m,n} = Dss′ , (4.10)

ys
′

i − ysi ≤ wmn ∀i ∈ N, {s, s′} ∈ L, {m,n} = Dss′ . (4.11)

Constraints (4.2) and (4.9) ensure that u pairs are selected to be observed

53

in the first stage. Constraints (4.3) are the covering constraints that guarantee

existence of at least one capable person in the team for each required skill under

each scenario. Constraints (4.4)-(4.7) imply zsij = ysi y
s
j for all {i, j} ∈ E, s ∈ S.

(4.10) and (4.11) are the conditional non-anticipativity constraints. In these

constraints, the right-hand side is equal to zero when the edge distinguishing

scenarios s and s′ is not selected in the first stage, and consequently, it enforces

the decisions under those scenarios to be equal to each other. The objective

function is the expected cost of the team built in the second stage. Having |M |
random parameters and each having two possible values, the number of CNACs in

this formulation is |N ||M |2|M | which makes the problem computationally difficult.

The following formulation, which does not have CNACs (4.10) and (4.11), is

an alternative formulation to the same problem:

min
∑
s∈S

ps

(∑
{i,j}∈E

c̄ijz
s
ij +

∑
{i,j}∈M

(csij − c̄ij)wijzsij
)

(4.12)

st. (4.2)− (4.9)

Except for the absence of the conditional non-anticipativity constraints, the only

difference of this formulation with the previous one is the objective function

(4.12). When {i, j} ∈M is not chosen in the first stage, we do not know its true

cost value. In this case, we can directly use the mean cost value since the aim is

to minimize the expected cost. Therefore, when wij = 0, the cost term related

to this pair is c̄ijz
s
ij in the objective (4.12) for any scenario s. When the pair is

chosen, that is, wij = 1, we learn its true cost value, which is csij with probability

ps. In this case, c̄ijz
s
ij + (csij − c̄ij)wijz

s
ij in (4.12) becomes csijz

s
ij so we use the

communication cost csij under scenario s.

We linearize the quadratic objective function by defining variable vsij = wijz
s
ij

for all {i, j} ∈M and s ∈ S:

min
∑
s∈S

ps

(∑
{i,j}∈E

c̄ijz
s
ij +

∑
{i,j}∈M

(csij − c̄ij)vsij
)

(4.13)

st. (4.2)− (4.9),

vsij ≤ zsij {i, j} ∈M, s ∈ S, (4.14)

54

vsij ≤ wij {i, j} ∈M, s ∈ S, (4.15)

vsij ≥ zsij + wij − 1 {i, j} ∈M, s ∈ S, (4.16)

vsij ≥ 0 {i, j} ∈M, s ∈ S. (4.17)

Constraints (4.14)-(4.17) are to ensure vsij = wijz
s
ij for all {i, j} ∈ M and

s ∈ S. We denote the above formulation (4.2)-(4.9), (4.13)-(4.17) by IF, and the

formulation with the CNACs (4.1)-(4.11) by CF.

Observation 2 Let (w̃, ỹ, z̃) be a feasible solution of CF . Let H̃ be the set of

edges whose cost will be realized after the first stage, that is, H̃ :=
{
{i, j} ∈ M :

w̃ij = 1
}

. If the number of different weights {i, j} ∈ H̃ can have is rij, then

q̃ =
∏

{i,j}∈H̃
rij is the number of different realizations we can see given w̃. We can

partition the scenario set S to the sets S̃n for n = 1, . . . , q̃ such that the cost

values of the selected edges are the same for all scenarios in S̃n, that is, csij = cs
′
ij

for {i, j} ∈ H̃ for any s, s′ ∈ S̃n. For any n, the scenarios in S̃n are actually the

ones that are indistinguishable. Therefore, because of (4.10)-(4.11) in CF , we

have ỹs = ỹs
′
, and consequently z̃s = z̃s

′
, for any s, s′ ∈ S̃n.

Proposition 6 IF and CF are equivalent formulations in the following sense.

For any feasible solution of CF there is a corresponding feasible solution of IF

with the same objective value. For any feasible solution of IF , either there is a

corresponding feasible solution of CF with the same objective value or this feasible

solution is not optimal for IF .

Proof. Let (w̃, ỹ, z̃) be a feasible solution of CF . Then (w̃, ỹ, z̃, ṽ), where

ṽ = z̃ ◦ w̃, is clearly a feasible solution of IF , where ◦ denotes the Hadamard

product (element-wise multiplication). We prove the equivalence of the objective

values of these solutions term by term with respect to edges.

• For {i, j} ∈ E \M , the terms in the objective functions (4.1) and (4.13) are

identical since csij = c̄ij for all s ∈ S.

55

• For {i, j} ∈ M with w̃ij = 1, we have ṽsij = z̃sij and consequently in (4.13)

we have c̄ij z̃
s
ij + (csij − c̄ij)ṽsij = csij z̃

s
ij, which is identical to the term in (4.1).

• For {i, j} ∈M with w̃ij = 0, we have ṽsij = 0 so it is sufficient to show that∑
s∈S

psc
s
ij z̃

s
ij =

∑
s∈S

psc̄ij z̃
s
ij. Let S̃1, . . . , S̃q̃ be the partition of the scenarios

with respect to w̃ as described in Observation 2. We define ζ̃nij = z̃sij for all

s ∈ S̃n and for n ∈ {1, . . . , q̃} using the fact that the second stage decisions

under scenarios S̃n are identical. The sum of probabilities of scenarios in

set S̃n is p̃n =
∑
s∈S̃n

ps for n ∈ {1, . . . , q̃}. Then for the term in (4.13) we can

write:

∑
s∈S

psc̄ij z̃
s
ij =

q̃∑
n=1

∑
s∈S̃n

psc̄ij z̃
s
ij =

q̃∑
n=1

ζ̃nij c̄ij
∑
s∈S̃n

ps =

q̃∑
n=1

ζ̃nij c̄ij p̃n (*)

Let 1cij, . . . ,
rcij be the possible cost values of {i, j} with probabilities

ρ1
ij, . . . , ρ

r
ij so

r∑
l=1

ρlij
lcij = c̄ij. We can partition each S̃n to sets S̃1

n, . . . , S̃
r
n

such that for s ∈ S̃ln, csij = lcij for l ∈ {1, . . . , r}. The sum of probabilities

of the scenarios in S̃ln equals to ρlij p̃n. Then for the term in (4.1) we can

write:

∑
s∈S

psc
s
ij z̃

s
ij =

q̃∑
n=1

∑
s∈S̃n

psc
s
ij z̃

s
ij =

q̃∑
n=1

ζ̃nij
∑
s∈S̃n

psc
s
ij =

q̃∑
n=1

ζ̃nij

r∑
l=1

∑
s∈S̃l

n

ps
lcsij

=

q̃∑
n=1

ζ̃nij

r∑
l=1

ρlij p̃n
lcij =

q̃∑
n=1

ζ̃nij p̃n

r∑
l=1

ρlij
lcij =

q̃∑
n=1

ζ̃nij p̃nc̄ij (**)

From (*) and (**), we conclude that the terms in (4.1) and (4.13) are

identical.

Now let (w̃, ỹ, z̃, ṽ) be a feasible solution of IF . If (w̃, ỹ, z̃) is feasible for CF

then their objective values are equal as proved above. If (w̃, ỹ, z̃) is not feasible

for IF , then there exists at least one scenario pair {s, s′} with s < s′ such that

w̃mn = 0 for Dss′ = {m,n} but ỹsi 6= ỹs
′
i for some i ∈ N . Let L̃ be the set of such

scenario pairs ordered lexicographically. Let ν̃s =
∑

{i,j}∈E
c̄ijz

s
ij+

∑
{i,j}∈M

(csij−c̄ij)vsij.

56

• If ν̃s = ν̃s
′

for all {s, s′} ∈ L̃, then we update ỹs′ := ỹs, z̃s′ := z̃s, ṽs′ := ṽs

for all {s, s′} ∈ L̃ in order. The updated solution is feasible for CF and has

the same objective value.

• If there exist {s, s′} ∈ L with ν̃s < ν̃s
′

(ν̃s > ν̃s
′
) then the solution is not

optimal because updating ỹs′ := ỹs, z̃s′ := z̃s, ṽs′ := ṽs (ỹs := ỹs′ , z̃s :=

z̃s′ , ṽs := ṽs′) we obtain a better solution.

�

4.3 Branch-and-Cut Algorithm

Although IF , the alternative formulation without CNACs, has much less con-

straints compared to CF , the formulation with CNACs, as the number of scenar-

ios increases, the size of this formulation becomes too large to be solved with a

commercial integer programming solver as well. Therefore, we develop an integer

L-shaped algorithm, which is a decomposition-based branch-and-cut algorithm,

to solve our two-stage stochastic team formation problem. The algorithm is based

on the formulation IF . The L-shaped method, which is based on Benders’ de-

composition [86], was first proposed by Van Slyke and Wets [87] for two-stage

stochastic linear programs with continuous variables. Laporte and Louveaux [88]

developed the integer L-shaped method for two-stage problems with integer vari-

ables in both stages. The algorithm is embedded into a branch-and-bound proce-

dure to ensure optimality. It utilizes cuts that require optimal objective value of

the second stage problems and a valid lower bound for those. This means integer

programs are required to be solved at each iteration. Therefore, the performance

of the algorithm directly depends on the computational difficulty of those integer

programs and obtaining a good lower bound.

We propose an algorithm where the duality-based optimality cuts are obtained

by a stronger linear relaxation of the second stage problems by applying the well-

known reformulation-linearization technique of Adams and Sherali [76]. This

57

stronger relaxation not only generates stronger cuts but also decreases the com-

putational burden of solving the integer problems by providing integral solutions

often. Moreover, by exploiting the problem structure, at each iteration of the al-

gorithm we generate an alternative scenario set, which is much smaller than the

original one and the second stage problems are solved over those scenarios. Lastly,

using the fact that solving integer second stage problems gives an incumbent, we

pass that upper bound information to the solver and add a cut to eliminate the

corresponding first stage solution.

In the following subsection, we explain the decomposition of the problem,

present the stronger linear relaxation. We describe the generation of the new

scenarios and the cuts. Then we explain the algorithm step by step.

4.3.1 The Decomposition and Cuts

We can rewrite IF using the standard two-stage stochastic programming repre-

sentation as follows:

min
∑
s∈S

psQs(w)

s.t. ∑
{i,j}∈M

wij = u,

wij ∈ {0, 1} ∀{i, j} ∈ E.

where, for each s ∈ S we have

Qs(ŵ) = min
∑
{i,j}∈E

c̄ijz
s
ij +

∑
{i,j}∈M

(csij − c̄ij)vsij

st.
∑
i∈N

aiky
s
i ≥ 1 ∀k ∈ K,

zsij ≤ ysi ∀{i, j} ∈ E,

zsij ≤ ysj ∀{i, j} ∈ E,

zsij ≥ ysi + ysj − 1 ∀{i, j} ∈ E,

58

zsij ≥ 0 ∀{i, j} ∈ E,

ysi ∈ {0, 1} ∀i ∈ N,

vsij ≤ zsij {i, j} ∈M,

vsij ≤ ŵij {i, j} ∈M,

vsij ≥ zsij + ŵij − 1 {i, j} ∈M,

vsij ≥ 0 {i, j} ∈M.

Let Q∗s(ŵ) be the optimal objective function value of problem Qs(ŵ). Clearly

the feasibility of Qs(ŵ) for all s ∈ S does not depend on ŵ but on the existence

of a capable team. Hence the feasibility of the second stage amounts to feasibility

of the whole problem and we assume that it is checked beforehand. Therefore

there are no feasibility cuts in our problem. To generate the optimality cuts we

use the following relaxation, RQs(ŵ), of Qs(ŵ):

min
∑
{i,j}∈E

c̄ijz
s
ij +

∑
{i,j}∈M

(csij − c̄ij)vsij

s.t.
∑
i∈N

aiky
s
i ≥ 1 ∀k ∈ K, (αsk) (4.18)

ysi − zsij ≥ 0 ∀{i, j} ∈ E, (γsij) (4.19)

ysj − zsij ≥ 0 ∀{i, j} ∈ E, (Γsij) (4.20)

zsij − ysi − ysj ≥ −1 ∀{i, j} ∈ E, (βsij) (4.21)

zsij − vsij ≥ 0 ∀{i, j} ∈M, (εsij) (4.22)

− vsij ≥ −ŵij ∀{i, j} ∈M, (λsij) (4.23)

vsij − zsij ≥ ŵij − 1 ∀{i, j} ∈M, (Πs
ij) (4.24)∑

i<j

aikz
s
ij+
∑
i>j

aikz
s
ji−yj≥0 ∀j ∈ N, k ∈ K :ajk=0, (δsjk) (4.25)

∑
i 6=j

aiky
s
i + ysj−

∑
i<j

aikz
s
ij−
∑
i>j

aikz
s
ji ≥ 1 ∀j ∈ N, k ∈ K, (σsjk) (4.26)

− ysi ≥ −1 ∀i ∈ N, s ∈ S, (µsi) (4.27)

(ys, zs,vs) ≥ 0

Without constraints (4.25)-(4.26), above formulation is the continuous relaxation

of Qs(ŵ) written in canonical form. Constraints (4.25) and (4.26) are obtained

by multiplying the covering constraint (4.18) by ysj and 1−ysj respectively. Hence

these are the inequalities obtained by the reformulation-linearization technique

59

(RLT) [76] and they strengthen the relaxation.

The dual variables associated with the constraints are indicated alongside. For

the multi-cut version of the algorithm let ηs be the first stage decision variable

that approximates the second stage cost under scenario s and let α̂, σ̂, β̂, Π̂, λ̂

and µ̂ be the optimal dual vectors. Then we write the optimality cuts as follows:

ηs ≥
∑
k∈K

α̂sk +
∑
i∈N

∑
k∈K

σ̂sik−
∑
{i,j}∈E

β̂sij+
∑
{i,j}∈M

(
(wij−1)Π̂s

ij − wij λ̂sij
)
−
∑
i∈N

µ̂i (4.28)

For the single-cut version, we define variable η to approximate the expected cost

of the second stage problem and aggregate the cuts as follows:

η ≥
∑
s∈S

ps

(∑
k∈K

α̂sk +
∑
i∈N

∑
k∈K

σ̂sik−
∑
{i,j}∈E

β̂sij+
∑
{i,j}∈M

(
(wij−1)Π̂s

ij − wij λ̂sij
)
−
∑
i∈N

µ̂i

)
(4.29)

Besides the classical optimality cuts obtained via duality as done above, there

are two other types of cuts utilized in the literature when the master problem

is pure binary. The first one is introduced by Laporte and Louveaux [88]. The

efficiency of this cut depends on whether we can generate strong lower bounds

for the second stage problems and it is built on the assumption that given a first

stage solution, the second stage problems are easy to solve. For our problem

given the first stage solution ŵ we write this optimality cut as follows:

ηs ≥ Q∗s(ŵ) + (Ls −Q∗s(ŵ))(u−
∑
{i,j}∈Ĥ

wij) (4.30)

In this cut, Ls is a lower bound on the optimal value of second stage problem under

scenario s and it is independent from the first stage decision. Also Ĥ = {{i, j} ∈
M : ŵij = 1}. Notice that when w = ŵ this cut ensures that ηs ≥ Q∗s(ŵ) and

for any other solution its quality strictly depends on the lower bound Ls.

The other well-known cut is no-good cut that is used to eliminate a first stage

solution for which the second stage becomes infeasible. In our case, the second

stage problem is always feasible. Nevertheless, for our problem given a first stage

solution ŵ and set Ĥ, no-good cut can be written as below:∑
{i,j}∈Ĥ

wij ≤ u− 1 (4.31)

60

We are able to write no-good cuts in this form because the first stage constraint

is in equality form, and consequently |Ĥ| = u for any feasible ŵ. When the first

stage constraint is in inequality form, ≤, we write the no-good cut as follows:∑
{i,j}∈Ĥ

(1− wij) +
∑
{i,j}/∈Ĥ

wij ≥ 1 (4.32)

In standard application of L-shaped algorithms, whether it is multi-cut or single-

cut, the relaxation of the second stage problems are solved for each scenario to

generate the cuts. In the next section, we show that we can calculate the optimal

dual vectors by solving a number of problems much less than the number of

scenarios.

4.3.2 Scenario Reduction

From Observation 2, we know that given a first stage solution ŵ, we can partition

the scenarios set S to the sets Ŝn for n = 1, . . . , q̂ such that csij = cs
′
ij for {i, j} ∈

Ĥ for any s, s′ in Ŝn where Ĥ =
{
{i, j} ∈ M : ŵij = 1

}
. This partition

simply groups the scenarios that are indistinguishable and we also know that,

for each group, the second stage decisions under the scenarios in that group are

identical. This means that, given the first stage solution ŵ, it is sufficient to

solve a single second stage problem for each scenario group. To do that, we

define a new scenario set Ŝ with q̂ number of scenarios, {ŝ1, ŝ2, . . . , ŝq̂}, each

of which corresponds to one of the scenario groups in the partition. We define

the cost coefficients ĉŝn for the new scenario ŝn ∈ Ŝ such that ĉŝnij takes the

corresponding scenario value if {i, j} is observed in the first stage and takes the

mean value otherwise. That is, ĉŝnij = csij for {i, j} ∈ Ĥ and s ∈ Ŝn, and ĉŝnij = c̄ij

for {i, j} /∈ Ĥ. Let Qŝn(ŵ, ĉ) be the second stage problem for scenario ŝn for

n ∈ {1, . . . , q̂}, given first stage solution ŵ and with cost coefficients ĉ.

Proposition 7 Given a first stage solution ŵ, partition (Ŝ1, . . . , Ŝq̂) and new sce-

nario set Ŝ constructed as above, the optimal solution of RQŝn(ŵ, ĉ) (respectively,

Qŝn(ŵ)) is optimal for RQs(ŵ) (respectively, Qs(ŵ)) for s ∈ Ŝn, n ∈ {1, . . . , q̂},

61

Proof. For n ∈ {1, . . . , q̂}, RQŝn(ŵ, ĉ) and RQs(ŵ) for s ∈ Ŝn have the same

constraint set and the terms in the objective are identical except for {i, j} /∈ Ĥ.

Given ŵ, any feasible second stage solution (ŷ, ẑ, v̂) of RQŝn(ŵ, ĉ), satisfies

v̂ŝnij = 0 because ŵij = 0 for {i, j} /∈ Ĥ so the solution (ŷ, ẑ, v̂) has the same objec-

tive value in RQŝn(ŵ, ĉ) and RQs(ŵ). Hence an optimal solution to RQŝn(ŵ, ĉ)

is optimal for RQs(ŵ). �

Although the primal optimal solution of the second stage problem under the

new scenarios are optimal for the second stage problems under original scenarios,

the dual optimal solutions are required to be adjusted for feasibility, which we

explain next.

Proposition 8 Given a first stage solution ŵ, let (α̂, γ̂, Γ̂, β̂, ε̂, λ̂, Π̂, δ̂, σ̂, µ̂) be

the optimal solution of RQŝn(ŵ, ĉ) for n ∈ {1, ..., q̂}. This is optimal for the dual

of RQs(ŵ) for any s ∈ Ŝn if we update λ̂ as follows:

λ̂sij =

(Π̂ŝn
ij − ε̂

ŝn
ij − csij + c̄ij)

+, for {i, j} /∈ Hr

λ̂ŝnij , for {i, j} ∈ Hr

Proof. For n ∈ {1, . . . , q̂}, sn and s ∈ Ŝn, let DRQs(ŵ) and DRQŝn(ŵ, ĉ)

denote the duals of RQs(ŵ) and RQŝn(ŵ, ĉ) respectively. The mathematical

formulation of DRQs(ŵ) is as follows:

max
∑
k∈K

αsk +
∑
i∈N

∑
k∈K

σsik −
∑
{i,j}∈E

βsij +
∑
{i,j}∈M

(
(ŵij − 1)Πs

ij − ŵijλsij
)
−
∑
i∈N

µi

s.t. ∑
k∈K

aikα
s
k −

∑
k∈K:aik=0

δsik +
∑
k∈K

σik +
∑
j<i

∑
k∈K

σjk

+
∑
j>i

(γsij − βsij) +
∑
j<i

(Γsij − βsji)− µi ≤ 0 ∀i ∈ N, (4.33)

∑
k∈K:aik=0

ajkδ
s
ik+

∑
k∈K:ajk=0

aikδ
s
jk − ajkσik − aikσjk

+ βsij − γsij − Γsij + εsij −Πs
ij ≤ c̄ij ∀{i, j} ∈ E, (4.34)

− εsij − λsij + Πs
ij ≤ csij − c̄ij ∀{i, j} ∈M, (4.35)

62

(α̂, γ̂, Γ̂, β̂, ε̂, λ̂, Π̂, δ̂, σ̂, µ̂) ≥ 0

The formulations of DRQs(ŵ) and DRQŝn(ŵ, ĉ) are identical except for the

constraints (4.35) for {i, j} /∈ Ĥ because that is when csij 6= cŝnij . Hence any

solution to DRQŝn(ŵ, ĉ) satisfies the constraints of DRQs(ŵ) except for these

constraints. By updating λ̂sij = (Π̄ŝn
ij − ε̄

ŝn
ij − csij + c̄ij)

+ for {i, j} /∈ Ĥ we satisfy

(4.35) hence the solution becomes feasible for DRQs(ŵ). The corresponding

objective values of these solutions are equal since the cost coefficient of λ̂sij is zero

for {i, j} /∈ Ĥ, hence the updated solution is optimal for DRQs(ŵ). �

With these two propositions, we have shown that, given a first stage solution

ŵ, it is sufficient to solve q̂ number of linear programming problems in the second

stage to generate optimality cuts and again it is sufficient to solve q̂ number of

integer programming problems in the second stage to obtain optimal second stage

solution given ŵ.

4.3.3 The Algorithm

We use the lazy-constraint callback feature of the solver and generate and add

optimality cuts whenever an integral first stage solution is found. Let ŵ be the

integral first stage solution found at the current node of the branch-and-bound

tree. We create the new scenarios set Ŝ = {ŝ1, . . . , ŝq̂} as described before Propo-

sition 7. We solve the dual of the stronger relaxation of second stage problems,

DRQŝn(ŵ, ĉ), for n = 1, . . . , q̂ and update the solution as described in Proposi-

tion 8. Here, we record whether the corresponding primal solution, the solution

of RQŝn(ŵ, ĉ), is integral or not. It suffices to check integrality of ŷsn because

integrality of ŷsn implies the integrality of ẑsn and v̂sn . We generate and add the

optimality cut (4.29) if it cuts the current solution. If it does not, then we solve

the integer second stage problems Q̂ŝn(ŵ, ĉ) for ŝn such that ŷsn is not integral.

Let (ŷ∗, v̂∗, ẑ∗) be the optimal integral solution for the second stage and Q̂∗(ŵ, ĉ)

be its objective value. Q̂∗(ŵ, ĉ) is an upper bound for the original problem so we

pass this information to the solver using heuristic callback and add no-good cut

(4.31) to eliminate first stage solution ŵ.

63

In our algorithm, we use the aggregated cuts (4.29) instead of scenario-

dependent cuts (4.28). Theoretically, with the multi-cut implementation, we

could get better approximations of the second stage problems. It requires having

a decision variable ηs for each scenario in the master problem and the number of

cuts added at each iteration can be as large as the number of scenarios. Conse-

quently, the master problem becomes too large too quickly and the time required

to solve it increases substantially. Therefore, we add these cuts as a single ag-

gregated cut of form (4.29). Furthermore, since we do not want to define ηs for

each scenario, we do not use the cuts of the form 4.30, which requires the optimal

objective value of the integer second stage problem and a lower bound for this.

Of course, these cuts can be aggregated and added as a single cut as well but we

choose not to because to have strong cuts of this form we need a strong lower

bound that requires computational time.

We use a linear relaxation of the second stage problems, which are strength-

ened by the inequalities derived by the reformulation-linearization technique. In

literature, there are studies where the relaxation is strengthened iteratively with

additional cuts such as in [89] and [90] with Gomory cuts and in [91] and [92] with

disjunctive cuts. In our algorithm, we use a strong relaxation from the beginning.

Moreover, the way we solve integer second stage problems is similar to the alter-

nating strategy of Angulo et al. [93] because we only solve the integer problems

if the duality-based optimality cuts (4.29) does not cut the current solution. The

difference is that because we solve a strong relaxation, it gives integral solutions

frequently and we usually do not need to solve the integer problems. In Section

4.4.3, presenting computational results for different variants of the algorithm, we

explain why we propose this version.

4.4 Experiments

In this section, we first explain the instance generation and pre-process we ap-

ply. Then we compare the computational efficiency of formulations CF and IF ,

64

and show their limitations. We present the computational experiments for vari-

ous versions of the branch-and-cut algorithm and explain why we decide on the

form explained in the previous section. All formulations and algorithms are im-

plemented in Java using CPLEX 12.7 and run on a personal computer with an

Intel(R) Core(TM) i7-6700HQ 2.6 GHz and 16 GB of RAM. All computational

times reported are wall-clock times in seconds.

4.4.1 Data Generation and Pre-process

To test our formulations and the algorithms, we have generated random instances.

|N | random points are generated in the two-dimensional coordinate system, and

the mean value of the communication costs, c̄ij’s, are taken as the Euclidean

distance between these points plus a random term. Having |K| skills, we randomly

assign skills to people ensuring feasibility by checking the existence of a capable

person per skill. |M | edges are randomly selected as the uncertain ones. Each of

these |M | edges has two possible costs. The low or optimistic cost of {i, j} ∈M
is calculated by clij = dc̄ij with probability ρij where d and ρij for {i, j} ∈M take

random values from sets {0.3, 0.4, . . . , 0.7} and {0.3, 0.4, . . . , 0.9} respectively.

The high or pessimistic cost of edge {i, j}, chij, is calculated accordingly. Scenario

set is the cross product of all possible realization of edge costs and probability of

a scenario is the product of edge probabilities.

In Section 4.1, through a small example, we explained that learning the true

cost value of a random edge can lead to a team with less communication cost.

In that example, by observing either of the random edges we are able to build

a better team than the optimal solution of the mean value problem. However,

observing a random edge might not always lead to a better decision. In other

words, the information we obtain by observing an edge might be insignificant. By

detecting such edges and ignoring their randomness we can substantially decrease

the number of scenarios because having |M | random edges each having 2 possible

cost values we have 2|M | scenarios. Moreover, identifying such edges also increases

the chance of solving more interesting instances in terms of the value of learning,

65

which is the expected improvement we get from the observations. For example,

if |M | = 10 in an instance but most of the random edges are irrelevant, then it

is less likely for the value of learning to be high as opposed to an instance where

all 10 random edges are relevant.

There can be various ways to identify irrelevant edges. We use the following

approach utilizing the fact that the deterministic problem can be solved very

efficiently. For each {i, j} ∈ M , we find the minimum cost team having edge

{i, j} with respect to the most optimistic scenario, i.e., by solving a deterministic

problem with clmn for all {m,n} ∈ M . Let T lij be the cost of this team. We also

solve a deterministic problem with respect to the most pessimistic case and let

T h be its objective value. For {i, j} ∈ M if T lij > T h we remove {i, j} from M

because learning this edge is not useful since it is never going to be part of a

capable team under any scenario. We note that this process does not allow us

to detect all irrelevant edges. A naive approach to detect all could be finding

the best team under each scenario and conclude that an edge is irrelevant for

the stochastic problem if it does not show up in any of the scenarios. Of course,

considering the number of scenarios, this approach can take significant time as it

amounts to solving 2|M | deterministic problems.

4.4.2 Comparision of CF and IF

We have generated small-sized instances and solved these instances with formu-

lations IF and CF using CPLEX 12.7 as the solver. In Table 4.2 we present the

instance information and the corresponding solution times. relM indicates the

number of random edges left in set M after the pre-process. For example, in the

first instance, this number is reduced to 8 from 14. Each instance is solved twice

by taking u = 4 and u = 6. We present the solution times under the columns

IF and CF , and dash means the solver could not find an optimal solution within

1 hour. Recall that, value of learning (VE) is the difference between the objec-

tives of the Expected Value Problem (EVP) and the two-stage stochastic problem

(SP). We define VE%= 100*(EVP-SP)/EVP.

66

Table 4.2: Comparison of IF and CF

u=4 u=6

no N K M relM IF CF V E% IF CF VE%

1 10 8 14 8 23.09 6.64 0.73 12.35 2.22 0.9
2 10 8 14 9 50.36 31.37 6.24 61.7 46.02 6.47
3 10 8 14 10 105.92 96.6 5.08 104.19 31.01 5.35
4 10 8 14 11 30.89 5.46 0 27.54 5.69 0
5 10 8 14 12 603.62 499.21 4.24 696.88 211.76 4.28
6 10 8 14 12 64.068 10.406 0 63.069 8.458 0
7 12 8 14 8 59.81 42.35 0 71.08 19.15 0.06
8 12 8 14 9 1196.96 2704.76 6.17 1407.96 402.71 6.36
9 12 8 14 9 - - ≥5.95 - - ≥5.66
10 12 8 14 10 2322.93 2249.29 5.75 2111.43 476.14 5.78
11 12 8 14 10 172.18 169.98 3.71 159.2 62.17 3.71
12 12 8 14 11 421.77 1206.62 5.08 235.935 194.54 5.40
13 12 8 14 11 2293.77 2865.97 13.49 2348.92 1462.37 14.18
14 15 8 14 9 77.56 232.6 7.11 77.69 57.07 7.16
15 15 8 14 9 - 1999.46 2.06 - 336.57 2.37
16 15 8 10 10 51.66 123.59 0.44 74.71 21.13 0.44
17 15 8 14 10 - - ≥1.51 - 2254.82 2.11
18 15 8 14 10 504.94 1780.93 6.69 466.07 499.15 6.69

67

When u = 4, in half of the instances, the solutions times of IF and CF do

not have much difference. For the cases where the difference is large, we point

it out by highlighting the smaller times. For u = 4, the performance of IF is

slightly better, although there are instances that CF solved faster. When u = 6,

the solution times of CF is almost always better than those of IF . For this case,

we highlighted the ones where the difference is substantial.

We also see that, for the majority of the instances, VE% is positive, meaning

that the cost of the team is improved by observing u edges or relations in the

first stage. It is not surprising for VE% to be equal to or close to zero for small

instances and we have more positive VE% values as the instances get larger.

Furthermore, when we compare instances with the same size, such as instances 5

and 6 or 12 and 13, we see that the ones with the higher VE% took more time to

solve. In other words, it seems that the instances where the value of learning is

higher is computationally more difficult.

Table 4.3: Comparison of continuous relaxations of IF and CF

IF CF

N relM time lp-time lp-gap time lp-time lp-gap

10 8 57.77 0.43 38.75 13.98 0.54 36.63
10 9 4.074 1.39 1.52 5.98 0.723 0.97
10 10 41.35 5.09 4.11 31.27 1.99 2.19
10 11 12.63 1.77 0.00 3.856 1.9 0.00
10 12 216.52 42.42 11.46 292.81 5.453 8.70
10 13 391.94 68.39 2.18 189.32 15.59 1.95
12 6 1.595 0.139 23.40 1.151 0.17 18.37
12 7 3.63 0.183 8.12 5.093 0.28 5.91
12 8 92.12 0.69 45.69 56.741 1.01 43.18
12 9 23.27 2.93 7.10 12.138 1.144 4.04
12 10 987.23 4.534 43.59 961.93 2.28 37.80
12 11 221.13 47.19 2.48 433.09 5.74 1.15
12 12 218.91 72.13 0.21 73.85 18.37 0.21
14 8 31.28 0.468 30.74 27.73 1.203 28.48
14 9 19.037 1.29 10.27 34.97 1.34 8.14
14 10 79.02 7.41 3.94- 46.74 4.94 2.02
16 8 52.07 0.638 45.03 88.60 2.35 41.90
16 9 - 2.417 100.00 - 146.535 100.00

68

We also compare formulations IF and CF with respect to their continuous

relaxations. In Table 4.3 we present the solution times of these relaxations and

their gaps calculated by 100*(opt-lp)/opt where opt refers to the optimal objec-

tive value of the integer problem and lp is the objective value of the continuous

relaxation. In each of these instances, the number of skills, |K| is 8 and the limit

on the observations, u, is 4. As seen under the column lp-time, the continuous

relaxation of CF gives a slightly better bound than that of IF in all of the in-

stances. In the last instance, neither CF nor IF reaches an optimal solution

within one hour and interestingly for these instances the objective value of the

relaxations are both zero.

These results show that the size of the instances we can solve using the formula-

tion IF and CF is limited. Next, we present experiments with the branch-and-cut

algorithm.

4.4.3 Experiments on Different Versions of the Branch-

and-Cut Algorithm

Algorithms based on Benders’ decomposition are open to various modifications.

One can have many different versions by changing the type of cut added to

the master, when to add which cut, the type of relaxation solved, etc. In this

section, we present the results of the experiments we made in order to compare

performances of different versions of our branch-and-cut algorithm and to reach

the best possible variant of it.

As we explained in Section 4.3.3, we add the optimality cuts that are based on

linear programming duality as a single cut. It is more efficient than the multi-cut

version for our problem since the number of scenarios is high. We have created

different versions of the algorithm in terms of which relaxation of the second stage

problem is used and in terms of when no-good cut (4.31) is added. There are

three alternatives we tested in terms of the relaxation. These are full-rlt case (F)

that we solve the dual of formulation RQs, half-rlt case (H) where we solve dual

69

Table 4.4: Comparison of multi-cut and single-cut versions

F -o F-o-multi

N relM iter node time dualcut nogood iter node time dualcut nogood

10 9 75 126 4.67 69 6 49 86 3.33 5364 13
10 11 202 403 8.1 201 1 62 157 62.39 39476 11
10 13 250 517 12.5 246 4 89 298 3413.06 252084 10

of formulation RQs except constraints (4.26) and lastly no-rlt case (N) where we

solve the dual of continuous relaxation of the second stage problem. In terms of

the no-good cut we experimented on two options. In the first one, (e), no-good

cut is generated and added at each iteration. In the second case, (o), no-good

cut is only added if the current solution does not violate the current optimality

cut (4.29).

Before presenting computational experiments of the single-cut versions, we

present some results of multi-cut and single-cut versions over few instances to

show the superiority of the single-cut case in terms of the solution time. In Table

4.4, we have three instances solved by F -o, which is the single-cut version of the

algorithm where we solve the dual of formulation RQs and add the no-good cut

only if the optimality cut of the form (4.29) is not violated. We also solve these

instances with the multi-cut version, F-o-multi, where no-good cuts are added

only if optimality cuts of the form (4.28) are not violated. As seen under columns

named, iter and nodes, the multi-cut version terminates with less iterations and

nodes. However, the number of cuts added to the master problem is much higher

in multi-cut case as seen under the column name dualcut. The master problem

grows faster with this high number of cuts in the multi-cut version. For instances

with small number of random parameters, this does not increase the solution

time, as we see in the first row. But, as the number of random parameters and

consequently the number of scenarios increase, the solution time becomes much

longer in multi-cut case, as we see in the last two rows. Hence, the single-cut

version outperforms the multi-cut in terms of the solution time.

In Table 4.5 we present the solution times of few instances using formulations

and different versions of the algorithm. We would like to remind how we name

70

these different versions: the first letter indicates the type of dual formulation used

and the second letter indicates when no-good cut is added, e.g. H-e refers to the

half-rlt version where no-good cut is added at each iteration.

Table 4.5: Comparison of formulations and different versions of the algorithm

no N relM u IF CF F-e H-e N-e F-o H-o N-o VE%

1 12 9 4 7.52 3.31 1.35 1.15 0.68 1.62 1.39 0.96 3.9
6 5.6 2.31 3.93 3.19 3.28 3.83 3.51 2.99 3.9

2 12 9 4 60.05 51.18 4.09 3.33 32.68 4.18 3.78 36.23 2.03
6 61.97 25.21 12.38 10.94 78.93 14.27 12.74 84.53 2.31

3 12 10 4 163.50 301.80 4.10 3.68 44.31 3.56 3.16 53.02 5.36
6 167.06 111.33 20.08 14.61 185.80 20.99 16.60 199.79 5.36

4 12 10 4 101.42 192.61 4.69 9.87 15.71 4.95 7.09 15.44 0.84
6 117.21 93.75 24.54 34.26 92.66 22.77 31.64 87.48 0.84

5 12 11 4 2890.11 3182.81 8.78 6.75 78.6 8.5 6.55 86.54 4.62
6 2746.49 1056.97 51.51 37.82 463.87 52.5 41.68 544.18 4.9

6 12 11 4 871.93 - 2.12 1.40 71.08 1.76 1.47 66.74 5.52
6 907.12 601.19 11.41 12.25 369.86 12.26 13.84 367.99 5.52

The smallest solution time for each instance is highlighted in Table 4.5. There

is not much difference in the performances of the solution methods for “easy”

instances such as the first instance where all solution times are few seconds. For

the rest, full-rlt (F) and half-rlt (H) versions of the algorithm perform the best.

This table clearly indicates the superiority of the algorithm to the formulations.

For example, instance 6 with u = 4 could not be solved with CF within an hour

while some versions of the algorithm solved it in a second. However, this table

does not give sufficient information to favor a specific version of the algorithm.

According to this data, we could only say that no-rlt versions (N), where we use

the continuous relaxation of the second stage problem without strengthening it,

perform poorly compared to the other versions.

In Table 4.6, we present more computational details about the algorithms over

one instance. The details belong to instance 4 with u = 4 in Table 4.5. In this

table, IP time refers to the total time spent to solve the integer second stage

problems. Other row names are self-explanatory. We can see that the solution

times of no-rlt versions are higher due to the time spent in solving the integer

second stage problems. This time is zero in full-rlt versions, which means that

71

Table 4.6: Computational details of algorithms for one instance

F-e H-e N-e F-o H-o N-o

total time 4.694 9.87 15.71 4.95 7.09 15.44
iteration 97 176 116 107 176 145

single cut 97 176 64 102 171 59
no-good 97 176 116 5 5 86

incumbent update 4 3 2 2 4 3
IP time 0 2.45 11.81 0 0 10.64

nodes 173 266 103 165 316 96

the relaxation gave integral solutions. full-rlt versions also have less number of

iterations.

In the light of these results, we remove no-rlt versions from the experiments,

which leaves us with F-e, H-e, F-o, and H-o versions. Recall that with pre-

processing we identify some irrelevant edges and ignore their randomness because

they are not part of the optimal solution under any scenario. With the same

reasoning we can actually remove these edges from the problem completely by

adding zsij = 0 to the integer second stage problem and to its relaxation for any

irrelevant edge {i, j} under scenario s. Therefore, we created 4 new versions of

the algorithm where we eliminate these edges and we add the abbreviation eli

to denote these versions. In Table 4.7 we compare these versions using larger

instances. Again we use a one-hour time limit so dash means the corresponding

versions of the algorithm could not solve the problem in one hour. The minimum

solution time for each instance is highlighted and in the last row, we share the

average solution times over these instances. For the cases where the time limit is

exceeded, we use 3600 seconds in the average calculation.

According to these results, the eli -versions where we eliminate the irrelevant

edges are not always more efficient than their counterparts. Approximately for

half of the instances, the extra constraints added to the integer second stage prob-

lem and the relaxation increase the solution times. In general, from these results,

we see that almost for all versions, there is an instance on which it performed

better than the others, therefore, it is difficult to single out one version at first

glance. However, according to the average solution times, the version F-o gives

72

T
ab

le
4.

7:
C

om
p
ar

is
on

of
d
iff

er
en

t
ve

rs
io

n
s

of
th

e
al

go
ri

th
m

w
it

h
la

rg
er

in
st

an
ce

s

N
K

re
lM

u
F

-e
F

-e
-e

li
H

-e
H

-e
-e

li
F

-o
F

-o
-e

li
H

-o
H

-o
-e

li
V

E
%

20
6

11
6

25
8.

38
15

6.
60

10
48

.7
9

10
36

.7
8

16
2.

77
32

2.
39

10
47

.0
9

11
03

.1
5

13
.8

8
20

6
12

6
41

.9
96

44
.7

46
67

.8
5

59
.5

6
39

.2
7

38
.2

36
75

.4
5

49
.3

5
24

.6
0

20
6

13
6

10
6.

91
13

3.
78

54
8.

20
76

6.
18

5
11

0.
62

13
7.

62
45

1.
17

49
0.

83
16

.4
5

20
6

14
6

72
.9

4
11

8.
60

10
15

.0
8

10
12

.2
2

70
.8

1
11

9.
95

98
6.

07
10

27
.5

3
6.

59
30

8
11

6
37

2.
18

30
6.

27
93

8.
46

55
5.

76
43

5.
24

34
7.

78
88

5.
54

60
1.

26
7.

28
30

8
12

6
10

4.
12

11
1.

39
16

7.
24

13
4.

18
11

4.
66

11
5.

60
15

5.
55

12
6.

15
12

.8
2

30
8

13
6

48
2.

31
27

9.
00

21
9.

62
20

9.
96

51
0.

10
30

8.
71

24
0.

22
21

5.
21

15
.8

8
30

8
14

6
15

53
.8

8
13

58
.1

6
14

14
.5

0
13

04
.4

0
87

1.
02

77
7.

37
55

1.
79

48
3.

55
4.

93
40

8
11

6
70

.6
8

85
.3

3
74

.7
7

75
.9

9
77

.6
8

80
.3

3
77

.6
5

70
.3

3
0.

32
40

8
12

6
53

8.
68

58
6.

04
11

30
.3

5
84

7.
40

52
3.

70
63

9.
17

86
9.

32
76

8.
01

17
.5

40
8

13
6

94
.1

4
13

3.
48

13
2.

33
12

9.
94

99
.9

3
11

7.
20

18
7.

67
13

5.
17

9.
16

40
8

14
6

41
6.

83
63

7.
58

80
4.

96
69

1.
59

39
1.

99
60

8.
73

67
0.

20
62

1.
14

4.
55

40
10

10
6

36
5.

35
83

8.
35

66
5.

91
51

6.
55

43
5.

19
11

08
.8

4
78

2.
37

59
3.

60
5.

49
40

10
11

6
-

-
-

-
29

09
.1

2
28

58
.2

2
-

-
7.

4
40

10
12

6
34

9.
18

49
0.

03
53

7.
53

33
6.

75
35

0.
80

46
5.

90
32

9.
50

33
0.

85
3.

16
40

10
13

6
-

-
-

-
-

-
-

-
≥

1.
24

40
10

14
6

-
-

-
-

-
-

-
-

≥
7.

31
50

8
11

6
21

0.
35

60
5.

58
56

1.
53

45
4.

32
22

0.
52

65
2.

89
66

5.
09

48
2.

09
7.

36
av

g
95

1.
87

94
6.

70
11

99
.0

6
11

16
.3

2
83

5.
06

95
3.

88
11

40
.5

6
10

23
.0

2

73

Table 4.8: Results on F-o version of the algorithm with two-hour time limit

N K M relM u time iter

40 8 50 11 4 151.26 271
5 902.39 419
6 1546.47 180

40 8 50 12 4 135.82 167
5 1263.42 362
6 4423.49 309

40 8 50 13 4 99.95 96
5 805.97 198
6 3765.62 228

40 8 50 14 4 409.32 428
5 4529.31 1220
6 - 477

50 8 50 13 4 225.99 136
5 2553.82 386
6 - 272

50 8 50 14 4 262.06 130
5 2502.12 331
6 - 218

50 8 50 15 4 176.04 59
5 3344.14 306
6 - 164

the best performance, and that is why we described this version in Section 4.3.3

as the solution method for the problem.

In Table 4.8, we present solution times of instances solved by the F-o version

with a two-hour time limit. As u gets larger, the number of problems solved in

the second stage gets larger exponentially, and consequently, each iteration takes

more time. Among these instances, the average time of an iteration is 1.4 seconds

for u = 4, 5.5 for u = 5 and 22.6 for u = 6. For the two-stage stochastic team

formation problem, it is acceptable to assume that the first stage allows only a

couple of observations. If one desires to solve an instance of this problem or a

similar-structured two-stage problem where the number of resolutions after the

first stage is high, increasing computation capacity and using parallel computing

techniques for the second stage problems could decrease the solution time.

74

4.5 Conclusion

In this study, we introduced a two-stage stochastic team formation problem where

the uncertainty in the communication costs are endogenous and their true values

reveal in the second stage if they are selected to be observed in the first stage. We

gave two mathematical formulations for this problem and show their equivalence

in terms of optimality. A Benders’ decomposition-based branch-and-cut algo-

rithm was developed based on the second formulation. The algorithm utilizes a

strong linear relaxation of the second stage problem, which not only gives strong

optimality cuts but also decreases the burden of solving the integer problems by

providing integral solution frequently. The algorithm is able to solve the prob-

lems with thousands of scenarios because at each iteration it creates and works

on a smaller scenario set, which is possible due to the decision-dependent struc-

ture. Both in terms of modeling and solution methodology, the work proposes

an alternative to the relevant literature where Lagrangian relaxation methods are

applied over the formulations with conditional non-anticipativity constraints.

The work can be extended by requiring direct assignment to tasks, which

changes the structure of the second stage problems and optimality cuts. In this

case, one can also consider uncertainty in people’s capability and availability,

which can be exogenous or endogenous. Moreover, an interesting extension can

be a multi-stage version of the problem where each stage requires a capable team

and the team is updated according to the observations from the previous stages.

In the next chapter, we study a different type of team formation problem in a

multi-stage setting.

75

Chapter 5

Multi-Stage Stochastic Project

Team Formation

In this chapter, we study a multi-stage stochastic team formation problem where

each stage corresponds to a different project which requires a team. In this prob-

lem, we consider uncertainty in people’s performances and minimize the expected

cost of hiring and outsourcing resources for the whole horizon. We assume that

once a person is assigned to a task of a project, we observe their true performance

on this task so the uncertainty resolves. Hence, the type of uncertainty here is

again decision-dependent or endogenous.

For the small-sized instances of this problem, where the number of random

parameters is less than 7, the deterministic equivalent formulation can be directly

solved with a commercial solver. For instances with higher random parameters,

exact solution methods can be very time-consuming or even impossible to solve

due to the size of the formulation. Therefore, we developed a decomposition-

based branch-and-bound algorithm which solves a relaxation of the problem and

provides tight bounds for the optimal value.

In Section 5.1 we state the problem and provide a mathematical formulation.

76

Figure 5.1: An illustrative example with three stages/projects

In Section 5.2 we explain the calculation of value of stochastic solution for multi-

stage stochastic problems with endogenous uncertainty. In Section 5.3 we describe

our solution methodology pointing out its difference from the existing methods. In

Section 5.4 we present computational experiments where we compare the existing

methods with ours. We conclude in Section 5.5. The work in this chapter is based

on [94].

5.1 Problem Definition and Formulation

To draw a clear picture of the problem, before giving the formal definition, we

first explain it through an example. In this example, a project manager wants to

recruit freelancers to conduct three software-development projects which will be

done consecutively. Job titles required for each project and the available people

with their capabilities are depicted in Figure 5.1. The projects are assumed to be

independent of, but similar to each other, and consequently, they require common

tasks. The manager aims to form a team for each project so that the projects are

completed on time with minimum cost. Different than the problems investigated

in the previous chapters, here, the cost is defined by the monetary payments

made to the team members.

Although all available people are assumed to possess an acceptable level of

knowledge in their area of expertise, their capabilities are not identical. Therefore,

the time required to complete a task might differ from person to person. We

assume that for some person-task pairs the time required for a person to finish a

77

AAr, r, AA r, r,
LJ LJ LJ LJ LJ LJ LJ LJ
UXI. UX. UI FE BE. QA UXI. UX. UI FE, BE, FS QA FE. QA UIX

..... • UX&UI Designer (UXIJ
• front-end dev eloper (FE)
• Bac k-end developer (BEJ
• QA Engineer (QA)

task is not known precisely, but there are possible values it can take. Hence, in

this problem, the source of stochasticity is the uncertainty in the performances

of people. We assume that the uncertainty in a person-task pair resolves, and

the true performance is observed once the person is assigned to the task. Hence

the uncertainty is decision-dependent. In the example, if the performance of

the person assigned to Q&A Engineering in the first project is random, the true

performance of this person on this job will be observed during this project. The

decision whether to select the same person for the job on the third project will be

made considering this observation. In this problem, the performances of people

are differentiated by the time they require to complete a task. When this time

exceeds the planned project duration, an external source is used to speed up the

process. Hence, if the assigned Q&A Engineer in the first project cannot complete

the job on time, the manager must pay for an external resource to speed up the

process and respect the project duration.

Here we would like to note that the differences in performances of people

can be measured and represented in the problem in other ways instead of task

duration. For instance, if the focus is on the quality of the projects, it might be

more appropriate to measure one’s performance by the quality of their work, and

in this case, an external source is needed when the quality of the completed task

is not at an acceptable level.

There are three types of costs in our problem. There is a fixed cost of hiring

people, the payment made to the person for the specific job assigned to them,

and lastly the outsourcing cost. Naturally, outsourcing is assumed to be more

costly than regular hiring and we assume that such a source is always available.

The fixed cost is only incurred once, even if the person works on more than one

project.

Let T be the set of stages/projects. Let Kt be the set of tasks to be completed

for the project t and K be the set of tasks in general. I is the set of available

people for regular hiring and Ik ⊂ I is the set of people who can be assigned to

task k. In any project, each task must be assigned to a single person and a person

cannot be responsible for more than one task. S is the set of scenarios and dsik

78

is the time required by person i to complete task k under scenario s which has

probability ps. ∆t is the planned duration of the project t and all tasks should be

completed within this time. When the assigned person is not able to complete a

task within the planned duration, we outsource another person so that the task

is complete on time. ok is the cost of the outsourcing to decrease the completion

time of task k one unit. This actually corresponds to what’s called crashing cost

in project management literature. fi is the fixed cost of hiring person i. cik is

the payment person i demands to complete task k for a project which is called

assignment cost in short. The objective is to minimize the total expected cost of

the projects.

Before giving the mathematical formulation for this multi-stage stochastic

problem, we will first formulate its deterministic version and explain its rela-

tion to well-known operations research problems. Let binary variable yi be one if

person i is hired for any project, and zero otherwise. xikt is equal to one if person

i is assigned to task k in project t. zkt is the amount of time task k is crashed in

project t, that is, amount of time the completion time of the task is reduced to

respect the project duration ∆t. dik is the time person i requires to finish task k.

Then we formulate the deterministic problem as follows:

min
∑
i∈I

fiyi +
∑
t∈T

∑
k∈Kt

∑
i∈I

cikxikt +
∑
t∈T

∑
k∈Kt

okzkt (5.1)

s.t
∑
k∈Kt

xikt ≤ yi ∀i ∈ I, t ∈ T (5.2)∑
i∈Ik

xik = 1 ∀k ∈ Kt, t ∈ T (5.3)

∑
i∈I

dikxikt ≤ ∆t + zkt ∀k ∈ Kt, t ∈ T (5.4)

xikt ∈ {0, 1} ∀k ∈ Kt, i ∈ I, t ∈ T (5.5)

0 ≤ zkt ≤ ∆t ∀k ∈ Kt, t ∈ T (5.6)

yi ∈ {0, 1} ∀i ∈ I. (5.7)

Constraints (5.2) prevent allocation of a person to multiple tasks for each project

and they guarantee that if a person is used in any project their fixed cost is in-

cluded in the objective function. Constraints (5.3) ensure that in every project a

79

person is assigned to each required task. Constraints (5.4) guarantee that each

project is finished within the planned duration. The objective (5.1) is the sum-

mation of fixed cost, assignment cost and outsourcing cost. This formulation is

very close to those of several well-studied problems in the literature. Without the

outsourcing option, i.e., removing z-variables, the single stage/project version of

the deterministic problem has the same formulation as the fixed-charge assigning

users to sources problem studied by Neebe and Rao [95] and the capacitated fa-

cility location problem with single sourcing studied by Holmberg et al. [96]. The

formulation is also similar to the one given for the multi-period single-sourcing

problem by Freling et al. [97]. In the multi-period single-sourcing problem there

is no fixed cost and the stages are connected due to inventory decisions whereas

in our multi-stage deterministic problem the stages are connected due to having

fixed cost and y-variables. All these problems are actually extensions of general-

ized assignment problem (GAP) [98] which has been extensively studied in the

literature. The optimal solution is obtained usually via branch-and-bound and

branch-and-price algorithms for this NP-hard problem [99]. The single stage de-

terministic version of our problem is a special case of GAP where the available

capacity of each resource is one.

In broad terms, GAP deals with assignment of agents to tasks where limited

resources are available to the agents. Many different problems can be formulated

as a GAP including facility location, inventory allocation and scheduling prob-

lems. In our case we assign people to tasks for the projects which are performed

consecutively and there is uncertainty in the performances of the people. As we

study this problem under the team formation title, we refer to agents as people.

But the agents could be machines, computers or facilities in a problem where

there is uncertainty in their performance such as in the time required by the

computer or amount of resources used by the machine.

Next we give and explain the formulation of the stochastic multi-stage team

formation problem. We assume that the planned projects are similar to each other

and it is very likely that some of the tasks they require are common. Because

of this similarity assumption, we do not need to distinguish parameters cik and

dsik for each project by adding an index t. We define binary variable ysi to be one

80

if person i is hired for any project under scenario s, and zero otherwise. xsikt is

equal to one if person i is assigned to task k in project t under scenario s. zskt

is the amount of time task k is crashed in project t, that is, amount of time the

completion time of the task is reduced. We define Dss′ as the set of person-task

pairs that distinguishes scenarios s and s′, i.e., Dss′ = {{i, k} : dsik 6= ds
′

ik}. So

person-task {i, k} is in set Dss′ if the time required by i to complete task k is

different under scenarios s and s′. L is the set of scenario pairs which have only

one different parameter, that is, L = {{s, s′} : s, s′ ∈ S, s < s′, |Dss′ | = 1}.

min
∑
s∈S

∑
i∈I

psfiy
s
i +

∑
s∈S

∑
t∈T

∑
k∈Kt

ps
(
okz

s
kt +

∑
i∈Ik

cikx
s
ikt

)
(5.8)

s.t
∑
i∈Ik

xsikt = 1 ∀s ∈ S, t ∈ T, k ∈ Kt (5.9)

∑
k∈Kt

xsikt ≤ ysi ∀s ∈ S, t ∈ T, i ∈ I, (5.10)∑
i∈Ik

dsikx
s
ikt ≤ ∆t + zskt ∀s ∈ S, t ∈ T, k ∈ Kt, (5.11)

xs−1
ik1 = xsik1 ∀k ∈ K1, i ∈ Ik, s ∈ S \ {1}, (5.12)

xsikt−xs
′

ikt ≤
t−1∑
τ=1

xsi′k′τ ∀t ∈ T, k ∈ Kt, i ∈ Ik, (s, s′) ∈ L, {i′, k′}=Dss′ , (5.13)

xs
′

ikt−xsikt ≤
t−1∑
τ=1

xsi′k′τ ∀t ∈ T, k ∈ Kt, i ∈ Ik, (s, s′) ∈ L, {i′, k′}=Dss′ , (5.14)

ysi ∈ {0, 1} foralli ∈ I, s ∈ S, (5.15)

xsikt ∈ {0, 1} ∀t ∈ T, k ∈ Kt, i ∈ Ik, s ∈ S, (5.16)

0 ≤ zskt ≤ ∆t ∀t ∈ T, k ∈ Kt, s ∈ S. (5.17)

Constraints (5.9) ensure that in every project a person is assigned to a task.

Constraints (5.10) prevents allocation of a person to multiple tasks for each

project and they guarantee that if a person is used in any project their fixed

cost is included in the objective function. Constraints (5.11) ensure that each

project is finished within the planned duration. (5.12) are the first stage non-

anticipativity constraints which force the first stage decisions under any scenario

to be identical. (5.13)-(5.14) are the conditional non-anticipativity constraints.

81

They ensure the assignment decisions are the same under scenarios s and s′ on

stage t, if no person-task pair in Dss′ is observed in the earlier stages under

scenario s.

Notice that, assuming ok is positive for any k ∈ K, an optimal solution (x̃, ỹ, z̃)

satisfies z̃skt = (
∑
i∈Ik

dsikx̃
s
ikt −∆t)

+ for all t ∈ T, k ∈ Kt, s ∈ S because
∑
i∈Ik

x̃sikt = 1

for all t ∈ T, k ∈ Kt, s ∈ S. Defining dsik
+ = (dsik − Dt)

+, we can formulate the

problem without variable zskt as follows:

min
∑
s∈S

∑
i∈I

psfiy
s
i +

∑
s∈S

∑
t∈T

∑
k∈Kt

ps
(
ok(
∑
i∈Ik

dsik
+xsikt) +

∑
i∈Ik

cikx
s
ikt

)
s.t (5.9)− (5.10), (5.12)− (5.16)

In the preliminary experiments, the formulation with variable z gave slightly

better solution times than the above formulation, therefore we use the original

formulation and apply all relaxations on top of that formulation. In Table 5.1

we present some results from these experiments. Except for the first instance,

the solution times are lower for the formulation that has variable z. In this

table, we also show how the solver (CPLEX) reduces the formulation size with

preprocessing. In all of these instances, there are 12 people, 3 projects each

requiring 4 tasks among 6 different tasks, and the number of random parameters

is 6. When we use the formulation with z, the solver itself eliminates these

variables as we can see under the column named Eliminated columns. The number

of variables and constrains are quite close to each other in the final formulations

reduced by the solver. Despite having the same size, the solution times of the

formulations are different. This might be due to the fact that the effect and

efficiency of the methods applied during the preprocessing depend on the initial

formulation given to the solver.

There are more than 105 variables and 106 constraints in the reduced formu-

lations of the instances in Table 5.1. Next we will use the example in Figure

5.1 to give a better sense of the size of the formulation and how the increase in

the number of random parameters affects the size. In this example, we have 16

person-task pairs in total. Assuming that four of them are random, each having

82

Table 5.1: Comparison of two formulations

Eliminated Eliminated Reduced Reduced Time
rows columns rows columns (sec.)

1 with z 13063 7959 263957 37988 721.34
without z 4370 0 263902 37933 585.53

2 with z 122198 8640 139296 22508 229.56
without z 113558 0 139188 22400 277.87

3 with z 13118 8188 339718 47412 1059.96
without z 4370 0 339718 47412 1172.22

4 with z 93470 8212 190596 29669 426.14
without z 84722 0 190596 29669 555.50

4 with z 12169 7582 323171 45447 1129.29
without z 3641 0 322951 45227 1237.19

three possible values, we have 34 = 81 scenarios and |L| = 4 × 3(4−1) = 108.

With this number of scenarios, the problem has around 2,500 binary variables

and 8,000 constraints. If there are 8 random person-task pairs, the number of

binary variables exceed 200,000 and the constraints exceeds 600,000 while more

than half of these are CNACs as |L| = 17.496. This example shows that how an

increase in the number of random parameters results in an exponential increase

in the size of the formulation.

5.2 Value of Stochastic Solution in Multi-stage

Problems with Endogenous Uncertainty

In classical two-stage stochastic programming with recourse, the expected value

problem (EVP) is the deterministic problem where the random parameters are

replaced by their mean values. Using the solution of EVP we fix the first stage

decisions, optimize the second stage and the resulting objective function value

is called the expected result of using EVP solution (EEVP). The value of the

stochastic solution is the difference between EEVP and the expected cost of the

recourse problem (RP). For minimization VSS = EEVP - RS [100].

83

1

4

9
17

16

8 15

3 7
14

13

2

6 12

5
11

10

t = 1 t = 2 t = 3 t = 4

Figure 5.2: A scenario tree [1]

In their study Escudero et al. [1] generalize these definitions to multi-stage

stochastic programming with complete recourse and the type of uncertainty is

exogenous. The calculation of EEVP for problems with more than two stages

is as follows. First, as in the two-stage case, EVP is solved and the first stage

decision variables are fixed. Then, the random parameters which are related to

the first stage will be observed. For each possible realization of those parameters,

a new deterministic problem for the rest of the horizon is created such that the

random parameters related to the first stage take their scenario values and all

other random parameters take their mean values. Solving these problems the

second stage decisions are fixed. For a problem whose scenario tree is shown in

Figure 5.2 for example, after fixing the first stage solutions three deterministic

problems are created and solved as there are three nodes in this stage. The

procedure continues in the same manner until all solutions are fixed and the cost

of this solution becomes EEVP. VSS is again the difference between EEVP and

the optimal value of the stochastic problem.

In the problems with exogenous uncertainty, the scenario tree is fixed in the

sense that we know which random parameters will be observed in which stage.

84

Consequently, by looking at the scenario tree in Figure 5.2 we know that we need

to solve three deterministic problems in the second stage and five in the third

stage while calculating EEVP. We also know which random parameter takes its

scenario values and which takes its mean value in these problems in advance.

In the problems with endogenous uncertainty, the scenario tree is shaped by the

decisions made. Therefore, in the calculation of EEVP, at any stage, the values

of the random parameters depend on the decisions in the previous stages.

5.3 A Decomposition-based Branch-and-Bound

Algorithm

Multi-stage stochastic programming problems are usually computationally diffi-

cult mostly due to high number of scenarios. Therefore decomposition meth-

ods, which enable separation of the problem under scenarios, are commonly

used in the literature. For problems with exogenous uncertainty, nested Benders’

decomposition-based approaches, such as stochastic dual dynamic programming

[101] and stochastic dual dynamic integer programming [102] methods, are de-

veloped. For endogenous case, due to decision-dependent structure, this type

of decomposition is not possible, and consequently, Lagrangian decomposition-

based methods dominate the literature. The existing methods differ in terms of

the type and number of non-anticipativity constraints relaxed and/or dualized,

and whether further procedures are applied to impose the relaxed constraints.

For example, Goel et al. [52] developed a Lagrangian duality based branch-and-

bound algorithm where some of the non-anticipativity constraints are relaxed and

others are dualized. Relaxed constraints are imposed by branching similar to the

procedure of Caroe and Schultz [103]. Gupta et al. [56] developed a Lagrangian

decomposition algorithm where only a subset of non-anticipativity constraints are

dualized so that the model decomposes into scenario groups instead of scenarios

and give tighter bounds compared to the conventional technique that decomposes

by scenarios.

85

In our problem, for instances with a small number of random parameters the

deterministic equivalent formulation introduced in Section 5.1 can be easily solved

by a commercial solver. But when we increase the number of random parameters

a little further, the solver fails to reach a solution in reasonable time and similarly

Lagrangian decomposition algorithms mentioned above require a great amount

of time to converge. Therefore, using the combinatorial structure of our problem

we propose a branch-and-bound algorithm which improves the lower bound faster

than using Lagrange multiplier updating schemes. In our solution methodology

we use the idea of scenario groups of Gupta et al. [56] but instead of updating the

Lagrange multipliers to approximate the relaxation, we use branching and solve

the relaxation to optimality. As it can be understood from the computational

experiments in the next chapter, the value of the stochastic solution can be zero

or very close to zero in our instances. Therefore, in some cases the solution of

the mean value problem is the optimal solution. In such cases, we do not need

to solve the stochastic problem or try to find a lower bound. Therefore, if the

size of the problem allows, we suggest solving the relaxation where we remove all

CNACs first. If the gap between the objective value of the relaxation and EEVP

is high enough, then it is meaningful to invest time and computational power to

close the gap.

Next, we introduce the relaxation we aim to solve to obtain tight bounds for

the problem and describe our branching scheme. Then we explain how different

groupings of the scenarios may lead to different performances and describe the

heuristic used to obtain upper bounds.

5.3.1 The Relaxation and Branching

We define G to be the index set such that
⋃
g∈G

Sg = S and Sg ∩ Sg′ = ∅ for any

g,g′ ∈ G. That is, we create a partition of the scenario set S. For Sg, let Lg be

the set of minimal scenarios pairs to write CNACs for the scenarios in Sg only.

Lg can be computed via the greedy algorithm suggested in [55]. Then we aim to

86

solve the following relaxation of the original problem:

min
∑
g∈G

∑
s∈Sg

∑
i∈I

psfiy
s
i +

∑
g∈G

∑
s∈Sg

∑
t∈T

∑
k∈Kt

ps
(
okz

s
kt +

∑
i∈Ik

cikx
s
ikt

)
(5.18)

s.t
∑
i∈Ik

xsikt = 1 ∀s ∈ Sg, g ∈ G, t ∈ T, k ∈ Kt (5.19)

∑
k∈Kt

xsikt ≤ ysi ∀s ∈ Sg, , g ∈ G, t ∈ T, i ∈ I, (5.20)

∑
i∈Ik

dsikx
s
ikt ≤ ∆t + zskt ∀s ∈ Sg, , g ∈ G, t ∈ T, k ∈ Kt, (5.21)

xs−1
ik1 = xsik1 ∀k ∈ K1, i ∈ Ik, s ∈ S \ {1}, (5.22)

xsikt−xs
′
ikt ≤

t−1∑
τ=1

∑
{i′,k′}∈Dss′

xsi′k′τ ∀t ∈ T, k ∈ Kt, i ∈ Ik, (s, s′) ∈ Lg, g ∈ G, (5.23)

xs
′
ikt−xsikt ≤

t−1∑
τ=1

∑
{i′,k′}∈Dss′

xsi′k′τ ∀t ∈ T, k ∈ Kt, i ∈ Ik, (s, s′) ∈ Lg, g ∈ G, (5.24)

ysi ∈ {0, 1} ∀i ∈ I, s ∈ S, (5.25)

xsikt ∈ {0, 1} ∀t ∈ T, k ∈ Kt, i ∈ Ik, s ∈ S, (5.26)

0 ≤ zskt ≤ ∆t ∀t ∈ T, k ∈ Kt, s ∈ S. (5.27)

The above formulation is a relaxation because CNACs are no longer written for

the scenario pairs in L but for the Lg for g ∈ G. So, the CNACs between the

scenarios that are in different groups are removed from the formulation. However,

the scenarios are still connected by the first stage non-anticipativity constraints

(5.22). This relaxation can be decomposed into |G| problems if constraints (5.22)

are omitted. To make this decomposition possible, we replace constraints (5.22)

with the following:

xsik1 = xs
′

ik1 ∀k ∈ K1, i ∈ Ik, g ∈ G, s, s′ ∈ Sg : og(s) = og(s
′)− 1 (5.28)

where o(s) is the order of scenario s ∈ Sg. This way the first stage non-

anticipativity constraints are intact within each scenario set Sg for g ∈ G and the

resulting formulation can be solved by solving |G| independent problems.

By replacing (5.22) with (5.28) we destroy the connection between scenarios

which are in different groups, thus the first stage decisions under scenarios s ∈ Sg

87

and s′ ∈ Sg′ for g 6= g′ might be different. We use branching to remedy this and

force the first stage decisions to be identical under all scenarios. First, we explain

the notation which will be used to describe the branch-and-bound algorithm.

Assume that we are at node r of the tree. We define set Γ+
r to be the set of

the first stage tasks whose assignments are fixed and let irk be the person who

will be assigned to task k ∈ Γ+
r . Set Γ−r consists of the first stage tasks which

have forbidden assignments and Irk is the set of people to which k ∈ Γ−r cannot

be assigned. Then at node r, given the scenario groups G we solve the following

problems for all g ∈ G:

min
∑
s∈Sg

∑
i∈I

psfiy
s
i +

∑
s∈Sg

∑
t∈T

∑
k∈Kt

ps
(
okz

s
kt +

∑
i∈Ik

cikx
s
ikt

)
(5.29)

s.t
∑
i∈Ik

xsikt = 1 ∀s ∈ Sg, t ∈ T, k ∈ Kt (5.30)

∑
k∈Kt

xsikt ≤ ysi ∀s ∈ Sg, t ∈ T, i ∈ I, (5.31)

∑
i∈Ik

dsikx
s
ikt ≤ ∆t + zskt ∀s ∈ Sg, t ∈ T, k ∈ Kt, (5.32)

xsik1 = xs
′
ik1 ∀k ∈ K1, i ∈ Ik, s, s′∈Sg : o(s)=o(s′)−1 (5.33)

xsikt−xs
′
ikt ≤

t−1∑
τ=1

∑
{i′,k′}∈Dss′

xsi′k′τ ∀t ∈ T, k ∈ Kt, i ∈ Ik, (s, s′) ∈ Lg, (5.34)

xs
′
ikt−xsikt ≤

t−1∑
τ=1

∑
{i′,k′}∈Dss′

xsi′k′τ ∀t ∈ T, k ∈ Kt, i ∈ Ik, (s, s′) ∈ Lg, (5.35)

ysi ∈ {0, 1} ∀i ∈ I, s ∈ Sg, (5.36)

xsikt ∈ {0, 1} ∀t ∈ T, k ∈ Kt, i ∈ Ik, s ∈ Sg, (5.37)

0 ≤ zskt ≤ ∆t ∀t ∈ T, k ∈ Kt, s ∈ Sg, (5.38)

xsirkk1 = 1 s ∈ Sg, k ∈ Γ+
r , (5.39)

xsik1 = 0 s ∈ Sg, k ∈ Γ−r , i ∈ Irk . (5.40)

Constraints (5.39) ensure assignment of tasks in Γ+
r while constrains (5.40)

guarantee that the tasks in Γ−r are not assigned to any person in their forbidden

set. Let Pr denote the relaxation solved at node r by solving these |G| separate

problems. We use r.x to refer to the optimal x vector of Pr and r.ν denotes its

88

Algorithm 3 Branch-and-Bound-MSTFP

1: UB:=EEVP, LB=0, xinc, UB relax :=EEVP
2: Create root node 0 with 0.ν :=∞,Γ−0 := ∅,Γ+

0 := ∅
3: Solve P0 . update UB, UB relax and xinc if possible
4: LB := 0.ν
5: 0.k = TasktoBranch(0.x)
6: if LB < UB then Q := {0}
7: while 100(UB − LB)/UB > 0.5 & LB <UB relax do
8: r = arg min

r̄∈Q
{r̄.ν}, Q := Q \ {r}

9: for i ∈ Irr.k do
10: Create child node r.i with Γ+

ri
:= Γ+

r ∪ {i}, Γ−ri := Γ−r
11: Solve Pri . update UB, UB relax and xinc if possible
12: if ri.ν < UB & ri.ν < UBrelax then
13: Q := Q ∪ {ri}
14: ri.k = TasktoBranch(ri.x)

15: Create child node r′ with Γ+
r′ := Γ+

r , Γ−r′ := Γ−r ∪ {i}
16: Solve Pr′ . update UB, UB relax and xinc if possible
17: if r′.ν < UB & r′.ν < UBrelax then
18: Q := Q ∪ {r′}
19: r′.k = TasktoBranch(r′.x)

20: LB := min
r̄∈Q
{r̄.ν}

21: Return UB, UB relax and xinc

optimal value. The steps of the algorithm are presented in Algorithm 3. The

lower and upper bounds for the full problem are denoted as LB and UB. UB relax

is the upper bound for the relaxation. The initial step is to create the root node,

0, at which, we solve problem P0 where the sets Γ−0 and Γ+
0 are empty. Using

the solution of this problem we check whether we can update the upper bounds

and the incumbent solution. This procedure will be explained in the following

section. The algorithm runs until the gap between LB and UB is sufficiently

small. We follow the best-first search rule for choosing the next node to process,

breaking ties arbitrarily. Let r be the current node and r.k be the task used to

create child nodes. In child node ri, r.k is forced to be assigned to irr.k and in

child node r′, r.k is not allowed to be assigned any person in Irr.k.

To choose r.k we use the method called TaskToBranch which is summarized

in Algorithm 4. In this method, given the optimal first stage solution of Pr, we

89

Algorithm 4 TaskToBranch(r.x̂)

1: for k ∈ K1 do
2: for i ∈ Ik do
3: freqik =

∑
s∈S

x̂sik1

4: for k ∈ K1 do
5: Irk = {i ∈ Ik : freqik > 0}

6: Kcandidates =

{
k′ ∈ K1 : |Irk′| = max

k∈K1

{|Irk |}
}

7: if |Kcandidates| = 1 then
8: k′ := {k ∈ Kcandidates}
9: else

10: for k ∈ Kcandidates do
11: diff k= max

i∈Irk
{freqik} −min

i∈Irk
{freqik}

12: k′ = argmink∈Kcandidates
diff k

13: for i ∈ Irk′ do
14: if freqik/|S| < α then
15: Irk′ := Irk′ \ {i}
16: Return k′

record the people who are assigned to a task and in how many of the scenarios

they are assigned. We want to choose the task that has the highest assignment

variety or diversity. For example, if task k is assigned to three different people

under different scenarios and all others are assigned to two different people, then

we choose k. If there is a tie, then we favor the one where the assignments are

more balanced and we do this in the following way. Let freqik be the number of

scenarios in which k is assigned to i. We choose the task for which the difference

between the maximum and minimum of {freqik}i is smallest. Let k′ be the task

given by the method. Up to line 12, Irk′ includes all people that is assigned to

task k′ in at least one of the scenarios. Considering all of these people may result

in many child nodes because the number of children of node r will be |Irk′ + 1|.
Therefore we remove person i from the set Irk if the ratio of the scenarios where

i is assigned to k′ is less than α.

Recall that at node r we solve relaxation Pr by solving |G| independent prob-

lems. If all first stage solutions under the scenario groups are identical at node

r, then we prune this node and use its objective value, r.ν to update UB relax.

90

We prune the node by bound if the lower bound at the node is greater than

UB or UB relax. Note that, any feasible solution of the original problem obtained

throughout the algorithm can be used as an upper bound as well, which will be

explained in the following section.

5.3.2 Scenario Groups and Upper Bounds

Every time a relaxation is solved at a node of the branch-and-bound tree, we use

the solution of the relaxation to generate feasible solutions. At node r, in the

solution r.x, the first stage assignments can differ among groups since a subset

of the first stage non-anticipativity constraints are missing in Pr. Throughout

the algorithm, we keep the record of different first stage solutions. Say at node

r, we find a new set of first stage decisions x̂ik1’s. We create a new scenario set

Ŝ using the scenario durations of the person-task pairs {i, k}’s that are random

and satisfy x̂ik1 = 1, and using the mean duration values for every other person-

task pair. Then we solve a T stage stochastic problem with scenario set Ŝ and

first stage solutions are fixed by x̂ik1’s. Then, again we create a new scenario

set, considering the second stage solutions of this problem. By fixing the first

and second stage decisions under the new scenario set, we again solve a T stage

problem. We continue in this manner until all decisions are fixed. Then we

calculate the objective value of this feasible solution and update the upper bound

and the incumbent solution if necessary. Recall that this is the same procedure

that we use to calculate EEVP. The only difference is that in EEVP, the first

stage decisions are fixed using the solution of the mean value problem. In short,

we apply the same procedure to different first stage solutions to obtain feasible

solutions throughout the algorithm.

The required time to solve each problem for g ∈ G and the tightness of the

bound are directly affected by the structure of the partition. When |G| is low, it

means the number of scenarios at each group is high, and consequently solving the

problems may take longer compared to the case where |G| is high and |Sg| is low.

Because in the latter case we have problems with smaller sizes. For instances,

91

having 27 scenarios, it takes less time to solve a partition where we have 6 groups

with S1 = {1, 2, 3}, S2 = {4, 5, 6}, . . . , S9 = {25, 26, 27} compared to the partition

with S1 = {1, . . . , 9}, S2 = {10, . . . , 18}, S2 = {9, . . . , 27}. Furthermore, when

we have a high number of scenarios in the groups, we expect tighter lower bounds

because the number of relaxed constraints is lower. In our 27 scenario case, we

expect the partition with 3 groups to give better bounds.

The quality of the bound depends on the content of the scenario groups as

well as their cardinality. When we put the scenarios into groups randomly the

resulting relaxation might give tighter bounds compared to putting scenarios se-

quentially. Using the results of the study by Sandıkçı and Özaltın [104] on bounds

for multi-stage stochastic programming problems, we suggest the following rea-

soning for the tightness of the bounds: when we group scenarios randomly we

have higher heterogeneity which means each group approximates the scenario

sets better than the sequential case where scenarios are much similar to each

other. The aforementioned study investigates many different scenario grouping

techniques in a more general setting. For example, a scenario can be in multiple

groups, or, if exists, a reference scenario can be added to each group. Further-

more, in the study, the group subproblem is solved separately whereas in our

study with branching we ensure that the first stage decisions are identical among

all groups.

In the following section, we show how different group structures change the

performance of both Lagrangian decomposition methods and our branch-and-

bound algorithm. For our problem, we suggest using sequential grouping because

with random grouping each subproblem takes more time to solve. Also the re-

lation between the group structure and the quality of the bound needs to be

investigated in detail, which we consider as future work.

92

5.4 Experiments

In this section, we first explain our instance generation process and then show

how far we can go in terms of the instance size with the mathematical formu-

lation. Then we present some computations to show the limitations of existing

solution methods in the multi-stage stochastic programming literature. Lastly,

we present experiments on the proposed method and its comparison with the

existing methods. In all of the algorithms, to obtain a valid upper bound, we

use the heuristic method explained in the previous section. All formulations and

algorithms are implemented in Java using CPLEX 12.7 and run on a personal

computer with an Intel(R) Core(TM) i7-6700HQ 2.6 GHz and 16 GB of RAM.

All computational times reported are wall-clock times in seconds.

To test our formulations and the algorithm, we have generated random in-

stances. We first randomly decide which tasks are required in the projects, that

is, sets Kt are created for t ∈ T . Then we assign expertise levels to people in

terms of tasks, which can be equal to 0, 1, 2, or 3. If for task k the level is 0 for

a person, then this person is not capable for the task, that is, he or she is not in

set Ik. If the expertise level is 3, then the duration this person requires for the

task is known with certainty, and it is sufficiently small to complete the project

on time. If it is equal to 1 or 2, then it is random, and it can take three values.

We refer to these possible durations as low, medium, and high, and we randomly

assign values considering the expertise levels. If person i has level 1 expertise on

task k and j has level 2, the lowest duration person i requires to finish task k is

likely to be higher than the lowest duration person j requires to finish the same

task. Similarly, the costs are generated in a way that we usually have cik < cjk.

With this setting, we may end up with many random person-task pairs but the

randomness of some of these pairs is most likely to be irrelevant to the problem.

Notice that, if task k does not appear in any project or it appears only once, then

we do not need to consider any randomness concerning this task. Because, for the

former case, the task is completely irrelevant to the problem and for the latter, the

information has no value as the task is not repetitive. With this logic, we update

93

the set of random parameters. Then, we apply a similar pre-process used in the

previous chapter. We solve a deterministic problem for each random person-task

pair to decide whether their randomness is irrelevant or not. In the deterministic

problem solved for {i, k}, we force this pair to be part of the solution by adding

the constraint
∑
t∈T

xikt ≥ 1. Furthermore, in this deterministic problem we use the

lowest or the most optimistic duration values for all random parameters. If the

objective value of this problem worse than EEVP, we ignore the randomness of

this parameter because a solution involving this person-task assignment cannot

be optimal.

Table 5.2: Results of full formulation and its relaxation

Relaxation Full Formulation

T m EEVP obj time obj time

3 5 262.22 260.12 0.96 262.00 37.39
3 5 282.56 281.78 3.70 282.56 708.04
3 7 312.40 309.81 11.99 312.27 2183.5
3 7 281.71 275.85 33.68 - -
3 8 306.95 303.54 115.33 - -
3 8 263.92 257.00 170.74 - -
3 8 267.00 258.00 347.01 - -
4 5 372.01 368.17 0.97 368.17 8.52
4 5 355.49 351.66 0.74 352.00 13.74
4 5 328.93 320.79 0.61 321.32 22.02
4 5 346.21 342.46 0.55 345.00 97.18
4 6 380.95 375.23 4.38 380.95 477.61
4 6 351.04 343.69 5.57 347.00 1404.14
4 6 372.85 367.35 6.30 371.00 2145.75
4 6 365.36 361.63 5.30 364.91 2471.36
4 6 337.30 333.29 5.84 - -
4 6 338.94 333.00 10.16 - -
4 7 324.11 318.40 38.66 - -
4 8 341.62 333.40 556.24 - -

In Table 5.2 we present results obtained by solving the full deterministic equiv-

alent formulation and its relaxation where CNACs, (5.13)-(5.14), are removed.

All instances in this table have 10 people, 6 tasks and each project requires 4 tasks,

that is |I| = 10, |K| = 6, |Kt| = 4 for ∀t ∈ T . The number of stages/projects

are written under the column T and the number of random person-task pairs are

94

indicated by m. The solver is able to solve the relaxation in a few minutes for all

instances but full formulation cannot be solved within an hour when m = 6 or

higher. This is due to the increase in the number of scenarios and CNACs. The

solver requires more than one hour to solve the relaxation when m exceeds 8.

The highlighted rows are the instances that have a clear positive VSS. For

the others, VSS is zero or very close to zero or unknown. It is expected to have

low VSS for the instances with a small number of random parameters and as we

increase this number we encounter more interesting instances. Hence, as it was

the case for the problem studied in the previous chapter, for this problem as well,

the instances with higher potential of positive VSS are the ones that cannot be

solved with the solver directly due to their size. As explained earlier, to solve

instances with a higher number of random parameters and scenarios, Lagrangian

decomposition methods are proposed in the literature. Next, we compare the

performances of several relaxation techniques over some instances.

Lagrangian relaxation (LR) is a widely used method in combinatorial opti-

mization, going back to the seminal work of Held and Karp [105] on the traveling

salesman problem. In LR, a set of complicating constraints of the problem is

dualized which means they are removed from the constraint set and added to the

objective with a penalty term λ also called Lagrange multiplier or dual vector.

This “dualized constraint” is chosen in a way that, given λ it is much easier

to solve the relaxation LRλ compared to the original problem. The Lagrangian

Dual (LD) is the problem where we find the optimal λ to maximize LRλ (for a

minimization problem). The bound of LD is as tight as the one given by the

continuous relaxation of the problem. A drawback of LR is the loss of struc-

ture due to dualized constraints. To avoid this loss, Lagrangian decomposition

is suggested where copies of the original variables are created and a set of con-

straints are written with the copy variables while the rest (or all) is written with

the original ones [106]. The dualized constraint in this case is the equality of

the original and copy variables. This decomposition method is commonly used

in stochastic programming. In two-stage stochastic programming problems, by

creating a copy of the first stage variables under all scenarios and then dualizing

the equality of these variables, we end up with a relaxation that decomposes into

95

independent problems for each scenario. In multi-stage stochastic problems, the

non-anticipativity constraints, which force the equality of decision variables un-

der the scenarios that have the same history, are relaxed or dualized so that the

problem decomposes by scenarios.

In Lagrangian relaxation or decomposition, the Lagrangian dual is solved or ap-

proximated by multiplier updating schemes among which the subgradient method

has been used extensively. It is an adaptation of the gradient method where gra-

dients are replaced by the subgradients. Let Ax ≤ b is the dualized constraint

in a minimization problem and xk be the solution at iteration k of the update

scheme, then the multiplier is updated by the rule λk+1 = λk + tk(Ax
k− b) where

tk is the step size. The step size is usually taken as tk =
α(UB − LD(λk))

||Axk − b||2
, where

UB is the best upper bound known, LD(λk) is the value of Lagrangian dual with

the current multiplier and α is the scaling factor. Since this method gives a lower

bound for the problem (minimization), heuristics are applied to generate feasible

solutions and upper bounds.

In all of the Lagrangian decomposition methods implemented in this study,

to update the Lagrange multipliers, we use the subgradient method of Held and

Karp [105][107] and its standard application described by Fisher [108]. We start

with all multipliers being equal to zero. If the lower bound is not improved in a

certain number of consecutive iterations, the scale is halved. There are different

updating schemes developed and used in the related literature, such as [109]

and [110], which use a combination of cutting planes, subgradient, and trust-

region strategies. Although these procedures have the potential to improve the

algorithm, they are still likely to require a high number of iterations to reach good

lower bounds. Our focus in this study is not the multiplier updating scheme but

to suggest a completely different alternative to it.

In Figure 5.3 we show the improvement of the lower bounds in different La-

grangian decomposition algorithms. The instance we use in this comparison has

the following set sizes: |T | = 4, |I| = 10, |K| = 5, |Kt| = 4 for t ∈ T and m = 8.

For this instance, we are able to solve the relaxation, noCNACs, where CNACs

96

2 4 6 8 10 12 14 16 18 20 22

326

328

330

332

334

336

338

number of iterations

lo
w

er
b

o
u

n
d

reg

seq3

seq9

seq27

EEVP

UB

noCNACs

rand3

rand9

rand27

Figure 5.3: Lower bound improvements of various algorithms over an instance
with |T | = 4, |I| = 10, |K| = 5, |Kt| = 4 for t ∈ T , m = 8

are relaxed, and it takes 452.82 seconds. We chose an instance for which the re-

laxation can be solved so that we can compare this bound with the bounds from

the algorithms. The algorithms are stopped at the first iteration that exceeds

1000 seconds of running time.

• The term reg refers to the conventional Lagrangian decomposition where

first stage non-anticipativity constraints are dualized and all CNACs are

relaxed. The multipliers are updated via the subgradient method.

• The term seq* refers to the decomposition technique proposed in [56] where

∗ corresponds to the number of scenarios in each group and the scenar-

ios are put in groups sequentially. It amounts to dualizing the first stage

non-anticipativity constraints (5.33) in the formulation (5.18)-(5.27). And

the corresponding Lagrange multipliers are updated via the subgradient

method.

97

2 4 6 8 10

326

328

330

332

334

336

338

number of iterations

lo
w

er
b

o
u

n
d

EEVP

UB

noCNACs

bbseq9

bbrand9

Figure 5.4: Lower bound improvements of the branch-and-bound algorithms over
the instance with |T | = 4, |I| = 10, |K| = 5, |Kt| = 4 for t ∈ T

• rand* is the same algorithm as seq∗ except that the scenarios are put in

groups randomly rather than sequentially.

Besides the bound improvements of these algorithms, we present the EEVP and

the upper bound (UB) found throughout the algorithms in the plots. We use

the same method to update the upper bounds and if the bound is shown in

the plot then in all of algorithms presented this bound is reached. When we

compare the sequential methods, seq3, seq9, seq27, among themselves we see how

the bounds improve when we increase the number of scenarios in a group. We

can regard reg as seq1. The best bound reg can reach is exactly the bound we get

from the relaxation noCNACs and in the figure we see how slow the convergence

is. The bounds provided by the random groupings are clearly better than their

corresponding sequential cases and again we can see that as the size of a group

increases the bound increases as well. We can also see how the time each iteration

takes differs as we change the group size. With rand27 a single iteration takes

around 1000 seconds where with rand9 it takes approximately 200 seconds.

98

In Figure 5.4, for the same instance, we plot the progress of two branch-and-

bound algorithms. bbseq9 has sequential scenario groups each having 9 scenarios,

and bbrand9 has random scenario groups. In this case, the number of iterations

refers to the number of levels in the branch-and-bound tree. bbseq9 takes 880

seconds while bbrand9 takes 1429 seconds. Notice that bbseq9 reaches to the

same bound as noCNACs and while the bound provided by bbrand9 is tighter.

Clearly, there is a trade-off between computational time and the quality of the

bound. The cases where we get tighter bounds are the cases where each iteration

takes longer to solve.

5 10 15 20 25 30 35 40
304

306

308

310

312

314

316

number of iterations

lo
w

er
b

o
u

n
d

EEVP
reg

seq3

seq9

rand3

rand9

seq27

rand27

Figure 5.5: Comparison of decomposition algorithms over an instance with |T | =
4, |I| = 12, |K| = 6, |Kt| = 4 for t ∈ T , m = 9 and at least two-hours of running
time

The instance whose results are shared in Figure 5.5 has 4 stages, 12 people,

and 9 random parameters, while the total number of tasks and the number of

tasks required at each stage is 6 and 4 respectively. Here the algorithms are

stopped at the first iteration completed after 2 hours. Again we can see how

bounds improve when we increase the sizes of the scenario groups and also how

99

each iteration takes much longer time. In this example, with groups of size 3, the

bound of the random groups is quite better than the sequential groups. For sizes

9 and 27, sequential approaches perform better both in terms of time and bound.

We would like to point out that detailed extensive computations are required to

compare sequential and random group strategies such as the one in the study of

Sandıkçı and Özaltın [104].

For the instance in Figure 5.5, we present the results of the branch-and-bound

algorithms with different scenario groups in Table 5.3. If the algorithm is termi-

nated before two hours, it means that the corresponding relaxation is solved to

optimality, as it is the case for bbrand9. Among these branch-and-bound algo-

rithms, bbseq27 gives the best bound in less than 2 hours. With this bound, it

proves that the solution obtained by the mean value problem has an optimality

gap of 0.3%.

The optimal way of grouping the scenarios may be a research problem itself. To

provide some insight, we present the initial bounds of seq9 and rand9 algorithms

over two instances in Table 5.4. As mentioned before, we believe that random

groupings usually give tighter bounds because each group individually represents

the whole scenario set, and consequently the problem, better with respect to a

group created sequentially. In other words, the scenarios in a randomly generated

group are more likely to be more different than one another, which makes the

group more heterogeneous. One can actually devise a metric to measure this

heterogeneity of groups. Here we present a very basic idea just to deliver our

argument clearly. In our instances, each random parameter can take three values,

which are low, medium and high. We represent these values as 0, 1, and 2. Using

Table 5.3: Bound improvements of the branch-and-bound algorithms over the
instance with |T | = 4, |I| = 12, |K| = 6, |Kt| = 4 for t ∈ T , m = 9

bbseq9 bbrand9 bbseq27 bbrand27
iter time LB time LB time LB time LB

1 258 310.19 4747 312.68 778 312.54 2793 311.98
2 1206 311.05 8636 313.02 4553 314.13 10501 313.468
3 2358 312.57 - - 5946 314.16 - -

100

Table 5.4: Average heterogeneity and bounds of different algorithms

Instance 1 Instance 2

bound avg heterogeneity bound avg heterogeneity

seq9 202.92 72 195.41 72
rand9-1 204.79 188 198.33 185.06
rand9-2 204.71 185.95 198.96 186.29
rand9-3 204.67 185.06 198.5 187.28

this representation of the scenarios and regarding them as points in space, we

define the distance between two scenarios as the Manhattan distance. Then, the

heterogeneity of a group is measured by the sum of all pairwise distances of the

scenarios. Having 6 random parameters, when we put scenarios into groups of 9

scenarios sequentially, heterogeneity of each group becomes 72 which makes the

average heterogeneity 72 as well. In the following table we show that when we

group the scenarios randomly in rand9, the average heterogeneity increases and

the algorithm gives stronger initial bounds. As the performance of the algorithm

with random groups requires more investigation and as it usually has longer

solution times, we leave it for future research and continue our experiments with

the algorithm that groups the scenarios sequentially.

For another instance with three stages, we plot the results of seq9, seq27,

bbseq9, and bbseq27 in Figure 5.6. In this plot x-axis is the time. The problem

we solve at the first node of the branch-and-bound tree in bbseq9 (bbseq27) and

the problem we solve at the first iteration of seq9 (seq27) are the same. Within

this first iteration, in all algorithms, we find a better solution than that of EEVP

so we are able to update the upper bound. Among these four algorithms, bbseq9

performs the best and it solves the relaxation in 47 minutes while bbseq27 takes

56 minutes. The convergence of seq9 and seq27 takes more than two hours. By

the bound provided by bbseq9, we learn that the optimality gap of the incumbent

is 1.1%. Hence for such instances, for which we are not able to solve the relaxation

without CNACs, the branch-and-bound algorithm provides tight bounds faster

than the Lagrangian decomposition methods. Furthermore, even for the instances

where the relaxation can be solved within the time limit, the branch-and-bound

algorithm is still worth the effort because it solves a stronger relaxation.

101

1,000 2,000 3,000 4,000 5,000 6,000 7,000

260

265

270

275

time

lo
w

er
b

o
u

n
d

EEVP

UB

seq27

seq9

bbseq9

bbseq27

Figure 5.6: Comparison of decomposition algorithms with an instance with |T | =
3, |I| = 15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 9 and at least two-hours of running
time

1,000 2,000 3,000 4,000 5,000 6,000 7,000

265

270

275

280

285

time

lo
w

er
b

o
u

n
d

EEVP

UB

noCNACs

seq9

bbseq9
reg

Figure 5.7: Comparison of decomposition algorithms with an instance with |T | =
3, |I| = 15, |K| = 6, |Kt| = 4 for t ∈ T , m = 9 and at least two-hours of running

time
102

In Figure 5.7, the solver is able to solve the relaxation noCNACs within 2

hours. Compared to seq9 and reg9, our algorithm bbseq9 performs quite well

but in this instance it cannot reach the bound of noCNACs within 2 hours.

This result does not undermine the importance of our algorithm because memory

problems are very likely for the instances of this size and solving noCNACs is

not always possible. Furthermore, our algorithm has the potential to exceed the

bound of noCNACs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

255

260

265

270

time

lo
w

er
b

o
u

n
d

EEVP

UB

seq9

bbseq9

Figure 5.8: Comparison of bbseq9 and seq9 with an instance with |T | = 3, |I| =
15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 10 and 3-hours of running time

In Figure 5.8, we compare the bound improvements for an instance where the

number of random parameters is 10. For this instance the relaxation noCNACs

cannot be solved due to insufficient memory. We keep the solution times longer

for this instance, up to 3 hours. In 3 hours bbseq is able to decrease the gap to

1.36% while seq decreases it to 2.04%.

103

1,000 2,000 3,000 4,000 5,000 6,000
258

260

262262

264

266

268

time

lo
w

er
b

o
u

n
d

EEVP

UB

noCNACs

seq9

bbseq9

Figure 5.9: Comparison of bbseq9 and seq9 with an instance with |T | = 3, |I| =
15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 9 where

In Figure 5.9, we compare the bound improvements for an instance where the

relaxation noCNACs can be solved within 2 hours and its objective value, 263,

turns out be optimal which we know because we have found a feasible solution

with objective value 263 throughout the algorithm. For this instance, bbseq9

proves that this feasible solution is actually optimal by reaching the lower bound

263 in 1200 seconds.

104

1,000 2,000 3,000 4,000 5,000 6,000 7,000
268

270

272

274

time

lo
w

er
b

o
u

n
d

EEVP

UB

noCNACs

seq9

bbseq9

Figure 5.10: Comparison of bbseq9 and seq9 with an instance with |T | = 3,

|I| = 15, |K| = 6, |Kt| = 4 for t ∈ T ,m = 9 where the relaxation noCNACs is

solved within 1 hour

In Figure 5.9, we compare the bound improvements for an instance where the

relaxation noCNACs can be solved within an hour. Our algorithm bbseq9 also

terminates within an hour with 0.5% gap and a lower bound that is higher than

the one provided by noCNACs.

5.5 Conclusion

In this chapter, we introduced a multi-stage stochastic team formation problem

where each stage corresponds to a different but similar project. Each project

requires several tasks and by deciding which person to assign to which tasks,

we aim to complete the projects with minimum expected cost of hiring and out-

sourcing. We assume for some person-task pairs the time required to complete

105

the task is random but once it is observed, its true value becomes known, thus the

uncertainty is endogenous or decision-dependent. Noticing the gap in the related

literature, we first explained how the value of the stochastic solution can be cal-

culated for the problems of this type. Then we presented an integer programming

formulation for the problem and showed that the size of the formulation easily

exceeds the capabilities of commercial solvers. To be able to provide tight lower

bounds for the problem we proposed a decomposition-based branch-and-bound

algorithm where some non-anticipativity constraints are left in the problem, some

are relaxed and some are forced through branching. Presenting computational

experiments with random instances, we showed that our algorithm is an alter-

native to the existing decomposition algorithms and bounding methods in the

literature. It is mostly suitable for the problems where the number of scenarios

is high and the number of first stage decisions is relatively limited.

The processing time of the algorithm can be significantly decreased with the

use of higher computational power and parallel computing techniques. More-

over, when necessary more sophisticated methods can be incorporated into the

algorithm to create feasible solutions and decrease the upper bound.

106

Chapter 6

Conclusion

In this dissertation, we studied different variants of the team formation problem.

First, we considered a deterministic team formation problem where potential team

members are assumed to constitute a social network in which an edge weights

is a measure for the quality of communication between the people it connects.

We refer to the edge weights as communication costs and the aim is to build a

team with the minimum communication cost while the team members must be

collectively capable of a given set of required tasks. Investigating different cost

functions in the related literature, we decided to minimize the sum of all pairwise

communication costs while putting a limit on the highest one. The technical

capabilities of people are represented by a binary skill matrix. We formulated

this problem as a quadratic set covering problem with packing constraints.

We showed that with this formulation, small and medium-sized instances can

be solved using a general-purpose solver but memory problems occur for large

instances. We developed a novel branch-and-bound algorithm which is very effec-

tive in solving these instances. We first presented a reformulation to the problem

using a partial application of the reformulation-linearization technique. Then,

the reformulation is relaxed in a way that it decomposes into a series of linear

set covering problems and can be solved efficiently. The relaxed constraints are

imposed by a novel branching strategy.

107

Next, we studied a two-stage stochastic team formation problem with random

communication costs. The first stage is a trial stage where a limited number of

communication costs can be observed by selecting the corresponding pairs. In the

second stage, we form a capable team with minimum expected communication

cost. So this problem can be regarded as an extension of the previous one where

a trial stage is added to the beginning. We assumed that for a subset of pairs,

the cost of communication is not known with certainty but the possible values

it can take and their respective probabilities are known. If a pair with random

cost is selected in the first stage, then we learn the true cost value. Hence, the

uncertainty in this problem is decision-dependent because we assume a complete

resolution of uncertainty for the pairs which are selected in the first stage. For

this problem, we define a concept called value of learning which measures the

improvement we get by the information obtained in the first stage.

We first presented a formulation of the problem where we use the same mod-

eling approach in the related literature and this formulation contains a higher

number of non-anticipativity constraints. Then we gave an alternative formu-

lation which does not have these constraints but a quadratic objective function

which is linearized by defining an extra set of binary variables. We proved that

these formulations are equivalent. By generating instances with different sizes,

we show that for small-sized instances these formulations can be solved by a com-

mercial solver. To be able to solve larger sizes, a Benders’ decomposition-based

branch-and-cut algorithm was developed on top of the second formulation. The

algorithm utilizes a strong linear relaxation of the second stage problem which

not only gives strong optimality cuts but also decreases the burden of solving the

integer problems by providing integral solution frequently. The algorithm solves

the problems with thousands of scenarios because at each iteration it creates and

works on a smaller scenario set which is possible due to the decision-dependent

structure. Both in terms of modeling and solution methodology, our approach

contributes to the relevant literature.

As a final problem, we studied a multi-stage team formation problem where

each stage corresponds to a project. While in the first two problems the focus was

on the quality of communication among the members, in the last one the concern

108

is monetary. The aim is to minimize the expected hiring and outsourcing costs for

the whole horizon while having adequate team members to complete the required

tasks. We consider uncertainty in people’s performances and represented it by the

randomness in the time required by a person to finish a task. We assumed that

once a person is assigned to a task of a project, we observe their true performance

on this task so here again the type of uncertainty is decision-dependent.

The alternative modeling we gave for the two-stage stochastic problem is not

applicable for multi-stage problems. Therefore, the formulation we presented for

this problem consists of a large number of non-anticipativity constraints. We

showed that instances of very limited size can be solved to optimality directly

with the solver using this formulation. For larger sizes, we investigated efficient

methods to obtain near-optimal solutions. On randomly generated instances, we

tested existing Lagrangian decomposition methods and showed that different de-

composition rules can have very different performances and there is a trade-off

between quality of the bound and the time spent at each iteration. As an alterna-

tive to Lagrange multiplier updating schemes whose convergences are very slow,

we proposed a decomposition-based branch-and-bound algorithm where first stage

non-anticipativity constraints are imposed by branching on first stage decisions.

Next we summarize the contributions of the thesis and conclude with possible

future research directions. This thesis in general contributes to the literature of

team formation problems. The work in Chapter 3 can be considered as a bridge

between the studies in data science and operations research literatures. Because

it adopts the problem definitions used in data science field but provides an in-

teger programming formulation, and unlike the related studies in the operations

research, we solve this integer formulation to optimality with a novel branch-and-

bound algorithm. Proposing this algorithm, Chapter 3 also contributes to the

literature of 0-1 quadratic problems as the algorithm can be utilized to solve any

such problem.

The problems in Chapter 4 and 5 contribute the stochastic programming liter-

ature with endogenous uncertainty which is not as vast as the exogenous case. In

109

Chapter 4 we provided an alternative formulation to a two-stage stochastic prob-

lem with endogenous uncertainty. This formulation does not have the conditional

non-anticipativity constraints, which are a set of complicating constraints that

the stochastic problems with this type uncertainty usually have. This alternative

formulation is significant because without the conditional non-anticipativity con-

straints, we are able to apply Benders’ decomposition to this problem. Thus, we

developed a Benders’ decomposition based branch-and-cut algorithm where the

strength of the cuts were enhanced with stronger linear relaxations. In Chap-

ter 5, we introduced a multi-stage team formation problem and we proposed a

decomposition-based branch-and-bound algorithm as an alternative to Lagrange

multiplier update methods. We showed the superiority of the algorithm over ex-

isting Lagrangian decomposition techniques. This work contributes to the multi-

stage stochastic programming in general because the algorithm can be utilized to

generate tight bounds for any type of stochastic problem and it would be promis-

ing especially for the problems with combinatorial structure and a high number

of scenarios.

6.1 Future Research

In terms of application, the work in Chapter 3 can be extended in several ways.

First, the communication cost may be quantified with respect to tasks in which

case the problem also requires assigning people to tasks. In this case, additional

constraints such as capacity constraints can be added. In terms of extending the

work computationally, one can investigate other 0-1 quadratic problems that the

branch-and-bound algorithm can solve efficiently.

In Chapter 4, we consider the uncertainty in the communication costs and

assume that a subset of team can be learned in the trial stage. An interesting

extension could be a stochastic problem with two or more stages where we must

have a capable team at each stage. In this case, according to our observations

of communication cost, we can update the team but now there can be extra

restrictions such as a bound on the number of team members that can be changed.

110

Or the changes might incur a cost. In terms of modeling of stochastic problems

with endogenous uncertainty, one can also investigate if the problems in the

literature can be modeled without conditional non-anticipativity constraints as

well.

The work in Chapter 5 can be extended in many ways. Obviously experiment-

ing on the grouping idea and investigating the difference of the bounds with re-

spect to the structure of the scenario groups would be beneficial. Other Lagrange

multiplier update methods can be applied to the decomposition. If these methods

accelerate the algorithm, they can be utilized within the branch-and-bound as well

and we can solve stronger relaxation at the nodes of the branch-and-bound tree.

Furthermore, with parallel computing the solution time of the branch-and-bound

can be reduced. Parallel computing is a type of computation where the execution

of processes are carried out simultaneously using multiple processors. Once the

child nodes of the current node are created, they can be solved simultaneously if

we have the sufficient computing power. As a future work, the algorithm can be

tested on other stochastic programming problems with endogenous uncertainty

in literature and can be adjusted for the ones that have exogenous uncertainty

as well.

111

Bibliography

[1] L. F. Escudero, A. Gaŕın, M. Merino, and G. Pérez, “The value of the

stochastic solution in multistage problems,” Top, vol. 15, no. 1, pp. 48–64,

2007.

[2] Centric Digital, “What is taas (team as a service) and why is it becoming so

popular?.” Retrieved April 6, 2017, https://centricdigital.com/blog/

digital-trends/what-is-team-as-a-service/, 2016.

[3] S. G. Cohen and D. E. Bailey, “What makes teams work: Group effec-

tiveness research from the shop floor to the executive suite,” Journal of

Management, vol. 23, no. 3, pp. 239–290, 1997.

[4] G. L. Stewart, “A meta-analytic review of relationships between team de-

sign features and team performance,” Journal of management, vol. 32, no. 1,

pp. 29–55, 2006.

[5] M. Hoegl and H. G. Gemuenden, “Teamwork quality and the success of

innovative projects: A theoretical concept and empirical evidence,” Orga-

nization Science, vol. 12, no. 4, pp. 435–449, 2001.

[6] R. Jones, Working Virtually: Challenges of Virtual Teams: Challenges of

Virtual Teams. IGI Global, 2005.

[7] Joint Commission, “Sentinel event statistics released for 2014.” Retrieved

October 20, 2019, https://www.jointcommission.org/assets/1/23/JC_

Online_March_13.pdf, 2015.

112

[8] Project Management Institute, “The high cost of low per-

formance:the essential role of communications.” Retrieved

October 20, 2019, https://www.pmi.org/-/media/pmi/

documents/public/pdf/learning/thought-leadership/pulse/

the-essential-role-of-communications.pdf, 2013.

[9] K. Schwaber, Agile project management with Scrum. Microsoft press, 2004.

[10] T. Lappas, K. Liu, and E. Terzi, “Finding a team of experts in social net-

works,” in Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 467–476, ACM, 2009.

[11] R. S. Huckman, B. R. Staats, and D. M. Upton, “Team familiarity, role ex-

perience, and performance: Evidence from indian software services,” Man-

agement science, vol. 55, no. 1, pp. 85–100, 2009.

[12] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb, “Fa-

miliarity, complexity, and team performance in geographically distributed

software development,” Organization science, vol. 18, no. 4, pp. 613–630,

2007.

[13] E. Avgerinos and B. Gokpinar, “Team familiarity and productivity in car-

diac surgery operations: The effect of dispersion, bottlenecks, and task

complexity,” Manufacturing & Service Operations Management, 2016.

[14] N. Bassett-Jones, “The paradox of diversity management, creativity and

innovation,” Creativity and innovation management, vol. 14, no. 2, pp. 169–

175, 2005.

[15] A. Zakarian and A. Kusiak, “Forming teams an analytical approach,” IIE

transactions, vol. 31, no. 1, pp. 85–97, 1999.

[16] B. H. Boon and G. Sierksma, “Team formation: Matching quality supply

and quality demand,” European Journal of Operational Research, vol. 148,

no. 2, pp. 277–292, 2003.

113

[17] L. E. Agust́ın-Blas, S. Salcedo-Sanz, E. G. Ortiz-Garćıa, A. Portilla-

Figueras, Á. M. Pérez-Bellido, and S. Jiménez-Fernández, “Team forma-

tion based on group technology: A hybrid grouping genetic algorithm ap-

proach,” Computers & Operations Research, vol. 38, no. 2, pp. 484–495,

2011.

[18] S.-J. Chen and L. Lin, “Modeling team member characteristics for the for-

mation of a multifunctional team in concurrent engineering,” IEEE Trans-

actions on Engineering Management, vol. 51, no. 2, pp. 111–124, 2004.

[19] E. L. Fitzpatrick and R. G. Askin, “Forming effective worker teams with

multi-functional skill requirements,” Computers & Industrial Engineering,

vol. 48, no. 3, pp. 593–608, 2005.

[20] L. Zhang and X. Zhang, “Multi-objective team formation optimization for

new product development,” Computers & Industrial Engineering, vol. 64,

no. 3, pp. 804–811, 2013.

[21] A. Baykasoglu, T. Dereli, and S. Das, “Project team selection using fuzzy

optimization approach,” Cybernetics and Systems: An International Jour-

nal, vol. 38, no. 2, pp. 155–185, 2007.

[22] J. H. Gutiérrez, C. A. Astudillo, P. Ballesteros-Pérez, D. Mora-Melià, and

A. Candia-Véjar, “The multiple team formation problem using sociometry,”

Computers & Operations Research, vol. 75, pp. 150–162, 2016.

[23] H. Wi, S. Oh, J. Mun, and M. Jung, “A team formation model based on

knowledge and collaboration,” Expert Systems with Applications, vol. 36,

no. 5, pp. 9121–9134, 2009.

[24] B. Feng, Z.-Z. Jiang, Z.-P. Fan, and N. Fu, “A method for member se-

lection of cross-functional teams using the individual and collaborative

performances,” European Journal of Operational Research, vol. 203, no. 3,

pp. 652–661, 2010.

[25] A. Farasat and A. G. Nikolaev, “Social structure optimization in team

formation,” Computers & Operations Research, vol. 74, pp. 127–142, 2016.

114

[26] M. Kargar and A. An, “Discovering top-k teams of experts with/without

a leader in social networks,” in Proceedings of the 20th ACM Interna-

tional Conference on Information and Knowledge Management, pp. 985–

994, ACM, 2011.

[27] M. Kargar, A. An, and M. Zihayat, “Efficient bi-objective team formation

in social networks,” in Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pp. 483–498, Springer, 2012.

[28] A. Bhowmik, V. S. Borkar, D. Garg, and M. Pallan, “Submodularity in

team formation problem.,” in SDM, pp. 893–901, SIAM, 2014.

[29] A. Majumder, S. Datta, and K. Naidu, “Capacitated team formation prob-

lem on social networks,” in Proceedings of the 18th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pp. 1005–

1013, ACM, 2012.

[30] C. Dorn and S. Dustdar, “Composing near-optimal expert teams: a trade-

off between skills and connectivity,” in OTM Confederated International

Conferences” On the Move to Meaningful Internet Systems”, pp. 472–489,

Springer, 2010.

[31] A. Gajewar and A. D. Sarma, “Multi-skill collaborative teams based on

densest subgraphs,” in Proceedings of the 2012 SIAM International Con-

ference on Data Mining, SIAM, 2012.

[32] C. Crawford, Z. Rahaman, and S. Sen, “Evaluating the efficiency of robust

team formation algorithms,” in International Conference on Autonomous

Agents and Multiagent Systems, pp. 14–29, Springer, 2016.

[33] E. Demirović, N. Schwind, T. Okimoto, and K. Inoue, “Recoverable team

formation: Building teams resilient to change,” in Proceedings of the 17th

International Conference on Autonomous Agents and MultiAgent Systems,

pp. 1362–1370, International Foundation for Autonomous Agents and Mul-

tiagent Systems, 2018.

115

[34] M. Fathian, M. Saei-Shahi, and A. Makui, “A new optimization model

for reliable team formation problem considering experts’ collaboration net-

work,” IEEE Transactions on Engineering Management, vol. 64, no. 4,

pp. 586–593, 2017.

[35] S. Bouajaja and N. Dridi, “A survey on human resource allocation problem

and its applications,” Operational Research, vol. 17, no. 2, pp. 339–369,

2017.

[36] A. Certa, M. Enea, G. Galante, and C. Manuela La Fata, “Multi-objective

human resources allocation in r&d projects planning,” International Jour-

nal of Production Research, vol. 47, no. 13, pp. 3503–3523, 2009.

[37] W. J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M. Denk,

“Competence-driven project portfolio selection, scheduling and staff assign-

ment,” Central European Journal of Operations Research, vol. 16, no. 3,

pp. 281–306, 2008.

[38] R. Chen, C. Liang, D. Gu, and J. Y. Leung, “A multi-objective model for

multi-project scheduling and multi-skilled staff assignment for it product

development considering competency evolution,” International Journal of

Production Research, vol. 55, no. 21, pp. 6207–6234, 2017.

[39] F. Rahmanniyay, A. J. Yu, and J. Seif, “A multi-objective multi-stage

stochastic model for project team formation under uncertainty in time re-

quirements,” Computers & Industrial Engineering, vol. 132, pp. 153–165,

2019.

[40] M. E. Bruni, P. Beraldi, F. Guerriero, and E. Pinto, “A heuristic approach

for resource constrained project scheduling with uncertain activity dura-

tions,” Computers & Operations Research, vol. 38, no. 9, pp. 1305–1318,

2011.

[41] M. E. Bruni, L. D. P. Pugliese, P. Beraldi, and F. Guerriero, “An adjustable

robust optimization model for the resource-constrained project scheduling

problem with uncertain activity durations,” Omega, vol. 71, pp. 66–84,

2017.

116

[42] T. W. Jonsbr̊aten, R. J. Wets, and D. L. Woodruff, “A class of stochastic

programs withdecision dependent random elements,” Annals of Operations

Research, vol. 82, pp. 83–106, 1998.

[43] S. Ahmed, Strategic planning under uncertainty: Stochastic integer pro-

gramming approaches. PhD thesis, University of Illinois at Urbana-

Champaign, 2000.

[44] S. Peeta, F. S. Salman, D. Gunnec, and K. Viswanath, “Pre-disaster in-

vestment decisions for strengthening a highway network,” Computers &

Operations Research, vol. 37, no. 10, pp. 1708–1719, 2010.

[45] V. Goel and I. E. Grossmann, “A stochastic programming approach to

planning of offshore gas field developments under uncertainty in reserves,”

Computers & chemical engineering, vol. 28, no. 8, pp. 1409–1429, 2004.

[46] M. Colvin and C. T. Maravelias, “A stochastic programming approach for

clinical trial planning in new drug development,” Computers & Chemical

Engineering, vol. 32, no. 11, pp. 2626–2642, 2008.

[47] S. Solak, J.-P. B. Clarke, E. L. Johnson, and E. R. Barnes, “Optimization

of r&d project portfolios under endogenous uncertainty,” European Journal

of Operational Research, vol. 207, no. 1, pp. 420–433, 2010.

[48] V. Goel and I. E. Grossmann, “A class of stochastic programs with deci-

sion dependent uncertainty,” Mathematical programming, vol. 108, no. 2-3,

pp. 355–394, 2006.

[49] B. Tarhan and I. E. Grossmann, “A multistage stochastic programming

approach with strategies for uncertainty reduction in the synthesis of pro-

cess networks with uncertain yields,” Computers & Chemical Engineering,

vol. 32, no. 4-5, pp. 766–788, 2008.

[50] B. Tarhan, I. E. Grossmann, and V. Goel, “Computational strategies

for non-convex multistage minlp models with decision-dependent uncer-

tainty and gradual uncertainty resolution,” Annals of Operations Research,

vol. 203, no. 1, pp. 141–166, 2013.

117

[51] M. Colvin and C. T. Maravelias, “Modeling methods and a branch and

cut algorithm for pharmaceutical clinical trial planning using stochastic

programming,” European Journal of Operational Research, vol. 203, no. 1,

pp. 205–215, 2010.

[52] V. Goel, I. E. Grossmann, A. S. El-Bakry, and E. L. Mulkay, “A novel

branch and bound algorithm for optimal development of gas fields under

uncertainty in reserves,” Computers & chemical engineering, vol. 30, no. 6-

7, pp. 1076–1092, 2006.

[53] B. Tarhan, I. E. Grossmann, and V. Goel, “Stochastic programming ap-

proach for the planning of offshore oil or gas field infrastructure under

decision-dependent uncertainty,” Industrial & Engineering Chemistry Re-

search, vol. 48, no. 6, pp. 3078–3097, 2009.

[54] N. Boland, I. Dumitrescu, and G. Froyland, “A multistage stochastic pro-

gramming approach to open pit mine production scheduling with uncertain

geology,” Optimization online, pp. 1–33, 2008.

[55] N. Boland, I. Dumitrescu, G. Froyland, and T. Kalinowski, “Minimum

cardinality non-anticipativity constraint sets for multistage stochastic pro-

gramming,” Mathematical Programming, vol. 157, no. 1, pp. 69–93, 2016.

[56] V. Gupta and I. E. Grossmann, “A new decomposition algorithm for mul-

tistage stochastic programs with endogenous uncertainties,” Computers &

Chemical Engineering, vol. 62, pp. 62–79, 2014.

[57] B. Christian and S. Cremaschi, “Heuristic solution approaches to the phar-

maceutical r&d pipeline management problem,” Computers & Chemical

Engineering, vol. 74, pp. 34–47, 2015.

[58] R. M. Apap and I. E. Grossmann, “Models and computational strategies

for multistage stochastic programming under endogenous and exogenous

uncertainties,” Computers & Chemical Engineering, vol. 103, pp. 233–274,

2017.

[59] N. Berktaş and H. Yaman, “A branch-and-bound algorithm for team for-

mation on social networks,” INFORMS Journal on Computing, 2020.

118

[60] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New phy-

tologist, vol. 11, no. 2, pp. 37–50, 1912.

[61] R. Fortet and E. Mourier, “Les fonctions aléatoires comme éléments

aléatoires dans un espace de banach,” J. Math. Pures Appl, vol. 38, no. 9,

pp. 347–364, 1959.

[62] M. S. Bazaraa and J. J. Goode, “A cutting-plane algorithm for the quadratic

set-covering problem,” Operations Research, vol. 23, no. 1, pp. 150–158,

1975.

[63] B. Escoffier and P. L. Hammer, “Approximation of the quadratic set cov-

ering problem,” Discrete Optimization, vol. 4, no. 3-4, pp. 378–386, 2007.

[64] R. Saxena and S. Arora, “A linearization technique for solving the quadratic

set covering problem,” Optimization, vol. 39, no. 1, pp. 33–42, 1997.

[65] P. Pandey and A. P. Punnen, “On a linearization technique for solving

the quadratic set covering problem and variations,” Optimization Letters,

vol. 11, no. 7, pp. 1357–1370, 2017.

[66] A. P. Punnen, P. Pandey, and M. Friesen, “Representations of quadratic

combinatorial optimization problems: A case study using quadratic set

covering and quadratic knapsack problems,” Computers & Operations Re-

search, vol. 112, p. 104769, 2019.

[67] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and

T. Querido, “A survey for the quadratic assignment problem,” European

Journal of Operational Research, vol. 176, no. 2, pp. 657–690, 2007.

[68] W. D. Pisinger, A. B. Rasmussen, and R. Sandvik, “Solution of large

quadratic knapsack problems through aggressive reduction,” INFORMS

Journal on Computing, vol. 19, no. 2, pp. 280–290, 2007.

[69] J. Povh and F. Rendl, “Copositive and semidefinite relaxations of the

quadratic assignment problem,” Discrete Optimization, vol. 6, no. 3,

pp. 231–241, 2009.

119

[70] H. Mittelmann and J. Peng, “Estimating bounds for quadratic assignment

problems associated with hamming and manhattan distance matrices based

on semidefinite programming,” SIAM Journal on Optimization, vol. 20,

no. 6, pp. 3408–3426, 2010.

[71] E. de Klerk, R. Sotirov, and U. Truetsch, “A new semidefinite programming

relaxation for the quadratic assignment problem and its computational per-

spectives,” INFORMS Journal on Computing, vol. 27, no. 2, pp. 378–391,

2015.

[72] D. A. Guimarães, A. S. da Cunha, and D. L. Pereira, “Semidefinite pro-

gramming lower bounds and branch-and-bound algorithms for the quadratic

minimum spanning tree problem,” European Journal of Operational Re-

search, vol. 280, no. 1, pp. 46–58, 2020.

[73] C. Rodrigues, D. Quadri, P. Michelon, and S. Gueye, “0-1 quadratic knap-

sack problems: an exact approach based on a t-linearization,” SIAM Jour-

nal on Optimization, vol. 22, no. 4, pp. 1449–1468, 2012.

[74] R. Martinelli and C. Contardo, “Exact and heuristic algorithms for capaci-

tated vehicle routing problems with quadratic costs structure,” INFORMS

Journal on Computing, vol. 27, no. 4, pp. 658–676, 2015.

[75] D. Bergman, “An exact algorithm for the quadratic multiknapsack problem

with an application to event seating,” INFORMS Journal on Computing,

vol. 31, no. 3, pp. 477–492, 2019.

[76] W. P. Adams and H. D. Sherali, “A tight linearization and an algorithm for

zero-one quadratic programming problems,” Management Science, vol. 32,

no. 10, pp. 1274–1290, 1986.

[77] W. P. Adams, M. Guignard, P. M. Hahn, and W. L. Hightower, “A level-

2 reformulation–linearization technique bound for the quadratic assign-

ment problem,” European Journal of Operational Research, vol. 180, no. 3,

pp. 983–996, 2007.

120

[78] P. M. Hahn, Y.-R. Zhu, M. Guignard, W. L. Hightower, and M. J. Saltz-

man, “A level-3 reformulation-linearization technique-based bound for the

quadratic assignment problem,” INFORMS Journal on Computing, vol. 24,

no. 2, pp. 202–209, 2012.

[79] A. Billionnet and F. Calmels, “Linear programming for the 0–1 quadratic

knapsack problem,” European Journal of Operational Research, vol. 92,

no. 2, pp. 310–325, 1996.

[80] A. Caprara, D. Pisinger, and P. Toth, “Exact solution of the quadratic

knapsack problem,” INFORMS Journal on Computing, vol. 11, no. 2,

pp. 125–137, 1999.

[81] F. D. Fomeni, K. Kaparis, and A. N. Letchford, “A cut-and-branch algo-

rithm for the quadratic knapsack problem,” tech. rep., Lancaster University

Management School, UK, 2014.

[82] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi,

“Online team formation in social networks,” in Proceedings of the 21st In-

ternational Conference on World Wide Web, pp. 839–848, ACM, 2012.

[83] X. Wang, Z. Zhao, and W. Ng, “A comparative study of team formation

in social networks,” in International conference on database systems for

advanced applications, pp. 389–404, Springer, 2015.

[84] N. Berktaş, N. Noyan, and H. Yaman, “Stochastic team formation prob-

lem.” In preparation.

[85] J. R. Birge, “The value of the stochastic solution in stochastic linear pro-

grams with fixed recourse,” Mathematical programming, vol. 24, no. 1,

pp. 314–325, 1982.

[86] J. Benders, “Partitioning procedures for solving mixed-variable program-

ming problems, numerische matkematic 4,” 1962.

[87] R. M. Van Slyke and R. Wets, “L-shaped linear programs with applications

to optimal control and stochastic programming,” SIAM Journal on Applied

Mathematics, vol. 17, no. 4, pp. 638–663, 1969.

121

[88] G. Laporte and F. V. Louveaux, “The integer l-shaped method for stochas-

tic integer programs with complete recourse,” Operations research letters,

vol. 13, no. 3, pp. 133–142, 1993.

[89] D. Gade, S. Küçükyavuz, and S. Sen, “Decomposition algorithms with para-

metric gomory cuts for two-stage stochastic integer programs,” Mathemat-

ical Programming, vol. 144, no. 1-2, pp. 39–64, 2014.

[90] M. Zhang and S. Kucukyavuz, “Finitely convergent decomposition algo-

rithms for two-stage stochastic pure integer programs,” SIAM Journal on

Optimization, vol. 24, no. 4, pp. 1933–1951, 2014.

[91] S. Sen and J. L. Higle, “The c 3 theorem and a d 2 algorithm for large scale

stochastic mixed-integer programming: Set convexification,” Mathematical

Programming, vol. 104, no. 1, pp. 1–20, 2005.

[92] Y. Qi and S. Sen, “The ancestral benders’ cutting plane algorithm with

multi-term disjunctions for mixed-integer recourse decisions in stochastic

programming,” Mathematical Programming, vol. 161, no. 1-2, pp. 193–235,

2017.

[93] G. Angulo, S. Ahmed, and S. S. Dey, “Improving the integer l-shaped

method,” INFORMS Journal on Computing, vol. 28, no. 3, pp. 483–499,

2016.

[94] N. Berktaş and I. E. Grossmann, “Multi-stage stochastic project team for-

mation.” In preparation.

[95] A. Neebe and M. Rao, “An algorithm for the fixed-charge assigning users

to sources problem,” Journal of the Operational Research Society, vol. 34,

no. 11, pp. 1107–1113, 1983.

[96] K. Holmberg, M. Rönnqvist, and D. Yuan, “An exact algorithm for the ca-

pacitated facility location problems with single sourcing,” European Journal

of Operational Research, vol. 113, no. 3, pp. 544–559, 1999.

122

[97] R. Freling, H. E. Romeijn, D. R. Morales, and A. P. Wagelmans, “A branch-

and-price algorithm for the multiperiod single-sourcing problem,” Opera-

tions research, vol. 51, no. 6, pp. 922–939, 2003.

[98] G. T. Ross and R. M. Soland, “A branch and bound algorithm for the

generalized assignment problem,” Mathematical programming, vol. 8, no. 1,

pp. 91–103, 1975.

[99] O. E. Kundakcioglu and S. Alizamir, Generalized assignment problem,

pp. 1153–1162. Boston, MA: Springer US, 2009.

[100] J. R. Birge and F. Louveaux, Introduction to stochastic programming.

Springer Science & Business Media, 2011.

[101] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization applied

to energy planning,” Mathematical programming, vol. 52, no. 1-3, pp. 359–

375, 1991.

[102] J. Zou, S. Ahmed, and X. A. Sun, “Stochastic dual dynamic integer pro-

gramming,” Mathematical Programming, vol. 175, no. 1-2, pp. 461–502,

2019.

[103] C. C. Carøe and R. Schultz, “Dual decomposition in stochastic integer

programming,” Operations Research Letters, vol. 24, no. 1-2, pp. 37–45,

1999.

[104] B. Sandıkçı and O. Y. Ozaltın, “A scalable bounding method for multi-

stage stochastic programs,” SIAM Journal on Optimization, vol. 27, no. 3,

pp. 1772–1800, 2017.

[105] M. Held and R. M. Karp, “The traveling-salesman problem and minimum

spanning trees: Part ii,” Mathematical programming, vol. 1, no. 1, pp. 6–25,

1971.

[106] M. Guignard and S. Kim, “Lagrangean decomposition: A model yielding

stronger lagrangean bounds,” Mathematical programming, vol. 39, no. 2,

pp. 215–228, 1987.

123

[107] M. Held, P. Wolfe, and H. P. Crowder, “Validation of subgradient optimiza-

tion,” Mathematical programming, vol. 6, no. 1, pp. 62–88, 1974.

[108] M. L. Fisher, “An applications oriented guide to lagrangian relaxation,”

Interfaces, vol. 15, no. 2, pp. 10–21, 1985.

[109] S. Mouret, I. E. Grossmann, and P. Pestiaux, “A new lagrangian decompo-

sition approach applied to the integration of refinery planning and crude-oil

scheduling,” Computers & Chemical Engineering, vol. 35, no. 12, pp. 2750–

2766, 2011.

[110] F. Oliveira, V. Gupta, S. Hamacher, and I. E. Grossmann, “A lagrangean

decomposition approach for oil supply chain investment planning under

uncertainty with risk considerations,” Computers & Chemical Engineering,

vol. 50, pp. 184–195, 2013.

124

	A9R18xhr77_1igwg9h_8bk.tmp
	Local Disk
	file:///C/Users/Betül/Desktop/Pages from 10380669 Nihal Berktas IE PhD thesis.txt

