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ABSTRACT

EXCITON CONDENSATE DRIVEN FORCE IN
DOUBLE LAYER SYSTEMS

Ege Özgün

Ph.D. in Physics

Advisor: Tuğrul Hakioğlu

February, 2016

Excitonic systems are challenging to deal with both theoretically and experimen-

tally but in return, they offer a very rich physics and exotic features. We will

investigate their properties under weak magnetic field and the resultant instabili-

ties reminiscent of Sarma-I and Sarma-II phases. A new type of force in condensed

matter physics, emerging due to the presence of the excitonic condensation will

be demonstrated via semi-analytical and numerical calculations in two different

systems of GaAs double quantum well geometries and layered transition metal

dichalcogenide material 1T -T iSe2. Competition of charge-density wave and ex-

citon condensate orders in layered systems will also be discussed in detail and an

alternative explanation for the periodic lattice distortions observed in 1T -T iSe2

will be posed.

Keywords: Exciton condensation, charge-density waves, double quantum wells.
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ÖZET

ÇİFT KATMANLI SİSTEMLERDE EGZİTON

YOĞUŞMASINDAN DOĞAN KUVVET

Ege Özgün

Fizik, Doktora

Tez Danışmanı: Tuğrul Hakioğlu

Şubat, 2016

Egzitonik sistemler, hem deneysel hem de teorik olarak zorlayıcı sistemlerdir ama

bunun karşılığında oldukça zengin bir fizik ve egzotik özellikler sunarlar. Bu sis-

temlerin zayıf manyetik alan altındaki özelliklerini ve ortaya çıkan, Sarma-I ve

Sarma-I benzeri kararsızlıkları inceleyeceğiz. Egziton yoğuşmasının varlığında or-

taya çıkan, yoğun madde fiziğindeki yeni bir tip kuvveti, nümerik ve yarı analitik

metotlar ile, biri GaAs çift kuvantum kuyusu geometrisi, diğeri ise katmanlı geçiş

metali dikalkojenlerinden 1T -T iSe2 olan iki farklı sistemde göstereceğiz. Yük

yoğunluğu dalgaları ve egziton yoğuşması düzenlerinin mücadelesini ve 1T -T iSe2

malzemesinde gözlemlenmiş olan periodik sapmalar için alternatif bir senaryoyu

da detaylı bir biçimde inceleyeceğiz.

Anahtar sözcükler : Egziton yoğuşması, yük yoğunluğu dalgaları, çift kuvantum

kuyuları.
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life, Pelin Tören for motivating me in completing my thesis and making my life

wonderful.

v



Contents

1 Introduction 1

2 Excitons in a nutshell 4

2.1 Basics of exciton physics . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Definition of an exciton . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Electron and Hole Bands . . . . . . . . . . . . . . . . . . . 7

2.1.3 Dark-bright excitons and radiative couplings . . . . . . . . 8

2.1.4 Fundamental symmetries in excitonic systems . . . . . . . 9

2.2 Bose-Einstein Condensation of excitons . . . . . . . . . . . . . . . 10

2.2.1 GaAs DQW geometry . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Second quantization of some related operators . . . . . . . 12

2.2.3 Hartree-Fock mean field approximation . . . . . . . . . . . 13

2.2.4 Derivation of the EC Hamiltonian . . . . . . . . . . . . . . 14

3 Exciton Condensates Under Weak B-field 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Robust Ground State and the DX-pockets . . . . . . . . . . . . . 17

3.2.1 Microscopic theory . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 22

4 The EC force 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Condensation free energy and the emergence of the EC force . . . 28

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Semi-analytical derivation of the EC force . . . . . . . . . . . . . 29

4.4.1 Parabolic approximation . . . . . . . . . . . . . . . . . . . 30

vi



CONTENTS vii

5 EC-CDW Instability Competition and EC-Force in TMDC 36

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Theory of CDW Instability . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 CDW Instability in 1D Systems . . . . . . . . . . . . . . . 37

5.2.2 Microscopic Theory of CDW for 2D Systems . . . . . . . . 41

5.3 A model for CDW and EC orders in layered systems . . . . . . . 42

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Competition of EC and CDW instability . . . . . . . . . . 46

5.4.2 EC-Force in TMDC . . . . . . . . . . . . . . . . . . . . . . 47

5.4.3 An Alternative Approach for the Periodic Lattice Distor-

tions in 1T -T iSe2 . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.4 Tuning the transition temperatures via electron-phonon in-

teraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion 53

A Code 61



List of Figures

2.1 Simple illustration of Wannier-Mott and Frenkel excitons. a)

Wannier-Mott excitons extend to several lattice sites with a weaker

attraction between the bound electron-hole pairs. b) Frenkel exci-

tons are tightly bound and are limited to a single lattice site. . . . 5

2.2 Conduction electron and valence heavy hole and light hole bands

of GaAs for a band gap of EG = 1.42eV . Horizontal axis is dimen-

sionless wavevector scaled with a2B and vertical axis is energy in

units of Hartree energy EH = 12meV . . . . . . . . . . . . . . . . 7

2.3 Coupled quantum wells of GaAs with the dielectric material

AlGaAs for realizing EC state. An electric field E ≃ 50kV/cm

is applied in the growth (z) direction to enhance the lifetime of the

excitons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for n(+)a2B =

0.1, 0.3, 0.5, 0.7 (from bottom to top) at constant n(−) = 0 and

g∗B/B0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for g∗B/B0 =

0, 2, 4, 6 (from top to bottom) at constant n(+) = 0.1 and n(−) = 0. 24

3.3 E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for g∗B/B0 =

0, 0.2, 0.4, 1 (from top to bottom) at constant n(+) = 1.5 and n(−) =

1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for n(−) =

0, 0.1, 0.3, 0.5 (from top to bottom) at constant n(+) = 0.55 and

g∗B/B0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



LIST OF FIGURES ix

3.5 E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for n(−) =

0, 0.4, 0.8, 1.4 (from top to bottom) at constant n(+) = 1.5 and

g∗B/B0 = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 The EC OP scaled with Hartree energy versus layer separation D

and wavevector k, in units of aB is plotted for n(+)a2B = 0.1. When

critical separation is reached, EC OP diminishes to zero rapidly. . 30

4.2 The EC OP at k = 0 scaled with EH as a function of the dimen-

sionless layer separation D/aB is plotted using the numerical and

semi-analytical calculations. The results show the success of the

parabolic approximation in generating the square root behavior of

∆(0) with increasing layer separation. . . . . . . . . . . . . . . . . 34

4.3 Change of the free energy scaled with the EH as a function of the

dimensionless layer separation D/aB is plotted using the numerical

and semi-analytical calculations. Again the power of the parabolic

approximation can be seen from the comparison of numerical and

semi-analytical results. . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 The static response functions versus the dimensionless wave vectors

plotted for 1D, 2D and 3D. . . . . . . . . . . . . . . . . . . . . . . 39

5.2 EC OP, scaled with t0 = 0.125eV , is plotted for different second

NN interaction strengths. The peak positions of the EC OP are

separated by the nesting vector, Q = (±π,±π) in each of the four

cases. For zero or a small second NN interaction, OP is maximum

at the saddle points of the dispersion, due to nearly perfect nest-

ing. As the second NN interaction increases, the perfect nesting

gradually disappears. . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Color map of the CDW and EC for t1 = 0. The OPs are mapped

via fcol = tan−1[∆max

G
] transformation. In yellow (light) regions

there is only EC and in black (dark) regions only CDW is present,

whereas in between they coexist. Here, λ0 runs from 0.9 to 1.6 and

D/a varies between 2 and 4. . . . . . . . . . . . . . . . . . . . . . 48



LIST OF FIGURES x

5.4 Regimes with different coexistence/competition properties are pre-

sented for EC and the CDW OPs for varying λ0 and t1. Here,

increasing t1 plays the major role in breaking the optimal nesting

condition which weakens both OPs, whereas t1 and λ0 together

determine two regimes of coexistence/competition as indicated in

(a). Several cross sections of (a) are given for the EC and CDW

order parameters as, b) t1 = 0: EC OP (blue triangles) gradually

drops to zero with the onset of CDW (red circles), c) t1 = 0.031:

the region of coexistence is narrowed and shifted to higher λ val-

ues, and d) t1 = 0.053: a direct transition from EC to CDW, with

no coexistence. The OPs on the vertical scale of (b-d) are given in

units of t0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 The change in the free energy per area with respect to D/a is plot-

ted for different λ0 and t1/t0 values. Free energy becomes constant

after EC vanishes, with only CDW remaining, which means that

the EC force is zero beyond that critical point. . . . . . . . . . . . 50

5.6 Transition temperatures of EC (TEC
c ) and CDW (TCDW

c ) orders

are illustrated for four different λ0 values for n0 ≃ 1014cm−2 and

t1 = 0. a)EC OP has a higher Tc than CDW OP. b) By increasing

λ0 the two critical temperatures were made to coincide at T = T ∗
c .

c) After increasing λ0 further, CDW order gains a higher Tc. d)

Increasing λ0 even further, the two Tc’s can be widely separated.

In all four cases, temperature is varied from 100 K to 170 K. . . . 52



Chapter 1

Introduction

Excitons are composite bosons created by the electron-hole bound state in the

semiconductor background. In 1924 S.N. Bose and A. Einstein represented a new

phase of matter, the well-known Bose-Einstein condensation[1, 2], in which un-

der a critical temperature bosons start to condense in the ground state. It was

first Moskalenko, Blatt, Ber and W. Brandt to theoretically suggest in 1960s the

Bose-Einstein condensation of a dilute exciton gas[3, 4] also referred as exciton

condensation. We will deal with the many body low temperature collective effects

in excitonic systems. In particular, dilute exciton gas should Bose-Einstein con-

dense at a much higher critical temperature than atomic boson gases, thanks to

higher spin degeneracy and lower effective mass. These properties of the exciton

gas under sufficiently low temperatures makes the problem still a hot research

topic today. The experiments on the condensed state was inconclusive until re-

cently. The modern exciton experiments are performed using coupled quantum

wells [5, 6, 7, 8] which supplies a factor of 1000-10000 enhancement in exciton life-

time compared to the former experiments that were taking place in bulk systems.

Despite the advantage in the use of coupled quantum wells, the early experiments

have not been totally indicative of a condensed state, leaving room for other ex-

planations. The basic reason for this lack of evidence is that, all experiments

are based on photoluminescence techniques, therefore only those exciton states

that couple to light (the so called bright excitons) can be probed. Recently it is
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demonstrated that dark excitons dominate the condensed ground state[9] which

cannot be probed by light.

Acknowledging the categorization suggested by Snoke[10], we can present the

earlier exciton condensation research under 4 main titles: a) 2D excitons in cou-

pled quantum wells b) Coulomb drag experiments in coupled two-dimensional

electron gases c) Three-dimensional excitons in the bulk semiconductor Cu2O

d) Polaritons in semiconductor microcavities. In addition to this categoriza-

tion, excitons created in different semiconductor quantum wells can be formed by

electron-hole pairs within the same band (both conduction or both valence) or in

different bands. In the former case, the excitonic subsystem respects the particle-

hole symmetry, whereas in the latter this symmetry is absent (due to different

band masses as well as orbital and spin properties). Fundamental symmetry con-

siderations in the absence of the particle-hole symmetry and their consequences

have been studied recently [11, 12]. Experiments in the former case are more

common (such as those by Snoke in Ref.[10].) On the other hand, the experi-

ments carried out mostly by the Eisenstein group in Caltech[13, 14, 15, 16, 17]

that respected the particle-hole symmetry, was enabled by the use of a strong

magnetic field, forcing the electrons and holes to share the same type of Lan-

dau bands in different wells. Many of the experimental results performed by the

Eisenstein and his colleagues have not yet been completely understood , among

which are the Hall drag quantization, the presence of a sharp critical layer sep-

aration, zero bias tunneling, topological phases, superfluidity etc. In addition to

these unsolved problems, it has been recently suggested that a new type of force

may be present at the phase boundary (the boundary separating the condensed

state from the normal exciton gas) reducing its strength (but never to zero) deep

inside the condensed state[9, 18].

The longly sought evidence for the condensed state came recently by the obser-

vation of the interference fringes arising from the excitonic condensate’s macro-

scopic wavefunction[19].

Our main interest is to device alternative and satisfactory theoretical methods

for conclusive observation of the excitonic condensed state in coupled quantum

2



wells. In particular, we will be investigating the effect of the weak magnetic

fields on the condensed state, predicting the magnitude of this new force both

numerically and semi-analytically.

In Chapter 2, we will lay the basics of the excitonic systems and device the tools

to handle them. Chapter 3 is devoted to the effects of a weak magnetic field on the

excitonic condensate. In Chapter 4, we will start investigating the new force aris-

ing in the excitonic systems i.e. exciton condensate force (EC-force). Chapter 5

deals with the exciton condensate force and charge-density wave instability/exci-

ton condensation competition in layered transition metal dichalcogenide material

1T -T iSe2. We will conclude with Chapter 6.
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Chapter 2

Excitons in a nutshell

2.1 Basics of exciton physics

2.1.1 Definition of an exciton

An exciton is similar to a hydrogen atom, in which the proton is replaced by a

hole i.e., excitons are bound states of electron-hole pairs. There are two different

types of excitons; Frenkel excitons[20] and Wannier-Mott excitons[21, 22]. The

difference between these two types of excitons is in the attraction holding them

together. Since the magnitude of the attraction determines the separation be-

tween the electrons and holes, these two types will also acquire different exciton

Bohr radius aB values. Exciton Bohr radius is defined in a similar manner to the

Bohr radius for the Hydrogen atom. We can follow the standard procedure to

derive an expression for aB. First we equate the Coulomb force to the rotational

force:

e2

4πǫr2
= m∗

eω
2r (2.1)

where e, ǫ, r, m∗
e and ω are electric charge, relative permitivity, distance between

4



Figure 2.1: Simple illustration of Wannier-Mott and Frenkel excitons. a)
Wannier-Mott excitons extend to several lattice sites with a weaker attraction
between the bound electron-hole pairs. b) Frenkel excitons are tightly bound and
are limited to a single lattice site.

the electron and the hole, effective electron mass and angular frequency of the

electron respectively. We can recast this equation by substituting ω = v/r where

v is the velocity and multiplying both sides bymr and using the Bohr-Sommerfeld

quantization condition L = nh̄, we have:

r =
4πǫh̄2

m∗
ee

2
n2 (2.2)

Finally, setting n = 1 for the state with the lowest energy, i.e., ground state, we

obtain the expression for the exciton Bohr radius:

aB =
4πǫh̄2

m∗
ee

2
(2.3)

Let us now return to the discussion of Frenkel and Wannier-Mott excitons.

Frenkel excitons are tightly bound electron-hole pairs with exciton Bohr radii
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of the order of a single lattice spacing, whereas Wannier-Mott excitons are their

loosely bound counterparts with exciton Bohr radius values acquiring several lat-

tice spacings. Different types of materials give rise to different types of aB values,

since different materials have different dielectric constants and different effective

band masses. We will investigate these different cases in detail in the following

chapters.

It is important to define the notion of composite bosons while tackling with the

excitonic systems. Electrons and holes are both fermions; by the simple angular

momentum addition rules it is known that two fermions adds upto a boson. In

the language of group theory, it is cast as follows:

1

2
⊗

1

2
= 0⊕ 1 (2.4)

The detailed explanation of angular momentum summation rules within the con-

text of group theory can be found in Ref. [23] for instance. So excitons, which

are bound states of electron-hole pairs, can be treated as composite bosons under

certain conditions. We basically need to consider two quantities to determine

whether our excitons can be treated as composite bosons or not: a) the exciton

density n(+) b) the exciton Bohr radius aB. The limiting condition comes from

the commutation relation of the exciton operators[24]:

[ck,σ, c
†
k′,σ′] = δk,k′δσ,σ′ +O(n(+)a3B) (2.5)

where ck,σ/c
†
k,σ are bosonic exciton annihilation/creation operators built from

the multiplication of two fermionic operators, k is the wavevector, σ is the spin

index, and δ denotes the Kronecker delta. The above equation is a valid bosonic

commutation relation if n(+)a3B ≪ 1. This relation is generalized to d-dimensions

by using the d-dimensional exciton density and adB. Throughout this thesis, we

will focus on the two-dimensional case. Recasting the above condition in 2D we

have:

n(+)a2B ≪ 1 (2.6)

We will consider two different cases of n(+) ∼ 1014 cm−2, aB = 5Å and n(+) ∼

1011 − 1012 cm−2, aB = 100Å which are both within the composite boson limit.
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2.1.2 Electron and Hole Bands

Electrons and holes acquire effective band masses, when they are in semiconduc-

tors. There exist three main bands: electron band (conduction), light hole band

(valence) and heavy hole band (valence). We will mostly deal with GaAs double

quantum well (DQW) semiconductors. In these III-V semiconductors of GaAs,

the typical effective masses for the aformentioned bands are given as:

m∗
e = 0.067m0 m∗

hh = 0.45m0 m∗
lh = 0.082m0 (2.7)

with m0 being the electron mass in vacuum and subindices e, hh, lh denoting

electron, heavy hole, light hole respectively. A simple illustration of these bands

in GaAs with a band gap of EG = 1.42eV (at 300K) is given in Fig2.2.

e-band

hh-band

lh-band

Figure 2.2: Conduction electron and valence heavy hole and light hole bands of
GaAs for a band gap of EG = 1.42eV . Horizontal axis is dimensionless wavevector
scaled with a2B and vertical axis is energy in units of Hartree energy EH = 12meV
.
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2.1.3 Dark-bright excitons and radiative couplings

Electrons and holes, being fermions, have their spin, S = 1/2. Electrons coming

from s-like conduction bands carry angular momentum L = 0 and heavy holes

coming from p-like bands carry angular momentum L = 1. This results in elec-

trons with total angular momenta J = 1/2 and holes with total angular momenta

J = 3/2. To be more specific, heavy holes have Jz = ±3/2 and light holes have

Jz = ±1/2. The lowest energy combinations give the following combinations for

the excitons:

| ↑↑〉 = |2 2〉

| ↓↓〉 = |2 − 2〉

| ↑↓〉 = |1 − 1〉

| ↓↑〉 = |1 1〉

These combinations give rise to two fundamentally different varieties, i.e. dark

and bright excitons. Bright excitons couple to the light with their odd total

angular momenta whereas their dark counterparts are invisible to light with their

even angular momenta. Different coupling properties of the dark and bright

excitons lead to an important result in the condensed phase: Due to the finite

life time of excitons, electron-hole pairs recombine and emit radiation in the form

of a photon. The emitted photon can interact with the dark and bright exciton

branches via the radiative dipole couplings and as the result of this coupling the

amount of bright states in the ground state (GS) diminishes drastically, leaving a

purely dark GS[9]. Although there are higher order corrections coming from the

Shiva diagrams[25, 26] i.e., dark-bright exchange interactions, in detailed balance

the GS is dominated by the dark excitons. This resulted in a huge problem for

the experiments based on photoluminescence measurements, since dark states do

not couple to the light, which delayed the longly sought experimental evidence of

the condensed phase until the pioneering work of Butov et al.[19]

8



2.1.4 Fundamental symmetries in excitonic systems

There are two fundamental symmetries for the excitonic systems to consider:

fermion exchange symmetry (FX) and time reversal symmetry (TRS)[11, 12].

Let us begin with FX which is analogous to the particle-hole symmetry (PHS).

In the excitonic systems if FX is respect then the below relations must hold:

∆↑↑(k) = C〈e†k↑h
†
−k↑〉 = C〈h†−k↑e

†
k↑〉 = −∆↑↑(−k)

∆↑↓(k) = C〈e†k↑h
†
−k↓〉 = C〈h†−k↓e

†
k↑〉 = −∆↓↑(−k)

∆↓↑(k) = C〈e†k↓h
†
−k↑〉 = C〈h†−k↑e

†
k↓〉 = −∆↑↓(−k)

∆↓↓(k) = C〈e†k↓h
†
−k↓〉 = C〈h†−k↓e

†
k↓〉 = −∆↓↓(−k)

where ∆σσ′ denotes the order parameter (OP) for the exciton condensate, C

includes all of terms relating thermodynamic average of fermionic operators to

the OP that are absent in the above equation and ↑ / ↓ denotes spin quantum

numbers. So when we have FX, using the above equation we can write:

∆̄(k) = −∆̄T(−k), ∆̄(k) =

(

∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)

)

(2.8)

At this point, the interaction will determine whether we will have singlet or triplet

states in our system. If we have an even interaction for instance, we have:

∆̄(k) = ∆̄(−k) (2.9)

In that case, ∆↑↑(k) = ∆↓↓(k) = 0 and ∆↑↓(k) = −∆↓↑(k) so we have real singlet

terms surviving, with all triplet terms vanishing. This is exactly what we have

in the case of conventional superconductivity (CSC). If FX were absent in CSC,

then one would need to include the triplet terms in addition to the real singlet

OP. In the opposite case, an odd interaction yields:

∆̄(k) = −∆̄(−k) (2.10)

which gives ∆↑↓(k) = ∆↓↑(k) leaving dz 6= 0, ∆↑↑(k) and ∆↓↓(k). Let us now

move to the other important symmetry within the context of EC, which is TRS.

Time reversal operator Θ̂ is an antiunitary operator and has three effects on

a complex function: it complex conjugates it, it inverts the wavevector k and it

9



inverts the spin σ. Because of its antiunitary nature, θ̂2 = −1 which gives rise to

the following: θ̂ :↑= − ↓ and θ̂ :↓=↑. The choice of the minus sign in the former

equation here is arbitrary and can also be put in the latter equation instead.

Considering these carefully, we have:

Θ̂ :

(

∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)

)

=

(

∆∗
↓↓(−k) −∆∗

↓↑(−k)

−∆∗
↑↓(−k) ∆↑↑(−k)

)

(2.11)

Again the interaction determines the destiny of the singlet and triplet OPs. In the

case of a real even interaction we have, ∆↑↑(k) = ∆↓↓(k) and ∆↑↓(k) = −∆↓↑(k),

a real odd interaction yields ∆↑↑(k) = ∆↓↓(−k) and ∆↑↓(k) = ∆↓↑(k). Finally

lets investigate FX and TRS together.

When both FX and TRS manifest and we have a real even interaction we end

up with a real singlet: ∆↑↑(k) = ∆↓↓(k) = 0 and ∆↑↓(k) = −∆↓↑(k). For the

case of real odd interaction ∆↑↑(k) = −∆↓↓(k) and ∆↑↓(k) = ∆↓↑(k)

Lets conclude this section by briefly talking about the cases when these sym-

metries are manifest or broken. The FX is broken in the DQW excitonic systems

since there are two species of fermions in excitonic systems. The FX can be

manifest in double layer systems with half filled wells, but in that case it is more

convenient to talk about PHS instead of FX. The TRS is manifest in the absence

of magnetic field but it can also be spontaneously broken.

2.2 Bose-Einstein Condensation of excitons

2.2.1 GaAs DQW geometry

We will use two different geometries; GaAs DQW geometry and 1T -T iSe2, a

layered transition metal dichalcogenide. Let us reserve the latter one for later and

briefly discuss the former one for now. The GaAs DQW geometry consists of two

10



Figure 2.3: Coupled quantum wells of GaAs with the dielectric material AlGaAs
for realizing EC state. An electric field E ≃ 50kV/cm is applied in the growth
(z) direction to enhance the lifetime of the excitons.

GaAs quantum wells and a dielectric material, AlGaAs in between, separating

the wells. Typical values for the separation is ∼ 100Å. First a laser is shone

to create the electron hole pairs. Since electrons and holes tend to recombine,

the lifetime of excitons is extremely short, on the order of nano meters. An

electric field with magnitude ≃ 50kV/cm is applied in the growth direction (z-

direction), to enhance coupling of the electron hole pairs by tuning the valence p

and conduction s bands. By this procedure, nearly a thousand fold enhancement

in the lifetime is achieved. Then the system is cooled to the temperatures below

the EC transition temperature TEC
c .

11



2.2.2 Second quantization of some related operators

While dealing with many particle quantum systems, it is advantageous to use

the second quantization formalism. Lets start with the kinetic energy operator.

In real space, the second quantized kinetic energy is given as (for the discussion

of first and second quantization and transition between them there are plenty of

references, see for instance Ref.[27]):

Ĥ0 =
∑

σ

∫

dr ψσ(r)εrψ
†
σ(r) (2.12)

in which εr = −h̄2/2m∇2
r, ψσ(r) and ψ†

σ(r) are the real-space annihilation/cre-

ation operators at position r with spin σ. Now lets write the real space annihila-

tion/creation operators in reciprocal space, using the Bloch basis:

ψσ(r) =
∑

k

ek,σe
ik·r (2.13)

ψ†
σ(r) =

∑

k

e†k,σe
−ik·r (2.14)

in the above equations ek,σ/e
†
k,σ are the annihilation/creation operators with mo-

mentum k and spin σ. Plugging those Fourier transformations into Eq.(2.12), we

have:

Ĥ0 =
∑

k,k′,σ

eik·r
(

−
h̄2

2m
∇2

re
−ik′·r

)

ek,σe
†
k′,σ

=
∑

k,k′,σ

εk δk,k′ek,σe
†
k′,σ

Ĥ0 =
∑

k,σ

εk ek,σe
†
k,σ (2.15)

where εk is the energy-momentum dispersion. This is the most general form of

the second quantized kinetic energy operator. Now lets move on to the derivation

of the most general two-body interaction term in second quantized language with

the only condition that v(r− r′) depends only on |r− r′|:

Ĥ1 =
1

2

∑

σ,σ′

∫

dr

∫

dr′ ψσ(r)ψ
†
σ(r)v(r− r′)ψσ′(r′)ψ†

σ′(r′) (2.16)

Factor of 1/2 is introduced to avoid double counting. Again expanding the real

space operators in the Bloch basis:

Ĥ1 =
1

2

∑

σ,σ′

∑

k1,k2,k3,k4

∫

dr

∫

dr′ ei(k1−k2)·rv(r− r′)×

12



ei(k3−k4)·r′ek1,σe
†
k2,σ

ek3,σ′e†k4,σ′ (2.17)

At this point we will use a Jacobian preserving transformation by defining r− =

r−r′ and r+ = (r+r′)/2. Recasting the above equation using this transformation

yields:

Ĥ1 =
1

2

∑

σ,σ′

∑

k1,k2,k3,k4

∫

dr+

∫

dr− e
i

2
(k1−k2−k3+k4)·r−v(r+)× (2.18)

ei(k1−k2+k3−k4)·r+ek1,σe
†
k2,σ

ek3,σ′e†k4,σ′

Fourier transforming the interaction term and using the spectral definition of the

delta function we have:

Ĥ1 =
1

2A

∑

σ,σ′

∑

k,k1,k2,k3,k4

v(k)δ2k+k1−k2−k3+k4
δk1−k2+k3−k4

ek1,σe
†
k2,σ

ek3,σ′e
†
k4,σ′(2.19)

where A is the area and comes from the Fourier transform of v(r+) (since we

will be dealing with effectively 2D systems, the derivations are made for that

case). Performing the k4 and k2 sums by respecting the momentum conservation

conditions, k4 = −2k−k1+k2+k3 and k2 = k+k1 we obtain the final expression

for the second quantized two body interaction:

Ĥ1 =
1

2A

∑

σ,σ′

∑

k,k′,q

v(q)e†k+q,σe
†
k′−q,σ′ek′,σ′ek,σ (2.20)

in which, dummy indices are redefined and anticommutation relations of fermionic

operators are used. Factors of 2π’s coming from the Fourier transformations are

omitted during these derivations, since they cancel out with the 2π’s coming from

Kronecker deltas.

2.2.3 Hartree-Fock mean field approximation

We will use the general two-body interaction in Eq. (2.20) to describe the excitonic

systems. One difficulty arises when we want to calculate the eigenspectrum of our

system. The problem appears due to the four fermionic operators in Ĥ1. Using

the so called Hartree-Fock mean field approximation, in which we are going to

13



neglect the fluctuations of order two, we can recast the second quantized two-

body interaction term in a form that allows us to solve it self-consistently. To do

so, lets first rewrite the most general case of four fermionic operators:

e†keke
†
k′ek′ = e†kek〈e

†
k′ek′〉+ 〈e†kek〉e

†
k′ek′ − 〈e†kek〉〈e

†
k′ek′〉+ σkσk′ (2.21)

where σk = e†kek − 〈e†kek〉 is the fluctuations of e†kek around its mean. The last

term in the above equation is second order in fluctuations so we neglect that term.

The third term does not affect the diagonalization of the Hamiltonian, it only

contributes to the total energy. We will see that in the case of exciton conden-

sation (EC), this term is going to be the condensation (free) energy. So we can

also drop this term out while calculating the eigenspectrum of our Hamiltonian.

The remaining two terms, together with the equations for 〈e†kek〉 and 〈e†k′ek′〉,

can be solved self-consistently. The equations for these thermodynamic averages

corresponds to the (OP) equations for the ordered systems, which in our case is

the equation for the EC OP.

2.2.4 Derivation of the EC Hamiltonian

Now we are in a position to present a microscopic theory for the EC. Our Hamilto-

nian consists of kinetic energy terms for the electrons and holes and the Coulomb

interaction term:

Ĥ = Ĥ(e) + Ĥ(h) + Ĥ(eh)

Ĥ(e) =
∑

kσ

ξ
(e)
k e†k,σek,σ

Ĥ(h) =
∑

kσ

ξ
(h)
k h†−k,σh−k,σ

Ĥ(eh) =
1

A

∑

σ,σ′

∑

k,k′,q

veh(q)e
†
k+q,σh

†
k′−q,σ′ek′,σ′hk,σ

with,

ξ
(e)
k =

h̄2k2

2m∗
e

− µe + Σ
(e)
k

ξ
(h)
k =

h̄2k2

2m∗
h

− µh + Σ
(h)
k

14



where veh(q) = −e2e−|k−k′|D/(2ǫ|k− k′|) is the Fourier transform of the Coulomb

potential v(r − r′) = e2/(4πǫ|r − r′ − Dez|), with D being the layer separation

between the electron and hole wells, µe and µh are the electron and hole chemical

potentials, Σ
(e)
k and Σ

(h)
k are the electron and hole self energies which we will derive

next together with the Coulomb term using Hartree-Fock mean field theory. For

the EC order, the pairings with lowest energies are of those with zero center of

mass momentum, i.e. we have k′ = −k. Eliminating the k′ sum and rearranging

the indices we have the following for the interaction term:

Ĥ(eh) =
1

A

∑

σ,σ′

∑

k,k′

veh(k− k′)e†k′,σh
†
−k′,σ′ek,σ′hk,σ (2.22)

The self energy terms arise from the elecron-electron type of interactions with

the condition k′ = k+ q and is given by:

Ĥ(ee) =
1

2A

∑

σ,σ′

∑

k,k′

vee(k− k′)e†k′,σh
†
k′,σ′ek,σ′hk,σ (2.23)

Here the electron-electron interaction given by vee(k − k′) = −e2/(2ǫ|k− k′|) is

Using the mean field approach on the above equations we obtain the final form

of our Hamiltonian:

Ĥ =
∑

kσσ′

[

ξ
(e)
k e†k,σek,σ + ξ

(h)
k h†−k,σh−k,σ +∆σσ′(k)ek,σhk,σ + h.c

]

(2.24)

∆σσ′(k) =
1

A

∑

k′

veh(k− k′)〈e†k′,σh
†
−k′,σ′〉 (2.25)

Σ
(e)
k =

1

2A

∑

k′

vee(k− k′)〈e†k′,σek′,σ〉 (2.26)

Σ
(h)
k =

1

2A

∑

k′

vee(k− k′)〈h†k′,σhk′,σ〉 (2.27)

where ∆σσ′(k) are the EC OPs and the constant term 〈e†k′,σh
†
−k′,σ′〉〈ek,σ′hk,σ〉

coming from the mean field approximation is omitted. We will concentrate on

this term while calculating the EC force.
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Chapter 3

Exciton Condensates Under

Weak B-field

3.1 Introduction

Excitonic systems present quite a wide spectrum of interesting features thanks

to the absence/presence of FX symmetry, unconventional coupling between two

species of fermions, k-dependent OP and manipulation of the GS by the exter-

nal fields. For instance, when a magnetic field is turned on, TRS is broken and

the Kramers degeneracy in the eigenspectrum is lifted. A more interesting phe-

nomenon in that case is the robustness of the condensed GS against the weak

fields: The GS remains unchanged until a critical field strength is reached. When

this critical field strength Bc is reached, another significant result is obtained

where instabilities arise yielding negative energy states, i.e de-excitation pockets

(DX-pockets)[30]. These states are analogous to the negative energy states re-

ported by Sarma in the early 60’s[31]. Analytical studies of these instabilities, i.e.

Sarma-I and Sarma-II phases and also LOFF phases were reported for the atomic

condensates[32, 33, 34, 35, 36]. LOFF phases are not included in this thesis, which

are instabilities arising from non-zero center of mass momentum pairings, which
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can be triggered by a strong magnetic field in superconductor systems for in-

stance and requires real space diagonalization, which was not achieved for the

EC systems yet to our knowledge.

3.2 Robust Ground State and the DX-pockets

3.2.1 Microscopic theory

Lets recast Eq.(2.24) in the matrix form using the (e†k↑e
†
k↓h−k↑h−k↓) basis:

Ĥ =
∑

k















ξ
(e)
k 0 ∆∗

↑↑(k) ∆∗
↓↑(k)

0 ξ
(e)
k ∆∗

↑↓(k) ∆∗
↓↓(k)

∆↑↑(k) ∆↑↓(k) ξ
(h)
k 0

∆↓↑(k) ∆↓↓(k) 0 ξ
(h)
k















(3.1)

By defining ε
(+)
k = (ξ

(e)
k + ξ

(h)
k )/2 and ε

(−)
k = (ξ

(e)
k − ξ

(h)
k )/2 we can rewrite the

above equation in the following form:

Ĥ =
∑

k

{

ε
(−)
k σ0 ⊗ σ0 +

(

ε
(+)
k σ0 ∆̄†(k)

∆̄(k) −ε
(−)
k σ0

)}

(3.2)

in which σ0 is the 2×2 unit matrix, ∆̄(k) is the OP matrix[28], which was also in-

troduced in the previous chapter. The energy spectrum of the above Hamiltonian

is two-fold degenerate and given by:

λ
(±)
k = ε

(−)
k ± λk = ε

(−)
k ±

√

[ε
(+)
k ]2 + tr[∆̄(k)∆̄†(k)]/2 (3.3)

To find the eigenfunctions, we need to diagonalize this Hamiltonian. For that,

we will resort to an unitary transformation:

ÛĤÛ † = Ĥd (3.4)

where Ĥd is the diagonalized Hamiltonian, and Û is the unitary transformation

we are using and are given by:

Ĥd =

(

λkσ0 0

0 −λkσ0

)

, Û =















αk 0 βk γk

0 αk −γk βk

−βk γk αk 0

−γk −βk 0 αk















(3.5)
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Multiplying both sides of Eq.(3.4) by Û from the right, we have a set of equations

for αk, βk and γk. Combining these with the equations coming from the unitarity

condition Û Û † = σ0 ⊗ σ0 we have:

αk = Ck[λk + ε
(+)
k ]

βk = Ck∆↑↑(k)

γk = Ck∆↑↓(k)

Ck =
1

√

2λk[λk + ε
(+)
k ]

Since we determined the elements of Û we can now also find the new basis in

which our Hamiltonian is diagonal:














g1k

g2k

g†3k

g†4k















=















αk 0 βk γk

0 αk −γk βk

−βk γk αk 0

−γk −βk 0 αk





























ek↑

ek↓

h†−k↑

h†−k↓















(3.6)

multiplying by Û † from the left we can also express our old basis in terms of the

new one:














ek↑

ek↓

h†−k↑

h†−k↓















=















αk 0 −βk −γk

0 αk γk −βk

βk −γk αk 0

γk βk 0 αk





























g1k

g2k

g†3k

g†4k















(3.7)

or in open form:

ek↑ = αkg1k − βkg
†
3k − γkg

†
4k

ek↓ = αkg2k + γkg
†
3k − βkg

†
4k

h†−k↑ = βkg1k − γkg2k − αkg
†
3k

h†−k↓ = γkg1k + βkg2k + αkg
†
4k

and similarly for the quasiparticle operators we have:

g1k = αkek↑ + βkh
†
−k↑ + γkh

†
−k↓

g2k = αkek↓ − γkh
†
−k↑ + βkh

†
−k↓

g3k = αkhk↑ − βke
†
−k↑ + γke

†
−k↓

g4k = αkhk↓ − γke
†
−k↑ − βke

†
−k↓
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By using the TRS transformation properties of the OPs, we can relate the quasi-

particle annihilation operators: OPs in our case are real and since the Coulomb

potential is even we have: Θ̂ : ∆σσ(k) = ∆σ̄σ̄(k) and Θ̂ : ∆σσ̄(k) = −∆σ̄σ(k).

Using these in the above equations we obtain the following transformations:

Θ̂ : g1k = g2(−k)

Θ̂ : g3k = g4(−k)

Θ̂ : g2k = −g1(−k)

Θ̂ : g4k = −g3(−k)

We can express the GS similar to the product state defined in the BCS theory[29]

via the vacuum modes:

|Ψ0〉 =
∏

k

|Ψk〉, |Ψk〉 = T
(1)
k T

(2)
k |0〉 (3.8)

with

T
(1)
k = αk − βke

†
k↑h

†
−k↑ − γke

†
k↑h

†
−k↓

T
(2)
k = αk − βke

†
k↓h

†
−k↓ + γke

†
k↓h

†
−k↑

The ground state has two significant features. Firstly, it is a singlet, i.e. |Ψk〉 =

|Ψ−k〉 and secondly, it transforms to itself under time reversal.

Before advancing to the derivation of the self consistent set of equations, let

us write the diagonalized Hamiltonian via the ground state energy EG:

Ĥd = EG +
∑

k

[λ
(+)
k (g†1kg1k + g†2kg2k)− λ

(−)
k (g†3kg3k + g†4kg4k)] (3.9)

where the ground state energy is given by:

EG = 2
∑

k

λ
(−)
k (3.10)

From this moment, we will take dark and bright EC OPs to be equal by ignoring

the radiative coupling which yields: |∆↑↑(k)| = |∆↓↓(k)| = |∆↑↓(k)| = |∆↓↑(k)|

and denote this single OP simply by ∆(k). Since we know the transformation

between the old and the new basis we can easily cast the OP equation using

Eq.(2.25):

∆(k) =
1

2

∫

dk′

(2π)2
v(k− k′)

∆(k′)

2λk′

[f1(k
′)− f2(k

′)] (3.11)
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where, f1(k) and f2(k) are the Fermi-Dirac functions for energies λ
(+)
k and λ

(−)
k

respectively. To complete the self consistent set, we need number conservation

equations and self energies. Number conservation for the electrons and holes are

given by:

N (e) =
∑

kσ

〈e†kσekσ〉 (3.12)

N (h) =
∑

kσ

〈h†kσhkσ〉 (3.13)

where N (e) and N (h) are number of electrons and holes respectively. Calculating

those thermodynamic averages we have:

n(e) =
∫

dk

(2π)2

[

(1 +
ε
(+)
k

λ(k)
)f1(k) + (1−

ε
(+)
k

λ(k)
)f2(k)

]

(3.14)

n(h) =
∫

dk

(2π)2

[

(1−
ε
(+)
k

λ(k)
)
(

1− f1(k)
)

+ (1 +
ε
(+)
k

λ(k)
)
(

1− f2(k)
)]

(3.15)

in which n(e) = N (e)/A and n(h) = N (h)/A are the electron and hole densities.

We also need the self energies for the self consistent solution:

Σ
(e)
k =

1

2

∫

dk′

(2π)2
vee(k− k′)

[

(1 +
ε
(+)
k

λ(k)
)f1(k) + (1−

ε
(+)
k

λ(k)
)f2(k)

]

(3.16)

Σ
(h)
k =

1

2

∫

dk′

(2π)2
vee(k− k′)

[

(1−
ε
(+)
k

λ(k)
)
(

1− f1(k)
)

+ (1 +
ε
(+)
k

λ(k)
)
(

1− f2(k)
)]

(3.17)

Above equations together with the OP equation form a self consistent set

for ∆(k), Σ
(e)
k , Σ

(h)
k , µe and µh. Alternatively, we can use the exciton density

n(+) = (n(e) + n(h))/2 and electron-hole density mismatch n(−) = (n(e) − n(h))/2

to solve for ∆(k), Σ
(e)
k , Σ

(h)
k , µ+ = (µe + µh)/2 and µ− = (µe − µh)/2 self

consistently:

n(+) =
∫

dk

(2π)2

[

1 +
ε
(+)
k

λ(k)
[(f1(k)− f2(k))

]

(3.18)

n(−) =
∫

dk

(2π)2

[

f1(k) + f2(k)− 1
]

(3.19)

Following the onset of the condensate we turn on a weak magnetic field B(r) =

B⊥êφ+Bzêz where the radial and perpendicular components of the magnetic field
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B⊥ and +Bz are independent of θ ans φ and a slowly varying function of r. We are

not considering the effects of the magnetic vector potential which is valid since the

magnitude of the magnetic fields we are using are not exceeding and the critical

value for the Landau degeneracy, i.e. |B(r) ≪ B0 = φ0nx in which φ0 = h/e

is the flux quantum. We are also neglecting the the influence of light holes on

the heavy hole states[37, 38]. The Zeeman coupling for the electron-heavy hole

coupled system is given by:

Vz = −(γeσ̄
(e) ·B(r) + γhσ

(h)
z Bz) (3.20)

with σ̄ = σxêx+σy êy+σz êz denoting the Pauli matrices, γp = g∗µ∗
B, p = (e, h) g∗ =

√

g2⊥ + g2z is the effective g-factor and µ∗
B = eh̄/2m∗ with m∗ being electron and

hole effective masses for γe and γh respectively. We will treat the Zeeman coupling

within the first order perturbation theory, and introduce it to the diagonalized

EC Hamiltonian in the following manner:

HB = Hd + Z, Z =

(

Z(1) 0

0 Z(2)

)

(3.21)

in which Z(i) = hi · σ̄, hi = h(i)x êx + h(i)y êy + h(i)z êz, i = (1, 2) with h(i)’s given by:

h(1)x = α2
kγeB

(e)
⊥ cosφ

h(1)y = α2
kγeB

(e)
⊥ sinφ (3.22)

h(1)z = α2
kγeB

(e)
z − (β2

k + γ2k)γhB
(h)
z

given in (g1k, g2k) basis and

h(2)x = (β2
k + γ2k)γeB

(e)
⊥ cosφ

h(2)y = (β2
k + γ2k)γeB

(e)
⊥ sinφ (3.23)

h(2)z = (β2
k + γ2k)γeB

(e)
z − α2

kγhB
(h)
z

given in (g†3k, g
†
4k) basis. The Zeeman field breaks the degeneracy and splits the

energy spectrum into four given by: E
(±)
1k = λ

(+)
k ± z

(1)
k and E

(±)
2k = λ

(−)
k ± z

(2)
k

with z
(1)
k = |h(1)| and z

(2)
k = |h(2)|. The new basis in which HB is diagonal is

related to the EC basis via another unitary transformation:














G1k

G2k

G3k

G4k















=















cos θ1
2

e−iφsinθ1
2

0 0

−eiφsinθ1
2

cos θ1
2

0 0

0 0 cos θ2
2

e−iφsinθ2
2

0 0 −eiφsinθ2
2

cos θ2
2





























g1k

g2k

g3k

g4k















(3.24)
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with θ1 =
√

(h
(1)
x )2 + (h

(1)
y )2/h(1)z and θ2 =

√

(h
(2)
x )2 + (h

(2)
y )2/h(2)z . Now lets recast

HB in the diagonalized basis:

HB = EG +
∑

k

[E
(+)
1k G

†
1kG1k + E

(−)
1k G

†
2kG2k −E

(+)
2k G

†
3kG3k − E

(−)
2k G

†
4kG4k](3.25)

in which EG = 2
∑

k λ
(−)
k is the same ground state that we found for the B = 0

case. The ground state is robust against magnetic field unless E
(+)
2k becomes

positive or E
(−)
1k becomes negative at some k values for some critical field Bc.

When it is the case, EG is not the ground state anymore and negative excita-

tions, which we call DX-pockets arise. DX-pockets also arise by introducing a

nonzero electron-hole density mismatch. All these cases are investigated in the

next section. We can again express the new ground state via a product state:

|ΨB〉 =
∏

{k1}

G†
2k1

∏

{k2}

G†
3k2

|Ψ0〉 (3.26)

in the above equation, {k1} and {k2} are the DX-pockets created where E
(−)
1k < 0

and E
(+)
2k > 0 respectively. For these k values it is energetically more favorable

to break a pair by the operators G†
2k and G†

3k yielding a new ground state with a

negative energy. The DX-pockets corresponding to the E
(−)
1k branch have 0 < k <

Q1 and therefore have disk topology whereas the remaining DX-pockets belonging

to E
(+)
2k branch have Q2 < k < Q3 and have ring topology as a result, with Qi’s

designating the positions of the zero energy crossings. These two topologically

different instabilities are analogous to the Sarma-I and Sarma-II phases appearing

in the BSC systems[31].

3.2.2 Numerical results

We solved the self consistent set of Eqs.[3.11, 3.14, 3.15, 3.16, 3.17] numerically

for a parameter space consisting of the dimensionless parameters n(+)a2B, n
(−)a2B

and g∗B/B0. The results are illustrated in Fig. (3.1 - 3.5).

In the absence of electron-hole density mismatch and magnetic field, the ground

state is robust and we don’t have DX-pockets as shown in Fig. (3.1). As we turn
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on the magnetic field, DX-pockets appear for certain k values, which were denoted

by {k1} and {k2} in the previous section and are shown in Fig. 3.2a/Fig. 3.3a

and Fig. 3.2b/Fig. 3.3b, with disk and ring topologies respectively.

The other way to obtain negative energy DX-pockets is to introduce electron-

hole density mismatch. When n(−)a2B 6= 0, DX-pockets arise for the certain set of

k values, which corresponds to the pairs broken by the operators G†
2k1

and G†
3k2

.

Those cases are shown in Fig. 3.4 and Fig. 3.5.
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Figure 3.1: E
(−)
1k /EH (a) and E
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2k /EH (b) versus kaB is plotted for n(+)a2B =

0.1, 0.3, 0.5, 0.7 (from bottom to top) at constant n(−) = 0 and g∗B/B0 = 0.

23



-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=0.1,   a

2
B n

(-)
=0

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=0.1,   a

2
B n

(-)
=0

Figure 3.2: E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for g∗B/B0 =

0, 2, 4, 6 (from top to bottom) at constant n(+) = 0.1 and n(−) = 0.

24



-3

-2

-1

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=1.5,   a

2
B n

(-)
=1.1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=1.5,   a

2
B n

(-)
=1.1

Figure 3.3: E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for g∗B/B0 =

0, 0.2, 0.4, 1 (from top to bottom) at constant n(+) = 1.5 and n(−) = 1.1.

-1
 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=0.55,   g

*
B/B0=0

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=0.55,   g

*
B/B0=0

Figure 3.4: E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for n(−) =

0, 0.1, 0.3, 0.5 (from top to bottom) at constant n(+) = 0.55 and g∗B/B0 = 0.

25



-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=1.5,   g

*
B/B0=0.2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

kaB

(a) (b)

a
2
B n

(+)
=1.5,   g

*
B/B0=0.2

Figure 3.5: E
(−)
1k /EH (a) and E

(+)
2k /EH (b) versus kaB is plotted for n(−) =

0, 0.4, 0.8, 1.4 (from top to bottom) at constant n(+) = 1.5 and g∗B/B0 = 0.2.

26



Chapter 4

The EC force

4.1 Introduction

The main focus of this thesis which is a recently discovered feature of the EC

systems arises due to the D- dependence of the condensation free energy. This

feature yields a new type of force i.e. EC force[9, 18] which is reminiscent of

the attractive Casimir force (CF) arising between infinitely large metallic plates

of identical size[39]. An analogous effect is the Critical Casimir force (CCF),

which has been predicted[40] and measured experimentally[41, 42, 43] in binary

liquid mixtures. CCF in BEC systems was also speculated[44, 45], but has not

yet been observed. However, Casimir-Polder like force between a BEC and a

semiconductor plane was measured[46, 47].

As we discussed earlier, there exists two different type of excitons, i.e. dark

and bright excitons and due to the radiative corrections, bright excitons in the

GS is drastically suppressed, leaving a dark GS, which makes photoluminescence

experiments inconclusive[10, 48, 49], until the recent observation of the interfer-

ence fringes resulting from the macroscopic wavefunction of the EC[19]. Within

that context, if observed, EC force would pose an alternative evidence for the

longly sought condensed state. Throughout this section, we will use the DQW
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geometry depicted in Chapter 2.

4.2 Condensation free energy and the emer-

gence of the EC force

It is well known that, a change in the potential energy with respect to distance

gives rise to a force. In the case of EC, we are interested in the condensation

free energy (CFE), which is a thermodynamic potential as analogues to potential

energy in mechanical systems. In our case, there are two contributions to CFE

so that Ω∆ = Ω
(1)
∆ + Ω

(2)
∆ . The first term is the standard free energy term that

can be found in any standard text book on statistical mechanics, for instance

Greiner’s book[50]:

Ω
(1)
∆ =

∂

∂β

∑

k,ν

ln[1− fν(k)] (4.1)

The second contribution to CFE arises from the constant term which we

neglected previously, coming from the mean field, and is given by Ω
(2)
∆ =

∑

k,σ,σ′〈e†k′,σh
†
−k′,σ′〉〈ek,σ′hk,σ〉. This constant term adds upto the CFE and is

purely resultant from the presence of the condensate. Lets derive this term by

calculating the thermodynamic averages. We will concentrate on the dark cou-

plings only, since the GS is dominated by those states so bright contribution is

negligible. Therefore we will drop the spin dependencies from now on. We can

rewrite this term in terms of the EC OP times the remaining term:

Ω
(2)
∆ = ∆(k)〈ekhk〉 (4.2)

The remaining thermodynamic average can be calculated using the unitary trans-

formation that connects the particle-hole basis to the diagonalized quasiparticle

basis, which is given by Eq.(3.7). Doing so we have:

Ω
(2)
∆ =

∆2(k)

2λbfk

[

f1(k)− f2(k)
]

(4.3)

which together with Eq.(4.1) yields the total CFE:

Ω∆ =
∆2(k)

2λbfk

[

f1(k)− f2(k)
]

+
∂

∂β

∑

k,ν

ln[1 − fν(k)] (4.4)
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We need change of the free energy in order to calculate the EC force which is

given by:

∆Ω = Ω∆ − ΩN (4.5)

where ΩN is the free energy of the noninteracting case given by ΩN =
∂
∂β

∑

k,ν ln[1− f̃ν(k)] with f̃ν(k) being the Fermi-Dirac distributions of the normal

state. Now we are in position to express the EC force:

FEC = −
∑

k

δ∆Ω

δD
= −

∑

k

δ∆Ω

δ∆(k)

∂∆(k)

∂D
(4.6)

EC force is the direct manifestation of the D-dependence of the EC OP, which is

the result of the D-dependence of the Coulomb interaction v(r−r′) = e2/(4πǫ|r−

r′ −Dez|).

4.3 Numerical Results

The self consistent set of equations we are solving are exactly the same except

this time instead of assuming equal dark-bright pairings, we are only considering

the dark OPs ∆↑↑(k) = ∆↓↓(k) = ∆(k) and ∆↑↓(k) = ∆↓↑(k) = 0. Fig.(4.1) illus-

trates the phase boundary of the EC, for the parameter space of layer separation

and wavevector. As it can be seen from the figure, the phase boundary is sharp,

meaning EC OP drastically diminishes to zero above the critical separation, i.e.

D > Dc.

4.4 Semi-analytical derivation of the EC force

For a better understanding of the EC force it is instructive to device a method to

obtain some analytical results. We will resort to a semi-analytical approach and

try to derive the square root dependence of the ∆ on the layer separation.
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Figure 4.1: The EC OP scaled with Hartree energy versus layer separation D and
wavevector k, in units of aB is plotted for n(+)a2B = 0.1. When critical separation
is reached, EC OP diminishes to zero rapidly.

4.4.1 Parabolic approximation

We will start with Eq.3.11 and recast it at T = 0 in the following form:

∆(k) = −
πe2

ǫ

∫

dq

(2π)2
e−qD

q
Gk+q, Gk =

∆(k)Fk
√

(ε
(+)
k − µ+)2 +∆(k)2

(4.7)

with,

lim
k→0

Fk =

{

(1) if ∆2(0) + µ2
+ < µ2

−

−1 if ∆2(0) + µ2
+ > µ2

−

(4.8)

The first case in Eq.(4.8) requires a high electron-hole density mismatch for which

Eq.(4.7) has no non-zero solution, whereas second case is consistent with Eq.(4.7).

Choosing µ− = 0 we have the following expression for the exciton density:

n(+) =
1

A

∑

k

[

1−
ε
(+)
k

λk

]

(4.9)

It is not possible to solve Eq.(4.7) and Eq.(4.9) analytically due to the momentum

dependence of Coulomb potential which also requires a momentum dependent OP.
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We will use a parabolic approximation to tackle this problem.Our approximation

will be valid for qD ≪ 1 which gives the leading contribution for the exponential

term e−qD. Respecting that condition we can expand ∆(k) and Gk up to second

order, i.e. a parabolic approximation around q = 0:

Gk+q ≃ Gk +∇kGk · q+
q2

2
G′′

k (4.10)

∆(k) ≃ ∆(0) +∇k∆(k)|k=0 +
k2

2
∆′′(k)|k=0 (4.11)

At k = 0 gap equation becomes:

∆(0) = −
e2

2ǫ

∫ ∞

0
dk e−kDGk (4.12)

Performing the integral for kD ≪ 1,

∆(0) = −
e2

2ǫ

[G0

D
+

1

D3
[G′′

k]|k=0

]

(4.13)

for the sake of simplicity let us choose ε
(−)
k = 0. The first derivative of Gk is

given by:

G′
k =

λk∆
′(k)−∆(k)λ′k

λ2k

at k = 0 first derivative of Gk is equal to zero. Now lets calculate the second

derivative:

G′′
k =

λk∆
′′(k)−∆(k)λ′′k

λ2k
−

2λ′k[λk∆
′(k)−∆(k)λ′k]

λ3k

[G′′
k]|k=0 =

λ0 [∆
′′(k)]|k=0 −∆(0) [λ′′k]|k=0

λ20
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here [λ′′k]|k=0 is given by:

[λ′′k]|k=0 =
∆0 [∆

′′(k)]|k=0 − µ+h̄
2/m∗

e

λ0

we also know that zeroth order term in the expansion of Gk is given by:

G0 = −
∆(0)

λ0

Now we can plug G0 and [G′′
k]|k=0 in Eq.4.13 which after some rearrangement

leads us to the following equation:

−
2∆(0)ǫD3

e2
+

∆(0)D2

λ0
=

1

λ20

[

λ0∆
′′(0)−∆(0)

∆(0)∆′′(0)− µ+h̄
2/m∗

e

λ0

]

here we dropped writing |k=0 all the time and used a shorthand notation

instead, by shortly writing ∆′′(0) for instance.

From the above equation we can write the coefficient of the second order term

in the expansion of ∆(k) as:

∆′′(0) =

[

λ0
λ20 −∆2(0)

](

−
2∆(0)λ20D

2

Uc
+∆(0)λ0D

2 −
∆(0)µ+h̄

2/m∗
e

λ0

)

where Uc = e2/ǫD We can further simplify the above expression by using the

fact that λ0 = Uc/2 and λ20 − ∆2(0) = µ2
+ This will lead us to the simple form

given below:

∆′′(0) = −
∆(0)h̄2

µ+m∗
e

(4.14)
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We can find an explicit expression for λk by using the Taylor expansion of

∆(k) in λk =
√

(ε
(+)
k − µ+)2 +∆2(k) and neglecting the terms of order k3

λk =

√

(ε
(+)
k )2 + µ2

+ − 2ε
(+)
k )µ+ +∆(0)2 +

[∆′′(0)]2k4

4
+ ∆(0)∆′′(0)k2

we can have further simplifications if we switch to energy representation by

simply invoking ε
(+)
k = h̄2k2

2m∗

e

and writing the expression for ∆′′(0)

λk =

√

√

√

√

[

(ε
(+)
k )2 − 2ε

(+)
k µ+ + µ2

+

][

1 +
∆2(0)

µ2
+

]

using again the expression λ20 −∆2(0) = µ2
+ and getting rid of the radical we

can finally write;

λk =
λ0
µ+

|ε
(+)
k − µ+| (4.15)

By using the same parabolic approximation in Eq.(4.9) we have:

µ+ = −
λ0
2

+

√

√

√

√

(

λ0
2

)2

+
λ0n+

Γ
(4.16)

where Γ = m∗
e/(2πh̄

2) is the 2D density of states. After deriving these relations,

we can now show the desired square root relation of the EC OP:

∆(0) ≃

√

4

3
λ0

√

1−
D

Dc
(4.17)

where Dc = e2/(2ǫµ+). Moreover, we can use Eq.(4.5) to derive a similar result

for the free energy:

∆Ω = −3Γµ2
0

(

1−
D

Dc

)

(4.18)

Eq.(4.17) and Eq.(4.18) shows the success of our model in generating the basic

features of the numerical calculations of the previous section. The comparison of
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Figure 4.2: The EC OP at k = 0 scaled with EH as a function of the dimensionless
layer separation D/aB is plotted using the numerical and semi-analytical calcula-
tions. The results show the success of the parabolic approximation in generating
the square root behavior of ∆(0) with increasing layer separation.

these equations with numerical results are given in Fig. 4.2 and Fig. 4.3. The main

result of our parabolic approximation is the estimation of the force, which can be

written using the above relations obtained from the parabolic approximation in

Eq.(4.6):

FEC

A
≃ −

3

4

[n(+)]2

ΓDc
(4.19)

For a concentration of n(+) ≃ 3 × 1011cm−2 and an area of A ≃ 103µm2 the EC

force is estimated to be FEC ≃ 10−9N .
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Chapter 5

EC-CDW Instability

Competition and EC-Force in

TMDC

5.1 Introduction

Theoretical studies on the coexisting conventional superconductivity (CSC) and

charge density wave (CDW) instability orders in 1D systems were reported in mid

70’s[51, 52]. The 2D extension of these competing orders was demonstrated by

Balseiro and Falicov[53]. After the stimulating discussions with Vladimir Yudson,

we made studies on the coexisting EC-CDW states, in order to enhance the EC

force discussed in the previous chapter. Since both EC and CDW couplings are

much stronger in transition metal dichalcogenides (TMDC) accompanied by high

transition temperatures TEC
c ≃ TCDW

c ≃ 100K. The CDW and CSC states were

speculated to coexist in TDMCs[54]. A detailed compilation of the theory and

experiment on coexisting CDW-CSC states in TDMCs can be found in the review

by Gabovich et al.[55].
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We will investigate EC and EC force in 1T -T iSe2 structure in this chapter. 1T -

T iSe2 is a layered TMDC, consisting of a Titanium layer sandwiched between two

Selenium layers. The Se-T i-Se layers are periodically repeated, forming the 1T -

T iSe2 structure. An interesting feature of this layered structure is the observation

of the superlattice formation[56, 57]. The microscopic theory appeared later[58]

but the mechanism behind the periodic lattice distortions is still controversial.

Out of many, three scenarios are on debate: a) Fermi surface (FS) nesting, b)

band Jahn-Teller effect, c) excitonic condensation. The latter two are stronger

candidates with experimental support[59, 60, 61]. More recent results makes the

third scenario to be the strongest candidate[62, 63, 64] accompanied by high TEC
c

values.

We will not only demonstrate the emergence of the EC force in this chapter,

but we will also speculate that, our model can pose an alternative scenario for

the periodic lattice distortions in 1T -T iSe2. Moreover we will show that the two

transition temperatures of CDW and EC orders, TCDW
c and TEC

c can be tuned

by changing the electron-phonon coupling constant λep[65].

5.2 Theory of CDW Instability

5.2.1 CDW Instability in 1D Systems

CDW instability is well understood in 1D, quasi-1D or more generally low-

dimensional systems. The nomenclature used here mainly refers to the crystal

and electronic structure of the materials, since real-life 1D materials are quite

rare and the theory we are going to present is safely applicable to these systems.

The response to an external potential is well understood within the context

of linear response theory. We will follow the strategy used by Grüner [66] Lets

assume that we have a potential V which will cause the re-distribution of the

charges in our system. The induced charge distribution can be expressed in

terms of the potential V using the Lindhard response function (also called the
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linear susceptibility function):

ρind(q) = χ(q)V (q) (5.1)

1D expression given above is the special case of the d-dimensional case. Linear

susceptibility function is given by:

χ(q) =
∫

dk

2π

f(k)− f(k + q)

εk − εk+q

(5.2)

where f(k) is the Fermi-Dirac function and εk is the energy dispersion relation.

In a 1D system, Fermi surface consists of two points, one at kF and other at

−kF , kF being the Fermi wave vector. When these two points of the Fermi

surface, separated by q = 2kF is connected (nomenclature for this process is

nesting and moreover for this special 1D case it is referred as perfect nesting) by

the wavevector q = 2kF , the linear susceptibility function diverges, indicating an

instability. Before studying the 1D case in detail let us first briefly compare the

response function in 1D, 2D and 3D.

A detailed derivation of response functions for one, two and three dimensional

cases are presented in Mihaila’s preprint[67]. To be more precise, we are talk-

ing about the static response function, which is defined as the negative of the

Lindhard function with zero energy:

F (q) = −χ(q, ω = 0) (5.3)

Their behaviour at q = 2kF are the same so we are safe to use the static response

function instead of the full Lindhard function. For the static response functions

in 1D, 2D, and 3D respectively, we have the following expressions:

F1(u) =
N1

2uεF
ln

∣

∣

∣

∣

∣

1 + u/2

1− u/2

∣

∣

∣

∣

∣

F2(u) =
N2

εF

[

1−Θ(u− 2)
√

1− (2/u)2
]

(5.4)

F3(u) =
3N3

4εF

[

1 +
1− (u/2)2

u
ln

∣

∣

∣

∣

∣

1 + u/2

1− u/2

∣

∣

∣

∣

∣

]

where εF = h̄2k2F/2m is the Fermi energy, Θ denotes the Heaviside step function,

u = q/kF is the rescaled wavevector and Nd (d = 1, 2, 3) is the density particle
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density defined by:

Nd = 2
∫

k≤kF

ddk

(2π)d
(5.5)

As we already pointed out, response function diverges at q = 2kF for the 1D

0

1

2

F
(u

)/
F
(0

)

2k
F

 1D
 2D
 3D

0

q

Figure 5.1: The static response functions versus the dimensionless wave vectors
plotted for 1D, 2D and 3D.

case. For the two- and three- dimensional cases the response function does not

diverge at q = 2kF , instead its derivative has a a singularity. This result makes

1D case much more significant. Let us first move on with the 1D case, then we

will extend these ideas to the two dimensional case to serve our purposes.
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We have seen that the external potential will result in an induced charge

distribution. Going one step forward, this induced charge distribution will also

induce a potential. Lets assume the following form for the this induced potential:

Vind(q) = −λ̃ρind(q) (5.6)

where λ̃ is a wavevector-independent coupling constant, which in our case results

from the electron-phonon coupling that we will study below. Writing the total

potential in terms of the induced and the external potentials, V = Vext+Vind and

combining this expression, Eq.(5.2). and Eq.(5.6)., we have:

ρind(q) =
χ(q)Vext(q)

1 + λ̃χ(q)
(5.7)

A quick look at the above equation suggests that for a negative coupling constant

i.e., an attractive interaction, we can have a divergent charge distribution, hence

an instability.

Let us also present the microscopic origin of this attractive interaction. The

interaction of electrons with the lattice, i.e phonons is well described by Fröhlich

[68]. The so called Fröhlich Hamiltonian consists of three terms. Electronic part,

ionic part, and the part that describes the electron-phonon interaction:

H = Hel +Hlat +Hep (5.8)

with individual terms given as:

Hel =
∑

k

εke
†
kek

Hlat =
∑

q

h̄wq[1/2 + a†qaq]

Hint =
∑

k,q

λ̃qe
†
k+qek[aq + a†−q]

So the full Hamiltonian reads:

H =
∑

k

εke
†
kek +

∑

q

h̄wq(1/2 + a†qaq) +
∑

k,q

λ̃qe
†
k+qek[aq + a†−q] (5.9)
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5.2.2 Microscopic Theory of CDW for 2D Systems

Before starting to adopt the 1D theory to the 2D case, we should first remember

that dimensionality drastically affects the CDW formation; in the 1D case we

have perfect nesting, where two points of the Fermi surface are exactly connected

by the nesting wavevector Q. On the other hand, in its higher dimensional

counterparts, apart from some special cases, we cannot really talk about perfect

nesting.

A microscopic theory for analyzing coexisting CDW and SC states in two-

dimensional systems was presented in late 70’s[53]. We will borrow the ideas from

that manuscript and replace SC with EC to serve our purposes and moreover ex-

tend the formalism to a layered system. Lets begin by recasting the Hamiltonian

defined in Eq.(5.8). by extending it to 2D in the following way:

HCDW = Hel +HCDW
int (5.10)

where the interaction(spin degree of freedom is traced out since otherwise we will

end up with an 8×8 Hamiltonian whose eigeneneriges and eigenfunctions are hard

if not impossible to find analytically and moreover spin dependent calculations

are out of the scope of this work) responsible for the CDW instability reads:

HCDW
int =

1

4

∑

k,k′

[VkQ + Vk′Q]e
†
k+Qe

†
k′+Qek′ek (5.11)

In the above equation, Q is our nesting vector(in this formalism we are limiting

ourselves to a single wave vector, which in the ideal case is not true for 2D systems,

but this limitation is safely acceptable within the context of our formalism since

we will also assume perfect nesting by fixing the chemical potential to zero and

also neglecting the distortions in the Fermi surface in nesting wavevector related

calculations) satisfying k + 2Q = k, which means we are choosing a nesting

vector that is commensurate with the underlying lattice and VkQ is the wave

vector-dependent electron-phonon interaction given by:

VkQ =
2λ̃2h̄ωQ

[εk − εk+Q]2 − [h̄ωQ]2
(5.12)
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At this step, we can assume a BCS-like[29] momentum-independent form so that

the electron-phonon interaction becomes just a simple constant:

V CDW
kQ =

{

−λ, if |εk − µ| < h̄ωD & |εk+Q − µ| < h̄ωD,

0, otherwise
(5.13)

where µ is the chemical potential and h̄ωD is the Debye energy. We can now use

mean-field approximation in Eq.(5.11).to obtain:

HCDW
int = −G0

∑

k

e†k+Qek −G1

′′
∑

k

e†k+Qek +G0G1/λ (5.14)

In the above equations double primed sums are performed only when |εk − µ| <

h̄ωD and |εk+Q − µ| < h̄ωD, with CDW order parameter Gk defined in the fol-

lowing manner:

Gk =

{

G0 +G1 if |εk − µ| < h̄ωD ,

G0, otherwise

G0 ≡
′′
∑

k

〈e†k+Qek〉 (5.15)

G1 ≡
∑

k

〈e†k+Qek〉

5.3 A model for CDW and EC orders in layered

systems

After laying the basics of the CDW instability in 2D, we are now in a position

to present the competition of CDW and EC orders. We will extend the theory

used by Balseiro and Falicov[53] for explaining the CSC/CDW competition to

investigate the competing orders of EC/CDW in layered systems. We will start

with two layers, with strong Fermi surface (FS) nesting giving rise to separate

CDWs in separate layers. For each layer, we assume a square lattice with a lattice

constant a = 5Å. We will use a tight binding approach in which the interlayer

hoppings are neglected, i.e. only intralayer hoppings are considered. Furthermore,

the two layers are coupled by the short range Coulomb attraction. Due to the

strong electronic repulsion, those two CDW layers have a relative π-shift:

〈ρ̂u(r)〉 = n0 + γun1cos(Q · r) (5.16)
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in which ρ̂u(r) = û†(r)û(r) denotes the density operator of the upper layer with

û†(r)/û(r) being creation/annihilation operators in real space, n0 is the mean

density, n1 is the CDW order amplitude, Q = (π, π) is the nesting vector satis-

fying k + 2Q = k and γu = 1. For the down layer d̂†(r)/d̂(r) replace û†(r)/û(r)

and γd = −1. We can write the Coulomb interaction via the density operators:

v̂int =
∫

drdr′ρ̂u(r)V (r− r′)ρ̂d(r
′) (5.17)

where V (r− r′) = e2/(4πǫ|r− r′−Dez|) is the Coulomb interaction in real space

with ǫ, e, ez and D are the dielectric constant, electron charge, unit vector in

z-direction and layer separation respectively. Ground state average of Eq.(5.17)

yields three terms: a) a term proportional to n2
0 b) a term proportional to n2

1 and

c) two other terms first order in n0 canceling each other:

〈v̂int〉 =
∫

drdr′V (r− r′)[n2
0 − ñ1(r)ñ1(r

′)] (5.18)

with ñ1(r) = n1cos(Q · r). The first term can be absorbed into the chemical

potential since it is a constant and the second term is attractive resultant from

the π-shift. When n1 is nonzero, two layers are couple as electron-hole layers.

The dispersion of the square lattice we use in our model is given by:

ǫk = −2t0[cos(kxa) + cos(kya)]− 4t1cos(kxa)cos(kya) (5.19)

here t0 and t1 are the first and second nearest neighbour (NN) interaction

strengths respectively. Considering the nesting, the important correlations are

the following[53]:

n0 = [1/(2π)2]
∫

dk〈û†kûk〉, n1 = G/2λep (5.20)

in which λep denotes the momentum-independent electron-phonon interaction

coupling strength, just as depicted in Eq.(5.13). This time we have the 2D ex-

tended version of Eq.(5.15) with the same definition of G:

G0 = λep

∫ ′′ dk

(2π)2
〈û†kûk+Q〉 and (5.21)

G1 = λep

∫

dk

(2π)2
〈û†kûk+Q〉 (5.22)

with the following self consistency conditions:〈û†kûk〉 = 〈d̂†kd̂k〉 and 〈û†kûk+Q〉 =

−〈d̂†kd̂k+Q〉. The first condition is due to our choice of identical layers with same
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particle densities and second condition arises as a result of the π-shift. Now we

can present our Hamiltonian after the Hartree-Fock mean field approximation in

the (û†k û
†
k+Q d̂

†
kd̂

†
k+Q) basis as:

H =
∑

k

{

H0 +















ǫ
(−)
k −G ∆

(1)
k ∆

(2)
k

−G −ǫ
(−)
k ∆

(2)
k ∆

(1)
k+Q

∆
(1)
k ∆

(2)
k ǫ

(−)
k G

∆
(2)
k ∆

(1)
k+Q G −ǫ

(−)
k















}

(5.23)

in which the spin is eliminated due to degeneracy, H0 = (ǫ
(+)
k − µ)σ0 ⊗ σ0,

ǫ
(+)
k = (ǫk + ǫk+Q)/2 , ǫ

(−)
k = (ǫk − ǫk+Q)/2 and σ0 is the 2 × 2 unit matrix. We

have two different momentum dependent pairings in our Hamiltonian, 〈û†k d̂k〉 and

〈û†k d̂k+Q〉, denoted by ∆
(1)
k and ∆

(2)
k respectively. The ground state is dominated

by the latter one in the absence of CDW ordering, so we will deal with the case

where ∆
(2)
k 6= 0 and ∆

(1)
k = ∆

(1)
k+Q = 0 and also for the sake of notation we will

redefine ∆
(2)
k as ∆k. After those clarifications we can diagonalize the Hamiltonian

to find the eigenspectrum. The diagonalizing transformation reads:

Û =
1

√

2Λ(Λ− ǫ
(−)
k )















∆k 0 −G (Λ− ǫ
(−)
k )

0 ∆k −(Λ− ǫ
(−)
k ) −G

G (Λ− ǫ
(−)
k ) ∆k 0

−(Λ− ǫ
(−)
k ) G 0 ∆k















(5.24)

which yields a two-fold degenerate eigenspectrum, E1 = E0 + Λ, E2 = E0 − Λ

with E0 = ǫ
(+)
k − µ and Λ = [(ǫ

(−)
k )2 + ∆2

hyb]
1/2 in which ∆hyb = (G2 + ∆2

k)
1/2 is

the hybrid gap. The basis in which the Hamiltonian is diagonal is connected to

the old basis via the unitary transformation as given by:














g1k

g2k

g3k

g4k















= α















∆k 0 −G (Λ− ǫ
(−)
k )

0 ∆k −(Λ− ǫ
(−)
k ) −G

G (Λ− ǫ
(−)
k ) ∆k 0

−(Λ− ǫ
(−)
k ) G 0 ∆k





























ûk

ûk+Q

d̂k

d̂k+Q















or we can invert the above equation by multiplying both sides by Û † from the

left to obtain:














ûk

ûk+Q

d̂k

d̂k+Q















= α















∆k 0 G −(Λ − ǫ
(−)
k )

0 ∆k (Λ− ǫ
(−)
k ) G

−G −(Λ − ǫ
(−)
k ) ∆k 0

(Λ− ǫ
(−)
k ) −G 0 ∆k





























g1k

g2k

g3k

g4k














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where α = 1/
√

2Λ(Λ− ǫ
(−)
k ). We can re-write the above equation in the open

form as:

ûk = α[∆kg1k +Gg3k − (Λ− ǫ
(−)
k )g4k]

ûk+Q = α[∆kg2k + (Λ− ǫ
(−)
k )g3k +Gg4k]

ûk = α[∆kg1k +Gg3k − (Λ− ǫ
(−)
k )g4k]

d̂k+Q = α[(Λ− ǫ
(−)
k )g1k −Gg2k +∆kg4k]

Using the above expressions we can cast the final expressions for the OP and

number conservation equations:

G0 = −λep(G0 +G1)
∫ ′′ dk

(2π)2
F (k)

2Λ
(5.25)

G1 = −λep

∫

dk

(2π)2
G

2Λ
F (k) (5.26)

∆k = −
1

2

∫

dk′

(2π)2
e2

2ε

e−|k−k′|D

|k− k′|

∆k′

2Λ
F (k′) (5.27)

n0 =
1

2

∫

dk

(2π)2

[(Λ + ǫ
(−)
k )

Λ
f1(k) +

(Λ− ǫ
(−)
k )

Λ
f2(k)

]

(5.28)

where F (k) = f1(k) − f2(k) , f1(k) and f2(k) are the Fermi-Dirac distributions

corresponding to E1 and E2. Above equations forms a self-consistent set, which

we solved numerically. The results are shown in the following section.

Before advancing to the next section, let us demonstrate the form of free energy

in this system, which we will use to calculate the EC force similar to the previous

chapter. Our starting point is again Eq.(4.6), but this time we have two OPs so

we cannot use the second part of that equation, hence sticking to the first part

of the equation, we need ∆Ω = Ω0 − ΩN given by:

ΩO = −A
G0G1

λep
+
∑

k

[

∆2
k

2Λ
F (k) +

∂

∂β

∑

ν

ln(1− fν(k))
]

(5.29)

ΩN =
∂

∂β

∑

k,ν

ln(1− fν 0(k)) (5.30)

in which fν 0(k) is the Fermi-Dirac distribution when ∆k = G = 0. So after

calculating the above free energies we can easily calculate the EC force using

Eq.(4.6). Let us conclude this section by illustrating a simple scheme to calculate
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the periodic lattice distortions that will arise due to the EC force. We can estimate

the magnitude of the strain by using the axial stiffness constant k = AE/L as:

∆x =
FEC

k
=

FECL

AE
(5.31)

In the above equation the elastic properties arising from the T i-lattice-Se cou-

pling is represented by k, where L is the T i-Se separation, which in our case

corresponds to the layer separation D, A is the cross-section area and E is the

Young’s modulus.

5.4 Results

5.4.1 Competition of EC and CDW instability

The signature of FS nesting on the EC OP can be seen from Fig.(5.2): Firstly,

the maxima of the EC OP is connected by the nesting wavevector Q = (±π,±π).

Secondly, the maxima of the EC OP shifts from the saddle points ksp = (0,±π)

and ksp = (±π, 0) to the origin as the second nearest neighbour interaction t1

increases.

The competition of EC and CDW orders are illustrated in Fig.(5.3). Maximum

of the EC order parameter ∆k and CDW OP are shown via a color map in which

the inverse tangent transformation fcol = tan−1[∆max

G
] is used to present the

relative strength of the OPs.

Another significant result is the different configurations obtained via changing

second NN interaction strength. Two different configurations together with the

phase diagram are demonstrated in Fig.(5.4): i) For large values of t1 the emer-

gence of CDW instantly destroys EC, so that they don’t coexist at all in that

regime (Fig. 5.4d). ii) For zero or small values of t1, as λep reaches the criti-

cal value, the emergence of CDW instability lowers the EC OP until completely

destroying it (Fig. 5.4b, c)
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Figure 5.2: EC OP, scaled with t0 = 0.125eV , is plotted for different second
NN interaction strengths. The peak positions of the EC OP are separated by
the nesting vector, Q = (±π,±π) in each of the four cases. For zero or a small
second NN interaction, OP is maximum at the saddle points of the dispersion,
due to nearly perfect nesting. As the second NN interaction increases, the perfect
nesting gradually disappears.

5.4.2 EC-Force in TMDC

The possibility of the electron-hole coupling in the periodic lattice distortions in

1T -T iSe2 and the presence of strong excitonic background was suggested exper-

imentally by Di Salvo et al.[57]. Based on this experimental work, Monney et
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t1/t0=0

λ0

D
/a

0 (∆max = 0)

π/4

π/2 (G=0)

Figure 5.3: Color map of the CDW and EC for t1 = 0. The OPs are mapped via
fcol = tan−1[∆max

G
] transformation. In yellow (light) regions there is only EC and

in black (dark) regions only CDW is present, whereas in between they coexist.
Here, λ0 runs from 0.9 to 1.6 and D/a varies between 2 and 4.

al., proposed an exciton-phonon coupling based mechanism to explain the lattice

distortion[64]. On the other hand, the model we use with two different mecha-

nisms and two different order parameters coupled self consistently is a promising

model that can explain the three distinct cases of TCDW
c < TEC

c , TCDW
c > TEC

c

and TCDW
c = TEC

c . The change of free energy with respect to the layer separation

is plotted in Fig.(5.5) for different t1/t0 and λ0 values. There is a significant differ-

ence compared to the case we discussed in the previous chapter: In the previous

case of GaAs DQWs, the change of free energy is maximum at the phase bound-

ary, i.e. the EC force has its maximum amplitude close to the phase boundary.

In the current case of 1T -T iSe2, it is just the opposite. The change of free energy

or in other words the EC force is minimum at the phase boundary due to the

presence of CDW order and it gets stronger as D moves away from the critical

layer separation Dc.

Now we can present one of the main results of this section: We calculated the
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Figure 5.4: Regimes with different coexistence/competition properties are pre-
sented for EC and the CDW OPs for varying λ0 and t1. Here, increasing t1 plays
the major role in breaking the optimal nesting condition which weakens both
OPs, whereas t1 and λ0 together determine two regimes of coexistence/competi-
tion as indicated in (a). Several cross sections of (a) are given for the EC and
CDW order parameters as, b) t1 = 0: EC OP (blue triangles) gradually drops to
zero with the onset of CDW (red circles), c) t1 = 0.031: the region of coexistence
is narrowed and shifted to higher λ values, and d) t1 = 0.053: a direct transition
from EC to CDW, with no coexistence. The OPs on the vertical scale of (b-d)
are given in units of t0.

EC force using Eq.(4.6) which come up to be FEC ≃ (1 − 10) × 10−4N for an

area of A = 10µm2. In terms of pressure these corresponds to 1Pa and 107Pa in

the close vicinity of the phase boundary respectively. This huge difference of 6

order of magnitude arises due to the large energy scales involved in the TMDC

system we are investigating. To give a quantitative demonstration we can use

the expression that enables us to write dimensionless pressure that we calculated

numerically in units of Pa:

F

A
=
t0
a3
η , η =

∆Ω

t0

a2

A
(5.32)

in which η is the dimensionless change of free energy per area that we calculate

numerically. Compared to the system in the previous chapter the length scale
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a here is 20 times smaller than aB and the energy scale t0 is about 10 times

larger than the Hartree energy EH . Considering this differences in the length

and energy scales together with the different values of η, the huge difference of 6

order of magnitude becomes reasonable, and it not only serves our desired goal

of obtaining a stronger EC force, which is experimentally more accessible, but it

also poses an alternative scenario for the periodic lattice distortions reported in

1T -T iSe2.

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

 2  2.2  2.4  2.6  2.8  3

∆Ω
a2

/(
A

t 0
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t1/t0=0, λ0=1.12
t1/t0=0, λ0=1.20

t1/t0=0.04, λ0=1.20

Figure 5.5: The change in the free energy per area with respect to D/a is plotted
for different λ0 and t1/t0 values. Free energy becomes constant after EC vanishes,
with only CDW remaining, which means that the EC force is zero beyond that
critical point.
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5.4.3 An Alternative Approach for the Periodic Lattice

Distortions in 1T -T iSe2

Now we can use Eq.(5.31) to estimate the periodic lattice distortions arising in

1T -T iSe2. Using a = 5Å and ET i ≃ 100GPa [69] for the Young’s modulus for the

T i we have ∆xT i ≃ (1−10)×10−3Å which has an order of magnitude agreement

with both the experiment[57] and the theoretical calculations[64]. This result

justifies the large magnitude we found for the EC-force and moreover it plots an

alternative scenario for the periodic lattice distortions observed in 1T -T iSe2.

5.4.4 Tuning the transition temperatures via electron-

phonon interaction

The final result we will demonstrate is the possibility of different configurations

of TEC
c and TCDW

c . Fig.(5.6) illustrates all three possibilities, i.e. TEC
c > TCDW

c

(Fig.(5.6a)) , TEC
c = TCDW

c (Fig.(5.6b)) and TEC
c < TCDW

c (Fig.(5.6)c,d). This

interesting result has an important consequence: Although it is not possible to

tune the electron-phonon coupling strength of an individual material, it is al-

ways possible to find materials with different electron-phonon coupling strengths.

Therefore we can expect to see all three different cases mentioned above.

51



 0

 0.1

 0.2

 100 T
CDW
c T

EC
c  170

λ0=1.2
(a)

 0

 0.1

 0.2

 100 T
EC
c T

CDW
c

T(K)

λ0=1.29

(a)

(c)

 0

 0.1

 0.2

 100 T
*
c  170

λ0=1.2853
(a) (b)

(c)

 0

 0.1

 0.2

T
EC
c T

CDW
c

T(K)

λ0=1.3

(a) (b)

(c) (d)

Figure 5.6: Transition temperatures of EC (TEC
c ) and CDW (TCDW

c ) orders are
illustrated for four different λ0 values for n0 ≃ 1014cm−2 and t1 = 0. a)EC OP has
a higher Tc than CDW OP. b) By increasing λ0 the two critical temperatures were
made to coincide at T = T ∗

c . c) After increasing λ0 further, CDW order gains a
higher Tc. d) Increasing λ0 even further, the two Tc’s can be widely separated.
In all four cases, temperature is varied from 100 K to 170 K.
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Chapter 6

Conclusion

We demonstrated some exotic features of the EC systems including the robustness

against weak magnetic field and emergence of Sarma-I and Sarma-II like phases.

We reported a new type of force in condensed matter physics, i.e. EC-force aris-

ing in GaAs DQW geometry, due to the presence of the condensate. We also

extended the EC formalism of III-V semiconductor systems to the case of layered

TMDC, with a focus on 1T -T iSe2 and posed an alternative scenario for the pe-

riodic lattice distortions observed. Once observed, EC-force would give birth to

new understandings in condensed matter physics. Moreover, the application of

the theory that is described in Chapter 5 to other TMDC materials or layered sys-

tems can open new horizons in understanding of various not-yet-fully-understood

phenomena. Also the extensions of the theory of competing CDW/EC orders

is a promising candidate for contributing to the poorly-understood phenomenon

of high temperature superconductivity. The richness of EC systems in physics

makes them a perfect candidate for exploring the new frontiers in condensed

matter physics.
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[68] H. Fröhlich, “Electrons in lattice fields ” Adv. Phys., vol. 3, no. 11, pp. 325

– 361, 1954.

[69] “The selection and use of Titanium: A design guide”, Institute of materials,

Great Britain, 1995.

60



Appendix A

Code

parameter (mx=50)

parameter (my=50)

double precision pi , qnx , qny , T, beta , e s c a l e , to l , xlam , D

double precision t0 , t1 , cp , deb , qx (mx) , wx(mx) , qy (my) , wy(my)

double precision G0, G1, de l (mx,my) , kx , ky , sum1x , sum2x , sum3x

double precision sum1y (mx) , sum2y (mx) , sum3y (mx) , G, epsk , epskq

double precision epsp , epsm , kpx , kpy , E0 , E1 , E2 , fd1 , fd2 , lm

double precision s ing , cnt1 , temp1 , temp2 , temp3 (mx,my) , xcut

double precision aux , f , temp4 , bigK , temp5 , temp6 , temp7 (mx,my)

double precision cnt r l , comp , f r e e , term1 , term2 , term3 , term4

double precision E1p , E2p , fd1p , fd2p , sum4x , sum5x , sum6x

double precision sum4y (mx) , sum5y (mx) , sum6y (mx) , dstep , d f r e e

double precision temp free , fpa , sum7x , sum7y (mx) , dens i ty

double precision sum8x , sum8y (mx) , temp8 , tempG , dfd1 , dfd2

double precision D adapt

integer i s t ep , i cn t

external gauleg

intr ins ic datan , dexp , dsqrt , dcos , dabs , dcosh

open (1 , f i l e=’ data/cp38 . dat ’ )
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open (2 , f i l e=’ data/ tc42 . dat ’ )

open (3 , f i l e=’ data/na38 . dat ’ )

open (4 , f i l e=’ data/ disp36 . dat ’ )

p i = 4d0∗datan (1d0 )

qnx = pi

qny = pi

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

dens i ty = 0 .499

xcut = 1d−10

c n t r l = 1d−4

dstep = 0.0001

i s t e p = 500000

t o l = 1d−8

e s c a l e = 0 .125

bigK = 0 .

do i j k =1 ,101

T = 165 . − ( i j k −1.)

temp free = 0 .

d f r e e = 0 .

fpa = 0 .

do j j =1,2

D = 2.05 + dstep ∗( j j −1)

t0 = 1 .

do j j j =1,1

t1 = 0 .

do i i =1,1

temp4 = 0 .

i cn t = 0

xlam = 1.2853 +( i i −1)/39 .∗0.45 ! 1 . 2

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

beta = e s c a l e /(8 .617∗T)∗1d5

deb = 1 . / 3 .

c a l l g au l e g(−pi , pi , qx , wx ,mx)
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c a l l g au l e g(−pi , pi , qy , wy ,my)

i f ( j j . eq . 1 . and . i i . eq . 1 . and . i j k . eq . 1 . or .G. le . c n t r l ) then

G0 = 0 .1

G1 = 0 .1

cp = 0.

endif

i f ( j j . eq . 1 . and . i i . eq . 1 . and . i j k . eq . 1 ) then

do i =1,mx

do j =1,my

de l ( i , j ) = 1d−1∗dexp(−1d−1∗(qx ( i )∗qx ( i )+qy ( j )∗qy ( j ) ) )

enddo

enddo

endif

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DO i t =1, i s t e p

cnt1 = 0

temp9 = cp

66 sum1x = 0 .

sum2x = 0 .

sum7x = 0 .

sum8x = 0 .

do i =1,mx

kx = qx ( i )

sum1y ( i ) = 0 .

sum2y ( i ) = 0 .

sum7y ( i ) = 0 .

sum8y ( i ) = 0 .

do j =1,my

ky = qy ( j )

epsk = −2.∗ t0 ∗( dcos ( kx)+dcos ( ky))−

2 4 .∗ t1 ∗( dcos ( kx )∗ dcos ( ky ) )

epskq = −2.∗ t0 ∗( dcos ( kx+qnx)+dcos ( ky+qny))−

2 4 .∗ t1 ∗( dcos ( kx+qnx)∗ dcos ( ky+qny ) )
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epsp = ( epsk+epskq ) / 2 .

epsm = ( epsk−epskq ) / 2 .

G = G0

i f ( dabs ( epsk−cp ) . l t . deb ) then

G = G0+G1

endif

lm = dsqrt ( epsm∗∗2.+G∗G+de l ( i , j )∗∗2 . )

E0 = epsp−cp

E1 = E0+lm

E2 = E0−lm

fd1 = 1./(1 .+ dexp ( beta∗E1) )

fd2 = 1./(1 .+ dexp ( beta∗E2) )

dfd1 = beta / (4 .∗ dcosh ( beta∗E1/2 . )∗ dcosh ( beta ∗E1 / 2 . ) )

dfd2 = beta / (4 .∗ dcosh ( beta∗E2/2 . )∗ dcosh ( beta ∗E2 / 2 . ) )

i f ( beta∗E1 . l t .−15d0 ) then

fd1 = 1 .

endif

i f ( beta∗E1 . gt . 1 5 d0 ) then

fd1 = 0 .

endif

i f ( beta∗E2 . l t .−15d0 ) then

fd2 = 1 .

endif

i f ( beta∗E2 . gt . 1 5 d0 ) then

fd2 = 0 .

endif

sum1y ( i ) = sum1y ( i )

sum2y ( i ) = sum2y ( i )+wy( j )∗G∗( fd1−fd2 ) / ( 2 .∗ lm )

i f ( dabs ( epsk−cp ) . l t . deb .and . dabs ( epskq−cp ) . l t . deb ) then

sum1y ( i ) = sum1y ( i )+wy( j )∗ ( fd1−fd2 ) / ( 2 .∗ lm )

endif

f = de l ( i , j )∗ ( fd1−fd2 ) / ( 2 .∗ lm)

sum7y ( i ) = sum7y ( i ) +wy( j )∗
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2 ( ( lm+epsm )/ lm∗ fd1+(lm−epsm )/ lm∗ fd2 )

sum8y ( i ) = sum8y ( i ) +wy( j )∗

2 ( ( lm+epsm )/ lm∗dfd1+(lm−epsm )/ lm∗dfd2 )

tempG = G0 + G1

!///////−−−−−−−−−//////////−−−−−−−−−////////////−−−−−−−−−

sum3x = 0 .

do ip=1,mx

kpx = qx ( ip )

sum3y( ip ) = 0 .

do jp=1,my

kpy = qy ( jp )

epsk = −2.∗ t0 ∗( dcos ( kpx)+dcos ( kpy))−

2 4 .∗ t1 ∗( dcos ( kpx )∗ dcos ( kpy ) )

epskq = −2.∗ t0 ∗( dcos ( kpx+qnx)+dcos ( kpy+qny))−

2 4 .∗ t1 ∗( dcos ( kpx+qnx )∗ dcos ( kpy+qny ) )

epsp = ( epsk+epskq ) / 2 .

epsm = ( epsk−epskq ) / 2 .

G = G0

i f ( dabs ( epsk−cp ) . l t . deb ) then

G = G0+G1

endif

lm = dsqrt ( epsm∗∗2.+G∗G+de l ( ip , jp )∗∗2 . )

E0 = epsp−cp

E1 = E0+lm

E2 = E0−lm

fd1 = 1./(1 .+ dexp ( beta ∗E1 ) )

fd2 = 1./(1 .+ dexp ( beta ∗E2 ) )

i f ( beta ∗E1 . l t .−15d0 ) then

fd1 = 1 .

endif

i f ( beta ∗E1 . gt . 1 5 d0 ) then

fd1 = 0 .

endif
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i f ( beta ∗E2 . l t .−15d0 ) then

fd2 = 1 .

endif

i f ( beta ∗E2 . gt . 1 5 d0 ) then

fd2 = 0 .

endif

s ing = dsqrt ( ( kx−kpx )∗∗2.+( ky−kpy )∗∗2 . )

aux = dexp(− s ing ∗D)/( s ing )

i f ( dabs ( s ing ) . l t . d sqr t ( xcut ) ) then

aux = 0 .

endif

sum3y ( ip ) = sum3y ( ip )+wy( jp )∗aux∗

2 ( de l ( ip , jp )∗ ( fd1−fd2 ) / ( 2 .∗ lm)− f )

enddo

sum3x = sum3x+wx( ip )∗ sum3y ( ip )

enddo

temp3( i , j ) = −0.5∗15./(4 .∗ pi ∗pi )∗ ( sum3x+(2.∗ pi /D)∗ f )

enddo

sum1x = sum1x+wx( i )∗ sum1y ( i )

sum2x = sum2x+wx( i )∗ sum2y ( i )

sum7x = sum7x+wx( i )∗ sum7y ( i )

sum8x = sum8x+wx( i )∗ sum8y ( i )

enddo

temp1 = −xlam∗sum1x∗(tempG)/ ( 4 .∗ pi ∗pi )

temp2 = −xlam∗sum2x /(4 .∗ pi ∗pi )

temp8 = cp − ( densi ty−sum7x / ( 2 . ∗ ( 2 . ∗ pi )∗∗2 . ) ) /

2 (−sum8x / ( 2 . ∗ ( 2 . ∗ pi ) ∗ ∗ 2 . ) )

i f ( dabs ( density−sum7x / ( 2 . ∗ ( 2 . ∗ pi ) ∗ ∗ 2 . ) ) . gt . t o l ) then

cp = temp8

goto 66

endif

cp = temp9

i f ( dabs (G0−temp1 ) . l t . t o l .and . dabs (G1−temp2 ) . l t . t o l
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2 .and . dabs ( cp−temp8 ) . l t . t o l ) then

cnt1 = 3

endif

do i =1,mx

do j =1,my

i f ( dabs ( de l ( i , j )−temp3( i , j ) ) . l t . t o l ) then

cnt1 = cnt1 + 1

endif

enddo

enddo

i f ( cnt1 . eq .mx∗my+3) then

i c n t = i t

goto 88

endif

G0 = temp1

G1 = temp2

cp = temp8

do i =1,mx

do j =1,my

de l ( i , j ) = temp3( i , j )

enddo

enddo

ENDDO ! i t e r a t i o n ends

88 G0 = temp1

G1 = temp2

cp = temp8

do i =1,mx

do j =1,my

de l ( i , j ) = temp3( i , j )

i f ( de l ( i , j ) . gt . temp4) then

bigK = de l ( i , j )

temp4= de l ( i , j )

endif
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write (1 ,100) qx ( i ) , qy ( j ) , G0+G1, de l ( i , j ) , cp , D, T , t1 , i cn t

ca l l f l u s h (1 )

enddo

enddo

comp = datan ( bigK/(G0+G1) )

write (2 ,200) G0+G1, bigK , comp , cp , D, T, xlam , i cn t

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! FREE ENERGY ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

f r e e = 0 .

sum4x = 0 .

sum5x = 0 .

sum6x = 0 .

do i =1,mx

kx=qx ( i )

sum4y ( i ) = 0 .

sum5y ( i ) = 0 .

sum6y ( i ) = 0 .

do j =1,my

ky=qy ( j )

epsk = −2.∗ t0 ∗( dcos ( kx)+dcos ( ky))−

2 4 .∗ t1 ∗( dcos ( kx )∗ dcos ( ky ) )

epskq = −2.∗ t0 ∗( dcos ( kx+qnx)+dcos ( ky+qny))−

2 4 .∗ t1 ∗( dcos ( kx+qnx)∗ dcos ( ky+qny ) )

epsp = ( epsk+epskq ) / 2 .

epsm = ( epsk−epskq ) / 2 .

G = G0

i f ( dabs ( epsk−cp ) . l t . deb ) then

G = G0+G1

endif

lm = dsqrt ( epsm∗∗2.+G∗G+de l ( i , j )∗∗2 . )

E0 = epsp−cp

E1 = E0+lm

E2 = E0−lm

E1p = E0+epsm
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E2p = E0−epsm

fd1 = 1./(1 .+ dexp ( beta ∗E1) )

fd2 = 1./(1 .+ dexp ( beta ∗E2) )

fd1p = 1./(1 .+ dexp ( beta∗E1p ) )

fd2p = 1./(1 .+ dexp ( beta∗E2p ) )

i f ( beta ∗E1 . l t .−15d0 ) then

fd1 = 1 .

endif

i f ( beta ∗E1 . gt . 1 5 d0 ) then

fd1 = 0 .

endif

i f ( beta ∗E2 . l t .−15d0 ) then

fd2 = 1 .

endif

i f ( beta ∗E2 . gt . 1 5 d0 ) then

fd2 = 0 .

endif

i f ( beta ∗E1p . l t .−15d0 ) then

fd1p = 1 .

endif

i f ( beta ∗E1p . gt . 1 5 d0 ) then

fd1p = 0 .

endif

i f ( beta ∗E2p . l t .−15d0 ) then

fd2p = 1 .

endif

i f ( beta ∗E2p . gt . 1 5 d0 ) then

fd2p = 0 .

endif

sum4y ( i ) = sum4y ( i )+wy( j )∗ de l ( i , j )∗∗2 . / ( 2 .∗ lm )∗ ( fd1−fd2 )

sum5y ( i ) = sum5y ( i )+wy( j )∗ (E1∗ fd1+E2∗ fd2 )

sum6y ( i ) = sum6y ( i )+wy( j )∗ (E1p∗ fd1p+E2p∗ fd2p )

enddo
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sum4x = sum4x +wx( i )∗ sum4y ( i )

sum5x = sum5x +wx( i )∗ sum5y ( i )

sum6x = sum6x +wx( i )∗ sum6y ( i )

enddo

term1 = −G0∗G1/xlam

term2 = sum4x

term3 = 2.∗ sum5x

term4 = −2.∗sum6x

f r e e = term1+term2+term3+term4

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

write (3 ,300) term1 , term2 , term3 , term4 , f r e e ,D, xlam , t1 , i cn t

ca l l f l u s h (3 )

i f ( i i . eq . 1 ) then

temp5 = G0

temp6 = G1

do i =1,mx

do j =1,my

temp7( i , j ) = de l ( i , j )

enddo

enddo

endif

enddo ! xlam

G0 = temp5

G1 = temp6

do i =1,mx

do j =1,my

de l ( i , j ) = temp7( i , j )

enddo

enddo

enddo ! t1

! use only to c a l c u l a t e temperature dependent f o r c e

i f ( j j . eq . 1 ) then

temp free = f r e e
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endif

enddo !D

d f r e e = f r ee−temp free

fpa = d f r e e / dstep

write (4 ,400) fpa ,T,D, d f ree , xlam , i cn t

ca l l f l u s h (4 )

enddo !T

100 format ( 3 ( f12 . 7 , 2 x ) , f 20 . 12 , 2 x , 4 ( f12 . 7 , 2 x ) , i 5 )

200 format ( f12 . 7 , 2 x , f20 . 12 , 2 x , 5 ( f12 . 7 , 2 x ) , i 5 )

300 format ( 8 ( f12 . 7 , 2 x ) , i 5 )

400 format ( 3 ( f12 . 7 , 2 x ) , f 20 . 12 , 2 x , f12 . 7 , 2 x , i 5 )

end
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