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ABSTRACT

ARTIFICIAL INTELLIGENCE-BASED HYBRID
ANOMALY DETECTION AND CLINICAL DECISION

SUPPORT TECHNIQUES FOR AUTOMATED
DETECTION OF CARDIOVASCULAR DISEASES

AND COVID-19

Merve Begüm Terzi

Ph.D. in Electrical and Electronics Engineering

Advisor: Orhan Ar�kan

October 2023

Coronary artery diseases are the leading cause of death worldwide, and early

diagnosis is crucial for timely treatment. To address this, we present a novel

automated arti�cial intelligence-based hybrid anomaly detection technique com-

posed of various signal processing, feature extraction, supervised, and unsuper-

vised machine learning methods. By jointly and simultaneously analyzing 12-lead

electrocardiogram (ECG) and cardiac sympathetic nerve activity (CSNA) data,

the automated arti�cial intelligence-based hybrid anomaly detection technique

performs fast, early, and accurate diagnosis of coronary artery diseases.

To develop and evaluate the proposed automated arti�cial intelligence-based

hybrid anomaly detection technique, we utilized the fully labeled STAFF III

and PTBD databases, which contain 12-lead wideband raw recordings non-

invasively acquired from 260 subjects. Using the wideband raw recordings in

these databases, we developed a signal processing technique that simultaneously

detects the 12-lead ECG and CSNA signals of all subjects. Subsequently, using

the pre-processed 12-lead ECG and CSNA signals, we developed a time-domain

feature extraction technique that extracts the statistical CSNA and ECG features

critical for the reliable diagnosis of coronary artery diseases. Using the extracted

discriminative features, we developed a supervised classi�cation technique based

on arti�cial neural networks that simultaneously detects anomalies in the 12-lead

ECG and CSNA data. Furthermore, we developed an unsupervised clustering

technique based on the Gaussian mixture model and Neyman-Pearson criterion

that performs robust detection of the outliers corresponding to coronary artery

diseases.

By using the automated arti�cial intelligence-based hybrid anomaly detection
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technique, we have demonstrated a signi�cant association between the increase

in the amplitude of CSNA signal and anomalies in ECG signal during coronary

artery diseases. The automated arti�cial intelligence-based hybrid anomaly de-

tection technique performed highly reliable detection of coronary artery diseases

with a sensitivity of 98.48%, speci�city of 97.73%, accuracy of 98.11%, positive

predictive value (PPV) of 97.74%, negative predictive value (NPV) of 98.47%,

and F1-score of 98.11%. Hence, the arti�cial intelligence-based hybrid anomaly

detection technique has superior performance compared to the gold standard

diagnostic test ECG in diagnosing coronary artery diseases. Additionally, it out-

performed other techniques developed in this study that separately utilize either

only CSNA data or only ECG data. Therefore, it signi�cantly increases the detec-

tion performance of coronary artery diseases by taking advantage of the diversity

in di�erent data types and leveraging their strengths. Furthermore, its perfor-

mance is comparatively better than that of most previously proposed machine

and deep learning methods that exclusively used ECG data to diagnose or clas-

sify coronary artery diseases. It also has a very short implementation time, which

is highly desirable for real-time detection of coronary artery diseases in clinical

practice.

The proposed automated arti�cial intelligence-based hybrid anomaly detection

technique may serve as an e�cient decision-support system to increase physicians'

success in achieving fast, early, and accurate diagnosis of coronary artery diseases.

It may be highly bene�cial and valuable, particularly for asymptomatic coronary

artery disease patients, for whom the diagnostic information provided by ECG

alone is not su�cient to reliably diagnose the disease. Hence, it may signi�cantly

improve patient outcomes, enable timely treatments, and reduce the mortality

associated with cardiovascular diseases.

Secondly, we propose a new automated arti�cial intelligence-based hybrid

clinical decision support technique that jointly analyzes reverse transcriptase-

polymerase chain reaction (RT-PCR) curves, thorax computed tomography im-

ages, and laboratory data to perform fast and accurate diagnosis of Coronavirus

disease 2019 (COVID-19).

For this purpose, we retrospectively created the fully labeled Ankara University

Faculty of Medicine COVID-19 (AUFM-CoV) database, which contains a wide

variety of medical data, including RT-PCR curves, thorax computed tomogra-

phy images, and laboratory data. The AUFM-CoV is the most comprehensive
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database that includes thorax computed tomography images of COVID-19 pneu-

monia (CVP), other viral and bacterial pneumonias (VBP), and parenchymal

lung diseases (PLD), all of which present signi�cant challenges for di�erential

diagnosis.

We developed a new automated arti�cial intelligence-based hybrid clinical de-

cision support technique, which is an ensemble learning technique consisting of

two preprocessing methods, long short-term memory network-based deep learning

method, convolutional neural network-based deep learning method, and arti�cial

neural network-based machine learning method. By jointly analyzing RT-PCR

curves, thorax computed tomography images, and laboratory data, the proposed

automated arti�cial intelligence-based hybrid clinical decision support technique

bene�ts from the diversity in di�erent data types that are critical for the reliable

detection of COVID-19 and leverages their strengths.

The multi-class classi�cation performance results of the proposed convolu-

tional neural network-based deep learning method on the AUFM-CoV database

showed that it achieved highly reliable detection of COVID-19 with a sensitivity

of 91.9%, speci�city of 92.5%, precision of 80.4%, and F1-score of 86%. There-

fore, it outperformed thorax computed tomography in terms of the speci�city of

COVID-19 diagnosis.

Moreover, the convolutional neural network-based deep learning method has

been shown to very successfully distinguish COVID-19 pneumonia (CVP) from

other viral and bacterial pneumonias (VBP) and parenchymal lung diseases

(PLD), which exhibit very similar radiological �ndings. Therefore, it has great

potential to be successfully used in the di�erential diagnosis of pulmonary dis-

eases containing ground-glass opacities. The binary classi�cation performance

results of the proposed convolutional neural network-based deep learning method

showed that it achieved a sensitivity of 91.5%, speci�city of 94.8%, precision of

85.6%, and F1-score of 88.4% in diagnosing COVID-19. Hence, it has compara-

ble sensitivity to thorax computed tomography in diagnosing COVID-19.

Additionally, the binary classi�cation performance results of the proposed long

short-term memory network-based deep learning method on the AUFM-CoV

database showed that it performed highly reliable detection of COVID-19 with

a sensitivity of 96.6%, speci�city of 99.2%, precision of 98.1%, and F1-score of

97.3%. Thus, it outperformed the gold standard RT-PCR test in terms of the

sensitivity of COVID-19 diagnosis.
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Furthermore, the multi-class classi�cation performance results of the proposed

automated arti�cial intelligence-based hybrid clinical decision support technique

on the AUFM-CoV database showed that it diagnosed COVID-19 with a sen-

sitivity of 66.3%, speci�city of 94.9%, precision of 80%, and F1-score of 73%.

Hence, it has been shown to very successfully perform the di�erential diagnosis of

COVID-19 pneumonia (CVP) and other pneumonias. The binary classi�cation

performance results of the automated arti�cial intelligence-based hybrid clinical

decision support technique revealed that it diagnosed COVID-19 with a sensi-

tivity of 90%, speci�city of 92.8%, precision of 91.8%, and F1-score of 90.9%.

Therefore, it exhibits superior sensitivity and speci�city compared to laboratory

data in COVID-19 diagnosis.

The performance results of the proposed automated arti�cial intelligence-based

hybrid clinical decision support technique on the AUFM-CoV database demon-

strate its ability to provide highly reliable diagnosis of COVID-19 by jointly ana-

lyzing RT-PCR data, thorax computed tomography images, and laboratory data.

Consequently, it may signi�cantly increase the success of physicians in diagnosing

COVID-19, assist them in rapidly isolating and treating COVID-19 patients, and

reduce their workload in daily clinical practice.

Keywords: Big data, arti�cial intelligence, machine learning, deep learning, trans-

fer learning, ensemble learning, computer-aided diagnosis, signal processing, im-

age processing, feature extraction, classi�cation, clustering, convolutional neural

network, recurrent neural network, long short-term memory, anomaly detection,

Gaussian mixture model, synthetic minority oversampling technique (SMOTE),

Neyman-Pearson hypothesis testing, COVID-19, radiology, computed tomogra-

phy.



ÖZET

YAPAY ZEKÂ-TABANLI H�BR�T ANOMAL� TESP�T
VE KL�N�K KARAR DESTEK TEKN�KLER� �LE
KARD�YOVASKÜLER HASTALIKLARIN VE

COVID-19'UN OTOMAT�K TESP�T�

Merve Begüm Terzi

Elektrik ve Elektronik Mühendisli§i, Doktora

Tez Dan�³man�: Orhan Ar�kan

Ekim 2023

Koroner arter hastal�klar�, dünya çap�nda ölümlerin ba³l�ca nedenidir ve za-

man�nda tedavi için erken te³his çok önemlidir. Bu sorunu ele almak amac�yla,

çe³itli sinyal i³leme, öznitelik ç�karma, denetimli, ve denetimsiz makine ö§renmesi

yöntemlerini birle³tiren yeni bir otomatik yapay zekâ-tabanl� hibrit anomali tespit

tekni§i öneriyoruz. Otomatik yapay zekâ-tabanl� hibrit anomali tespit tekni§i,

12-derivasyonlu elektrokardiyogram (EKG) ve kardiyak sempatik sinir aktivitesi

(KSSA) verilerini birlikte ve e³ zamanl� analiz ederek, koroner arter hastal�k-

lar�n�n h�zl�, erken, ve do§ru te³hisini gerçekle³tirmektedir.

Önerilen otomatik yapay zekâ-tabanl� hibrit anomali tespit tekni§ini

geli³tirmek ve de§erlendirmek için, 260 denekten non-invaziv olarak elde edilen

12-derivasyonlu geni³ bantl� ham kay�tlar� içeren tamamen-etiketlenmi³ STAFF

III ve PTBD veri tabanlar�n� kulland�k. Bu veri tabanlar�ndaki geni³ bantl� ham

kay�tlar� kullanarak, tüm deneklerin 12-derivasyonlu EKG ve KSSA sinyallerini

e³ zamanl� olarak tespit eden bir sinyal i³leme tekni§i geli³tirdik. Ön-i³lenmi³ 12-

derivasyonlu EKG ve KSSA sinyallerini kullanarak, koroner arter hastal�klar�n�n

güvenilir te³hisi için kritik olan istatistiksel EKG ve KSSA özniteliklerini elde eden

bir zaman-düzlemi öznitelik ç�karma tekni§i geli³tirdik. Elde edilen ay�rt edici

öznitelikleri kullanarak, 12-derivasyonlu EKG ve KSSA verilerindeki anomalileri

e³ zamanl� olarak tespit eden yapay sinir a§�-tabanl� bir denetimli s�n��and�rma

tekni§i geli³tirdik. Ayr�ca, koroner arter hastal�klar�n� temsil eden ayk�r� de§er-

lerin gürbüz tespitini gerçekle³tiren, Gauss kar�³�m modeline ve Neyman-Pearson

kriterine dayal� bir denetimsiz kümeleme tekni§i geli³tirdik.
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Otomatik yapay zekâ-tabanl� hibrit anomali tespit tekni§ini kullanarak, ko-

roner arter hastal�§� s�ras�nda KSSA sinyalinin genli§indeki art�³ ile EKG sinyalin-

deki anomaliler aras�nda önemli bir ili³ki oldu§unu gösterdik. Otomatik yapay

zekâ-tabanl� hibrit anomali tespit tekni§i, 98.48% duyarl�l�k, 97.73% özgüllük,

98.11% do§ruluk, 97.74% kesinlik, 98.47% negatif tahmin de§eri, ve 98.11%

F1-skoru ile koroner arter hastal�klar�n�n oldukça güvenilir tespitini gerçekle³tir-

mi³tir. Bu nedenle, yapay zekâ-tabanl� hibrit anomali tespit tekni§i, koroner

arter hastal�klar�n� te³his etmek için alt�n standart tan� testi olarak kullan�lan

EKG'ye k�yasla daha üstün ba³ar�m göstermi³tir. Ayr�ca, yapay zekâ-tabanl�

hibrit anomali tespit tekni§i, bu çal�³mada geli³tirilen ve sadece KSSA veri-

lerini veya sadece EKG verilerini kullanan di§er tekniklerden daha üstün ba³ar�m

göstermi³tir. Bu nedenle, farkl� veri türlerinin çe³itlili§inden faydalanarak ve

güçlü yönlerini kullanarak, koroner arter hastal�klar�n�n tespit ba³ar�m�n� önemli

ölçüde artt�rm�³t�r. Ayr�ca, yapay zekâ-tabanl� hibrit anomali tespit tekni§inin

ba³ar�m�, koroner arter hastal�klar�n� te³his etmek veya s�n��and�rmak için yal-

n�zca EKG verilerini kullanm�³ olan literatürdeki birçok makine ö§renmesi ve

derin ö§renme yöntemlerinin ba³ar�m�ndan daha üstündür. Ek olarak, klinik or-

tamlarda gerçek-zamanl� koroner arter hastal�§� tespiti için oldukça arzu edilen

çok k�sa bir uygulama süresine sahiptir.

Önerilen otomatik yapay zekâ-tabanl� hibrit anomali tespit tekni§i, koroner

arter hastal�klar�n�n h�zl�, erken, ve do§ru te³hisi konusunda doktorlar�n ba³ar�s�n�

artt�ran etkili bir karar destek sistemi olarak hizmet edebilir. Özellikle EKG

taraf�ndan sa§lanan te³his bilgilerinin, hastal�§�n güvenilir te³hisi için tek ba³�na

yeterli olmad�§� asemptomatik koroner arter hastalar� aç�s�ndan oldukça faydal�

ve de§erli olabilir. Bu nedenle, hasta sonuçlar�n� önemli ölçüde iyile³tirebilir,

zaman�nda tedavilere olanak sa§layabilir ve kardiyovasküler hastal�klar�n mortal-

itesini azaltabilir.

�kinci olarak, Koronavirüs hastal�§�n�n (COVID-19) h�zl� ve do§ru te³hisini

gerçekle³tirmek için ters transkriptaz-polimeraz zincir reaksiyonu (RT-PCR) e§ri-

lerini, toraks bilgisayarl� tomogra� görüntülerini, ve laboratuvar verilerini birlikte

analiz eden yeni bir otomatik yapay zekâ-tabanl� hibrit klinik karar destek tekni§i

öneriyoruz.

Bu amaçla, tamamen-etiketlenmi³ Ankara Üniversitesi T�p Fakültesi COVID-

19 (AÜTF-CoV) veri taban�n� geriye dönük olarak olu³turduk. AÜTF-CoV veri

taban�, RT-PCR e§rileri, toraks bilgisayarl� tomogra� görüntüleri, ve laboratuvar
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verileri de dahil olmak üzere çok çe³itli t�bbi veriler içermektedir. AÜTF-CoV

veri taban�, COVID-19 pnömonisi (CVP), di§er viral ve bakteriyel pnömoniler

(VBP), ve parankimal akci§er hastal�klar� (PAH) gibi ay�r�c� tan�s� çok zor olan

toraks bilgisayarl� tomogra� görüntülerini içeren en kapsaml� veri taban�d�r.

�ki ön-i³leme yöntemi, uzun k�sa-süreli bellek a§�-tabanl� derin ö§renme yön-

temi, evri³imsel sinir a§�-tabanl� derin ö§renme yöntemi ve yapay sinir a§�-tabanl�

makine ö§renmesi yönteminden olu³an bir topluluk ö§renmesi tekni§i olan yeni bir

otomatik yapay zekâ-tabanl� hibrit klinik karar destek tekni§i geli³tirdik. Öner-

ilen otomatik yapay zekâ-tabanl� hibrit klinik karar destek tekni§i, RT-PCR e§ri-

lerini, toraks bilgisayarl� tomogra� görüntülerini, ve laboratuvar verilerini birlikte

analiz ederek, COVID-19'un güvenilir tespiti için kritik olan farkl� veri türlerinin

çe³itlili§inden ve güçlü yönlerinden faydalanmaktad�r.

Önerilen evri³imsel sinir a§�-tabanl� derin ö§renme yönteminin AÜTF-CoV

veri taban� üzerindeki çok-s�n��� s�n��and�rma ba³ar�m sonuçlar�, yöntemin 91.9%

duyarl�l�k, 92.5% özgüllük, 80.4% kesinlik, ve 86% F1-skoru ile COVID-19'un

oldukça güvenilir tespitini sa§lad�§�n� göstermi³tir. Bu nedenle, COVID-19

te³hisinin özgüllü§ü bak�m�ndan toraks bilgisayarl� tomogra�ye k�yasla daha

üstün ba³ar�m göstermi³tir. Ayr�ca, evri³imsel sinir a§�-tabanl� derin ö§renme

yönteminin, radyolojik bulgular� çok benzer olan COVID-19 pnömonisini (CVP),

di§er viral ve bakteriyel pnömonileri (VBP), ve parenkimal akci§er hastal�k-

lar�n� (PAH) çok yüksek ba³ar�m ile ay�rt etti§i gösterilmi³tir. Bu nedenle,

cam opasitelerini içeren akci§er hastal�klar�n�n ay�r�c� tan�s�nda yüksek ba³ar�m

ile kullan�lma potansiyeline sahiptir. Önerilen evri³imsel sinir a§�-tabanl� derin

ö§renme yönteminin iki-s�n��� s�n��and�rma ba³ar�m sonuçlar�, yöntemin COVID-

19 te³hisinde 91.5% duyarl�l�k, 94.8% özgüllük, 85.6% kesinlik, ve 88.4% F1-

skoru elde etti§ini göstermi³tir. Bu nedenle, COVID-19 te³hisinde toraks bilgisa-

yarl� tomogra� ile kar³�la³t�r�labilir duyarl�l�§a sahiptir.

Ayr�ca, önerilen uzun k�sa-süreli bellek a§�-tabanl� derin ö§renme yöntemi-

nin AÜTF-CoV veri taban� üzerindeki iki-s�n��� s�n��and�rma ba³ar�m sonuçlar�,

yöntemin 96.6% duyarl�l�k, 99.2% özgüllük, 98.1% kesinlik, ve 97.3% F1-skoru

ile COVID-19'un oldukça güvenilir tespitini sa§lad�§�n� göstermi³tir. Bu ne-

denle, COVID-19 te³hisinin duyarl�l�§� bak�m�ndan alt�n standart RT-PCR testine

k�yasla daha üstün ba³ar�m göstermi³tir.

Önerilen otomatik yapay zekâ-tabanl� hibrit klinik karar destek tekni§inin

AÜTF-CoV veri taban� üzerindeki çok-s�n��� s�n��and�rma ba³ar�m sonuçlar�,
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tekni§in 66.3% duyarl�l�k, 94.9% özgüllük, 80% kesinlik, ve 73% F1-skoru ile

COVID-19'u te³his etti§ini göstermi³tir. Bu durum, hibrit klinik karar destek

tekni§inin, COVID-19 pnömonisini (CVP) ve di§er pnömonileri çok ba³ar�l� bir

³ekilde ay�rt edebildi§ini göstermektedir. Otomatik yapay zekâ-tabanl� hibrit

klinik karar destek tekni§inin iki-s�n��� s�n��and�rma ba³ar�m sonuçlar�, tekni§in

90% duyarl�l�k, 92.8% özgüllük, 91.8% kesinlik, ve 90.9% F1-skoru ile COVID-

19'un oldukça gürbüz tespitini sa§lad�§�n� göstermi³tir. Bu nedenle, hibrit klinik

karar destek tekni§i, COVID-19 te³hisinde laboratuvar verilerine k�yasla daha

üstün duyarl�l�§a ve özgüllü§e sahiptir.

Önerilen otomatik yapay zekâ-tabanl� hibrit klinik karar destek tekni§inin

AÜTF-CoV veri taban� üzerindeki ba³ar�m sonuçlar�, tekni§in RT-PCR verilerini,

toraks bilgisayarl� tomogra� görüntülerini ve laboratuvar verilerini birlikte analiz

ederek, oldukça güvenilir COVID-19 te³hisi sa§lad�§�n� göstermektedir. Sonuç

olarak, önerilen teknik, doktorlar�n COVID-19'u te³his etme ba³ar�s�n� önemli

ölçüde art�rabilir, COVID-19 hastalar�n� h�zl� izole etme ve tedavi etme konusunda

onlara yard�mc� olabilir ve günlük klinik uygulamadaki i³ yüklerini azaltabilir.

Anahtar sözcükler : Büyük veri, yapay zekâ, makine ö§renmesi, derin ö§renme,

transfer ö§renme, topluluk ö§renmesi, bilgisayar destekli tan�, sinyal i³leme,

görüntü i³leme, öznitelik ç�kar�m�, s�n��and�rma, kümeleme, evri³imsel sinir a§�,

tekrarlayan sinir a§�, uzun k�sa-süreli bellek, anomali tespiti, Gauss kar�³�m mod-

eli, sentetik az�nl�k a³�r� örnekleme tekni§i (SMOTE), Neyman-Pearson hipotez

testi, COVID-19, radyoloji, bilgisayarl� tomogra�.
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Chapter 1

Introduction

According to the World Health Organization (WHO), cardiovascular diseases

(cardiovascular diseases) are the leading cause of death worldwide, with an esti-

mated death rate of approximately 17.9 million deaths each year, accounting for

31% of all deaths worldwide annually [2]. The majority of these deaths are caused

by coronary artery diseases (coronary artery diseases), which include myocardial

ischemia, silent (asymptomatic) myocardial ischemia, and myocardial infarction

(heart attack).

In patients with coronary artery diseases, signi�cant anomalies occur in the ST

segment, QRS complex, and T wave of the electrocardiogram (ECG) signals dur-

ing myocardial ischemia and myocardial infarction [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

However, a considerable number of coronary artery disease patients worldwide suf-

fer from silent (asymptomatic) myocardial ischemia, during which there are no

anomalies in patients' ECG signals. Thus, an ECG signal that does not contain

any anomalies does not rule out the possibility of coronary artery diseases. Due

to its limitations in diagnosing asymptomatic coronary artery disease patients

with silent (asymptomatic) myocardial ischemia, ECG alone cannot be used to

diagnose silent (asymptomatic) myocardial ischemia based solely on its diagnos-

tic information. Since asymptomatic coronary artery disease patients with silent

(asymptomatic) myocardial ischemia do not experience any symptoms, they are
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prone to misinterpretation by cardiologists, which leads to false-negative results,

making silent (asymptomatic) myocardial ischemia more dangerous and fatal.

Moreover, previous arti�cial intelligence (AI) studies that exclusively used

ECG data to diagnose or classify coronary artery diseases may have signi�cant

limitations for asymptomatic coronary artery disease patients with silent (asymp-

tomatic) myocardial ischemia [13]. Thus, an automated AI technique that can

accurately and quickly diagnose both asymptomatic coronary artery disease pa-

tients (silent (asymptomatic) myocardial ischemia) and symptomatic coronary

artery disease patients (myocardial ischemia and myocardial infarction) is a ma-

jor and essential clinical need that may signi�cantly increase the detection perfor-

mance of cardiovascular diseases, provide timely treatment, and reduce mortality

rates.

Previous studies have shown that the sympathetic nervous system plays an

important role in regulating the cardiovascular system [14, 15]. These studies

have established a direct and strong relationship between the sympathetic ner-

vous system and various cardiovascular diseases, which is due to the fact that

the extensions of the sympathetic nervous system that regulate the heart are

distributed throughout the heart. The traditional method for directly recording

and monitoring high-frequency signals, including activities of the sympathetic

nervous system, is the microneurography technique, which requires invasive pro-

cedures, such as inserting very �ne microelectrodes into the nerve �bers to detect

and measure their electrical signals. However, the invasive and complex nature

of the microneurography technique, which requires highly specialized expertise

from trained clinicians, greatly limits its utilization for research studies in clinical

practice.

Recent studies have shown that it is possible to non-invasively record high-

frequency signals, called cardiac sympathetic nerve activity (CSNA), from the

skin surface of the chest using data acquisition equipment with a wide frequency

bandwidth and high sampling rate [14, 16, 17, 18]. A few studies investigating

the relationship between CSNA and cardiac arrhythmias using signal processing

techniques demonstrated an increase in the amplitude of CSNA during cardiac
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arrhythmias [17, 18, 19]. Additionally, they indicated that this increase in CSNA

was accompanied by a simultaneous increase in heart rate in the ECG signal.

Therefore, they suggested that early and reliable diagnosis of cardiac arrhythmias

can be achieved by detecting the anomalies in CSNA. However, none of these

previous studies used AI techniques to diagnose cardiac arrhythmias using only

CSNA data or both CSNA and ECG data.

Since it has long been accepted that there is a direct and strong relation-

ship between the sympathetic nervous system and various cardiovascular diseases

[14, 15], we hypothesized that there can be anomalies in CSNA during coronary

artery diseases. To the best of our knowledge, there are no studies in the lit-

erature to date that have investigated whether there is an association between

CSNA and coronary artery diseases using AI techniques. This constituted a re-

search gap in the literature that highlights the need for further investigation.

Additionally, most of the existing AI studies have only used ECG data to detect

various cardiovascular diseases. However, there are no studies to date that have

proposed an AI technique that jointly and simultaneously uses CSNA and ECG

data to diagnose coronary artery diseases or other cardiovascular diseases.

The main aim and motivation of this study were to develop an automated AI

technique that accurately diagnoses both asymptomatic coronary artery disease

patients (silent (asymptomatic) myocardial ischemia) and symptomatic coronary

artery disease patients (myocardial ischemia and myocardial infarction) by jointly

and simultaneously analyzing 12-lead CSNA and ECG data [1]. Hence, this tech-

nique aims to address the limitations of existing related studies that have only

used ECG data and �ll the research gaps in the literature. For this purpose, we

propose a novel arti�cial intelligence-based hybrid anomaly detection technique

consisting of various signal processing, feature extraction, supervised, and un-

supervised machine learning methods that jointly and simultaneously analyzes

12-lead CSNA and ECG data to perform fast, early, and accurate diagnosis of

coronary artery diseases (i.e., silent (asymptomatic) myocardial ischemia, my-

ocardial ischemia, and myocardial infarction).

By using the proposed automated arti�cial intelligence-based hybrid anomaly
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detection technique, our aim was to investigate whether anomalies exist in CSNA

signals during coronary artery diseases [1]. Moreover, our objective was to deter-

mine whether the joint and simultaneous detection of the anomalies in the 12-lead

CSNA and ECG data provides an increase in the performance of coronary artery

disease diagnosis. Furthermore, we also targeted to compare the performance of

the arti�cial intelligence-based hybrid anomaly detection technique with that of

the gold standard diagnostic test ECG, as well as previously proposed AI methods

that have only used ECG data to diagnose or classify coronary artery diseases.

1.1 Main Contributions of the Thesis

The main contributions and novelty in Chapter 2 are summarized as follows:

� We have developed the �rst automated arti�cial intelligence-based hybrid

anomaly detection technique consisting of various signal processing, feature

extraction, supervised, and unsupervised machine learning methods that

jointly and simultaneously analyze 12-lead ECG and CSNA data to perform

fast, early, and accurate diagnosis of coronary artery diseases.

� Our study is the �rst to demonstrate that there are anomalies in CSNA

signals during coronary artery diseases. Additionally, we have shown a

signi�cant association between the increase in CSNA and the anomalies in

ECG signals during coronary artery diseases.

� The proposed arti�cial intelligence-based hybrid anomaly detection tech-

nique outperforms other techniques developed in this study that separately

use either only CSNA data or only ECG data. Therefore, it signi�cantly in-

creases the detection performance of coronary artery diseases by bene�ting

from the diversity in di�erent data types and leveraging their strengths.

� The arti�cial intelligence-based hybrid anomaly detection technique can

automatically process all 12-leads for enhanced diagnosis. Therefore, it

takes advantage of the diversity in diagnostic information provided by all
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12-leads and can accurately detect coronary artery disease cases that cannot

be diagnosed using only one-lead.

� The automated arti�cial intelligence-based hybrid anomaly detection tech-

nique demonstrates superior performance compared to the gold standard

diagnostic test ECG in the diagnosis of coronary artery diseases.

� The performance of the arti�cial intelligence-based hybrid anomaly detec-

tion technique is higher than that of most previously proposed machine or

deep learning methods that have only used ECG data to diagnose or classify

coronary artery diseases.

� The arti�cial intelligence-based hybrid anomaly detection technique has

a very short implementation time, which is highly desirable for real-time

detection of coronary artery diseases. This capability may support fast

decision-making by physicians in clinical settings, which may have signi�-

cant implications in emergency situations where rapid diagnosis is crucial

for timely patient treatment.

1.2 Literature Review

We conducted a comprehensive review of the existing relevant literature to gain

an in-depth understanding of the current machine learning techniques applied

to ECG signals and images for the diagnosis and classi�cation of cardiovascular

diseases. In the literature, various machine learning and deep learning meth-

ods have been previously proposed for the diagnosis and classi�cation of vari-

ous cardiovascular diseases using only ECG data. The feature extraction meth-

ods can be categorized into three groups, which are time-domain techniques,

frequency-domain techniques, and time-frequency domain techniques. Specif-

ically, these techniques include Fourier transform [20, 21], wavelet transform

[22, 23, 24, 25], Gabor transform [26, 27], discrete cosine transform [28, 29, 30],

shearlet and contourlet transform [31, 32], Hilbert-Huang transform [33, 34], dis-

crete orthogonal Stockwell transform [30, 35], empirical and variational mode
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decompositions [36, 37], Wigner-Ville distribution technique [38], Fourier-Bessel

series expansion [39, 40, 41], and independent and principal component analyses

[19, 26, 42, 43, 44, 45].

The previously proposed machine learning methods for the diagnosis and clas-

si�cation of various cardiovascular diseases using only ECG data include logistic

regression [46, 47], arti�cial neural network [7, 8, 9, 10, 11, 25, 46, 48], k-nearest

neighbor [41, 49], hidden Markov model [50, 51], Gaussian mixture model [6, 8, 10,

11, 43, 48, 50, 52, 53], support vector machine [3, 5, 6, 42, 54, 55, 56, 57, 58, 59],

random forest [60, 61], naive Bayes [43, 59], decision tree [59, 62, 63], fuzzy logic

[64, 65], self-organizing map [64, 66], mixture of experts [67, 68], association rule

learning [69, 70], and linear discriminant analysis [22, 71].

The study by Magrans et al. aimed to develop a non-linear support vector ma-

chine model with a radial basis function (RBF) kernel to detect coronary artery

disease [72]. The study included patients undergoing elective percutaneous coro-

nary intervention with 12-lead continuous and signal-averaged ECG recordings

before and during percutaneous coronary intervention. Feature selection was

performed using a univariate statistical test and an algorithm for sequentially

selecting the most important statistically signi�cant variables. The grid search

method was employed to optimize support vector machine parameters and gen-

erate the �nal prediction model. Repeated 5-fold cross-validation was used to

estimate the model's generalization performance. The model exhibited a sensi-

tivity of 83.3%, speci�city of 91.7%, precision of 90.9%, and negative predictive

value (NPV) of 85.7%.

Sadhukhan et al. proposed using the harmonic phase distribution pattern of

ECG data for myocardial infarction identi�cation [73]. The morphological and

temporal changes in the ECG waveform caused by the presence of myocardial

infarction were re�ected in the phase distribution pattern of the Fourier harmon-

ics. The changes in the ECG waveform morphology were clearly manifested as

changes in the relative phases of the harmonic components. Two discriminative

features that re�ected these variations were identi�ed for 3-lead ECG. Binary
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classi�cation was performed using a threshold-based classi�cation rule and logis-

tic regression. The model achieved an accuracy of 95.6%, sensitivity of 96.5%,

and speci�city of 92.7%. The algorithm was then implemented and validated on a

commercially available microcontroller-based Arduino board. The �rmware used

the pre-trained logistic regression classi�er. The model did not outperform all

earlier reported techniques, but it o�ers computational simplicity of the features,

reduced feature dimensionality, and the use of simple linear classi�ers. The draw-

back of this study is the use of only 3-lead ECG, which can limit the detection

performance for certain types of myocardial infarction.

Tripathy et al. proposed an approach for the detection of myocardial infarc-

tion using multi-resolution analysis of 12-lead ECG signals [74]. Baseline wander

noise in ECG data was �ltered out using a high-pass �lter. The �ltered ECG data

was segmented using a rectangular window. The segmented ECG frames were

subjected to Fourier-Bessel series expansion-based empirical wavelet transform

for the time-scale decomposition of the 12-lead ECG signals. For each ECG lead,

nine subband signals were evaluated using Fourier-Bessel series expansion-based

empirical wavelet transform to extract the statistical features. The deep layer

least-squares support vector machine classi�cation layer, which was formulated

using the hidden layers of sparse auto-encoders and the least-squares support

vector machine, was employed for the detection of myocardial infarction based

on the feature vector of the 12-lead ECG. The entropy features were found to be

more signi�cant for the detection of myocardial infarction and exhibited higher

performance using the proposed classi�er compared to the kurtosis and skewness

features, which failed to capture the pathological variations in the subband sig-

nals. The combination of Fourier-Bessel series expansion-based empirical wavelet

transform based entropy features and deep layer least-squares support vector ma-

chine reached an accuracy of 99.7%, sensitivity of 99.8%, and speci�city of 99.6%.

Dohare et al. proposed a method for detecting coronary artery disease using

12-lead ECG data and analyzed each lead with the help of a composite lead [54].

The min-max normalization method was used to rescale the attributes. The raw

signal was preprocessed by a two stage median �lter to remove baseline drift using

a sliding window. The composite lead was used to detect ECG wave components
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and clinical wave intervals. The complexes of the composite signal were enhanced

using the sixth power of the signal. The mean value of the enhanced signal was

used as the threshold to determine the high peak of the QRS complex in the

composite signal and individual leads at a variable window size. The four clinical

ECG features were determined globally from the average beats of the 12-lead

ECGs. Peak-to-peak amplitude, area, mean, standard deviation, skewness, and

kurtosis were determined for the ECG features. Binary classi�cation for the

detection of coronary artery disease was performed using a simple support vector

machine classi�er with an RBF kernel. After implementing principal component

analysis as a feature dimension reduction method to reduce the number of features

and computational complexity, the sensitivity remained the same (96.6%), while

the speci�city (96.6%), and accuracy (96.6%) were slightly reduced.

Ahmad et al. proposed two computationally e�cient multimodal fusion frame-

works for myocardial infarction detection, called Multimodal Image Fusion (MIF)

and Multimodal Feature Fusion (MFF) [75]. At the input of these frameworks,

they converted the raw ECG data into three types of two-dimensional (2D) im-

ages using three di�erent statistical methods, which are Gramian Angular Field

(GAF), Recurrence Plot (RP), and Markov Transition Field (MTF). In MIF,

they performed image fusion by combining three grayscale input images (GAF,

RP, MTF) to create a three-channel colored single image, which served as input

to the convolutional neural network. They utilized the AlexNet convolutional

neural network for feature extraction and a softmax classi�er for classi�cation

tasks, respectively. The limitation of the MIF framework was that it required

exactly three di�erent statistical grayscale images to create a three-channel com-

pound image. In MFF, they transformed ECG heartbeats into GAF, RP, and

MTF images. They extracted features from the penultimate layer of the AlexNet

convolutional neural network, which consisted of three convolutional layers, two

pooling layers, and one fully connected layer. By employing a Gated Fusion

Network (GFN), they fused these extracted features, which were ultimately used

to train a support vector machine classi�er. MFF demonstrated higher perfor-

mance compared to MIF. However, the limitation of the MFF framework was

that it required the use of three separate AlexNet convolutional neural networks

8



for training on the GAF, RP, and MTF images, which necessitated more time for

both training and inference. The support vector machine classi�er performed bet-

ter than the softmax classi�er. They achieved a classi�cation accuracy of 98.4%,

sensitivity of 94%, and precision of 98%. They concluded that the multimodal

fusion of the modalities increased the machine learning task's performance com-

pared to using the modalities individually. The disadvantage of this study is the

use of only one-lead ECG, which can limit the detection performance for certain

types of myocardial infarction.

Acharya et al. introduced a method for the automated detection and local-

ization of myocardial infarction [76]. Firstly, ECG signals were pre-processed

to eliminate noise and baseline wander using a wavelet basis function. Using

the Pan�Tompkins algorithm, the pre-processed ECG signals were segmented

and subjected to discrete wavelet transform up to four levels of decomposition.

Thus, a total of eight discrete wavelet transform coe�cients were obtained, and

twelve nonlinear features were extracted from these coe�cients. Feature ranking

methods, such as Student's t-test and ANOVA, were used to rank the extracted

features according to their signi�cance. The selected signi�cant features were

used for binary and multi-class classi�cation using a k-nearest neighbor classi-

�er for the detection and localization of myocardial infarction, respectively. The

ranked features were fed into the k-nearest neighbor classi�er one by one to �nd

the minimum number of features necessary for obtaining the highest classi�cation

performance. The classi�er exhibited an average accuracy of 98.8%, sensitivity of

99.4%, and speci�city of 96.2% for myocardial infarction detection. They claimed

that the method can be used as an automated diagnostic tool for the detection

of myocardial infarction using 12-lead ECG and the localization of myocardial

infarction using one-lead ECG.

Sharma et al. presented a technique for the detection and localization of

myocardial infarction using one-lead ECG [49]. Firstly, the ECG signals were

segmented into short-duration ECG segments, which were then passed through

a two-stage median �lter to remove baseline wander. This was followed by a

Savitzky-Golay �lter to obtain smoothened ECG segments, which were decom-

posed into wavelet bands using stationary wavelet transform (SWT), so that
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they could be analyzed at di�erent frequencies. Energy, entropy, and slope-based

features were extracted at speci�c wavelet bands from the decomposed ECG seg-

ments. The relevance of the features was measured based on the Fisher score.

The top-ranked features were fed into the k-nearest neighbor classi�er with Ma-

halanobis and Euclidean distance functions to perform binary classi�cation for

myocardial infarction detection. To address the issue of imbalanced data, the

adaptive synthetic (ADASYN) sampling approach was employed due to dispar-

ities in the instance space. They utilized 10-fold cross-validation for both my-

ocardial infarction detection and localization. The technique has demonstrated a

sensitivity of 98.3%, speci�city of 99.4%, precision of 99.4% and accuracy of 99%

for myocardial infarction detection using the top-ranked features. The drawback

of this study is the use of only one-lead ECG, which can limit the detection and

localization performance for certain types of myocardial infarction.

Jothiramalingam et al. proposed a polynomial curve-�tting technique based

on optimization strategies to diagnose coronary artery disease [77]. Firstly, the

noises in ECG signals were removed using a discrete wavelet transform. The ECG

signals were then partitioned using a Hamming window. The polynomial coef-

�cients were obtained by choosing the best polynomial order using the genetic

algorithm and particle swarm optimization algorithm. Using these polynomial

coe�cients, �ve features were computed, including area, variance, kurtosis, root

mean, and form factor. These features were input into di�erent classi�ers for

binary classi�cation, such as multilayer perceptron, support vector machine, K-

nearest neighbor, Levenberg�Marquardt Neural Network, and Scaled Conjugate

Gradient Backpropagation Neural Network. The genetic algorithm and particle

swarm optimization-based classi�ers achieved good performances compared to

classi�ers that were not based on genetic algorithm and particle swarm optimiza-

tion. The highest classi�cation performance was achieved using the k-nearest

neighbor classi�er, with a sensitivity of 77.4%, speci�city of 81.8%, and accuracy

of 82.8%.

Sraitih et al. investigated an automatic coronary artery disease detection sys-

tem using ECG data and presented an approach to evaluate its robustness in
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classifying coronary artery disease under di�erent types of noise [78]. The pre-

processing stage consisted of normalizing 12-lead ECG signals using the min�max

normalization method. They used a low-pass Butterworth �lter to remove the

noises from the ECG data. They employed three well-known supervised ma-

chine learning models, which are support vector machine, k-nearest neighbor,

and random forest. They tested their performances in classifying normal and

coronary artery disease classes. These models were trained on the preprocessed

data, and no feature extraction was performed. They conducted a grid search on

each model by supplying a mixture of parameter grids to obtain the appropriate

combinations of hyper-parameters that provide the most accurate predictions.

The performances of all the models in detecting coronary artery disease were

low, especially in detecting the normal class samples. Random forest obtained

the best performance in predicting coronary artery disease with an accuracy of

75%, precision of 74%, and sensitivity of 73%. While dealing with the noisy test

set, the support vector machine classi�er outperformed the other models with an

accuracy of 68%, precision of 66%, and sensitivity of 66%.

Agrawal et al. investigated the application of machine learning techniques

on the vector magnitude data of heart signals generated via vectorcardiography

to distinguish coronary artery disease patients from healthy subjects [79]. To

eliminate low-frequency noise in cardiac signals, the patients' vectorcardiography

data were �ltered using a bandpass �lter via Biopac Acqknowledge software's

built-in functions. The vector magnitude was derived from patients' orthogo-

nal vectorcardiography leads using the 3D Pythagorean theorem. Each patient's

QT and RR intervals were marked on the vector magnitude using Biopac Acq-

knowledge software's computer-assisted manual marking methods. The statisti-

cal features were extracted from the QT and RR intervals and used as inputs

for machine learning techniques, such as arti�cial neural network, support vec-

tor machine with RBF kernel, and decision tree, to perform binary classi�cation.

Strati�ed 10-fold cross-validation was employed for all models. Results indicated

that vector magnitude-derived QT variability has more predictive value than RR

variability in classifying coronary artery disease patients, and showed a higher

contribution toward increased accuracy in predicting the class. However, adding
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the RR variability to obtain combined variables further improved the overall per-

formance. The decision tree generated relatively higher performance for coronary

artery disease classi�cation with an accuracy of 98.3% and speci�city of 96.5%,

while using fewer predictor variables than other models. IBM SPSS Modeler and

KNIME were employed as the software platforms.

Liu et al. proposed an ECG feature for coronary artery disease detection by

�tting a given ECG signal with a 20th-order polynomial function, which they

de�ned as PolyECG-S [80]. First, a discrete wavelet transform was employed to

remove high-frequency noise and baseline shifting from the ECG signals. Next,

all the R peaks in the ECG signals were detected using the wavelet transform,

and all the ECG signals were split into ECG cycles. These cycles were then

normalized on both the time and voltage axes to enable comparison between dif-

ferent ECG signals. The polynomial function was �tted to the ECG signals, and

each ECG cycle was represented as a vector of the coe�cients of this polyno-

mial function. The Akaike information criterion (AIC) was used to determine

the optimal polynomial �tting function order with the minimum AIC value. The

optimal similarity between the PolyECG-S curve and ECG signals was observed

when the polynomial �tting function order was set to 20. The �tted coe�cients

were de�ned as the ECG representing features. The best feature subsets were

selected using feature selection algorithms, such as genetic algorithm and particle

swarm optimization. There were seventeen features chosen by genetic algorithm

and seven features chosen by particle swarm optimization. The two feature sub-

sets chosen by genetic algorithm and particle swarm optimization were tested for

their discrimination performance with four classi�cation models, which are J48

decision tree, random tree, support vector machine, and naive Bayes. The feature

selection and binary classi�cation models were implemented using the Weka soft-

ware, and the software's default parameters were utilized. The top-performing

coronary artery disease detection model was the J48 decision tree with the fea-

ture subset chosen by genetic algorithm, which showed an accuracy of 89.5%,

sensitivity of 94.2%, and speci�city of 74%. The disadvantage of this study is

that, although di�erent individuals may have di�erent optimal polynomial �tting

functions for their ECG signals, the polynomial �tting function's order was set
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to be the same for all individuals.

Chang et al. presented a diagnosis system for classifying coronary artery dis-

ease by converting 4-lead ECG data into a density model [81]. During ECG signal

segmentation, the location of the R peak was used to divide the ECG complex

into separate heartbeats. A hybrid system that combined hidden Markov model

and Gaussian mixture model was employed to classify 4-lead ECG data. Four

hidden Markov models were used to learn the 4-lead ECG complex and calculate

the probability of state changes in each lead. These probabilities were further

converted into log-likelihood values, which were treated as di�erent statistical

feature vectors that were then given as input to Gaussian mixture model and

support vector machine. The 16-State hidden Markov models were trained using

coronary artery disease data, so that coronary artery disease and normal data can

have di�erences in likelihood values. The four-dimensional (4D) feature vector

extracted by the four hidden Markov models was clustered by Gaussian mix-

ture model with di�erent numbers of distributions. The density model of data

distribution was �tted by the maximum likelihood estimation (MLE) using the

expectation�maximization (EM) algorithm via the NETLAB tool. The support

vector machine classi�er with the RBF kernel function was also utilized for bi-

nary classi�cation, since the data were linearly inseparable. The combination of

hidden Markov models as a feature extraction tool and Gaussian mixture model

as a classi�cation tool performed signi�cantly better for coronary artery disease

detection when dealing with overlapped data distributions, as the feature space

in this study. The sensitivity, speci�city, and accuracy were 85.7%, 79.8%, and

82.5%, respectively. They claimed that this was because the 4D feature inputs

posed signi�cant challenges for classi�cation. The drawback of this study is that

the length of each heartbeat was �xed at 400 points.

Green et al. employed arti�cial neural network ensembles on ECG data to

detect acute coronary syndrome, which is a type of coronary artery disease [46].

The ECG data were acquired from acute coronary syndrome patients presenting

to an emergency department with chest pain. Feature reduction was accomplished

using principal component analysis, and 16 principal component analysis variables

were used for training the models. The cross-entropy error function was used
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and minimized using the gradient descent method. Two methods were used for

constructing the ensemble models, which were the bagging method and S-fold

cross-splitting. The bagging ensemble contained multilayer perceptrons trained

on bootstrap samples of the original training set. Model selection was performed

using a grid search, and the best model was found to be an arti�cial neural

network cross-splitting ensemble trained solely on the ECG data. As a result,

they found an advantage in using arti�cial neural network ensembles compared

to both multilayer perceptrons and logistic regression. The addition of clinical

data did not improve the performance of the arti�cial neural network ensemble.

At the sensitivity of 95%, the speci�city was 41%, corresponding to a negative

predictive value (NPV) of 97%. They claimed that the ensemble model, combined

with the judgment of trained emergency department personnel, could be useful

for the early discharge of chest pain patients. The limitation of the study is the

relatively small study population.

Al-Zaiti et al. used arti�cial neural network, logistic regression, and gradient

boosting machine for the prediction of myocardial ischemia in patients with chest

pain using only the 12-lead ECG [82]. First, they preprocessed all ECGs using

manufacturer-speci�c commercial software and manually inspected tracings for

noise and artifacts. After ectopic beats were removed, and median beats were

computed, they extracted the temporal�spatial ECG features from each prehos-

pital ECG using previously validated commercial algorithms. Feature selection

and annotation based on existing clinical knowledge improved the classi�cation

performance of linear prediction models like logistic regression. This is reason-

able, given that data reduction and labeling could reduce the dimensionality and

complexity of the data. Nonlinear models like arti�cial neural network and gradi-

ent boosting machine were more powerful tools for handling the high-dimensional

and highly correlated nature of ECG features. They trained and tested the per-

formance of these three classi�ers on two independent prospective patient cohorts

using the same temporal-spatial features. They employed the classi�ers with the

best low bias�low variance trade-o� to create a simple machine learning fusion

classi�er, which showed a sensitivity of 77%, speci�city of 76%, precision of 43%,

and negative predictive value (NPV) of 94%. Supplementing the algorithm with
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patient history data did not improve classi�cation performance. They claimed

that the model can be used as a clinical decision support tool, when combined

with the judgment of trained emergency department personnel, to help improve

clinical outcomes in patients with chest pain.

Daraei et al. presented a prediction model for myocardial infarction using

classi�cation data mining methods that considered the imbalanced nature of the

problem [83]. Firstly, the min-max normalization method was applied to scale

the features' values. A hybrid feature selection method, which includes a genetic

algorithm and Weight by Relief, was then applied to select the best subset of fea-

tures. The top-weighted features selected by the Weight by Relief method were

given to the genetic algorithm to choose the best �nal features. Feature selec-

tion improved the performance of both cost-sensitive and cost-insensitive models.

The metacost classi�er was applied to create a cost-sensitive J48 (C4.5) decision

tree by assigning di�erent cost ratios for misclassi�ed cases. Implementing the

cost-sensitive J48 decision tree on the imbalanced dataset provided better results

compared to not using a cost-sensitive model. Moreover, making the J48 deci-

sion tree cost-sensitive improved performance over traditional classi�ers. Using

the hybrid feature selection method along with the cost-sensitive classi�cation

method yielded an accuracy of 82.6%, sensitivity of 86.6%, and F-measure of

80%, respectively. Rapidminer was used to implement the proposed model. The

limitation of the study is the unavailability of the Q-wave features and rhythm

data in the dataset.

Sun et al. presented a method for the detection of myocardial ischemia in

patients with subtle ECG waveform changes using ensemble learning to inte-

grate ECG dynamic features obtained via deterministic learning [84]. Wavelet

transform-based analysis was performed to remove the noise in the 12-lead ECG

signals, which were then linearly converted to 3-lead vectorcardiography signals

using the Kors matrix to minimize computational complexity. The dynamic

modeling of vectorcardiography by deterministic learning was implemented to

generate a cardiodynamicsgram. Three low-dimensional and discriminative dy-

namic features, namely the spectrum �tting exponent, Lyapunov exponent, and

Lempel-Ziv complexity, were extracted from the cardiodynamicsgram. Random
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feature selection was used to obtain di�erent feature subsets. A random sampling

method was employed to generate various data subsets for each feature subset

to train multiple individual classi�ers, including support vector machine with an

RBF kernel, support vector machine with a linear kernel, and a boosting tree.

Subsequently, the bagging-based heterogeneous ensemble learning algorithm was

applied to these features to generate di�erent base classi�ers. The bagging al-

gorithm was used to fuse outputs of di�erent individual base classi�ers using a

weighted voting method to generate a �nal classi�er for myocardial ischemia de-

tection. The heterogeneous ensemble learning algorithm exhibited an accuracy of

89.1%, sensitivity of 91.7%, and speci�city of 82.7% using repeated 5-fold cross-

validation. They claimed that the proposed ensemble model, which fused support

vector machine and the boosting tree, outperformed conventional base classi�ers

and homogeneous ensemble models. However, their proposed ensemble model

did not achieve better results on the external test set, which was obtained from

a di�erent medical center.

Bashir et al. proposed a weighted vote-based ensemble model for predict-

ing cardiovascular diseases [59]. Firstly, di�erent preprocessing techniques were

employed to clean the data. They claimed that the proposed ensemble model

overcomes the limitations of conventional data-mining techniques by combin-

ing various types of heterogeneous classi�ers, including support vector machines,

naive Bayes, decision tree, and instance-based learners. They used a weighted

vote-based ensemble technique to combine all the individually trained classi�ers.

They employed the 10-fold cross-validation method to alleviate the insu�ciency

of samples. The ensemble model exhibited an accuracy of 87.3%, sensitivity of

93.7%, speci�city of 92.8%, and F-measure of 82.1%. It achieved better perfor-

mance compared to other individual classi�cation techniques. RapidMiner was

utilized for model building, training, and testing.

Ramasamy et al. presented a rhythm-based approach to screen patients with

cardiac arrhythmias at the primary level [41]. During pre-processing, various

noises associated with the ECG signals were removed. The R peaks in the ECG

signals were located, and the signals were segmented based on the R peak loca-

tions to detect a single heartbeat. The Fourier-Bessel series expansion features
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of the segmented ECG signals were extracted by computing the Fourier-Bessel

coe�cients using the Fourier-Bessel series expansion method on the segmented

ECG beats. The feature vector dimensions were reduced using principal compo-

nent analysis to acquire low-dimensional Fourier-Bessel series expansion features,

reducing the computational complexity. These features were used as input to

the Jaya-optimized ensemble random subspace k-nearest neighbor (JO-ERSKNN)

classi�er to classify �ve types of CAR beats. Jaya optimization was applied to

gradually tune the hyper-parameters of the ensemble random subspace k-nearest

neighbor classi�er. The model demonstrated an accuracy of 99.4%, sensitivity of

95.4%, and speci�city of 99.4% for the classi�cation of cardiac arrhythmias. They

claimed that the model can be made compatible with various wearable devices.

Exarchos et al. presented an automated methodology based on association

rules for the detection of myocardial ischemia in long-duration ECG recordings

[69]. During preprocessing, the noise was removed from the ECG signals. The

ECG features were extracted from the ST segment and T wave of ECG beats.

The features were then discretized by transforming the continuous-valued fea-

tures into categorical using the modi�ed classi�cation tree algorithm. This tree

was created from the training set during the discretization stage and was applied

to classify the cases in the test set. They used an association rule extraction

algorithm and a rule-based classi�cation model to perform binary classi�cation.

The classi�cation tree discretizer, combined with the predictive association rules

algorithm, yielded higher classi�cation performance and required less time for

rule generation. The model showed a sensitivity and speci�city of 87% and 93%,

respectively. They claimed that the model has the ability to provide interpre-

tation for the decisions made, due to the employment of association rules for

classi�cation. The disadvantage of the study is that the association rules method

can also �nd spurious relationships among the data.

Moreover, most of the previously proposed deep learning methods for the di-

agnosis and classi�cation of various cardiovascular diseases are based on one-

dimensional (1D) convolutional neural network architectures, commonly trained

using transfer learning or �ne-tuning methods and utilizing exclusively ECG data

[85, 86]. Furthermore, the other existing deep learning methods that used only
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ECG data include recurrent neural networks [85, 87, 88], combined convolutional

neural network-recurrent neural network [89, 90], transformer networks [91, 92],

capsule networks [93, 94], deep neural networks [95, 96], deep belief networks

[97, 98], autoencoders [99, 100], and restricted Boltzmann machines [85, 101].

However, none of these existing machine and deep learning studies have jointly

utilized CSNA and ECG data to bene�t from the diversity in di�erent data types

and leverage their strengths for the accurate and reliable diagnosis of cardiovas-

cular diseases.

Brisk et al. conducted a retrospective and observational study designed to as-

sess the feasibility of detecting induced coronary artery disease in human subjects

earlier than experienced cardiologists using a deep convolutional neural network

trained with transfer learning [102]. Firstly, ECG signals were split into short-

length ECG segments. They used a 34-layer convolutional neural network with

residual connections, culminating in a fully connected layer with a single, sigmoid-

activated output node. The model was evaluated using 10-fold cross-validation,

and the loss was calculated using binary cross-entropy. The model achieved a sen-

sitivity of 84.2%, speci�city of 94.7%, accuracy of 80.3%, and F1-score of 81.4%.

They claimed that the dataset was too small for the model to achieve meaningful

performance, despite the use of transfer learning. The study highlighted the risk

of deep learning models leveraging data leaks to produce spurious and falsely high

results. The drawback of this study is that the model was initiated using weights

from the CAR detection task, based on the assumption that the ECG features

learned during CAR detection would improve generalization for coronary artery

disease detection, which may not be accurate for all types of coronary artery

diseases.

Reasat et al. presented a shallow convolutional neural network architecture

for the detection of myocardial infarction using 3-lead ECG signals [103]. Firstly,

each signal was downsampled from 1 kHz to 250 Hz. A two-stage median �lter was

then used to remove baseline wander. Next, a Savitzky-Golay smoothing �lter

was used to remove other noises. The de-noised signal was further downsampled

to 64 Hz to decrease computational burden and reduce training time. The signals

were then partitioned into short-length ECG segments. The convolutional neural
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network bene�ted from the use of varying �lter sizes in the same convolutional

layer, which allowed it to learn features from signal regions of varying lengths.

Feature maps extracted by the inception blocks were concatenated and passed on

to a global average pooling layer. Lastly, there was a two-unit dense layer with

a softmax activation layer, providing categorical probability. The weights of the

dense layer were L2 regularized to prevent over-�tting. The back-propagation

training algorithm and the Adam optimizer was used to update the weights.

A subject-oriented approach was employed, in which the convolutional neural

network was tested on one patient and trained on the rest of the patients. The

model achieved an accuracy of 84.5%, sensitivity of 85.3%, and speci�city of

84.1% when compared to the benchmark. The model was implemented using the

Keras neural network library.

Makimoto et al. presented a convolutional neural network equipped with a 6-

layer architecture to diagnose myocardial infarction using ECG images obtained

from a reduced and optimized number of ECG leads [104]. During the network

training, they incorporated data augmentation to increase the learning e�cacy.

They generated activation maps of the �nal convolutional layer using Grad-CAM

to visualize the convolutional neural network's focus points on the ECGs during

its myocardial infarction recognition. They observed that the convolutional neu-

ral network strongly focused on the ST segment and T wave elevation in the ECG

to diagnose myocardial infarction, similar to how cardiologists do. The model was

then tested together with 10 physicians using the data in the test set and their

performances in recognizing myocardial infarction were compared. The perfor-

mance of the convolutional neural network model was higher compared to that

of the physicians. The method revealed an accuracy of 75%, sensitivity of 65%,

speci�city of 86%, precision of 82%, negative predictive value (NPV) of 71%, and

F1-score of 72%. Hence, they suggested that a simple 6-layer convolutional neural

network architecture derived from a small ECG database may achieve compara-

ble capability to cardiologists in recognizing myocardial infarction using ECG

images. Additionally, ECG image compression up to a quarter of the resolution

did not signi�cantly decrease the myocardial infarction detection capability of the

convolutional neural network.
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Hammad et al. presented a method based on an end-to-end deep convolutional

neural network model to perform binary classi�cation for automated detection of

myocardial infarction using ECG data [105]. The proposed convolutional neural

network model included three blocks of 1D convolutional layers, batch normal-

ization, dropout operations, two dense layers, recti�ed linear unit (ReLU), and

softmax activation functions. To reduce the impact of imbalanced ECG data,

they focused on the loss of the minority classes and optimized the model using

the focal loss function. They used the Adam optimization algorithm and imple-

mented a strati�ed 5-fold cross-validation. The proposed method using the focal

loss performed better and converged earlier than the one without using the focal

loss. It showed an overall accuracy of 89.7%, precision of 88.5%, sensitivity of

81.1%, and an F1-score of 83%.

Darmawahyuni et al. suggested sequence modeling based on a long short-term

memory network for the binary classi�cation of sequential ECG data to automat-

ically detect myocardial infarction using ECG signals [106]. The performance

of the proposed method was compared to that of the standard recurrent neural

network and gated recurrent unit network. The best sequence model classi�er

was found to be long short-term memory with a 90%:10% training and test set

split. They claimed that a simple long short-term memory network presented

better performance results in the training and test sets compared to the standard

recurrent neural network and gated recurrent unit network architectures with

identical hyper-parameters. Speci�cally, long short-term memory had a sensi-

tivity of 98.4%, speci�city of 97.9%, precision of 95.6%, and F1-score of 96.3%,

respectively. They stated that long short-term memory was able to learn and

select which data needs to be stored or discarded, resulting in its better perfor-

mance compared to the standard recurrent neural network and gated recurrent

unit network.

Feng et al. used a combined 16-layer convolutional neural network-long short-

term memory model for binary classi�cation of myocardial infarction using one-

lead ECG data [107]. During pre-processing, they used the wavelet transform

method to �lter the original ECG noise and the Daubechies wavelet basis function

to decompose the ECG signals into 10 levels. They applied the Pan�Tompkins
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algorithm to detect the R-peaks in ECG recordings, which were subsequently

used for heartbeat segmentation to a �xed length. Given the imbalanced nature

of the ECG data, they performed random over-sampling to avoid over-�tting dur-

ing training and improve the model's generalizability. The convolutional neural

network-long short-term memory model was trained to automatically learn the

spatial and temporal characteristics of ECG signals. It was observed that the

model achieved the highest accuracy when the data of �ve adjacent heartbeats

were selected as the input, and the Adam optimizer was utilized. They obtained

an accuracy of 95.4%, sensitivity of 98.2%, speci�city of 86.5%, and F1-score of

96.8%.

Rath et al. used four deep learning models, including an autoencoder, re-

stricted Boltzmann machine, self-organizing map, and a radial basis function

network, to detect coronary artery disease using ECG signals [108]. Additionally,

they developed an ensemble model by combining the two best-performing deep

learning models, which were the autoencoder and self-organizing map models,

based on the principle of majority voting. The order of performance rankings

for coronary artery disease detection, from the highest to the lowest, belonged

to the self-organizing map-autoencoder, autoencoder, self-organizing map, radial

basis function network, and restricted Boltzmann machine, respectively. Hence,

the self-organizing map-autoencoder ensemble model outperformed all individual

deep learning models with an accuracy of 98.4% and an F1-score of 97.1%. They

asserted that this could be attributed to the ensemble model's ability to overcome

the statistical, computational, and representational problems associated with the

datasets.

Prabhakararao et al. introduced an end-to-end multi-lead diagnostic attention-

based recurrent neural network (MLDA-RNN) for the automated classi�cation

of the three myocardial infarction severity stages and healthy control subjects

[88]. They employed recurrent neural networks to encode the temporal variations

in the 12-lead ECG signals. These encoded vectors from the recurrent neural

network encoding blocks were then input into the intra-lead attention module

to summarize the within-lead discriminative vectors and obtain lead-attentive

representations. Subsequently, the inter-lead attention module aggregated these
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representative vectors from the intra-lead attention module based on their clin-

ical relevance to obtain a high-level feature representation for reliable diagnosis.

The vector obtained from the inter-lead attention module was fed to the fully

connected layer with a softmax activation function to classify the severity stages

of myocardial infarction. They also incorporated batch normalization layers after

the inter-lead attention module to improve the convergence speed. They used a

dropout layer before the output layer to improve the model generalization. They

trained the model using back-propagation through time and implemented early

stopping method to avoid over-�tting. They employed the grid search method

to optimize the hyper-parameters of the recurrent neural network and atten-

tion modules. The model exhibited an overall accuracy of 97.7%, sensitivity

of 97.6%, and speci�city of 99.4% without compromising on class-wise detection

rates. They claimed that MLDA-RNN showed promising results in terms of model

interpretability, as the learned attention weights often correlated with clinicians'

way of diagnosing myocardial infarction severity stages.

Hernandez et al. proposed an automated method for the detection of my-

ocardial infarction from continuous ECG monitoring using a set of ECG and

vectorcardiography features [109]. First, they applied a median �lter to remove

high-frequency noise. Next, they implemented a moving window over the �ltered

signal and calculated the distribution parameter values in each window. They

selected the optimal distribution parameters by performing a statistical analysis

to control the model's complexity, prevent over-�tting, and facilitate the model's

learning process. From this, they obtained another time-series for each distribu-

tion parameter. They derived seven ECG features from vectorcardiography, which

were found to be optimal for detecting myocardial infarction using the reduced

3-lead ECG signals. Out of the seven ECG features, �ve were vectorcardiography

features derived from the QRS and T wave complexes, while the other two were

ST elevation features. They analyzed the distribution properties of each ECG

feature to facilitate the identi�cation of underlying patterns in the data. They

used these features to train and validate the recurrent neural network composed

of two unidirectional long short-term memory networks with a fully connected

layer and ReLU activation function. They observed a clear separation in ECG
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feature median values between the baseline and myocardial infarction conditions

for the two distribution parameters, indicating that these may be suitable pa-

rameters for characterizing myocardial infarction. The proposed method had an

accuracy of 97.4% and sensitivity of 94.7%. The drawback of this study is the use

of a reduced number of ECG leads, which can limit the detection performance of

certain types of myocardial infarction.

Miao et al. presented an enhanced deep neural network model for the diag-

nosis and prognosis of coronary artery disease [110]. The proposed deep neural

network model includes two hidden layers and an output layer with a sigmoid ac-

tivation function. It was built based on a deep multilayer perceptron architecture

equipped with linear and non-linear transfer functions, regularization, dropout,

and a binary classi�cation layer. During the training of the deep neural network,

dropout rates in both hidden layers were randomly applied, resulting in random

connections within the deep neural network architecture to reduce over-�tting.

The model achieved an accuracy of 83.6%, sensitivity of 93.5%, speci�city of

72.8%, precision of 79.1%, and F1-score of 85.7%. The limitation of this study is

that they did not use cross-validation to ensure robustness.

Bigler et al. introduced a convolutional neural network trained with transfer

learning to perform binary classi�cation for myocardial ischemia diagnosis us-

ing one-lead ECG images [111]. They conducted a retrospective observational

study to test a hypothesis-generating approach using an open-access convolu-

tional neural network model with di�erent depth and network architecture that

was pre-trained using the images from the ImageNet dataset. Before training the

convolutional neural network on this study's database, all training images were

randomly shu�ed and processed by adding noise to prevent over-�tting. The

underlying morphology responsible for the network prediction for myocardial is-

chemia detection focused mainly on the distinctive features in the ST-segment

and T-wave of the ECG. During transfer learning, the last three layers of the con-

volutional neural network responsible for the network prediction were replaced for

the new task. Remaining layers responsible for pattern recognition and feature

extraction were not changed. A dropout layer was added to prevent the con-

volutional neural network from over-�tting. The convolutional neural network
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showed a sensitivity of 83%, speci�city of 98%, accuracy of 91.5%, and F1-score

of 89.9%, which revealed higher performance than manually obtained quantitative

intracoronary ECG ST-segment shift for myocardial ischemia detection.

Altan et al. suggested a decision-support system to aid cardiologists in coro-

nary artery disease diagnosis [34]. Firstly, short-term ECG segments were ran-

domly obtained from 24-hour ECG signals using the moving window analysis

technique to increase the number of samples from each subject. In the �rst stage

of the Hilbert-Huang transform, frequency-modulated signals, known as intrinsic

mode functions, were obtained by applying empirical mode decomposition (EMD)

to the short-term ECG segments. In the second stage, the Hilbert transform was

applied to each intrinsic mode function to calculate the instantaneous frequency

spectral features. Binary classi�cation using the statistical features of intrinsic

mode functions was performed using a deep belief network classi�er. The clas-

si�er consisted of one input layer, two hidden layers, and one output layer with

two outputs for binary classi�cation. The deep belief network classi�er initially

evaluates weights and biases between visible and hidden layers through unsuper-

vised pre-training of stacked restricted Boltzmann machines. In the subsequent

supervised learning phase, weights and biases were updated using �ne-tuning to

optimize the parameters for improving classi�cation performance. The activation

functions of the hidden and output layers in the supervised learning phase were

the hyperbolic tangent and sigmoid functions, respectively. The deep belief net-

work classi�er achieved an accuracy of 98%, speci�city of 98.8%, and sensitivity

of 96% using the 10-fold cross-validation method.

Xiao et al. explored the application of convolutional neural networks to de-

tect signi�cant changes in the ST segments of whole-day Holter ECG signals for

coronary artery disease diagnosis [112]. They generated image-based samples by

capturing 10-second snapshots of one-lead ECG waveforms and then transform-

ing them into grayscale images using a grid overlay to remove redundant color

information that does not contribute to the classi�cation task. These images were

saved as 8-bit JPEG �les and resized using bilinear interpolation to adhere to the

input requirements of the Google Inception V3 model, which had been pre-trained

using transfer learning from images in the ImageNet dataset. The image features
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that distinguish between ST from non-ST conditions were extracted by the con-

volutional layers in the convolutional neural network model for the classi�cation

of each 10-second image sample. They retained all the model parameters in the

Google Inception V3 model, except for the �nal layer, which was retrained using

the training images from the present study. The model exhibited a sensitivity

of 82.6%, speci�city of 80.3%, and F1-score of 87.3%. It achieved performance

comparable to that of expert cardiologists in the detection of ST changes. The

limitation of the study is that the algorithm was built upon one-lead ECG data.

Butun et al. proposed a computer-aided diagnosis system featuring a 1D cap-

sule network (1D-CapsNet) for the automated detection of coronary artery dis-

ease from short-length ECG segments [93]. Initially, they applied discrete wavelet

transform to raw ECG signals to eliminate noise. Subsequently, they employed Z-

score normalization to make the ECG signals suitable for input into the proposed

network. They modi�ed the original capsule network model for 1D signal appli-

cations by rede�ning layer parameters and adding sub-layers to detect coronary

artery disease. They employed two ECG capsules that represented the normal

and coronary artery disease classes. The decoder section of the capsule networks

compressed the ECG signals and served as a regulator to protect important fea-

tures in the capsule layers during training. The model yielded an accuracy of

98.6%, sensitivity of 97.9%, speci�city of 98.7%, and precision of 93.3% for short-

length ECG segments using a 5-fold cross-validation method. They asserted that

the model can serve as a diagnostic tool to assist cardiologists during medical

examinations by providing a second opinion on the patient's condition.

Acharya et al. employed a 1D-convolutional neural network structure for

diagnosing of coronary artery disease using short-length ECG segments [113].

First, they applied discrete wavelet transform to the ECG segments to eliminate

noise. Subsequently, they used z-score normalization to normalize the ECG seg-

ments. They developed an 11-layered convolutional neural network structure,

which included four convolutional layers, four max-pooling layers, and three fully

connected layers, to perform binary classi�cation. The 1D-convolutional neu-

ral network was able to di�erentiate between normal and abnormal ECGs with

an accuracy of 95.1%, sensitivity of 91.1%, speci�city of 95.8%, and precision
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of 80.8%. They claimed that the proposed convolutional neural network struc-

ture was robust to shifting and scaling invariance, and they suggested that the

proposed system is suitable for real-time monitoring.

Dutta et al. presented a simple 2-layer convolutional neural network resis-

tant to class imbalance. It performed binary classi�cation on signi�cantly class-

imbalanced ECG data for coronary artery disease diagnosis [114]. Data prepro-

cessing was performed using the least absolute shrinkage and selection operator

(LASSO) based feature weight assessment. LASSO regression was repeatedly

performed using multiple instances of randomly subsampled datasets to assess

the consistency of attribute contributions. A majority-voting algorithm was ap-

plied to extract important features and identify the contribution of signi�cant

attributes in data variation, resulting in dimensionality reduction by excluding

unimportant variables. Subsequently, the important features were fed into a

1D-convolutional neural network and homogenized using a fully connected layer.

They employed a training schedule resembling simulated annealing to minimize

the generalization error between train and test losses. Nonlinear transformation

was performed using ReLU, and dropout was applied to reduce over-�tting. The

shallow convolutional neural network architecture demonstrated a classi�cation

accuracy of 77% in correctly classifying the presence of coronary artery disease

in the test set. The recall values for other machine learning methods, such as

support vector machines and random forests, were comparable to those of the

convolutional neural network model. However, the accuracy of convolutional

neural network (79.5%) was superior to the individual accuracies of support vec-

tor machines or random forest classi�ers, and the convolutional neural network

exhibited better accuracy in predicting negative cases. They asserted that the

convolutional neural network exhibited a considerable degree of resilience toward

data imbalance.

Sharma et al. presented a rhythm-based methodology for the point-of-care

diagnosis of cardiac arrhythmias at a primary level [40]. During pre-processing,

frequency normalization was performed to match the sampling frequency of the

datasets from di�erent sources to the input of the proposed algorithm. There-

fore, the three databases were downsampled to 300 Hz to maintain homogeneity
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with the training data and the algorithm. A Butterworth band-pass �lter was

employed to eliminate baseline drift and high frequency noise from one-lead ECG

signals. A dataset-dependent notch �lter with an appropriate frequency of either

50 Hz or 60 Hz was used to remove power-line interference. The QRS detection

algorithm was applied to the �ltered ECG signals, and RR-interval sequences

of one-lead and short-length ECG segments were computed. Fourier-Bessel se-

quences were calculated using the Fourier-Bessel series expansion to transform

RR-interval sequences into more meaningful sequences that can better character-

ize the cardiac rhythms into normal and abnormal classes. The computed Fourier-

Bessel coe�cients of di�erent lengths for di�erent subjects were upsampled to a

�xed number to make Fourier-Bessel sequences homogeneous in terms of length.

The derived Fourier-Bessel sequences-based intelligent series were used as input

to the unidirectional long short-term memory model, which was used to directly

extract signi�cant information required for binary classi�cation. They obtained

an accuracy of 78.4%, sensitivity of 65.1%, speci�city of 86.8%, and F1-score of

76.5% in classifying normal and CAR classes using 10-fold cross-validation. They

claimed that the addition of the Fourier-Bessel series expansion-layer improved

CAR detection performance, and that the proposed intelligent series can reveal

the di�erences between normal and CAR ECG signals.

The emergence of the novel coronavirus disease 2019 (COVID-19) was at-

tributed to a new, highly contagious Beta-Coronavirus known as Severe Acute

Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This outbreak was o�-

cially declared a pandemic by the World Health Organization (WHO) in March

2020 [50, 115]. This unprecedented global health crisis has had far-reaching

consequences worldwide. The clinical presentation of COVID-19 ranged from

asymptomatic cases to highly severe pneumonia, multi-organ failure, and death.

Moreover, a signi�cant proportion of patients infected with various SARS-CoV-2

variants, which have di�erent infectivity and pathogenicity levels, exhibited no

symptoms. Nonetheless, asymptomatic carriers of the virus pose a substantial

risk, as they can unknowingly transmit SARS-CoV-2 to healthy individuals un-

less isolated. Therefore, the rapid, early, and accurate detection of COVID-19 is

of paramount importance for timely isolation and treatment, curbing the spread
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of infection, and ultimately reducing the mortality associated with COVID-19.

Reverse transcription polymerase chain reaction (RT-PCR) is the gold stan-

dard diagnostic test for detecting COVID-19 [116]. Nevertheless, it has sev-

eral limitations that necessitate the exploration of complementary diagnostic ap-

proaches. Previous studies reported that the RT-PCR test, while exhibiting high

speci�city, has low sensitivity and high false-negative rates, ranging from 45% to

60% [116, 117]. This reduced sensitivity can be attributed to several contributory

factors, including the time interval between symptom onset and RT-PCR testing,

the low viral ribonucleic acid (RNA) load in specimens, variations in specimen

collection techniques, improper nucleic acid extraction from specimens, the tech-

nical pro�ciency of laboratory personnel, improper storage or transportation of

viral RNA samples, the analytical performance characteristics of RT-PCR kits,

and the rapid mutation capability of the SARS-CoV-2 virus. Consequently, a

negative RT-PCR test result does not unequivocally exclude the possibility of

SARS-CoV-2 infection and should not be construed as de�nitive proof of the

absence of SARS-CoV-2 infection. Thus, it should not be employed as the sole

criterion for patient diagnosis and isolation. Furthermore, it is worth noting that

the duration between RT-PCR sampling and the receipt of test results can extend

to several hours in some countries, and multiple repetitions of the RT-PCR test

may be required to prevent false-negative results in individuals with suspected

infection. In light of these challenges, the rapid, early, and accurate diagnosis,

followed by prompt isolation and treatment of COVID-19 patients, remains a

major challenge for physicians.

Thorax computed tomography plays a pivotal role in the diagnosis of moder-

ate to severe COVID-19 due to its relatively higher sensitivity, ranging from 60%

to 94% [118]. This heightened sensitivity is particularly valuable in cases where

patients exhibit clinical symptoms consistent with COVID-19, but yield negative

results in RT-PCR tests for SARS-CoV-2. However, thorax computed tomogra-

phy exhibits a relatively lower speci�city, reported between 25% and 53% [118].

This reduced speci�city arises from the fact that radiological �ndings of SARS-

CoV-2 infection often manifest similar patterns that overlap with those seen in
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other viral infections and lung diseases, including but not limited to SARS, Mid-

dle East Respiratory Syndrome (MERS), in�uenza, avian in�uenza (bird �u), and

swine in�uenza. In other words, thorax computed tomography possesses limita-

tions stemming from its low performance in distinguishing COVID-19 pneumonia

from various other lung diseases. Furthermore, thorax computed tomography has

very limited clinical utility in the early stages of SARS-CoV-2 infection and for

diagnosing asymptomatic patients with no anomalies in the lungs. Therefore,

existing guidelines set forth by the American College of Radiology indicate that

radiological data are necessary and essential, but not solely su�cient for the re-

liable diagnosis or classi�cation of COVID-19.

Within the context of this thesis, our preference was to employ three-

dimensional (3D) thorax computed tomography images rather than two-

dimensional (2D) chest X-ray images. This choice is due to the fact that tho-

rax computed tomography exhibits higher sensitivity compared to chest X-ray

in the detection of subtle lung anomalies associated with COVID-19. Further-

more, thorax computed tomography provides detailed cross-sectional images of

the lungs, o�ering a more comprehensive quanti�cation of lung involvement. This

can considerably aid in monitoring disease progression and assessing the severity

of COVID-19. Notably, COVID-19 frequently manifests with ground-glass opac-

ities (GGOs) in the lungs, which can be better visualized on thorax computed

tomography images in contrast to chest X-ray. Thorax computed tomography is

capable of detecting lung anomalies even in the early stages of the disease, which

may not be visible on chest X-ray.

Laboratory data (complete blood counts) provide valuable information for the

diagnosis of COVID-19. However, their utility is constrained by certain lim-

itations, foremost among them being their inability to distinguish COVID-19

from other lung diseases. In other words, laboratory data, such as neutrophil

count, lymphocyte count, and the neutrophil-lymphocyte ratio, lack speci�city

for the diagnosis of COVID-19. Numerous other viral and bacterial infections

can produce similar anomalies in laboratory data, resembling those observed in

COVID-19 patients. Consequently, this similarity can lead to false-positive out-

comes. Therefore, laboratory data alone cannot de�nitively diagnose COVID-19
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and are not su�cient for the reliable diagnosis or classi�cation of COVID-19.

In this thesis, our primary objective was to address the limitations and draw-

backs associated with individual diagnostic tests and to �ll the research gaps in

the literature. For this purpose, we constructed a new, fully labeled COVID-19

database called the Ankara University Faculty of Medicine COVID-19 (AUFM-

CoV) database. It contains RT-PCR curves, thorax computed tomography im-

ages, and laboratory data of patients with COVID-19 pneumonia, other viral

and bacterial pneumonia, parenchymal lung diseases, and healthy subjects. We

intentionally designed this database to include a more comprehensive and diverse

variety of medical data compared to publicly available COVID-19 databases. Ad-

ditionally, thorax computed tomography images in the AUFM-COV database in-

clude other pneumonias and lung diseases with GGOs, which are very di�cult to

distinguish from COVID-19 pneumonia. Therefore, it represents a highly valu-

able resource that enables the development and benchmarking of robust super-

vised and unsupervised arti�cial intelligence techniques for COVID-19 diagnosis,

classi�cation, and prognosis.

Machine and deep learning techniques have revolutionized the analysis and

interpretation of biomedical signals and images. These techniques have demon-

strated remarkable potential in signi�cantly enhancing the performance and e�ec-

tiveness of disease diagnosis and classi�cation. The existing arti�cial intelligence-

based techniques proposed for COVID-19 detection and classi�cation mostly focus

on the utilization of a single type of medical data [119, 120]. To the best of our

knowledge, no studies in the existing literature have presented a hybrid arti�cial

intelligence technique that jointly utilizes RT-PCR curves, thorax computed to-

mography images, and laboratory data for the robust and reliable detection of

COVID-19.

More precisely, the majority of existing deep learning studies have proposed

various convolutional neural network models that utilize only digital radiological

images [119, 120]. However, the current guidelines from the American College of

Radiology indicate that radiological images are necessary, but not solely su�cient

for the reliable diagnosis of COVID-19 [121]. Additionally, this concentration on
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a singular data modality constituted a signi�cant research gap in the literature,

highlighting the need for further investigation. One of the primary motivations

driving our study was to address the limitations of previous related studies that

have only used radiological images and to �ll the research gaps in the existing

scienti�c literature.

Furthermore, it is worth noting that, as of the current state of the literature,

no studies have yet introduced an ensemble learning technique that combines

various deep learning and machine learning methods to perform robust detection

of COVID-19. Additionally, there are no studies to date that have utilized this

hybrid arti�cial intelligence technique for the di�erential diagnosis of COVID-19,

other pneumonias, lung diseases, and healthy lungs. These research gaps within

the literature underscore the need for further investigation.

For these reasons, the primary research focus of this thesis has been dedicated

to developing a new, automated arti�cial intelligence-based Hybrid Clinical Deci-

sion Support Technique that jointly analyzes RT-PCR curves, thorax computed

tomography images, and laboratory data. Unlike existing studies, our aim has

been to bene�t from the diversity in heterogeneous medical data sources and

leverage their strengths, while mitigating their limitations.

This thesis addresses research gaps in the literature by proposing the �rst au-

tomated arti�cial intelligence-based hybrid clinical decision support technique,

which leverages the power of ensemble learning by making use of the predictive

capabilities of various arti�cial intelligence algorithms to increase the overall per-

formance and generalizability of COVID-19 diagnosis. Speci�cally, the automated

arti�cial intelligence-based hybrid clinical decision support technique integrates

two preprocessing methods, long short-term memory and convolutional neural

network-based deep learning methods, along with an arti�cial neural network-

based machine learning method for fast, early, and accurate COVID-19 diagnosis.

Additionally, most of the previous arti�cial intelligence studies have primarily

focused on binary classi�cation tasks, mainly distinguishing between COVID-19

pneumonia and healthy lungs [119, 120]. In contrast, only a limited number
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of studies have investigated the di�erential diagnosis of COVID-19 pneumonia,

other pneumonias, other lung diseases, and healthy lungs by performing multi-

class classi�cation. Conversely, our arti�cial intelligence-based hybrid clinical de-

cision support technique has demonstrated remarkable pro�ciency in accurately

diagnosing COVID-19 and distinguishing COVID-19 pneumonia from other pneu-

monias, other lung diseases, and healthy lungs by performing four-class classi�-

cation. It is essential to highlight that this four-class classi�cation task presents

a formidable challenge when contrasted with binary classi�cation scenarios.

Furthermore, the automated arti�cial intelligence-based hybrid clinical deci-

sion support technique performs multi-class classi�cation and very successfully

di�erentiates COVID-19 from other pneumonias, lung diseases, and healthy lungs.

This task is particularly challenging due to the remarkably similar radiological

�ndings observed among patients with COVID-19 pneumonia, other pneumonias,

and lung diseases within the AUFM-CoV database. We believe that this study

presents a signi�cant contribution to the existing literature due to its pioneering

approach in introducing a new hybrid arti�cial intelligence technique, which incor-

porates an ensemble learning method to enhance the performance and reliability

of COVID-19 detection. Consequently, the automated arti�cial intelligence-based

hybrid clinical decision support technique holds promise in assisting physicians

to render more accurate and well-informed decisions in clinical practice. This,

in turn, has the potential to increase physicians' success rates and alleviate their

workloads.

Furthermore, one of our principal objectives was to compare the performance of

our long short-term memory-based deep learning method with the gold standard

diagnostic test RT-PCR, as well as to benchmark it against existing arti�cial

intelligence studies in the literature that utilized only RT-PCR data for COVID-

19 diagnosis. Our �ndings conclusively demonstrate that our long short-term

memory-based deep learning model exhibits superior sensitivity in diagnosing

COVID-19 when compared to the gold standard RT-PCR test. Moreover, we

have shown that our model achieves higher speci�city, higher precision, and higher

F1 score compared to two previous arti�cial intelligence studies that exclusively

employed RT-PCR data for COVID-19 diagnosis.
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Additionally, one of our goals was to compare the performance of our con-

volutional neural network-based deep learning method with thorax computed

tomography, as well as existing arti�cial intelligence studies in the literature that

utilized only radiological images (thorax computed tomography or chest X-ray)

for COVID-19 diagnosis through multi-class classi�cation. Our �ndings conclu-

sively demonstrate that our convolutional neural network-based deep learning

model exhibits superior speci�city in diagnosing COVID-19 when compared to

thorax computed tomography. Moreover, we have shown that our model achieves

higher sensitivity, comparable speci�city, comparable precision, and comparable

F1 score when compared to previous arti�cial intelligence studies that exclusively

employed radiological images for COVID-19 diagnosis through four-class classi�-

cation.

Lastly, one of our purposes was to compare the performance of our auto-

mated arti�cial intelligence-based hybrid clinical decision support technique with

diagnostic test laboratory data for COVID-19 diagnosis. Our �ndings conclu-

sively illustrate that our automated arti�cial intelligence-based hybrid clinical

decision support technique achieves superior sensitivity and speci�city in diag-

nosing COVID-19 when compared to the diagnostic test laboratory data. Due to

the absence of prior studies in the existing literature that proposed a hybrid arti-

�cial intelligence technique that jointly utilizes RT-PCR curves, thorax computed

tomography images, and laboratory data to diagnose or classify COVID-19, it is

not possible to compare the performance results of our arti�cial intelligence-based

Hybrid Clinical Decision Support Technique with those of other previous studies.

1.3 Main Contributions of the Thesis

The main contributions and novelty in Chapter 3 are summarized as follows:

� We constructed a new, fully-labeled COVID-19 database that contains RT-

PCR curves, thorax computed tomography images, and laboratory data

of patients with COVID-19 pneumonia, other viral and bacterial pneumo-

nia, parenchymal lung diseases, and healthy subjects. Among the publicly
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available COVID-19 databases, our database contains the widest variety of

medical data.

� We have proposed a new automated arti�cial intelligence-based hybrid clin-

ical decision support technique. It is an ensemble learning technique that

consists of preprocessing methods, long short-term memory and convolu-

tional neural network-based deep learning methods, and arti�cial neural

network-based machine learning method that performs fast and accurate

diagnosis of COVID-19. The proposed arti�cial intelligence-based hybrid

clinical decision support technique jointly analyzes RT-PCR curves, tho-

rax computed tomography images, and laboratory data to bene�t from the

diversity in di�erent data types and leverage their strengths.

� The proposed long short-term memory-based deep learning method outper-

forms the gold standard RT-PCR test in terms of sensitivity of COVID-19

diagnosis. Moreover, it demonstrates higher speci�city, higher precision,

and higher F1 score compared to the two previous arti�cial intelligence

studies that utilized RT-PCR data for COVID-19 diagnosis.

� The proposed convolutional neural network-based deep learning method

demonstrates superior speci�city compared to thorax computed tomogra-

phy in COVID-19 diagnosis. Additionally, it exhibits higher sensitivity than

previous arti�cial intelligence studies that utilized radiological images for

COVID-19 diagnosis through multi-class classi�cation.

� The proposed automated arti�cial intelligence-based hybrid clinical deci-

sion support technique shows higher sensitivity and speci�city compared to

laboratory data in diagnosing COVID-19. Moreover, it has been shown to

very successfully di�erentiate COVID-19 pneumonia from other pneumo-

nias, and healthy lungs.
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1.4 Literature Review

We conducted a comprehensive review of the existing relevant literature to gain

an in-depth understanding of the current machine and deep learning techniques

proposed for the diagnosis or classi�cation of COVID-19. In recent years, due to

the burden of the COVID-19 pandemic on healthcare systems around the world,

various machine and deep learning techniques have been proposed for COVID-

19 diagnosis [50, 115, 122], classi�cation [50, 115, 122], prognosis [19, 123, 124],

triage [125, 126, 127, 128], predicting severity and mortality risk [129, 130, 131,

132, 133, 134, 135, 136, 137], contact tracing [138], drug and vaccine development

[139, 140], and forecasting patient numbers and the spread of the pandemic [141].

In the context of COVID-19 detection and classi�cation, existing arti�cial

intelligence-based techniques mainly focus on utilizing a single type of medical

data, thereby limiting their ability to leverage the diversity and strengths of

multi-modal data integration. Speci�cally, most of the existing deep learning

studies have proposed various convolutional neural network architectures, com-

monly trained using transfer learning or �ne-tuning methods, and have relied

solely on radiological images, such as 3D thorax computed tomography images,

2D chest X-ray images, or lung ultrasonography (LUS) images.

Apostolopoulos et al. modeled an architecture for the spontaneous identi�-

cation of COVID-19 individuals by employing deep transfer learning with �ve

di�erent pre-trained convolutional neural networks (Inception, Extreme Incep-

tion (Xception), InceptionResNetV2, Visual Geometry Group19 (VGG19), Mo-

bileNetV2) [142]. The database included chest X-ray images comprising COVID-

19, bacterial pneumonia, viral pneumonia, and healthy lungs. The model using

MobileNetV2 attained the highest binary classi�cation performance with 96.7%

accuracy, 98.6% sensitivity, 96.4% speci�city.

Haghanifar et al. proposed a framework for identifying COVID-19 using trans-

fer learning, where they utilized the CheXNet model to develop COVID-CXNet
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[143]. The database comprised chest X-ray images of COVID-19 pneumonia, non-

COVID-19 pneumonia, and the normal class. CheXNet was constructed based

on the densely connected convolutional network (DenseNet) architecture and was

trained on frontal chest X-ray images. The proposed COVID-CXNet, equipped

with 431 layers and 7 million parameters, was subsequently �ne-tuned using the

chest X-ray database. This system includes a lung separation unit to increase

the model's localization of lung irregularities. For hierarchical multi-class classi-

�cation, COVID-CXNet achieved an accuracy of 87.2% and an F1-score of 92%.

COVID-CXNet utilized Grad-CAM for visualizing the results.

Ucar et al. projected a network structure for COVID-19 diagnosis using Deep

Bayes-SqueezeNet, which was built on the pre-trained SqueezeNet model [144].

The SqueezeNet was �ne-tuned for the COVID-19 diagnosis task with Bayesian

optimization additive. Data augmentation was employed due to the limited num-

ber of chest X-ray images for COVID-19. The database contained chest X-ray

images for COVID-19 pneumonia, other pneumonia, and normal classes. The

experimental results revealed that Deep Bayes-SqueezeNet achieved an accuracy

of 98.2%, speci�city of 99.1%, and F1-measure of 98.2%. They claimed that �ne-

tuning hyper-parameters and augmenting the dataset increased the performance

of COVID-19 diagnosis compared to existing network designs.

Sharma et al. developed an explainable diagnosis system for the detection

and quanti�cation of the infection region in COVID-19 [145]. They utilized the

Covid-MANet network, which is an automated end-to-end multi-task attention

network designed for COVID-19 infection screening across �ve classes and three

stages. In the �rst stage, the model localizes attention to the relevant lungs

region for disease recognition. The second stage distinguishes COVID-19 cases

from bacterial pneumonia, viral pneumonia, normal cases, and tuberculosis cases.

In the third stage, the model quanti�es the extent of infection and the severity

of COVID-19 in the lungs. Furthermore, they proposed the multi-scale atten-

tion model MA-DenseNet201 for the classi�cation of COVID-19 cases. The MA-

DenseNet201 classi�cation model outperformed eight other convolutional neural

network models in terms of interpretability when combined with the lung localiza-

tion network. The proposed network highlights infections through segmentation
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and localization of model-focused regions to support explainable decisions. The

MADenseNet201 model with a segmentation-based cropping approach achieved

a maximum interpretability of 96% and sensitivity of 97.7%. Finally, based on

class-speci�c sensitivity analysis, the Covid-MANet ensemble network consisting

of MA-DenseNet201, Residual Network (ResNet-50), and MobileNet achieved an

accuracy of 95% and sensitivity of 98.1%.

Kedia et al. proposed the CoVNet-19 model, which is an ensemble deep convo-

lutional neural network model that can unveil important diagnostic characteristics

for detecting COVID-19 in patients using chest X-ray images [146]. CoVNet-19

combines two pre-trained deep convolutional neural network models, which are

Visual Geometry Group19 (VGG19) and densely connected convolutional net-

work (DenseNet-121). The extracted features are given as input to the sup-

port vector machine classi�er's stacked ensemble structure, which was trained

to achieve binary classi�cation (COVID-19 vs. NON-COVID-19) and three-class

classi�cation (COVID-19, normal, and pneumonia). Data augmentation was ap-

plied to COVID-19 images to increase the sample size. Experimental results

revealed an accuracy of 98.3%, precision of 98.3%, and recall of 98.3% for three-

class classi�cation.

Ismael et al. proposed deep learning-based approaches, namely deep feature

extraction, �ne-tuning of pre-trained convolutional neural networks, and end-to-

end training of a convolutional neural network, to detect COVID-19 using chest

X-ray images [147]. They utilized �ve variants of pre-trained convolutional neu-

ral networks, which are Visual Geometry Group16 (VGG16), Visual Geometry

Group19 (VGG19), Residual Network (ResNet-101), Residual Network (ResNet-

18), and Residual Network (ResNet-50), for deep feature extraction and the �ne-

tuning procedure. For binary classi�cation (COVID-19 and normal (healthy)),

they employed support vector machines with di�erent kernel functions, includ-

ing quadratic, cubic, linear, and Gaussian. The deep features extracted using

the residual network (ResNet-50) model were classi�ed using a support vector

machine with a linear kernel function, which was the model combination that

yielded the highest performance. They achieved an accuracy of 94.7%, sensitivity

of 91%, speci�city of 98.8%, and F1-score of 94.7%.
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Jain et al. proposed a deep learning-based method to detect COVID-19 using

chest X-ray images [148]. The database contained chest X-ray images of three

classes, including healthy, COVID-19, and pneumonia. After cleaning up the

images and applying data augmentation, they used deep learning-based convolu-

tional neural network models and compared their performances. Speci�cally, they

utilized three pre-trained variants, which are InceptionV3, Extreme Inception

(Xception), and ResNeXt. The Extreme Inception (Xception) model achieved

the highest accuracy of 97.9% in detecting COVID-19 using chest X-ray images.

Elkorany et al. developed a tailored COVID-19 detection model called

COVIDetectionNet using chest X-ray images [149]. The database contains chest

X-ray images labeled into three classes, which are COVID-19, normal, viral,

and bacterial pneumonia. COVIDetectionNet was based on the Shu�eNet and

SqueezeNet architectures to extract deep-learned features and multi-class sup-

port vector machines for classi�cation. The model exhibited a recall of 94.4%,

speci�city of 98.1%, precision of 94.4%, and F1-score of 94.4%.

Ko et al. aimed to develop a simple 2D deep learning framework to diag-

nose COVID-19 pneumonia based on a single chest computed tomography image

and di�erentiate it from non�COVID-19 pneumonia and non-pneumonia diseases

[150]. Transfer learning was used to create the proposed FCONet (Fast-Track

COVID-19 Classi�cation Network). FCONet was developed using transfer learn-

ing with pre-trained deep learning models as a backbone, which are Visual Geom-

etry Group16 (VGG16), Residual Network (ResNet-50), InceptionV3, or Extreme

Inception (Xception). They performed data augmentation on chest computed to-

mography images, which were categorized into four groups that are COVID-19

pneumonia, other pneumonia, normal lung, and lung-cancer. Among the four

pre-trained models of FCONet, residual network (ResNet-50) demonstrated the

highest performance with a sensitivity of 99.5%, speci�city of 100%, and accuracy

of 96.8%, outperforming the other three pre-trained models in the test set.

Rohila et al. proposed automated diagnosis of COVID-19 from chest computed

tomography images of the patients using a deep learning technique [151]. The

database was partitioned based on the severity of COVID-19 contamination. The
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proposed model, ReCOV-101, utilizes full chest computed tomography images to

detect various degrees of COVID-19 infection. To enhance detection accuracy,

computed tomography images were initially preprocessed through segmentation

and interpolation. They employed pre-trained deep convolutional neural network

models, such as residual network (ResNet-50), residual network (ResNet-101),

densely connected convolutional network (DenseNet-169), and densely connected

convolutional network (DenseNet-201). A deep convolutional neural network with

residual network (ResNet-101) as a pillar for ReCOV-101 overcomes the chal-

lenges of vanishing gradients by utilizing skip connections. It avoids training

from shallow layers and connects directly to the output layer. Regularization is

applied to skip the layer that impacts performance. The proposed model achieved

an accuracy of 94.9% using residual network (ResNet-101).

Ouchicha et al. proposed CVDNet, a deep convolutional neural network model,

for classifying COVID-19 infections from normal and other pneumonia cases using

chest X-ray images [152]. The database contained chest X-ray images labeled into

three classes, which are COVID-19, viral-pneumonia, and normal. The CVDNet

architecture is based on the residual neural network and is constructed using two

parallel levels with di�erent kernel sizes to capture local and global features of

the inputs. The CVDNet model achieved accuracies of 97.2% for the COVID-19

class, 96.7% for the normal class, and 96.5% for the viral pneumonia class.

Wang et al. suggested a deep convolutional neural network structure to de-

tect COVID-19 [153]. They used the projection-expansion-projection-extension

design in the construction of COVID-Net. They employed a human�machine

collaborative system design in the initial step. In COVID-Net, the implemented

approach blends a human-driven fundamental system architecture prototype with

a machine-driven screening tool in the second step. The database contained chest

X-ray images categorized into COVID-19, normal, and non-COVID-19 pneu-

monia classes. The COVID-Net model achieved sensitivities of 73.9%, 93.1%,

81.9%, 100% for four-class classi�cation (normal, bacterial, non-COVID-19 vi-

ral, and COVID-19 classes), respectively. It exhibited precisions of 95.1%, 87.1%,

67%, 80% for four-class classi�cation, respectively.
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Song et al. created a deep learning-based chest computed tomography diagnos-

tic system called "Deep Pneumonia" to identify patients with COVID-19 [154].

The database included three labels, which are COVID-19 pneumonia, bacterial

pneumonia, and healthy subjects. The DRENet structure was constructed using

residual network (ResNet-50), with the Feature Pyramid Network responsible for

extracting the top K data features from every image. The proposed DRENet

could accurately discriminate COVID-19 patients from bacterial pneumonia pa-

tients with an accuracy of 86%, sensitivity of 96%, precision of 79%, and F1-score

of 87%. They claimed that the model could extract primary lesion features, espe-

cially ground-glass opacity (GGO), which are visually helpful for assisting doctors

in making diagnoses.

Turkoglu proposed a method for the detection of COVID-19 through chest

computed tomography images using a Multiple Kernels-Extreme Learning

Machine-based Deep Neural Network [155]. They applied data augmentation

techniques on computed tomography images to perform binary classi�cation. The

deep features were extracted from computed tomography images using a convo-

lutional neural network. For this purpose, a pre-trained convolutional neural

network-based densely connected convolutional network (DenseNet-201) archi-

tecture, which is based on the transfer learning approach, was used. An extreme

learning machine classi�er, based on di�erent activation methods, was employed

to assess the architecture's performance. Lastly, the �nal class label was deter-

mined using the majority voting method to predict the results obtained from each

architecture based on ReLU-extreme learning machine, PReLU-extreme learning

machine, and TanhReLU-extreme learning machine. The highest accuracy was

achieved by ReLU activation in the multiple kernels-extreme learning machine

framework.

Wu et al. proposed a weakly supervised deep active learning framework called

COVID-AL for diagnosing COVID-19 using computed tomography images and

patient-level labels [156]. The database included computed tomography images

labeled into three classes, which are COVID-19 pneumonia, pneumonia, and the

normal class. COVID-AL consists of a 2D U-Net for lung region segmentation

and a novel hybrid active learning strategy with a tailor-designed 3D residual
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network for COVID-19 diagnosis. In four downsampling steps, the encoder of the

network segmentation retrieves image features through two convolutional and

pooling layers. The decoder of the segmentation network avoids connecting to

add features in the same phase. The COVID-AL model achieves an accuracy of

86.6% and precision of 96.2%. With only 30% of the labeled data, it achieves

high accuracy using the entire dataset.

Tiwari et al. proposed an architecture based on deep learning by integrating

a capsule network with di�erent variants of convolutional neural networks [157].

Speci�cally, densely connected convolutional network (DenseNet), Residual Net-

work (ResNet), Visual Geometry Group Network (VGGNet), and MobileNet were

utilized with CapsNet to detect COVID-19 cases using lung computed tomogra-

phy images. It has been found that all four models provide adequate accuracy.

The highest classi�cation accuracy of 99% was attained by MobileCapsNet. They

claimed that an Android-based app can be deployed using the MobileCapsNet

model to detect COVID-19, as it is a lightweight model and best suited for hand-

held devices like mobile phones.

Hussain et al. constructed a convolutional neural network model called

CoroDet using chest X-ray and computed tomography images for COVID-19 de-

tection [158]. The model achieved 99.1% accuracy, 99.2% precision, 98.1% recall,

and 98.5% F1-score for binary classi�cation (i.e., COVID-19 pneumonia and nor-

mal). It also exhibited 94.2% accuracy, 95.3% precision, 97.4% recall, and 98.6%

F1-score for three-class classi�cation (i.e., COVID-19 pneumonia, non-COVID

pneumonia, and normal). They claimed that CoroDet may assist clinicians in

making appropriate decisions for COVID-19 detection and may mitigate the prob-

lem of a scarcity of testing kits.

Perumal et al. introduced a deep learning approach for classifying COVID-19

from chest X-ray and computed tomography images [159]. The database con-

tained three classes, which are COVID-19 pneumonia, other viral and bacterial

pneumonias, pulmonary diseases, and normal classes. Weiner �lters were used

to enhance image quality by eliminating noise. Texture feature extraction was

accomplished using Haralick features, which focus only on the area of interest to
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detect COVID-19 through statistical analyses. The proposed convolutional neu-

ral network model used transfer learning and three pre-trained networks, which

are Visual Geometry Group16 (VGG16), Residual Network (ResNet50), and In-

ceptionV3. The Visual Geometry Group16 (VGG16) model o�ered the highest

accuracy of 93.8% for COVID-19 detection.

Chandra et al. presented an automatic COVID screening system that uses ra-

diomic texture descriptors extracted from chest X-ray images to identify normal,

suspected, and non-COVID-19 infected patients [160]. The authors distinguished

between non-COVID-19, pneumonia, normal and aberrant classes. For classi�ca-

tion purposes, they employed arti�cial neural networks, decision trees, k-nearest

neighbors, naive Bayes, majority voting algorithm, and support vector machines

with di�erent kernel functions, including RBF, polynomial, and linear kernels.

The majority voting algorithm yielded the best performance. Hence, the pro-

posed system utilizes a two-phase classi�cation approach (normal vs. abnormal

and non-COVID-19 vs. pneumonia) using a majority vote-based classi�er ensem-

ble of �ve benchmark supervised classi�cation algorithms. It achieved an accuracy

of 91.3% and an area under the ROC curve (AUC) of 83.1%. They stated that

the Friedman post-hoc multiple comparisons and z-test statistics reveal that the

results of the automatic COVID screening system are statistically signi�cant.

Pahar et al. proposed a machine learning-based COVID-19 cough classi�er,

which can discriminate COVID-19-positive coughs from both COVID-19-negative

and healthy coughs recorded on a smartphone [161]. Dataset skew was addressed

by applying the synthetic minority oversampling technique (SMOTE). The nor-

malization method was employed for data preparation. Features were extracted

using mel-frequency cepstral coe�cients, log frame energies, zero-crossing rate,

and kurtosis. Conventional machine learning techniques, such as support vec-

tor machine, logistic regression, k-nearest neighbour, multilayer perceptron, con-

volutional neural network, long short-term memory network, and residual net-

work (ResNet-50), were utilized for classi�cation. A leave-p-out cross-validation

scheme was used to train and evaluate these machine learning classi�ers. The

best performance was exhibited by the residual network (ResNet-50) classi�er,

which was best able to discriminate between COVID-19-positive and the healthy
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coughs with an area under the ROC curve (AUC) of 98%. A long short-term

memory classi�er was best able to discriminate between COVID-19-positive and

COVID-19-negative coughs, with an area under the ROC curve (AUC) of 94%

after selecting the best 13 features through a sequential forward selection. They

also indicated that COVID-19-positive coughs are 15%�20% shorter than non-

COVID coughs.

Zheng et al. proposed a framework called "unsupervised meta-learning with

self-knowledge distillation" for distinguishing between COVID-19 pneumonia and

other pneumonia patients [162]. They utilized a database consisting of COVID-19

pneumonia, SARS, MERS, in�uenza, and bacterial pneumonia. The data aug-

mentation approach was employed to generate images. This framework comprised

of two modules: one based on network-based learning and the other on relational

models, which capture and memorize the relationships among di�erent images.

Utilizing the densely connected convolutional network (DenseNet-121) architec-

ture, they extracted network-based learning characteristics. The relational model

was represented by an 8-pooling layer network architecture. The network was di-

vided into several parts, with knowledge from the deeper layers is compressed

into the shallow ones. The �nal results were obtained from the proposed model

by teaching it to compare image features. This model achieved higher perfor-

mance compared to supervised models, including DenseNet-121, DenseNet-161,

ResNet-34, and Visual Geometry Group19 (VGG19).

Miao et al. created an unsupervised meta-learning model for screening COVID-

19 patients [163]. This model does not require a pre-trained model, which resolves

the limitation of model construction. Furthermore, the proposed unsupervised

meta-learning framework addresses the issues of sample imbalance and sample

quality. The unsupervised meta learning model consists of both a deep learning

model and gradient-based optimization. Convolution, max-pooling, and batch

normalization are some of the layers in the deep learning model. The accuracy of

the proposed unsupervised meta-learning model is 3% to 10% higher than that

of the existing convolutional neural network models.

Xu et al. investigated a location-attention technique-based screening method
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to di�erentiate COVID-19 from in�uenza-A viral pneumonia and healthy subjects

using pulmonary computed tomography images [164]. The collection comprises

computed tomography images that were labeled into three classes, which are

COVID-19, in�uenza-A viral pneumonia, and healthy. First, candidate infection

regions were segmented from the pulmonary computed tomography image set

using a 3D deep learning model. These separated images were then categorized

into COVID-19, in�uenza-A viral pneumonia, and irrelevant to infection groups,

along with the corresponding con�dence scores, using a location-attention classi-

�cation model. Finally, the infection type and overall con�dence score for each

computed tomography case were calculated using the Noisy-OR Bayesian func-

tion. The overall accuracy rate was 86.7% for all the computed tomography cases

combined.

Rajaraman et al. developed a COVID-19 classi�cation and localization

methodology using chest X-ray images [165]. The model comprises various steps,

including a segmentation block, repeated speci�c transfer learning models, and

class-selective relevance mapping-based region of interest (ROI) localization. A

custom U-net architecture was designed for segmentation purposes. Visual Geom-

etry Group16 (VGG16), Visual Geometry Group19 (VGG19), Inception-V3, Ex-

treme Inception (Xception), densely connected convolutional network (DenseNet-

121), NasNet-Mobile, MobileNet-V2, and Residual Network (ResNet-18) were uti-

lized for knowledge transfer purposes. Class-selective relevance mapping-based

region of interest (ROI) localization was applied to interpret the predictions of

individual convolutional neural networks and compare them against the ground

truth. They found that ensemble approaches signi�cantly improved classi�cation

and localization performance.

Additionally, a few previous studies have developed machine learning tech-

niques that utilize patients' clinical data (fever and cough), laboratory data (com-

plete blood counts), or exposure history for COVID-19 detection [166, 167].

Cabitza et al. used laboratory data, speci�cally complete blood counts, which

are both cost-e�ective and capable of delivering rapid results for the identi�cation

of COVID-19 [166]. They employed �ve di�erent machine learning models, which
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included logistic regression, naive Bayes, k-nearest neighbor, random forest, and

support vector machine, to perform classi�cation. The area under the receiver

operating characteristic curve (AUC) for these models ranged from 75% to 78%,

while the speci�city ranged from 92% to 96%. Notably, the k-nearest neighbor

classi�er exhibited the highest accuracy. They concluded that machine learning

models can be e�ectively applied to laboratory data as both an adjunct and an

alternative method to the RT-PCR test for identifying COVID-19 patients.

Arpaci et al. developed a method based on clinical-characteristics for predict-

ing COVID-19 [167]. They employed 14 clinical features and utilized 6 traditional

machine learning classi�ers, including a Bayesian classi�er, meta-classi�er (clas-

si�cation via regression), rule learner (PART), decision tree (J48), lazy classi�er

(IBk), and logistic regression. The results showed that the CR meta-classi�er

was the most accurate classi�er for predicting positive and negative COVID-19

cases, achieving an accuracy of 84.2%. Weka (v.3.8.4) data mining tool was used

for data analysis and testing the predictive models.
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Chapter 2

Machine Learning based Hybrid

Anomaly Detection Technique for

Automatic Diagnosis of

Cardiovascular Diseases using

Cardiac Sympathetic Nerve

Activity and Electrocardiogram

This study proposes the �rst automated arti�cial intelligence-based hybrid

anomaly detection technique consisting of various signal processing, feature ex-

traction, supervised, and unsupervised machine learning methods that jointly and

simultaneously analyze 12-lead CSNA and ECG data to perform fast, early, and

accurate detection of coronary artery diseases. The block diagram illustrating the

overall structure and methodology of the study is shown in Figure 2.1. In-depth

explanations of the various components and processing steps of the proposed arti-

�cial intelligence-based hybrid anomaly detection technique can be found within

the subheadings of the Materials and Methods section.
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Figure 2.1: The block diagram that demonstrates various components of the proposed automated arti�cial intelligence-based

hybrid anomaly detection technique, which are signal processing, feature extraction, supervised classi�cation, and unsupervised

clustering methods. The supervised and unsupervised machine learning methods were independently trained with 12-lead ECG

and CSNA data, during which they learned to successfully distinguish between patients with and without coronary artery disease.



2.0.1 Data Acquisition and Preparation

2.0.1.1 The Sta� III Database

One of the databases used for the development and performance evaluation of

the proposed automated arti�cial intelligence-based hybrid anomaly detection

technique is the fully labeled STAFF III database on PhysioNet, which is a pub-

licly available repository of medical research data [168, 169]. The STAFF III

database was constructed by acquiring wideband recordings from 104 patients

with coronary artery disease who underwent percutaneous coronary intervention

at Charleston Area Medical Center (U.S.). The demographics and clinical char-

acteristics of the patients included in the study are presented in Table 2.1.

TABLE 2.1: The DEMOGRAPHICS and CLINICAL CHARACTERISTICS of

the PATIENTS

Age 55.6 ± 17

Male 65 (62.5 %)

Diabetes 27 (26 %)

Hypertension 43 (41.3 %)

Smoking 33 (31.7 %)

The numerical variables are presented as the mean ± standard deviation.

The categorical variables are presented as the number of patients

and percentage with respect to the total population.

The database was constructed by Duke University as a part of a clinical re-

search study to investigate high-frequency anomalies in ECG signals that oc-

cur during arti�cially induced myocardial ischemia caused by complete coronary

artery occlusion due to percutaneous coronary intervention [168, 169]. Percuta-

neous coronary intervention is a minimally invasive surgical procedure that can

cause signi�cant anomalies in the ST segment and T wave of the ECG signal.
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Two di�erent types of 12-lead wideband recordings that were acquired before

and during percutaneous coronary intervention from all patients in the STAFF

III database were included in this study, as detailed in Table 2.2. Hence, a total of

1248 pre-in�ation (normal) and 1248 in�ation (abnormal) recordings were utilized

to develop and evaluate the proposed arti�cial intelligence-based hybrid anomaly

detection technique. To date, this database is the largest that simulates high-

frequency anomalies in wideband recordings acquired during arti�cially induced

myocardial ischemia under a percutaneous coronary intervention-controlled envi-

ronment. Therefore, it serves as an excellent testbed for developing and evaluating

various arti�cial intelligence techniques that can diagnose and classify coronary

artery disease.

Before percutaneous coronary intervention, the 12-lead pre-in�ation (normal)

recordings were acquired prior to catheter insertion into the coronary artery at

the preoperative room. During percutaneous coronary intervention, the 12-lead

in�ation (abnormal) recordings that started before coronary balloon in�ation and

ended after coronary balloon de�ation were continuously acquired at the cardiac

catheterization laboratory (operation room).

TABLE 2.2: TWO DIFFERENT TYPES of RECORDINGS and NUMBERS

of the PATIENTS and RECORDINGS for EACH TYPE

Diagnostic Classes
Numbers of

the Patients

Numbers of the

Recordings

Numbers of

the Leads

Total Numbers of

the Recordings

Pre-in�ation (Normal) 104 104 12 1248

In�ation (Abnormal) 104 104 12 1248

Total 104* 208 12 2496

*The pre-in�ation and in�ation recordings belong to the same patients. Therefore, the total number

of patients is the same as the number of patients with the pre-in�ation or in�ation recordings.
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The database contains a total of 152 stenoses in the major coronary arter-

ies, distributed as 58 stenoses in the left anterior descendant artery (LAD), 59

stenoses in the right coronary artery (RCA), 32 stenoses in the left circum�ex

artery (LCX), and 3 stenoses in the left main artery (LM) (Table 2.3). A total

of 35 patients had previous myocardial infarction as determined by ECG crite-

ria de�ned by the American Heart Association [2]. Additionally, the database

includes important annotations provided by experienced cardiologists, including

the occluded coronary artery in which percutaneous coronary intervention was

performed, the time instants related to coronary balloon in�ation and coronary

balloon de�ation during percutaneous coronary intervention, the patient's his-

tory of previous myocardial infarction, and the location of previous myocardial

infarction.

TABLE 2.3: CLINICAL CHARACTERISTICS of the PATIENTS

Left anterior descendant artery (LAD)

Right coronary artery (RCA)

Left circum�ex artery (LCX)

Left main artery (LM)

58 (55.8 %)

59 (56.7 %)

32 (30.8 %)

3 (2.9 %)

Balloon in�ation time (second) 263 ± 54

History of previous myocardial infarction 35 (33.7 %)

The numerical variables are presented as the mean ± standard deviation.

The categorical variables are presented as the number of patients

and percentage with respect to the total population.

The data were acquired using custom-made ECG data acquisition equipment

(Siemens�Elema AB, Sweden) with a wider frequency bandwidth (500 Hz) and

higher sampling rate compared to conventional ECG devices. The recordings

were digitized with a sampling rate of 1000 Hz, 16-bit sampling resolution, and

0.6 µV amplitude resolution. The patients who su�ered from cardiac arrhythmia

or myocardial infarction during data acquisition were excluded from the database.
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2.0.1.2 The Physikalisch-Technische Bundesanstalt Diagnostic Database

Another database used for the development and performance evaluation of the

proposed automated arti�cial intelligence-based hybrid anomaly detection tech-

nique is the fully labeled Physikalisch-Technische Bundesanstalt (PTB) Diag-

nostic (PTBD) database on the PhysioNet repository [169, 170, 171]. It was

constructed by Benjamin Franklin University (Berlin, Germany) to investigate

high-frequency anomalies in ECG signals of the patients with various cardiovascu-

lar diseases. Among several di�erent diagnostic classes of cardiovascular diseases

present in the PTBD database that are shown in Table 2.4, the only diagnostic

class which is a type of coronary artery disease is the myocardial infarction class.

TABLE 2.4: DIAGNOSTIC CLASSES of the SUBJECTS in the PTBD

DATABASE

Diagnostic Classes Number of the Subjects

Healthy Controls 52

Myocardial Infarction 148

Cardiomyopathy/Heart Failure 18

Bundle Branch Block 15

Dysrhythmia 14

Myocardial Hypertrophy 7

Valvular Heart Disease 6

Myocarditis 4

Miscellaneous 4

Since one of the aims of this study was to perform accurate and reliable detec-

tion of coronary artery disease, we considered the myocardial infarction patients

in the PTBD database as the abnormal class and the healthy controls as the nor-

mal class to perform binary classi�cation. Hence, the 12-lead wideband record-

ings acquired from 52 healthy controls and 104 myocardial infarction patients,

which account for a total of 156 subjects, were included in this study to develop

and evaluate the proposed arti�cial intelligence-based hybrid anomaly detection

technique (Table 2.5 ).
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TABLE 2.5: TWO DIFFERENT TYPES of RECORDINGS and NUMBERS of the SUBJECTS and RECORDINGS for

EACH TYPE

Diagnostic Classes
Numbers of

the Subjects

Numbers of the

Recordings

Numbers of

the Leads

Total Numbers of

the Recordings

Healthy Controls

(Normal)
52 104* 12 1248

Myocardial Infarction

(Abnormal)
104 104 12 1248

Total 156 208 12 2496

*The number of the recordings after the implementation of the synthetic minority oversampling

technique (SMOTE) to generate new synthetic samples in the minority class (healthy controls).

In order to overcome the class imbalance between the two classes (myocardial infarction and healthy controls) in the

PTBD database and prevent bias towards the majority class (myocardial infarction), we adjusted the numbers of recordings

belonging to each of the two classes to be equal. In order to equate the numbers of recordings in the minority and majority

classes, we employed the synthetic minority oversampling technique (SMOTE) was employed to generate new synthetic

samples in the minority class (healthy controls) by interpolating between existing minority class samples and their nearest

neighbors. SMOTE created new synthetic samples that resemble the existing minority class samples, while introducing

some variations to expand the feature space. Thus, by producing synthetic samples that are representative of the minority

class in the training set, the number of samples in the minority class was equalized with that of the majority class.



This way, it was ensured that the class distributions were balanced using a

data resampling method and both classes had an equal number of recordings

(Table 2.5 ). This approach guaranteed that the arti�cial intelligence-based hy-

brid anomaly detection technique assigned equal importance to both classes, im-

proved the technique's ability to learn from the minority class, and increased the

technique's generalizability. We implemented SMOTE exclusively on the train-

ing set, hence it was not applied to the validation or test sets, which ensured a

fair performance evaluation of the proposed technique. Consequently, a total of

1248 normal recordings of 52 healthy controls, and 1248 abnormal recordings of

104 myocardial infarction patients were used for the development and evaluation

of the proposed arti�cial intelligence-based hybrid anomaly detection technique

(Table 2.5 ). The training of the automated arti�cial intelligence-based hybrid

anomaly detection technique was performed on the oversampled and balanced

training set.

All data were acquired by experienced physicians using data acquisition equip-

ment (PTB prototype recorder, Germany) with a wide frequency bandwidth (500

Hz) and high sampling rate. The recordings were digitized with a sampling rate of

1000 Hz, 16-bit sampling resolution, and 0.5 µV amplitude resolution. They were

annotated by experienced physicians to indicate the demographic and clinical in-

formation about the patient's age, gender, diagnosis, medical history, coronary

artery pathology, ventriculography, and echocardiography. Hence, the database

o�ers an excellent testbed for developing and evaluating various AI techniques

that can diagnose and classify coronary artery disease.

2.0.1.3 Enhanced Signal Processing Technique for CSNA and ECG

Data Analysis

The electrical signals obtained from the skin surface of the chest wall contain

signals from a wide variety of nerve activities and myocardium [1, 7, 9, 11, 14, 16,

17, 18, 19]. Because of the intensive connections between the sympathetic, motor,

and sensory nerves in the body, the nerves originating from di�erent sources

can activate simultaneously. Thus, the electrical signals acquired from the chest
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wall (yi(t)) contain raw ECG (ei(t)), cardiac sympathetic nerve activity (CSNA)

(ci(t)), motor and sensory nerve activities (MSNA) (si(t)), and muscle activity

(EMG) (mi(t)) (Equation 2.1 ).

yi(t) = ei(t) + ci(t) + si(t) +mi(t), i = 1, .., N. (2.1)

In electrical signals acquired from the chest wall, CSNA will be delayed and

will decrease in amplitude as it propagates away from its source. This delay and

decrease in amplitude can be mathematically modeled by the delay parameter

τi and the amplitude parameter αi (Equation 2.2).

ci(t) = αi c(t− τi), 0 < αi < 1 (2.2)

Most of the diagnostic information in ECG resides below 150 Hz, therefore,

the American Heart Association recommends a frequency bandwidth of 0.5 Hz to

150 Hz for the diagnostic monitoring of ECG [2]. Moreover, the electromyogram

(EMG) is approximately band-limited to 100 Hz, with small amounts of muscle

activity occasionally reaching 400 Hz [2, 14]. Therefore, the implementation of

a high-pass �lter with a cut-o� frequency of fC=150 Hz to the wideband raw

recordings acquired from the chest wall will e�ectively eliminate ECG and EMG

to a large extent.

The hypothesis of this study, which is based on the previous studies in the

literature [14, 16, 17, 18], indicates that CSNA is uncorrelated with MSNA, and

thus, it is possible to decouple CSNA from MSNA. Therefore, the signal activity

obtained as a result of high-pass �ltering the electrical signals acquired from the

chest wall will mostly originate from CSNA. In cases where the parameters αi

and τi are known, CSNA can be estimated as shown in Equation 2.3.

ĉ(t) =

N∑
i=1

αi yi(t+ τi)

N∑
i=1

α2
i

(2.3)

54



Two signal processing techniques, which include various digital �ltering meth-

ods that remove unwanted frequency components from the wideband raw record-

ings while preserving the diagnostic information within the recordings, were de-

veloped to detect the 12-lead CSNA and ECG signals of all subjects in the STAFF

III and PTBD databases (Figure 2.1 ).

Firstly, the band-pass and Notch �lters were developed and implemented on

the wideband raw recordings in the STAFF III and PTBD databases to detect the

12-lead ECG signals of all subjects. The lowest frequency component of the ECG

signal is generally de�ned by the slowest possible heart rate, which is 40 beats per

minute (bpm) [2, 14]. Hence, assuming a periodic signal, the lowest frequency

component of the ECG signal can be at least 0.67 Hz. Therefore, to enhance

the quality of ECG signals by eliminating low-frequency noises, such as baseline

wander and respiratory signals, the lower cut-o� frequency of the band-pass �lter

was designed to be fL1= 0.5 Hz.

Moreover, the high-frequency noises in ECG signals, such as muscle activity

(EMG) and motion artifacts, were eliminated by designing the band-pass �lter to

have a higher cut-o� frequency of fH1=150 Hz, which is compatible with the rec-

ommendations of the American Heart Association for the diagnostic monitoring

of ECG [2].

Furthermore, the 60 Hz power-line interference in the STAFF III database was

eliminated by developing Notch �lters with lower and higher cut-o� frequencies

of fL2= 59 Hz and fH2= 61 Hz, respectively [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19,

48, 87]. Similarly, the 50 Hz power-line interference in the PTBD database was

eliminated by developing Notch �lters with lower and higher cut-o� frequencies

of fL3= 49 Hz and fH3= 51 Hz, respectively.

A QRS complex detection technique that can adapt to the instantaneous

changes in ECG signals by setting an adaptive threshold for each patient, which

is higher than the P and T waves and lower than the QRS complex in ampli-

tude, was developed [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 48, 87]. By detecting

the signal values where the ECG signal amplitude is higher than the prede�ned
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threshold, the robust localization of the QRS complexes in the time domain was

performed. By using the detected QRS complexes as the reference points, the

ECG signals of all subjects were segmented into individual periods, each corre-

sponding to a single heartbeat. Lastly, the isoelectric line, which represents the

reference potential level of the measured heart activity for each recorded heart-

beat, was determined and removed from each ECG period to accurately detect

ischemic ECG anomalies.

Secondly, high-pass �lters with a cut-o� frequency of fC=150 Hz were devel-

oped and implemented on the wideband raw recordings in the STAFF III and

PTBD databases to detect the 12-lead CSNA signals of all subjects [1, 7, 9, 11, 19].

Moreover, the performances of various high-pass �lters with di�erent cut-o� fre-

quencies up to 500 Hz were investigated to detect CSNA. The e�orts made to

optimize the �lters' cut-o� frequency for displaying CSNA revealed that a high-

pass �lter with a cut-o� frequency of fC=150 Hz provides higher amplitude CSNA

and better signal-to-noise ratio (SNR), while e�ectively suppressing ECG signals.

Further increases in the cut-o� frequency of the �lter eliminated EMG signals to

a large extent. However, it also resulted in lower amplitude CSNA and worse

signal-to-noise ratio (SNR). Therefore, for higher cut-o� frequencies of the �lter,

the speci�city of CSNA recording increased. However, a majority of CSNA was

�ltered out, which reduced the sensitivity of CSNA recording.

Furthermore, the power ratios of the in�ation (abnormal) CSNA (PRi) were

investigated across di�erent frequency bands for all patients in the STAFF III

and PTBD databases by designing band-pass �lters that have six consecutive

overlapping frequency ranges, as shown in Table 2.6 .
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TABLE 2.6: CONSECUTIVE OVERLAPPING FREQUENCY BANDS and

RANGES Frequency Bands Frequency Ranges

i=1 150 Hz−250 Hz

i=2 200 Hz−300 Hz

i=3 250 Hz−350 Hz

i=4 300 Hz−400 Hz

i=5 350 Hz−450 Hz

i=6 400 Hz−500 Hz

The power ratio of the in�ation (abnormal) CSNA (PRi) was obtained by

calculating the ratio of the average in�ation CSNA power during percutaneous

coronary intervention (Pburst) to the average in�ation CSNA power before per-

cutaneous coronary intervention (Pbaseline), as shown in Equation 2.4, where ci(t)

denotes the in�ation (abnormal) CSNA.

PRi =
Pburst

Pbaseline

=

1

∆t1

∫ t3

t2

|ci(t)|2dt

1

∆t0

∫ t1

t0

|ci(t)|2dt
, ∆t1 = t3 − t2 , ∆t0 = t1 − t0

(2.4)

The experiment results demonstrated that the power ratio of the in�ation

(abnormal) CSNA (PRi) was consistently higher for frequency ranges between

150 Hz and 400 Hz (frequency bands between 1 ≤ i ≤ 4) for all patients in the

STAFF III and PTBD databases.

2.0.2 Enhanced Feature Extraction Technique

By using the pre-processed 12-lead CSNA and ECG signals in the STAFF III and

PTBD databases, a time-domain feature extraction technique that extracts the

statistical CSNA and ECG features that are critical for the reliable diagnosis of

coronary artery disease was developed [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 48].
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2.0.2.1 Enhanced Feature Extraction Technique for CSNA Signals

2.0.2.1.1 Number of CSNA Peaks: Peaks of the CSNA signals (p[n]) were

detected by de�ning an adaptive threshold (ξ) that is speci�c to the CSNA sig-

nal (c[n]) of each patient. By identifying signal values at which the amplitude

of CSNA was greater than the prede�ned threshold (ξ) through a sliding time

window (N), the time domain localization of CSNA peaks was performed (Equa-

tion 2.5 ). The number of CSNA peaks (u[n]) was obtained by calculating the

summation of CSNA peaks through the sliding time window (N) (Equation 2.6 ).

p[n] =

1, c[n+ k] ≥ ξ , k = 0, .., N − 1.

0, c[n+ k] < ξ
(2.5)

u[n] =
N−1∑
m=0

p[n+m] (2.6)

2.0.2.1.2 Average CSNA: The average voltage of CSNA per sample (a[n])

was estimated by integrating CSNA (c[n]) over the sliding time window (N) and

dividing the total voltage by the overall number of samples (N) in the same

window (Equation 2.7 ).

a[n] =
1

N

N−1∑
m=0

|c[n+m]| (2.7)

2.0.2.1.3 Maximum CSNA: It was obtained by calculating the maximum

signal amplitude of CSNA (c[n]) through the sliding time window (N) (Equa-

tion 2.8 ).
m[n] = max

0≤m≤N−1
(c[n+m]) (2.8)
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2.0.2.2 Enhanced Feature Extraction Technique for ECG Signals

2.0.2.2.1 ST Segment Level: It was obtained by calculating the summation

of all signal amplitudes through the ST segment (q[n]) and dividing the total

voltage by the overall number of samples (L) in the same interval (Equation 2.9 ).

s[n] =
1

L

L−1∑
k=0

q[n+ k] (2.9)

2.0.2.2.2 ST Segment Slope (β̂1): It was estimated as the slope of the best

�tting line (q̂[n]) in Equation 2.11 in terms of least squares to the samples of the

ST segment (q[n]). This estimation was performed by �nding the least squares

estimates β0 and β1 that minimize the sum of squared residuals in Equation 2.10 .

f [β0, β1] =
L−1∑
k=0

(q[n+ k]− (β1w[n+ k] + β0))
2 (2.10)

q̂[n] = β̂1w[n] + β̂0 (2.11)

2.0.2.2.3 T Wave Area: It was approximated by implementing the trape-

zoidal rule through the samples of the T wave (v[n]) (Equation 2.12 ).

t[n] =
M∑
k=1

(v[nk−1] + v[nk])

2
∆nk , ∆nk =

nk − nk−1

M
(2.12)

2.0.2.2.4 T Wave Amplitude: It was obtained by locating the maximum

or minimum amplitude of the T wave (v[n]) in the time domain (Equation 2.13 ).

w[n] =


min

n0≤n≤nM

(v[n]), v[n] ≤ 0

max
n0≤n≤nM

(v[n]), v[n] > 0
(2.13)



2.0.3 Supervised Classi�cation Technique using Arti�cial

Neural Networks

In the literature, arti�cial neural network is the most preferred machine learning

method for the diagnosis or classi�cation of various cardiovascular diseases by

detecting anomalies in ECG data [7, 8, 9, 10, 11, 20, 26, 46, 48]. This preference

can be attributed to the various advantages of arti�cial neural network, including

its strong ability to learn and model non-linear complex relationships between

the input and output, its robustness to noise, its ability to handle missing or

insu�cient data, its generalization capability, its remarkable scalability, its ability

to perform parallel processing, and its high speed. Additionally, various types

of arti�cial neural networks can be customized to create tailored solutions that

address speci�c tasks required by physicians, which signi�cantly contributes to

their superior performance in the detection of cardiovascular diseases.

Therefore, in this study, a supervised learning method based on arti�cial neural

network that performs simultaneous and robust detection of anomalies in the 12-

lead CSNA and ECG data was developed to realize fast, early, and accurate diag-

nosis of coronary artery disease. Firstly, the 12-lead normal and abnormal CSNA

and ECG features were normalized using the min-max normalization method to

scale the features of di�erent classes in the same range and to ensure that the

developed arti�cial neural network classi�er assigns equal importance to data be-

longing to the two classes (i.e., normal and abnormal). Hence, by bringing all

input variables within a standardized range, our aim was to avoid any bias that

may arise due to di�erences in the scales of the features and to guarantee that

the arti�cial neural network classi�er can accurately learn from the data, thereby

assuring fairness in the classi�cation process.

In order to evaluate the performance of the developed arti�cial neural network

classi�er on previously unseen data, the whole data in the STAFF III and PTBD

databases were independently and randomly split into non-intersecting training

and test sets using the 10-fold cross-validation method, as shown in Tables 3.3

and 3.6 . Therefore, the entire data in each database were randomly partitioned

into 10 equal-sized subsets, where one of these subsets formed the test set that was
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exclusively used to assess the generalization performance of the arti�cial neural

network classi�er. The remaining subsets were aggregated to form the training

set that was used to train the arti�cial neural network classi�er and optimize

its (hyper)parameters. The test set remained unexposed during the training of

the arti�cial neural network to ensure an unbiased estimate of the classi�er's

performance on previously unseen data.

Additionally, the training sets in the STAFF III and PTBD databases were fur-

ther independently and randomly divided into the training (75%) and validation

(25%) subsets, as shown in Tables 3.3 and 3.6 , using the holdout cross-validation

method to prevent the arti�cial neural network classi�er from over-�tting to the

training sets and ensure better generalization. To guarantee robustness, this

process was repeated 10 times for each cross-validation fold, resulting in 10 in-

dependent and non-intersecting training, validation, and test subsets that were

randomly constituted. Each pattern was used in the test set exactly once in each

cross-validation fold to maintain fairness.

By taking the average of the statistical performance results calculated across

10 di�erent cross-validation folds, a single estimation that represents the binary

classi�cation performance of the optimum arti�cial neural network classi�er for

each of the training, validation, and test subsets was independently produced for

the STAFF III and PTBD databases. The absence of class imbalance between

the two classes in the training and validation sets of both databases prevented

bias and over-�tting during training, and allowed the arti�cial neural network

classi�er to generalize very well on previously unseen data.
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TABLE 2.7: The NUMBERS of the RECORDINGS in the TRAINING, VALIDATION and TEST SETS for the STAFF

III DATABASE

Diagnostic Classes Training Set Validation Set Test Set Total

Pre-in�ation (Normal) 840 276 132 1248

In�ation (Abnormal) 840 276 132 1248

Total 1680 552 264 2496

The numerical variables are presented as the total number of recordings including all 12-leads.

TABLE 2.8: The NUMBERS of the RECORDINGS in the TRAINING, VALIDATION and TEST SETS for the PTBD

DATABASE

Diagnostic Classes Training Set Validation Set Test Set Total

Healthy Controls (Normal) 840 276 132 1248

Myocardial Infarction (Abnormal) 840 276 132 1248

Total 1680 552 264 2496

The numerical variables are presented as the total number of recordings including all 12-leads.



The feed-forward arti�cial neural network classi�er architecture consists of

three layers, which are an input layer with seven neurons, a hidden layer, and

an output layer with two neurons. The number of neurons in the input layer is

equal to the total number of CSNA and ECG features. In order to empirically

determine the optimum number of hidden layers, various multilayer perceptron

with single and multiple hidden layers were developed. The experimental results

showed that multilayer perceptron with a single hidden layer exhibited better per-

formance and shorter training time. Moreover, the optimum number of neurons

and the ideal activation function in the hidden layer were determined using the

grid search method. For this purpose, various multilayer perceptrons with varying

numbers of hidden neurons and di�erent activation functions were developed, in-

cluding linear, sigmoid (logistic), binary step, hyperbolic tangent, and Gaussian.

The experimental results indicated that multilayer perceptrons with 24 and 26

hidden neurons provided the best classi�cation performances on the STAFF III

and PTBD databases, respectively. Furthermore, the activation function in the

hidden and output layers that provided the highest classi�cation performances

on both databases was the sigmoid (logistic), which was also the most commonly

preferred activation function in the literature for binary classi�cation tasks due

to its good generalizability [10, 11, 20, 26, 46, 48] Consequently, the output of the

optimum arti�cial neural network classi�er demonstrates a patient's probability

of belonging to one of the two classes (coronary artery disease and non-coronary

artery disease).

The training of the arti�cial neural network classi�er consisted of the feed-

forward and back-propagation training parts, which is one of the most commonly

used training algorithms for supervised learning [7, 8, 9, 10, 11, 20, 26, 46, 48].

The weights of the arti�cial neural network classi�er were initially assigned ar-

bitrarily using small random and normally distributed numbers. In the course

of training, the arti�cial neural network classi�er was exposed to the training

set for a prede�ned number of feed-forward and back-propagation iterations to

perform the learning task. During the feed-forward phase, the output of the

arti�cial neural network classi�er was calculated for each sample. During the

back-propagation phase, the arti�cial neural network classi�er utilized the error
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in the output to correct its future calculations, aiming to converge towards the

desired output. Hence, during back-propagation training, the weights were grad-

ually adjusted to optimize the overall computation carried out by the arti�cial

neural network classi�er and minimize the di�erence between the actual and pre-

dicted outputs of the classi�er. This di�erence is commonly referred to as the

cost function (E) expressed in Equation 2.14, where M represents the number of

samples in the training set, oi denotes the output vector of the arti�cial neural

network classi�er, and di corresponds to the target vector for each training pair

i.

E =
1

M

M∑
i=1

∥di − oi∥2 (2.14)

The back-propagation algorithm is a gradient-descent method used to minimize

the mean squared error E, where w in Equation 2.16 represents the weight vector

between the layers, and η in Equation 2.15 denotes the learning rate of the

arti�cial neural network classi�er, which was optimized as 10−3.

∆wi = −η
∂E

∂wi

, 0 < η < 1 (2.15)

w(i+1) = wi − η
∂E

∂wi

(2.16)

The training length of the arti�cial neural network classi�er was periodically

evaluated using the early stopping regularization method to optimize its perfor-

mance and prevent over-�tting to the training set due to over-training. Hence,

after every prede�ned number of feed-forward and back-propagation iterations,

the current weights were saved, and the performance of the arti�cial neural net-

work classi�er was assessed on the validation set, which represents an estimate

of its generalizability on previously unseen data. The training of the arti�cial

neural network classi�er was terminated when the mean squared error (MSE) on

the validation set was minimized. Thus, by stopping the training early, the risk

of over-optimizing the parameters of the arti�cial neural network classi�er for the

training set was avoided.
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Therefore, the optimum con�guration of the arti�cial neural network clas-

si�er with the ideal combination of (hyper)parameters, including input-output

weights and biases, that provides the best classi�cation performance on the in-

dependent validation set was determined using the early stopping regularization

method. Finally, the binary classi�cation performance and generalizability of the

optimum arti�cial neural network classi�er on previously unseen data were eval-

uated by testing the classi�er on the independent test set. The experiments were

conducted using a computer equipped with an IntelR CoreTM i7 processor, 16

GB RAM, CPU at 3.60 GHz, and NVIDIA GeForce RTX 2070 GPU. The soft-

ware that processes and analyzes the data was prepared using MATLAB (R2021)

(MathWorks, USA).

2.0.4 Unsupervised Clustering Technique using Gaussian

Mixture Models and Neyman-Pearson Criterion

In order to develop a method that can be used in cases where the abnormal CSNA

and ECG data are missing, we propose an unsupervised learning method based

on Gaussian mixture model and the Neyman-Pearson criterion that performs

simultaneous and robust detection of anomalies in the 12-lead normal CSNA and

ECG data to realize fast, early, and accurate diagnosis of coronary artery disease.

In the literature, Gaussian mixture model has been widely employed as an un-

supervised machine learning method for the diagnosis and classi�cation of various

cardiovascular diseases [6, 8, 10, 11, 43, 48, 52, 53, 81]. This can be attributed

to the numerous advantages of Gaussian mixture model, including its e�ciency

in clustering and model �tting, its ability to model and estimate a wide range

of probability distributions, its capability to e�ectively handle missing or in-

su�cient data, and its robustness to outliers in the data. Moreover, Gaussian

mixture model is a generative method that is capable of generating new syn-

thetic data samples that resemble the original dataset, which can be bene�cial

for data augmentation tasks. It can also be utilized to identify outliers in the

data by assigning low probabilities to data points that do not �t the estimated
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mixture model, making it very useful in anomaly detection tasks. Furthermore,

it provides interpretable parameters of the Gaussian components, which can o�er

insights into the underlying distribution of the data.

In this study, the optimization of the Gauss parameters (Υ) was performed

using the Expectation-Maximization (EM) algorithm to maximize the probability

density function (PDF) of the mixture, which is mathematically formulated as

a weighted sum of K Gaussian density components, as shown in Equation 2.18 .

Here, x represents the D-dimensional feature vector, πk denotes the mixture

coe�cients (weights of the Gaussian components), µk corresponds to the mean

vector, and Σk represents the covariance matrix. The density of each compo-

nent was mathematically described by the multivariate Gaussian distribution,

which is a widely employed statistical model for characterizing data distributions

(Equation 2.17 ) [6, 8, 10, 11, 43, 48, 52, 53, 81].

N (x|µk,Σk) =
1

(2π)
D
2 |Σk|

1
2

exp
{
− 1

2
(x− µk)

T Σ−1
k (x− µk)

}
(2.17)

g(x|Υ) =
K∑
k=1

πk N (x|µk,Σk) (2.18)

The probability density function (PDF) of the Gaussian mixture was param-

eterized using the Gauss parameters (Υ) in Equation 2.19 , which consist of the

mixture coe�cients, the mean vector, and the covariance matrix of each compo-

nent.
Υ = (πk, µk, Σk), k = 1, .., K. (2.19)

The mixture coe�cients satis�ed the conditions outlined in Equation 2.20 to

assure that the total probability distribution was normalized. This guaranteed

that the sum of the mixture coe�cients equals one, thereby ensuring that the

resulting probability distribution represents a valid probability density function

(PDF).
K∑
k=1

πk = 1, 0 ≤ πk ≤ 1 (2.20)



The 12-lead normal CSNA and ECG features were normalized using the min-

max normalization method to scale the features of di�erent data types in the

same range and to ensure that the developed unsupervised clustering technique

assigns equal importance to di�erent data types (i.e., CSNA and ECG data).

Hence, by bringing all input variables within a standardized range, our aim was

to avoid any bias that may arise due to di�erences in the scales of the features

and to guarantee that the unsupervised clustering technique can accurately learn

from the data, thereby assuring fairness in the clustering process.

The whole data in the STAFF III and PTBD databases were independently

and randomly divided into non-intersecting training and test sets using the 10-

fold cross-validation method to evaluate the performance of the unsupervised

clustering technique on previously unseen data, as shown in Tables 3.9 and 2.10 .

Each pattern was used in the test set exactly once in each cross-validation fold

to maintain fairness. The test set remained unexposed during the training of

the Gaussian mixture model to ensure an unbiased estimate of the technique's

performance on previously unseen data.

Moreover, the training sets in the STAFF III and PTBD databases were fur-

ther independently and randomly divided into the training (75%) and validation

(25%) subsets, as shown in Tables 3.9 and 2.10 , using the holdout cross-validation

method to prevent the Gaussian mixture model from over-�tting to the training

sets and ensure better generalization. To assure robust performance evaluation,

the statistical performance results calculated across 10 di�erent cross-validation

folds were averaged to obtain a single estimation that represents the clustering

performance of the optimum Gaussian mixture model for each of the training,

validation, and test subsets in the STAFF III and PTBD databases independently.
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TABLE 2.9: The NUMBERS of the RECORDINGS in the TRAINING, VALIDATION and TEST SETS for the STAFF

III DATABASE

Diagnostic Class Training Set Validation Set Test Set Total

Pre-in�ation (Normal) 840 276 132 1248

The numerical variables are presented as the total number of recordings including all 12-leads.

TABLE 2.10: The NUMBERS of the RECORDINGS in the TRAINING, VALIDATION and TEST SETS for the PTBD

DATABASE

Diagnostic Class Training Set Validation Set Test Set Total

Healthy Controls (Normal) 840 276 132 1248

The numerical variables are presented as the total number of recordings including all 12-leads.

The optimum parameters of the Gaussian components (Υ) were estimated using the Expectation-Maximization (EM)

algorithm, which is an e�cient iterative method for �nding the maximum likelihood estimation (MLE) of the parameters

in statistical models [6, 8, 10, 11, 43, 48, 52, 53, 81]. Subsequently, the joint probability density function (PDF) of

the normal CSNA and ECG features was robustly estimated by �tting the optimum Gaussian mixture model with the

ideal (hyper)parameters, which was optimized to improve the performance of the joint probability density function (PDF)

estimation.



Furthermore, a Neyman-Pearson type approach was developed to perform the

robust detection of outliers associated with coronary artery disease [8, 23, 172].

The Neyman-Pearson decision strategy is based on the concept of statistical hy-

pothesis testing, which includes two competing hypotheses that are the null hy-

pothesis (H0) and the alternative hypothesis (H1). It provides an optimal so-

lution to hypothesis testing when making decisions based on limited data while

e�ectively controlling the false positive and negative rates. The objective is to

determine which hypothesis is more likely based on the observed data.

The 12-lead normal CSNA and ECG features were partitioned into N equal-

length segments denoted as X={x 1, ..., xN}. Each segment was assumed to be

independent and identically distributed (i.i.d.), meaning that each segment has

the same probability distribution, and all segments are statistically mutually

independent. The Neyman-Pearson decision strategy was implemented by calcu-

lating the average log-likelihood value of the segments (P (X|H0)), as shown in

Equation 2.22 , where N represents the total number of segments. Subsequently,

these average log-likelihood values were compared with di�erent discrimination

thresholds (Γ), as shown in the decision rule in Equation 2.23 , where H1 rep-

resents the outliers that correspond to coronary artery disease. The decision

rule in Equation 2.23 states that if the average log-likelihood value exceeded the

discrimination threshold, the null hypothesis (H0) was rejected in favor of the

alternative hypothesis (H1).

H0 : X ∈ C0 , H1 : X /∈ C0 (2.21)

P (X|H0) =
1

N
log g(X|Υ) =

1

N

N∑
i=1

log g(x i|Υ) (2.22)

Θ(X) =

{
H0, P (X|H0) ≤ Γ

H1, P (X|H0) > Γ
(2.23)

69



2.1 Experimental Results and Comparative Anal-

ysis

In this section, we explain and interpret the results of the experiments conducted

to evaluate the performance and generalizability of the proposed automated ar-

ti�cial intelligence-based hybrid anomaly detection technique on the STAFF III

and PTBD databases. For this purpose, we computed the confusion matrices

to calculate all of the statistical performance evaluation metrics, such as sensi-

tivity (TPR) (Eq. 2.24 ), speci�city (TNR) (Eq. 2.25 ), positive predictive value

(PPV ) (Eq. 2.26 ), negative predictive value (NPV ) (Eq. 2.27 ), F1-score (F1)

(Eq. 2.28 ), and accuracy (ACC) (Eq. 2.29 ) . Here, TP, FN, FP, and TN indi-

cate the numbers of the true positives, false negatives, false positives, and true

negatives, respectively.

TPR (%) =
TP

TP + FN
∗ 100 (2.24)

TNR (%) =
TN

TN + FP
∗ 100 (2.25)

PPV (%) =
TP

TP + FP
∗ 100 (2.26)

NPV (%) =
TN

TN + FN
∗ 100 (2.27)

F1 (%) = 2
PPV x TPR

PPV + TPR
∗ 100 (2.28)

ACC (%) =
TP + TN

TP + TN + FP + FN
∗ 100 (2.29)
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2.1.1 The Performance Results of the Automated Arti�cial

Intelligence based Hybrid Anomaly Detection Tech-

nique on the Sta� III Database

As a result of the implementation of the developed enhanced signal processing

technique on the 12-lead wideband raw recordings in the STAFF III database,

the 12-lead ECG and CSNA signals of all patients were simultaneously detected.

Figures 2.2 and 2.3 demonstrate a single lead pre-in�ation (normal), in�ation

(abnormal), and post-in�ation CSNA and ECG signals of a patient in the STAFF

III database, respectively.

The pre-in�ation (normal) CSNA and ECG signals of each patient were con-

sidered as a reference to accurately detect anomalies in the in�ation (abnormal)

CSNA and ECG signals for the reliable diagnosis of myocardial ischemia, which

is a type of coronary artery disease [72, 84, 173] . The experimental results on

the STAFF III database revealed that there is an increase in the amplitude

of the in�ation (abnormal) CSNA signals during arti�cially induced myocardial

ischemia caused by coronary artery occlusion during percutaneous coronary inter-

vention, which indicates that there is a signi�cant association between CSNA and

myocardial ischemia, as illustrated in Figure 2.2 . This association o�ers novel

perspectives into the relationship between electrical and physiological changes

within the cardiac system during myocardial ischemia, thereby fostering a pro-

found comprehension of the underlying pathological mechanisms.

Moreover, the �ndings of the study demonstrated that the increase in the

amplitude of the in�ation (abnormal) CSNA signals during arti�cially induced

myocardial ischemia was accompanied by simultaneous elevation or depression

in the ST segment, and polarity or amplitude changes in the T wave of ECG

signals, as presented in Figure 2.3 . Therefore, the results suggested that there

is a correlation between the increase in the amplitude of CSNA signals and the

anomalies in ECG signals during myocardial ischemia.

Furthermore, the comparison between the in�ation (abnormal) and post-

in�ation signals revealed that the increase in the amplitude of CSNA signals
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and the anomalies in the ECG signals almost disappeared within several seconds

after percutaneous coronary intervention was terminated (Figures 2.2 and 2.3 ).

Figure 2.2: A single lead pre-in�ation (normal), in�ation (abnormal), and post-

in�ation CSNA signals of a patient in the STAFF III database that were acquired

before, during, and after percutaneous coronary intervention, respectively. The

cardiologists annotated the coronary balloon in�ation and coronary balloon de-

�ation times, which are illustrated with red lines at the 182nd second and 280th

second, respectively. The in�ation (abnormal) CSNA increases shortly after the

onset of percutaneous coronary intervention and decreases after the termination

of percutaneous coronary intervention. Moreover, there is very little di�erence

in the baseline amplitudes of the pre-in�ation and post-in�ation CSNA signals.

This may be due to the fact that these two signals were acquired in di�erent en-

vironments with di�erent noise levels, where the former and latter were acquired

in the preoperative room and postoperative recovery room of the Medical Center,

respectively.

Exceptionally, a few patients in the STAFF III database did not demonstrate

any anomalies in their in�ation (abnormal) CSNA and ECG signals acquired

during coronary artery occlusion due to percutaneous coronary intervention, as

depicted in Figure 2.4 . This may be attributed to the relatively shorter duration
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of percutaneous coronary intervention or the comparatively small size of the coro-

nary artery in which percutaneous coronary intervention was performed, which

may not have been su�cient to induce myocardial ischemia in some patients.

Figure 2.3: A single lead pre-in�ation (normal), in�ation (abnormal), and post-

in�ation ECG signals of the same patient in the STAFF III database that were

acquired before, during, and after percutaneous coronary intervention, respec-

tively. There is an elevation in the ST segment and an increase in the amplitude

of the T wave of the in�ation (abnormal) ECG signal, which are very common

symptoms of myocardial ischemia. Hence, the anomalies in the ECG signal that

occurred during arti�cially induced myocardial ischemia were accompanied by

the simultaneous increase in the amplitude of CSNA signal.

For the development of the proposed supervised classi�cation technique, we

utilized the 12-lead pre-in�ation (normal) and in�ation (abnormal) CSNA and

ECG data. Moreover, we used only the 12-lead pre-in�ation (normal) CSNA and

ECG data for the development of the proposed unsupervised clustering technique.

The main motivation for developing the unsupervised clustering technique with

the Neyman-Pearson criterion that can work using only the pre-in�ation (nor-

mal) data was to construct a method that can successfully diagnose myocardial

ischemia even in cases where the in�ation (abnormal) data are missing.
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Figure 2.4: A single lead pre-in�ation (normal), in�ation (abnormal), and post-

in�ation CSNA signals of a di�erent patient in the STAFF III database that were

acquired before, during, and after percutaneous coronary intervention, respec-

tively. The cardiologists annotated the coronary balloon in�ation and coronary

balloon de�ation times, which are illustrated with red lines at the 53rd second

and 74th second, respectively.

Table 2.11 presents the confusion matrix of the hybrid Gaussian mixture

model-based clustering technique on the test set of the STAFF III database,

which reveals its strong ability to distinguish between patients with and without

myocardial ischemia (i.e., coronary artery disease). Out of a total of 132 coro-

nary artery disease (abnormal) recordings in the test set, the proposed technique

correctly classi�ed 121 recordings, while misclassifying only 11 recordings as non-

coronary artery disease (normal). Furthermore, out of a total of 132 non-coronary

artery disease (normal) recordings in the test set, the proposed technique accu-

rately classi�ed 118 recordings, while misclassifying only 14 recordings as coronary

artery disease (abnormal).
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TABLE 2.11: The CONFUSION MATRIX of the HYBRID GAUSSIAN MIXTURE MODEL based CLUSTERING

TECHNIQUE on the TEST SET of the STAFF III DATABASE for CORONARY ARTERY DISEASE DIAGNOSIS

TECHNIQUE CONFUSION MATRIX

GMMHYB

True Label

CAD NON-CAD

Predicted Label
CAD True Positive (TP) = 121 False Positive (FP)= 14

NON-CAD False Negative (FN) = 11 True Negative (TN) = 118

CAD: Coronary Artery Disease, NON-CAD: Not Coronary Artery Disease.

Table 2.12 shows the confusion matrix of the hybrid arti�cial neural network based classi�cation technique on the

test set of the STAFF III database, which reveals its strong ability in distinguishing between patients with and without

coronary artery disease. Out of a total of 132 coronary artery disease (abnormal) recordings in the test set, the proposed

technique correctly classi�ed 127 recordings, while misclassifying only 5 recordings as non-coronary artery disease (normal).

Additionally, out of a total of 132 non-coronary artery disease (normal) recordings in the test set, the proposed technique

accurately classi�ed 123 recordings, while misclassifying only 9 recordings as coronary artery disease (abnormal).



Table 2.13 demonstrates the statistical performance results of the optimum Gaussian mixture model-based clustering

technique and the optimum arti�cial neural network based classi�cation technique on the test set of the STAFF III database.

The performance results of the developed techniques that separately utilized either only 12-lead CSNA data or only 12-

lead ECG data are indicated by the notations GMMCSNA, ANNCSNA or GMMECG, ANNECG, respectively. Similarly, the

performance results of the hybrid techniques that jointly and simultaneously utilized the 12-lead CSNA and ECG data are

represented by the notations GMMHYB and ANNHYB.

TABLE 2.12: The CONFUSION MATRIX of the HYBRID ARTIFICIAL NEURAL NETWORK-based CLASSIFICA-

TION TECHNIQUE on the TEST SET of the STAFF III DATABASE for CORONARY ARTERY DISEASE DIAGNOSIS

TECHNIQUE CONFUSION MATRIX

ANNHYB

True Label

CAD NON-CAD

Predicted Label
CAD True Positive (TP) = 127 False Positive (FP)= 9

NON-CAD False Negative (FN) = 5 True Negative (TN) = 123

CAD: Coronary Artery Disease, NON-CAD: Not Coronary Artery Disease.



The experimental results on the STAFF III database revealed that the pro-

posed arti�cial neural network based classi�cation technique has a relatively

higher performance for the diagnosis of myocardial ischemia compared to the

Gaussian mixture model-based clustering technique for both separate and joint

use of 12-lead CSNA and ECG data. This can be explained by the fact that

the arti�cial neural network based classi�cation technique utilizes both the pre-

in�ation (normal) and in�ation (abnormal) data, while the Gaussian mixture

model-based clustering technique exclusively utilizes the pre-in�ation (normal)

data to detect the anomalies in CSNA and/or ECG data.

Moreover, the comparison between the performance results of all developed

techniques indicated that the hybrid arti�cial neural network based classi�cation

technique (ANNHYB), which jointly and simultaneously used CSNA and ECG

data, achieved signi�cantly higher performance compared to the other techniques

that separately used either only CSNA data or only ECG data. Therefore, by tak-

ing advantage of the diversity in di�erent data types, the proposed hybrid arti�cial

neural network based classi�cation technique (ANNHYB) signi�cantly increased

the detection performance of myocardial ischemia. Hence, it can be highly ben-

e�cial and useful by providing improved diagnosis, especially for asymptomatic

coronary artery disease patients with silent (asymptomatic) myocardial ischemia,

for whom the diagnostic information provided by ECG alone is not su�cient to

reliably diagnose the disease.
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TABLE 2.13: The STATISTICAL PERFORMANCE RESULTS (%) of the OPTIMUM GAUSSIAN MIXTURE MODEL

based CLUSTERING TECHNIQUE and OPTIMUM ARTIFICIAL NEURAL NETWORK-based CLASSIFICATION

TECHNIQUE on the TEST SET of the STAFF III DATABASE for CORONARY ARTERY DISEASE DIAGNOSIS

Performance

Measures

12-Lead CSNA

Features

12-Lead ECG

Features

12-Lead CSNA and

and ECG Features

GMMCSNA ANNCSNA GMMECG ANNECG GMMHYB ANNHYB

ACC 71.97 77.27 80.30 85.61 90.53 94.70

TPR 71.21 76.52 81.06 86.36 91.67 96.21

TNR 72.73 78.03 79.55 84.85 89.39 93.18

PPV 72.31 77.69 79.85 85.07 89.63 93.38

NPV 71.64 76.87 80.77 86.15 91.47 96.09

F1 71.76 77.10 80.45 85.71 90.64 94.78

The best results are written with bold characters.

Furthermore, the previous studies reported that the sensitivity (TPR) and speci�city (TNR) of the gold standard

diagnostic test ECG in the diagnosis of myocardial ischemia were approximately 76% and 88%, respectively [173].



In this study, the results obtained on the STAFF III database showed

that the proposed hybrid arti�cial neural network based classi�cation technique

(ANNHYB), which jointly and simultaneously uses CSNA and ECG data, exhibits

superior sensitivity (TPR) and speci�city (TNR) compared to the gold standard

diagnostic test ECG in the diagnosis of myocardial ischemia (Table 2.13 ). For

these reasons, the hybrid arti�cial neural network based classi�cation technique

(ANNHYB) was selected to be used as the classi�cation method in the proposed

automated arti�cial intelligence-based hybrid anomaly detection technique.

Additionally, among the unsupervised machine learning methods developed

using only the pre-in�ation (normal) data, the hybrid Gaussian mixture model-

based clustering technique (GMMHYB), which jointly and simultaneously uses

CSNA and ECG data, achieved the best performance. Therefore, it was se-

lected to be used as the clustering method in the proposed automated arti�cial

intelligence-based hybrid anomaly detection technique.

2.1.2 The Performance Results of the Automated Arti�cial

Intelligence based Hybrid Anomaly Detection Tech-

nique on the PTBD Database

As a result of the implementation of the developed enhanced signal processing

technique on the 12-lead wideband raw recordings in the PTBD database, the

12-lead ECG and CSNA signals of all healthy controls and myocardial infarction

patients were simultaneously detected. Figures 2.5 and 2.6 demonstrate a single

lead normal and abnormal CSNA and ECG signals of a healthy control and my-

ocardial infarction patient in the PTBD database, respectively. The experimental

results on the PTBD database revealed that there is an increase in the amplitude

of the abnormal CSNA signals during myocardial infarction, which indicates that

there is a signi�cant association between CSNA and myocardial infarction, as

illustrated in Figure 2.5. This association provides novel insights into the rela-

tionship between electrical and physiological changes within the cardiac system

during myocardial infarction, thereby facilitating a deeper understanding of the
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underlying pathological mechanisms.

Figure 2.5: A single lead normal and abnormal CSNA signals of a healthy con-

trol and myocardial infarction patient in the PTBD database, respectively. The

cardiologists annotated the onset and end times of myocardial infarction, which

are illustrated with red lines at the 267th second and 300th second, respectively.

The abnormal CSNA increases shortly after the onset of myocardial infarction

and decreases after the termination of myocardial infarction.

Moreover, the �ndings of the study indicated that the increase in the amplitude

of the abnormal CSNA signals during myocardial infarction was accompanied by

simultaneous elevation or depression in the ST segment, and polarity or amplitude

changes in the QRS complex, and the T wave of ECG signals, as illustrated in

Figure 2.6 . Therefore, the results suggested that there is a correlation between

the increase in the amplitude of CSNA signals and the anomalies in ECG signals

during myocardial infarction. Thus, the investigations conducted on the STAFF

III and PTBD databases showed that CSNA can be utilized as a new biomarker in

the diagnosis and classi�cation of myocardial ischemia and myocardial infarction,

both of which are types of coronary artery disease.
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Figure 2.6: A single lead normal and abnormal ECG signals of the same healthy

control and myocardial infarction patient in the PTBD database, respectively.

There is an elevation in the ST segment and a decrease in the amplitude of the

QRS complex, and T wave of the abnormal ECG signal, which are very common

symptoms of myocardial infarction. Hence, the anomalies in the ECG signal that

occurred during myocardial infarction were accompanied by the simultaneous

increase in the amplitude of the CSNA signal.

For the development of the proposed supervised classi�cation technique, we

utilized the 12-lead normal CSNA and ECG data of the healthy controls, and

the 12-lead abnormal CSNA and ECG data of the myocardial infarction patients.

Moreover, we used only the 12-lead normal CSNA and ECG data of the healthy

controls for the development of the proposed unsupervised clustering technique.

The main motivation for developing the unsupervised clustering technique with

the Neyman-Pearson criterion that can work using only the normal data was to

construct a method that can successfully diagnose myocardial infarction even in

cases where the abnormal data are missing.
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Table 2.14 presents the confusion matrix of the hybrid Gaussian mixture model-based clustering technique on the test

set of the PTBD database, which reveals its strong ability to discriminate between patients with and without myocardial

infarction (i.e., coronary artery disease). Out of a total of 132 coronary artery disease (abnormal) recordings of myocardial

infarction patients in the test set, the proposed technique correctly classi�ed 125 recordings, while misclassifying only

7 recordings as non-coronary artery disease (normal). Furthermore, out of a total of 132 non-coronary artery disease

(normal) recordings of the healthy controls in the test set, the proposed technique accurately classi�ed 124 recordings,

while misclassifying only 8 recordings as coronary artery disease (abnormal).

TABLE 2.14: The CONFUSION MATRIX of the HYBRID GAUSSIAN MIXTURE MODEL based CLUSTERING

TECHNIQUE on the TEST SET of the PTBD DATABASE for CORONARY ARTERY DISEASE DIAGNOSIS

TECHNIQUE CONFUSION MATRIX

GMMHYB

True Label

CAD NON-CAD

Predicted Label
CAD True Positive (TP) = 125 False Positive (FP)= 8

NON-CAD False Negative (FN) = 7 True Negative (TN) = 124

CAD: Coronary Artery Disease, NON-CAD: Not Coronary Artery Disease.



Table 2.15 presents the confusion matrix of the hybrid arti�cial neural network based classi�cation technique on the test

set of the PTBD database, which reveals its strong ability to e�ectively discriminate between patients with and without

coronary artery disease. Out of a total of 132 coronary artery disease (abnormal) recordings of myocardial infarction

patients in the test set, the proposed technique correctly classi�ed 130 recordings, while misclassifying only 2 recordings as

non-coronary artery disease (normal). Additionally, out of a total of 132 non-coronary artery disease (normal) recordings

of the healthy controls in the test set, the proposed technique accurately classi�ed 129 recordings, while misclassifying only

3 recordings as coronary artery disease (abnormal).

TABLE 2.15: The CONFUSION MATRIX of the HYBRID ARTIFICIAL NEURAL NETWORK-based CLASSIFICA-

TION TECHNIQUE on the TEST SET of the PTBD DATABASE for CORONARY ARTERY DISEASE DIAGNOSIS

TECHNIQUE CONFUSION MATRIX

ANNHYB

True Label

CAD NON-CAD

Predicted Label
CAD True Positive (TP) = 130 False Positive (FP)= 3

NON-CAD False Negative (FN) = 2 True Negative (TN) = 129

CAD: Coronary Artery Disease, NON-CAD: Not Coronary Artery Disease.



Table 2.16 demonstrates the statistical performance results of the optimum

Gaussian mixture model-based clustering technique and the optimum arti�-

cial neural network based classi�cation technique on the test set of the PTBD

database. The performance results of the developed techniques that separately

utilized either only 12-lead CSNA data or only 12-lead ECG data are indicated

by the notations GMMCSNA, ANNCSNA or GMMECG, ANNECG, respectively.

Similarly, the performance results of the hybrid techniques that jointly and si-

multaneously utilized the 12-lead CSNA and ECG data are represented by the

notations GMMHYB and ANNHYB.
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TABLE 2.16: The STATISTICAL PERFORMANCE RESULTS (%) of the OPTIMUM GAUSSIAN MIXTURE MODEL

based CLUSTERING TECHNIQUE and OPTIMUM ARTIFICIAL NEURAL NETWORK-based CLASSIFICATION

TECHNIQUE on the TEST SET of the PTBD DATABASE for CORONARY ARTERY DISEASE DIAGNOSIS

Performance

Measures

12-Lead CSNA

Features

12-Lead ECG

Features

12-Lead CSNA

and ECG Features

GMMCSNA ANNCSNA GMMECG ANNECG GMMHYB ANNHYB

ACC 76.14 81.44 84.85 89.77 94.32 98.11

TPR 76.52 81.82 85.61 90.15 94.70 98.48

TNR 75.76 81.06 84.09 89.39 93.94 97.73

PPV 75.94 81.20 84.33 89.47 93.98 97.74

NPV 76.34 81.68 85.38 90.08 94.66 98.47

F1 76.23 81.51 84.96 89.81 94.34 98.11

The best results are written with bold characters.

The experimental results on the PTBD database revealed that the proposed arti�cial neural network based classi�cation

technique has a relatively higher performance for the diagnosis of myocardial infarction compared to the Gaussian mixture

model-based clustering technique for both separate and joint use of the 12-lead CSNA and ECG data.



This can be explained by the fact that the arti�cial neural network based

classi�cation technique utilizes both the normal data of the healthy controls and

the abnormal data of myocardial infarction patients to detect the anomalies in

CSNA and/or ECG data. On the other hand, the Gaussian mixture model-based

clustering technique exclusively utilizes the normal data of the healthy controls

to e�ectively detect the anomalies in CSNA and/or ECG data.

Moreover, the comparison between the performance results of all developed

techniques indicated that the hybrid arti�cial neural network based classi�cation

technique (ANNHYB), which jointly and simultaneously used CSNA and ECG

data, achieved signi�cantly higher performance compared to the other techniques

that separately used either only CSNA data or only ECG data. Therefore, by

taking advantage of the diversity in di�erent data types, the proposed hybrid

arti�cial neural network based classi�cation technique (ANNHYB) signi�cantly

increased the detection performance of myocardial infarction. Thus, the �ndings

of this study indicated that CSNA can serve as an additional diagnostic feature

to ECG for considerably increasing the detection performance of coronary artery

disease (i.e., myocardial infarction, myocardial ischemia, silent (asymptomatic)

myocardial ischemia) and decreasing the number of false negatives, which can

lead to reduced mortality and morbidity rates.

Furthermore, the previous studies reported that the sensitivity (TPR) and

speci�city (TNR) of the gold standard diagnostic test ECG in the diagnosis of

myocardial infarction were approximately 84% and 91%, respectively [174]. In

this study, the results obtained on the PTBD database showed that the proposed

hybrid arti�cial neural network based classi�cation technique (ANNHYB), which

jointly and simultaneously uses CSNA and ECG data, exhibits superior sensi-

tivity (TPR) and speci�city (TNR) compared to the gold standard diagnostic

test ECG in the diagnosis of myocardial infarction (Table 2.16 ). For these rea-

sons, the hybrid arti�cial neural network based classi�cation technique (ANNHYB)

was selected to be used as the classi�cation method in the proposed automated

arti�cial intelligence-based hybrid anomaly detection technique.

Additionally, among the unsupervised machine learning methods developed
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using only the normal data of healthy controls, the hybrid Gaussian mixture

model-based clustering technique (GMMHYB), which jointly and simultaneously

uses CSNA and ECG data, achieved the best performance. Therefore, it was

selected to be used as the clustering method in the proposed automated arti�cial

intelligence-based hybrid anomaly detection technique.

Consequently, the results we obtained on the PTBD database using the pro-

posed automated arti�cial intelligence-based hybrid anomaly detection technique

strongly supported our previous results on the STAFF III database. In addition,

the consistently high performance results of the automated arti�cial intelligence-

based hybrid anomaly detection technique on two di�erent databases that contain

di�erent and diverse patients with coronary artery disease indicate that the tech-

nique is quite robust and generalizable.

Moreover, the performance of the automated arti�cial intelligence-based hy-

brid anomaly detection technique on the PTBD database is relatively higher

compared to its performance on the STAFF III database. There are several rea-

sons that may have contributed to this outcome. It is important to consider

the characteristics of the two databases to justify the di�erences in the arti�cial

intelligence-based hybrid anomaly detection technique's performance on these two

databases. Firstly, the ECG patterns obtained during percutaneous coronary in-

tervention in the STAFF III database may di�er from those of patients in the

PTBD database who have su�ered from myocardial infarction. Speci�cally, the

anomalies in ECG signals of myocardial infarction patients in the PTBD database

were generally more pronounced, distinct, and apparent compared to those of my-

ocardial ischemia patients in the STAFF III database [168, 170, 171]. Hence, the

data in the STAFF III database are comparatively more di�cult to classify than

the data in the PTBD database.

Secondly, the two databases have di�erent characteristics in terms of the con-

text in which the data was collected. The in�ation (abnormal) recordings in the

STAFF III database were acquired at the cardiac catheterization laboratory (op-

eration room), however, this was not the case for the PTBD database. Moreover,

the recordings in the STAFF III database were acquired during percutaneous
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coronary intervention, which implies that they were collected in real-time during

an invasive procedure in a clinical setting under speci�c conditions. Factors such

as interference from other medical equipment in the operating room may have

introduced noise and artifacts into the raw recordings in the STAFF III database.

Therefore, the quality of the raw recordings in the PTBD database may be better

than those in the STAFF III database.

2.2 Discussion

The accurate and timely diagnosis of coronary artery disease is crucial for e�ec-

tive patient treatment and management. The visual and manual interpretation of

the 12-lead ECG signals by cardiologists for diagnosing various cardiovascular dis-

eases is a complex and time-consuming task that requires experienced physicians.

Moreover, misdiagnoses are very likely to occur during visual inspection by physi-

cians due to the small amplitudes of ECG signals [175, 176]. Therefore, there is a

great need for computer-aided machine learning methods that accurately perform

automated detection of cardiovascular diseases to reduce the number of misdiag-

noses by human experts and decrease the workload of physicians in daily clinical

practice.

In patients with coronary artery disease, signi�cant anomalies in the ST seg-

ment, QRS complex, and T wave of ECG signals occur during myocardial is-

chemia and myocardial infarction [177]. However, a considerable number of coro-

nary artery disease patients worldwide su�er from silent (asymptomatic) my-

ocardial ischemia, in which there are no anomalies in patients' ECG signals.

Hence, ECG alone is limited in its ability to diagnose asymptomatic coronary

artery disease patients with silent (asymptomatic) myocardial ischemia. Thus,

an ECG signal without anomalies does not exclude the possibility of coronary

artery disease. This limitation makes silent (asymptomatic) myocardial ischemia

more dangerous and fatal, as asymptomatic coronary artery disease patients with

silent (asymptomatic) myocardial ischemia who do not experience any symptoms

are prone to misinterpretation by cardiologists, leading to false negative results.
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The signi�cance of this innovative study lies in its proposal of the �rst au-

tomated arti�cial intelligence technique that consists of various signal process-

ing, feature extraction, supervised, and unsupervised machine learning methods

that jointly and simultaneously analyze 12-lead CSNA and ECG data to perform

fast, early, and accurate diagnosis of coronary artery disease (i.e., silent (asymp-

tomatic) myocardial ischemia, myocardial ischemia, and myocardial infarction).

The proposed automated arti�cial intelligence-based hybrid anomaly detection

technique was implemented on two di�erent publicly available databases to ensure

data heterogeneity, and diversify the results and �ndings of the study. By using

the automated arti�cial intelligence-based hybrid anomaly detection technique,

we demonstrated for the �rst time that there are anomalies in CSNA signals dur-

ing coronary artery disease, which further supports the well-established fact that

there is a direct and strong relationship between the sympathetic nervous sys-

tem and cardiovascular diseases [14, 15]. Therefore, this study's �ndings support

those of previous studies, which have shown that the sympathetic nervous system

plays an important role in regulating the cardiovascular system [14, 15].

As discussed earlier, recent studies in the literature have shown a signi�cant

association between CSNA and cardiac arrhythmias [15, 16, 17, 18, 19]. However,

our study is the �rst to demonstrate a signi�cant association between CSNA and

coronary artery disease using the proposed automated arti�cial intelligence-based

hybrid anomaly detection technique, which �lls the research gap in the literature

[1]. This association o�ers new perspectives on the connection between electrical

and physiological alterations in the cardiac system during coronary artery disease,

which in turn enhances comprehension of the underlying pathological processes.

Moreover, the �ndings indicated that there is a correlation between the increase

in CSNA and the anomalies in ECG signals during coronary artery disease. For

these reasons, the �ndings of recent studies [15, 16, 17, 18, 19] and our study [1]

collectively suggested that CSNA can be a new biomarker for the diagnosis and

classi�cation of both cardiac arrhythmia and coronary artery disease, respectively.

The performance results of the automated arti�cial intelligence-based hybrid
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anomaly detection technique on the STAFF III and PTBD databases suggested

that the technique achieves highly accurate and reliable diagnosis of coronary

artery disease by simultaneously and robustly detecting anomalies in the 12-lead

CSNA and ECG data. Additionally, it has been shown that the automated ar-

ti�cial intelligence-based hybrid anomaly detection technique achieves superior

performance compared to the gold standard diagnostic test ECG in the diagnosis

of coronary artery disease. This achievement signi�es the potential of the auto-

mated arti�cial intelligence-based hybrid anomaly detection technique to provide

an e�cient and reliable alternative to the current diagnostic method for diagnos-

ing coronary artery disease.

Moreover, the automated arti�cial intelligence-based hybrid anomaly detection

technique outperformed other arti�cial intelligence techniques developed in this

study, which separately used either only CSNA data or only ECG data. Therefore,

by leveraging the strengths of di�erent data types, the arti�cial intelligence-based

hybrid anomaly detection technique considerably improved the detection perfor-

mance of coronary artery disease. Hence, the study's �ndings indicate that CSNA

can serve as an additional diagnostic feature to ECG for considerably improving

the performance of coronary artery disease diagnosis and decreasing the number

of false negatives, potentially leading to reduced mortality and morbidity rates.

The performance comparison between the proposed automated arti�cial

intelligence-based hybrid anomaly detection technique and previously proposed

machine learning approaches that used only ECG data to diagnose or classify

coronary artery disease is summarized in Table 3.16 , which presents all statisti-

cal performance evaluation metrics to comprehensively evaluate the e�ectiveness

of the arti�cial intelligence-based hybrid anomaly detection technique.

The performance of the proposed automated arti�cial intelligence-based hy-

brid anomaly detection technique is superior to that of most previously proposed

machine learning approaches that exclusively used ECG data to diagnose or clas-

sify coronary artery disease. Speci�cally, the binary classi�cation performance

results of the automated arti�cial intelligence-based hybrid anomaly detection

technique on the PTBD database demonstrated higher sensitivity (TPR), higher
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speci�city (TNR), higher accuracy (ACC), comparable precision (PPV ), and

higher negative predictive value (NPV ) compared to most of the existing studies

in the literature that utilized machine learning methods and only ECG data to

diagnose or classify coronary artery disease (Table 3.16 ).
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TABLE 2.17: The PERFORMANCE COMPARISON between the PROPOSED AUTOMATED ARTIFICIAL

INTELLIGENCE-BASED HYBRID ANOMALY DETECTION TECHNIQUE and RECENT MACHINE LEARNING

STUDIES that used ONLY ECG DATA for CORONARY ARTERY DISEASE DIAGNOSIS or CLASSIFICATION

STUDY TECHNIQUE DATABASE TPR (%) TNR (%) PPV (%) F1 (%) ACC (%) NPV (%)

Magrans et al.[72] Support Vector Machine STAFF III Database 83.3 91.7 90.9 - - 85.7

Proposed Method
Arti�cial Intelligence-based Hybrid

Anomaly Detection Technique
STAFF III Database 96.21 93.18 93.38 94.78 94.70 96.09

Sadhukhan et al.[73] Logistic Regression PTBD Database 96.5 92.7 - - 95.6 -

Tripathy et al.[74]
Least-Squares-

Support Vector Machine
PTBD Database 99.8 99.6 - - 99.7 -

Dohare et al.[54] Support Vector Machine PTBD Database 96.6 96.6 - - 96.6 -

Ahmad et al.[75] Support Vector Machine PTBD Database 94 - 98 - 98.4 -

Acharya et al.[76] K-Nearest Neighbor PTBD Database 99.4 96.2 - - 98.8 -

Sharma et al.[49] K-Nearest Neighbor PTBD Database 98.3 99.4 99.4 - 99 -

Jothiramalingam et al.[77] K-Nearest Neighbor PTBD Database 77.4 81.8 - - 82.8 -

Sraitih et al.[78] Random Forest PTBD Database 73 - 74 - 75 -

Agrawal et al.[79] Decision Tree PTBD Database - 96.5 - - 98.3 -

Liu et al.[80] Random Tree PTBD Database 94.2 74 - - 89.5 -

Chang et al.[81] Gaussian Mixture Model PTBD Database 85.7 79.8 - - 82.5 -

Proposed Method
Arti�cial Intelligence-based Hybrid

Anomaly Detection Technique
PTBD Database 98.48 97.73 97.74 98.11 98.11 98.47

Al-Zaiti et al.[82] Gradient Boosting Machine Self-Collected ECG Data 77 76 43 - - 94

Daraei et al.[83] J48 Decision Tree (C4.5) Self-Collected ECG Data 86.6 - - 80 82.6 -

Sun et al.[84]
Support Vector Machine,

Boosting Tree
Self-Collected ECG Data 91.7 82.7 - - 89.1 -

Bashir et al.[59]

Naive Bayes,

Support Vector Machine,

Decision Tree

UCI Machine

Learning Repository
93.7 92.8 - 82.1 87.3 -

Ramasamy et al.[41] K-Nearest Neighbor MIT-BIH Database 95.4 99.4 - - 99.4 -

Exarchos et al.[69] Association Rule Mining European ST-T Database 87 93 - - - -



Moreover, the performance comparison between the proposed automated arti-

�cial intelligence-based hybrid anomaly detection technique and previously pro-

posed deep learning approaches that used only ECG data to diagnose or classify

coronary artery disease are summarized in Table 3.17 . Most of the existing deep

learning methods are based on the development of various convolutional neural

network architectures commonly trained using transfer learning or �ne-tuning

methods and using only ECG data to diagnose or classify various cardiovascular

diseases [26, 27, 85, 86, 103, 104, 111, 114].

The performance of the automated arti�cial intelligence-based hybrid anomaly

detection technique is better than that of most previously proposed deep learn-

ing approaches that exclusively used ECG data to diagnose or classify coronary

artery disease. Speci�cally, the binary classi�cation performance results of the

automated arti�cial intelligence-based hybrid anomaly detection technique on the

PTBD database showed that the technique has higher sensitivity (TPR), higher

speci�city (TNR), higher F1-score (F1), higher precision (PPV ), higher accu-

racy (ACC), and higher negative predictive value (NPV ) compared to most of

the existing studies in the literature that utilized deep learning methods and only

ECG data to diagnose or classify coronary artery disease (Table 3.17 ).

However, a few studies in the literature that used machine or deep learning ap-

proaches and only ECG data demonstrated slightly better performance compared

to our proposed automated arti�cial intelligence-based hybrid anomaly detection

technique [41, 49, 74, 76, 93]. This is a highly anticipated result, since deep

learning methods often work with larger amounts of data, which improves their

performance results. Moreover, they can bene�t from transfer learning, in which

they are pretrained on signi�cantly larger databases and then �ne-tuned on the

speci�c database of interest. Additionally, some of these existing studies [41, 93]

were developed and evaluated on di�erent databases, which may have contributed

to their slightly better performance results. Although these few existing studies

[49, 74, 76] achieved slightly better performance, our results are still highly com-

petitive.

Compared to existing related methods, one of the biggest advantages of the
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proposed automated arti�cial intelligence-based hybrid anomaly detection tech-

nique is that it can provide accurate and reliable diagnosis of silent (asymp-

tomatic) myocardial ischemia, which was one of the aims and motivations of this

study. Therefore, the arti�cial intelligence-based hybrid anomaly detection tech-

nique targets to address the limitations of existing related studies that have used

only ECG data to detect coronary artery disease and �ll the research gaps in

the literature. Thus, the automated arti�cial intelligence-based hybrid anomaly

detection technique can be highly bene�cial and useful by providing improved

diagnosis, particularly for asymptomatic coronary artery disease patients with

silent (asymptomatic) myocardial ischemia, for whom the diagnostic information

provided by ECG alone is not su�cient to reliably diagnose the disease.

Another advantage of the proposed arti�cial intelligence-based hybrid anomaly

detection technique, over some of the existing machine and deep learning meth-

ods, is that it can automatically process all 12-leads for enhanced coronary artery

disease diagnosis, instead of only one-lead. This is particularly important as each

lead provides diagnostic information about the heart from a di�erent angle, and

multiple leads are required for the accurate and reliable diagnosis of coronary

artery disease [27, 28, 31, 33, 62, 93, 113, 175]. Therefore, the automated ar-

ti�cial intelligence-based hybrid anomaly detection technique bene�ts from the

diversity in diagnostic information provided by all 12-leads and can accurately

detect coronary artery disease cases that cannot be diagnosed using only one-lead.

This advantage may have substantially contributed to the relatively higher per-

formance of the automated arti�cial intelligence-based hybrid anomaly detection

technique on the STAFF III and PTBD databases.

Conversely, either one-lead or a limited number of leads was used to diagnose

or classify coronary artery disease in some of the existing methods in Tables 3.16

and 3.17 [40, 41, 49, 69, 73, 75, 93, 101, 103, 105, 109, 112, 113, 177]. However,

certain types of coronary artery disease are lead-speci�c and can only be detected

through particular leads. Consequently, they might be missed by methods that

monitor only one-lead or a very few number of leads. This limitation may result

in poor generalization and these existing methods may not provide a reliable

diagnosis for coronary artery disease that are localized in various heart locations
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[49, 54, 76, 81, 82, 84, 178, 179].

Another advantage of the automated arti�cial intelligence-based hybrid

anomaly detection technique is its very short implementation time, which is

highly desirable for real-time detection of coronary artery disease. This may

support fast decision-making by physicians in clinical settings, which could have

signi�cant implications in emergency situations where rapid diagnosis is crucial

for timely patient treatment.
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TABLE 2.18: The PERFORMANCE COMPARISON between the PROPOSED AUTOMATED ARTIFICIAL

INTELLIGENCE-BASED HYBRID ANOMALY DETECTION TECHNIQUE and RECENT DEEP LEARNING STUDIES

that used ONLY ECG DATA for CORONARY ARTERY DISEASE DIAGNOSIS or CLASSIFICATION

STUDY TECHNIQUE DATABASE TPR (%) TNR (%) PPV (%) F1 (%) ACC (%) NPV (%)

Brisk et al.[102] Convolutional Neural Network STAFF III Database 84.2 94.7 - 81.4 80.3 -

Proposed Method
Arti�cial Intelligence-based Hybrid

Anomaly Detection Technique
STAFF III Database 96.21 93.18 93.38 94.78 94.70 96.09

Reasat et al.[103] Convolutional Neural Network PTBD Database 85.3 84.1 - - 84.5 -

Makimoto et al.[104] Convolutional Neural Network PTBD Database 65 86 82 72 75 71

Hammad et al.[105] Convolutional Neural Network PTBD Database 81.1 - 88.5 83 89.7 -

Darmawahyuni et al.[106] Recurrent Neural Network PTBD Database 98.4 97.9 95.6 96.3 - -

Feng et al.[180]
Convolutional Neural Network,

Recurrent Neural Network
PTBD Database 98.2 86.5 - 96.8 95.4 -

Rath et al.[108] Self-Organizing Map-Autoencoder PTBD Database - - - 97.1 98.4 -

Proposed Method
Arti�cial Intelligence-based Hybrid

Anomaly Detection Technique
PTBD Database 98.48 97.73 97.74 98.11 98.11 98.47

Prabhakararao et al.[88] Recurrent Neural Network PhysioNet Database 97.6 99.4 - - 97.7 -

Hernandez et al.[109] Recurrent Neural Network PhysioNet Database 94.7 - - - 97.4 -

Miao et al.[110] Deep Neural Network UCI Machine Learning Repository 93.5 72.8 79.1 85.7 83.6 -

Bigler et al.[111] Convolutional Neural Network Self-Collected ECG Data 83 98 - 89.9 91.5 -

Altan et al.[33] Deep Belief Network Long-Term ST Database 96 98.8 - - 98 -

Xiao et al.[112] Convolutional Neural Network Long-Term ST Database 82.6 80.3 - 87.3 - -

Butun et al.[93] 1D-CADCapsNet St. Petersburg ICT Database 97.9 98.7 93.3 - 98.6 -

Acharya et al.[113] Convolutional Neural Network St. Petersburg ICT Database 91.1 95.8 80.8 - 95.1 -

Dutta et al.[114] Convolutional Neural Network NHANES Database 77 - - - 79.5 -

Sharma et al.[40] Long Short-Term Memory MIT-BIH Database 65.1 86.8 - 76.5 78.4 -



Furthermore, the advantage of the automated arti�cial intelligence-based hy-

brid anomaly detection technique over the microneurography technique, which

is the conventional method for invasively recording and monitoring sympathetic

nervous system activities, is that it uses wideband recordings non-invasively ac-

quired from patients to record CSNA. Thus, it signi�cantly reduces the risks

associated with invasive procedures and the limitations associated with the re-

quirement of highly specialized skills and expertise from trained clinicians, while

also improving patient comfort.

Moreover, in clinical practice, two di�erent physicians can often make incon-

sistently di�erent diagnoses for the same patient successively [181]. An important

advantage of the automated arti�cial intelligence-based hybrid anomaly detection

technique is its ability to provide the patient with consistently accurate diagnoses

successively.

Additionally, two publicly available databases were used for the development

and evaluation of the automated arti�cial intelligence-based hybrid anomaly de-

tection technique. The results obtained on both databases using the automated

arti�cial intelligence-based hybrid anomaly detection technique strongly support

each other. The consistently high performance results of the arti�cial intelligence-

based hybrid anomaly detection technique on two di�erent databases that contain

di�erent and diverse patients with coronary artery disease indicate that the tech-

nique is quite robust and generalizable.

The common drawback of most of the previously proposed arti�cial intelligence

studies that investigated the diagnosis or classi�cation of coronary artery diseases

is that they only utilized ECG data [24, 25, 28, 31, 33, 36, 41, 42, 44, 45, 46, 49, 52,

53, 54, 55, 56, 57, 59, 60, 61, 63, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,

83, 84, 88, 93, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113,

114, 172, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189]. To

the best of our knowledge, this is the �rst study that proposes a hybrid arti�cial

intelligence technique that jointly and simultaneously analyzes 12-lead CSNA

and ECG data to provide fast, early, and accurate diagnosis of a heart disease.

Since, there are no other studies in the literature that proposed a hybrid arti�cial

97



intelligence technique that jointly uses CSNA and ECG data or separately uses

only CSNA data to diagnose or classify cardiovascular diseases, it is not possible

to compare the performance results of the proposed arti�cial intelligence-based

hybrid anomaly detection technique with those of other studies.
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Chapter 3

Arti�cial Intelligence based Hybrid

Clinical Decision Support

Technique for COVID-19 Diagnosis

via RT-PCR Curves, Computed

Tomography Images, and

Laboratory Data

In this single-center retrospective study, the Ankara University Faculty of

Medicine COVID-19 (AUFM-CoV) database was constructed by physicians from

the Departments of Chest Diseases, Radiology, Infectious Diseases, and Medical

Microbiology at the Ankara University Faculty of Medicine Hospital. All data

were obtained from patients who applied to the Ankara University Faculty of

Medicine Hospital between May and December 2020. The study was approved by

the Turkish Ministry of Health and the Ethics Committee of the Ankara Univer-

sity Faculty of Medicine Hospital (I8-501-20), and it was performed in accordance

with the ethical standards outlined in the Helsinki Declaration and its subsequent
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amendments. The requirement to obtain patients' written informed consent was

waived as per legislation governing the retrospective analysis of anonymized data,

in accordance with the Council for International Organizations of Medical Sci-

ences guidelines. The study was also registered in the U.S. National Library of

Medicine database ClinicalTrials.gov [Identi�er (NCT) Number: NCT04479319].

According to the data inclusion and exclusion criteria jointly determined by

physicians at the Ankara University Faculty of Medicine Hospital, only clinically

suspected patients who were older than 18 years and had undergone all RT-

PCR, thorax computed tomography, and laboratory examinations, as well as

multiple RT-PCR tests within seven days before and after the thorax computed

tomography examination date, were enrolled in the study. Patients who did

not have results for each of the RT-PCR, thorax computed tomography, and

laboratory examinations or who had undergone any of these examinations in

another hospital were excluded from the study.

Since COVID-19 is a relatively new disease, the numbers and sizes of publicly

available COVID-19 databases were limited and small, respectively [190, 191].

This limitation posed an obstacle to the development and benchmarking of ar-

ti�cial intelligence techniques for detecting COVID-19. Moreover, collecting and

labeling di�erent types of medical data takes a signi�cant amount of time and

results in a heavy workload. As a result, almost all of these databases only con-

tained chest X-ray or thorax computed tomography images, and the numbers of

images in di�erent classes were imbalanced. Therefore, among the publicly avail-

able COVID-19 databases, the AUFM-CoV database contains the widest variety

of data, including RT-PCR curves and test results, thorax computed tomography

images and reports, and laboratory data for each patient. Thus, it provides an

excellent testbed for the development and evaluation of supervised and unsuper-

vised arti�cial intelligence techniques.

Under the routine clinical approach at the Ankara University Faculty of

Medicine Hospital, thorax computed tomography was conducted when patients

suspected of having COVID-19 exhibited moderate or severe respiratory symp-

toms and/or hypoxemia. All thorax computed tomography images were acquired
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in axial, coronal, and sagittal planes without the use of intravenous contrast ma-

terial at the end of inspiration during a single breath-hold period in a supine

position. Radiological examinations were carried out using two di�erent models

of computed tomography scanners from two di�erent brands. These scanners

were the four-detector sequential computed tomography devices (Toshiba Medi-

cal Systems, Japan and Siemens Healthcare, Germany) with a tube voltage of

120 kV and tube current modulation ranging from 100 mAs to 350 mAs.

In total, the AUFM-CoV database includes thorax computed tomography im-

ages of 646 COVID-19 patients and 1936 Control Group patients who were admit-

ted to the Ankara University Faculty of Medicine Hospital. Speci�cally, the Con-

trol Group includes thorax computed tomography images of the healthy lungs and

lung diseases containing ground-glass opacities (GGO), such as other viral and

bacterial pneumonias (VBP), and parenchymal lung diseases (PLD). These are

the most frequently confused diseases in the di�erential diagnosis with COVID-19

pneumonia (CVP). Thorax computed tomography images of all Control Group

patients were collected via the hospital information management system (HIMS)

from radiological data acquired before December 2019 to ensure that they do not

contain pathological features of COVID-19 pneumonia (CVP). Thorax computed

tomography images in the AUFM-CoV database contained slice numbers ranging

from 100 to 400 and slice thicknesses ranging between 0.1 mm and 2 mm.

All thorax computed tomography images were annotated and labeled by an

expert radiologist with over 10 years of experience, who was blinded to the RT-

PCR �ndings. These images were initially divided into four groups, which are

typical, atypical, indeterminate, and negative according to the Radiological Soci-

ety of North America (RSNA) recommendations (Figure 3.1 ) [121]. Atypical or

indeterminate thorax computed tomography images were re-evaluated by a pul-

monologist. They were then labeled as either compatible or incompatible with

COVID-19 pneumonia (CVP) by taking into account the clinical data (e.g., fever,

cough) of the respective patients.
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Figure 3.1: Anonymized typical, atypical, indeterminate, and negative thorax

computed tomography slices in terms of COVID-19 pneumonia (CVP), according

to the Radiological Society of North America (RSNA) classi�cation.

A: Typical thorax computed tomography slices in terms of COVID-19 pneumonia

(CVP) containing bilateral patchy ground-glass opacities (GGO) and consolida-

tion.

B: Indeterminate thorax computed tomography slices in terms of COVID-19

pneumonia (CVP) containing ground-glass opacities (GGO) and consolidation

that do not �t the typical COVID-19 pneumonia (CVP) distribution.

C: Atypical thorax computed tomography slices in terms of COVID-19 pneu-

monia (CVP) containing opacities associated with cavitation, consolidation, and

atelectasis, respectively.

D: Negative thorax computed tomography slices with no �ndings suggestive of

COVID-19 pneumonia (CVP).

Moreover, nasopharyngeal swab specimens were collected by trained medical

sta� using viral lysis bu�er (vNAT, Bioeksen, Turkey) as transportation medium.

All samples were transported to the Central Molecular Microbiology Laboratory
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at the Ankara University Faculty of Medicine Hospital within four hours while

being stored at +4◦C. For RT-PCR analysis, various versions of three di�erent

brand kits (BioSpeedy [Bioeksen, Turkey], Coronex [Gensutek, Turkey], Diag-

novital [RTA, Turkey]) were used. Viral RNA extraction was performed us-

ing a four-channel RT-PCR device named Rotor-Gene Q 5Plex HRM (Qiagen,

Malaysia).

TABLE 3.1: TWO CHANNELS of the RT-PCR DEVICE that PROVIDED

NECESSARY DIAGNOSTIC INFORMATION for COVID-19 DIAGNOSIS

Yellow Channel Green Channel SARS-CoV-2

+ + +

+ - -

- + +

- - Invalid Result

(+): Positive for COVID-19, (-): Negative for COVID-19.

Yellow Channel: Internal control, Green Channel: Target.

In suspected patients who initially test negative on RT-PCR, the mean time for

the test to become positive was reported as 5.1 ± 1.5 days in various publications

[192, 193]. In our study, by considering the incubation period of COVID-19,

patients who underwent multiple RT-PCR tests within a 15-day period, covering

the 7 days before and after the thorax computed tomography examination date

(which was considered as the reference date), were included in the AUFM-CoV

database.

All RT-PCR curves were evaluated via hospital information management sys-

tem (HIMS) and labeled as either positive or negative for SARS-CoV-2 by an

expert microbiologist with over 10 years of experience, who was blinded to the
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thorax computed tomography and laboratory �ndings. Consequently, the AUFM-

CoV database included the positive and negative RT-PCR curves of 593 and 838

patients, respectively.

Furthermore, laboratory data (lymphocyte counts and neutrophil-lymphocyte

ratios), which were acquired on the same day as each patient's thorax computed

tomography examination date, were obtained from complete blood count exami-

nations registered in hospital information management system (HIMS). Previous

studies have reported that patients with viral infections have signi�cantly lower

lymphocyte counts (<1500mm3) and higher neutrophil-lymphocyte ratios (>3.2)

[194].

Based on these criteria, in our study, laboratory data were labeled as compat-

ible or incompatible with viral infection through the evaluation of each patient's

complete blood counts, as well as symptoms, fever �ndings, and contact his-

tories by an expert clinician who was blinded to thorax computed tomography

and RT-PCR �ndings. Laboratory data were analyzed using the Sysmex XN-10

automated hematology analyzer (Sysmex Corporation).

By using the labels of thorax computed tomography images, RT-PCR curves,

and laboratory data, the criteria for patient labeling presented in Table 3.2 were

jointly established by the microbiologist, radiologist, and clinician at the Ankara

University Faculty of Medicine Hospital. These criteria aim to specify the multi-

class classi�cation classes of the arti�cial intelligence-based hybrid clinical deci-

sion support technique that correspond to patients' �nal diagnosis.
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TABLE 3.2: PATIENT LABELING CRITERIA for ARTIFICIAL INTELLIGENCE based HYBRID

CLINICAL DECISION SUPPORT TECHNIQUE

Classes Thorax CTL RT-PCRL LABL

COVID-19 Pneumonia (CVP) + + +

+ + -

+ - +

Non-Pneumonia COVID-19 (NPC) - + +

- + -

Non-COVID-19 Pneumonia (NCVP) + - -

Not COVID-19 (NC) - - +

- - -

Thorax CTL: Label of thorax computed tomography image,

RT-PCRL: Label of RT-PCR curve, LABL: Label of laboratory data.

Thorax computed tomography images were labeled as compatible (+)

or incompatible (-) with COVID-19 pneumonia (CVP).

RT-PCR curves were labeled as positive (+) or negative (-) for SARS-CoV-2.

Laboratory data were labeled as compatible (+) or incompatible (-) with viral infection.



3.0.1 Convolutional Neural Network-based Deep Learning

Method for Thorax Computed Tomography Images

The proposed arti�cial intelligence-based hybrid clinical decision support tech-

nique comprises a preprocessing method and a convolutional neural network-

based supervised learning method, which we developed for thorax computed to-

mography images in the AUFM-CoV database. The preprocessing method con-

sists of Houns�eld unit (HU) conversion, voxel resampling, pixel truncation, and

pixel normalization (Figure 3.2 ).

Figure 3.2: The proposed preprocessing method developed for thorax computed

tomography (TCT) images in the AUFM-CoV database. It consists of Houns�eld

unit (HU) conversion, voxel resampling, pixel truncation, and pixel normalization.

Depending on the computed tomography device and the radiologist's decision,

the number of scans, image resolution, and pixel spacing in the computed tomog-

raphy images varied among di�erent patients. Together these factors allowed us

to generate a heterogeneous database that accounts for di�erences in computed

tomography images among di�erent patients within the medical community. This

broad heterogeneity within the image collection aimed to resolve potential bias in

image analysis towards speci�c image qualities or types of computed tomography

imaging devices.
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All thorax computed tomography images were batch anonymized by removing

con�dential data using Sante DICOM Editor (Santesoft, Greece) and RadiAnt

DICOM Viewer (Medixant, Poland) to protect patients' privacy, in accordance

with the Personal Data Protection Law.

The pixel values of all thorax computed tomography slices were then converted

to Houns�eld units (Figure 3.3(a)). The voxels of all thorax computed tomogra-

phy slices were resampled to unit-spacing along three axes (z, y, x) with [1.0, 1.0,

1.0] mm intervals to ensure that each voxel has a consistent distance and to com-

pensate for voxel dimension variations among di�erent patients (Figure 3.3(b)).

(a) Houns�eld unit conversion of pixels

of a thorax computed tomography slice.

Pixels outside the lung region were set to

zero Houns�eld unit. Physical distance

of the original image was [1.5, 0.76, 0.76]

mm and its dimensions were 208∗512∗512
(slice number∗image width∗image height).

(b) Resampling voxels of the thorax

computed tomography slice to unit-

spacing. Physical distance of the re-

sampled image is [1.0, 1.0, 1.0] mm, and

its dimensions are 312∗390∗390 (slice

number∗image width∗image height).

Figure 3.3: The implementation of the developed preprocessing method on the

thorax computed tomography images in the AUFM-CoV database.
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The pixel values of the resampled computed tomography images (3D) were

optimized to achieve an appropriate range of Houns�eld units. In our database,

the least dense object, such as air, is assigned a value of -1000 Houns�eld units.

The lung, being an organ �lled with air, typically exhibits Houns�eld unit values

ranging from -700 to -500. Other organs that may in�uence our analysis include

water (0 Houns�eld units), fat (-90 to -120 Houns�eld units), soft tissue (100 to

300 Houns�eld units), and bone (300 to 1900 Houns�eld units).

Consequently, we �ltered thorax computed tomography slices (2D) to remove

extrapulmonary tissues that could potentially negatively impact our analysis.

Hence, pixels from all resampled thorax computed tomography slices were trun-

cated to the [-1000, 400] Houns�eld unit range to focus solely on the lung re-

gion (Figure 3.4(a)). Using the min-max normalization method, pixels from all

truncated thorax computed tomography slices were normalized to the [0.0, 1.0]

Houns�eld unit range to prevent the vanishing and exploding gradient problem

during the training of the deep learning model (Figure 3.4(b)).

(a) The truncation of the resampled

thorax computed tomography slice pix-

els to the [-1000, 400] Houns�eld unit

range to focus only on the lung region.

(b) Normalization of the truncated tho-

rax computed tomography slice pixels to

the [0.0, 1.0] Houns�eld unit range using

the min-max normalization method.

Figure 3.4: The implementation of the developed preprocessing method on the

thorax computed tomography images in the AUFM-CoV database.

108



Lastly, pixels from all normalized thorax computed tomography slices were

dimension-wise resized to a uniform 128 ∗ 128 pixels to compensate for pixel size

variations among di�erent patients. Using the preprocessed thorax computed to-

mography slices, a novel supervised learning method based on BCDU-Net and

3D-convolutional neural networks was developed to perform multi-class classi-

�cation and di�erential diagnosis of COVID-19 pneumonia (CVP) for robust

detection of COVID-19 (Figure 3.5 ).
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Figure 3.5: The proposed novel supervised learning method based on BCDU-Net and 3D-convolutional neural network

(CNN) classi�er. It was developed to perform multi-class classi�cation for COVID-19 diagnosis and to di�erentiate between

COVID-19 pneumonia (CVP), other viral and bacterial pneumonias (VBP), parenchymal lung diseases (PLD), and healthy

subjects (HS) using thorax computed tomography (TCT) slices in the AUFM-CoV database.



We conducted various experiments to test whether the use of BCDU-Net in-

creases the performance of our technique and whether it is necessary for pre-

processing. Hence, we developed and implemented the 3D-convolutional neural

network classi�er both with and without the use of BCDU-Net. The experimental

results demonstrated that the implementation of BCDU-Net increased the per-

formance of our technique, thus proving the necessity and usefulness of applying

BCDU-Net to enhance the technique's robustness.

All preprocessed and dimension-wise resized thorax computed tomography

slices were given as input to BCDU-Net, which is a 2D-convolutional neural net-

work model designed based on U-Net [195]. We developed BCDU-Net as the

backbone of our model for several purposes. The �rst reason was to remove

extrapulmonary organs and eliminate infected pathological regions from the pre-

processed thorax computed tomography slices (Figure 3.6 ). The second purpose

was to eliminate noise for accurately identifying lung infections and lesions. The

third purpose was to achieve a high-performing model that remains unbiased,

even when sample sizes are small and heterogeneous. Consequently, the output

of BCDU-Net consists of de-noised thorax computed tomography images.

(a) BCDU-Net input, which represents

preprocessed and dimension-wise rescaled

thorax computed tomography slice.

(b) BCDU-Net output, which represents

de-noised thorax computed tomography

slice.

Figure 3.6: The implementation of the developed BCDU-Net on the preprocessed

thorax computed tomography images in the AUFM-CoV database.
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By computing the di�erence between the input and output of BCDU-Net,

we obtained highlighted thorax computed tomography slices in which infected

pathological regions in the lungs were emphasized (Figure 3.7(a)). The absolute

values of these highlighted thorax computed tomography slices were computed

to facilitate the detection and multi-class classi�cation of COVID-19 pneumonia

(CVP) (Figure 3.7(b)).

(a) Highlighted thorax computed to-

mography slice obtained by computing

the di�erence between the BCDU-Net

input and output to emphasize infected

pathological regions in the lungs.

(b) The absolute value of the highlighted

thorax computed tomography slice that

facilitates the detection and classi�ca-

tion of COVID-19 pneumonia (CVP) by

further emphasizing infected pathological

regions in the lungs.

Figure 3.7: Sharpening and enhancing thorax computed tomography images in

the AUFM-CoV database for detection of lung infections and lesions.

The computed tomography slices along the z-axis were concatenated to gen-

erate the 3D-computed tomography image, which served as the input for the

3D-convolutional neural network classi�er. The convolutional layers in the 3D-

convolutional neural network classi�er can only process a �xed number of thorax

computed tomography slices. Therefore, the voxels of all absolute value slices

were resized slice-wise to have dimensions of 50∗128∗128 (Figure 3.5 ). Here, '50'
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on the z axis indicates that all the patients' computed tomography slices were

resized to 50 slices. This ensured that the thorax computed tomography images

of all patients had equal sizes and compensated for variations in the number of

slices between di�erent patients.

By using the min-max normalization method, the pixels of all thorax computed

tomography slices were normalized to the [0.0, 1.0] Houns�eld unit range to pre-

vent vanishing and exploding gradient problem. These thorax computed tomog-

raphy images in the AUFM-CoV database were then split into non-intersecting

training, validation, and test sets to perform multi-class classi�cation (Table 3.3 ).

Data augmentation methods, such as Gaussian noise, random rotation, and

random �ipping, were employed during training to regularize the model and in-

crease its diagnostic performance. Consequently, the training, validation, and test

sets contained thorax computed tomography slices from each of the four classes,

which are COVID-19 pneumonia (CVP), other viral and bacterial pneumonias

(VBP), parenchymal lung diseases (PLD), and healthy subjects (HS). The num-

bers of thorax computed tomography slices belonging to each of the four classes

in the training and validation sets were independently selected to be equal. The

absence of class imbalance between di�erent classes in the training and valida-

tion sets prevented bias and over-�tting during training and ensured that the

developed model generalizes well to previously unseen data.
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TABLE 3.3: PATIENT DISTRIBUTIONS in the TRAINING, VALIDATION, and TEST SETS for MULTI-CLASS

CLASSIFICATION using BCDU-NET and 3D-CONVOLUTIONAL NEURAL NETWORK CLASSIFIER

Classes Training Set Validation Set Test Set Total

COVID-19 Pneumonia (CVP) 370 30 246 646

Other Viral and Bacterial Pneumonias (VBP) 370 30 84 484

Parenchymal Lung Diseases (PLD) 370 30 116 516

Healthy Subjects (HS) 370 30 536 936

Total 1480 120 982 2582

The thorax computed tomography slices in the training set were given as input to the 3D-convolutional neural network

classi�er. This architecture consists of 3D-convolutional layer, 3D-batch normalization layer, 3D-max pooling layer, 3D-

global average pooling layer, linear layer, dropout layer, and softmax layer, as illustrated in Figure 3.8 . Instead of employing

transfer learning or �ne-tuning during training, the 3D-convolutional neural network classi�er was end-to-end trained from

scratch. In the training phase, it learned to distinguish between COVID-19 pneumonia (CVP), other viral and bacterial

pneumonias (VBP), parenchymal lung diseases (PLD), and healthy subjects (HS). Hence, it learned to classify thorax

computed tomography images of each patient into one of the four classes.



Conv3D BatchNorm3D MaxPool3DReLU GlobalAvgPool3D Linear Dropout Softmax

Figure 3.8: The proposed 3D-convolutional neural network classi�er that performs multi-class classi�cation for COVID-19

diagnosis using thorax computed tomography images in the AUFM-CoV database. The numbers outside the parentheses

in the 3D-convolutional neural network classi�er represent the number of channels. The classi�er successfully di�erentiates

COVID-19 pneumonia (CVP) from other viral and bacterial pneumonias (VBP), parenchymal lung diseases (PLD), and

healthy subjects (HS), where the �rst three have very similar radiological �ndings.

The equations for the 3D-convolutional layer can be mathematically formulated as follows:

Yc,i,j,k = σ

(
M∑

m=1

P∑
p=1

Q∑
q=1

R∑
r=1

Wc,m,p,q,r ·Xm,i+p,j+q,k+r + bc

)
(3.1)



where

� Yc,i,j,k: Output feature map at channel c and spatial position (i, j, k).

� Xm,i,j,k: Input feature map at channel m and spatial position (i, j, k).

� Wc,m,p,q,r: Convolutional �lter weights for channel c, with �lter size

(P,Q,R).

� bc: Bias term for channel c.

� σ: Recti�ed linear unit (ReLU) activation function.

The 3D-batch normalization regularization method was employed to prevent

over-�tting and reduce training time. The equations for the 3D-batch normaliza-

tion layer can be mathematically formulated as follows:

Yc,i,j,k =
Xc,i,j,k − µc√

σ2
c + ϵ

· γc + βc (3.2)

where

� Yc,i,j,k: Output after batch normalization.

� Xc,i,j,k: Input feature map.

� µc: Mean of the feature map c over the mini-batch.

� σc: Standard deviation of the feature map c over the mini-batch.

� ϵ: A small constant to avoid division by zero.

� γc: Scaling parameter.

� βc: Shifting parameter.

The feature maps extracted from the convolutional layers were passed through

the recti�ed linear unit (ReLU) activation function. The equation of the recti�ed

linear unit (ReLU) activation function, which was applied element-wise to the

feature maps extracted from the convolutional layers, can be written as follows:

Yc,i,j,k = max(0,Xc,i,j,k) (3.3)



where

� Yc,i,j,k: Output feature map at channel c and spatial position (i, j, k).

� Xc,i,j,k: Input feature map at channel c and spatial position (i, j, k).

The 3D-max-pooling layer was added to reduce the output dimensions of the

convolutional layers and decrease the computational load. The equations for the

3D-max pooling layer can be mathematically formulated as follows:

Yc,i,j,k = max
p,q,r

(Xc,i+p,j+q,k+r) (3.4)

where

� Yc,i,j,k: Output feature map at channel c and spatial position (i, j, k).

The 3D-global average pooling layer was added to reduce the output dimen-

sions of the convolutional layers and decrease the computational load. The equa-

tions for the 3D-global average pooling layer can be mathematically formulated

as follows:

Yc =
1

N

H∑
i=1

W∑
j=1

D∑
k=1

Xc,i,j,k (3.5)

where

� Yc: Output for channel c.

� N : Total number of spatial positions in the feature map (H ×W ×D).

� H: Height of the feature map.

� W : Width of the feature map.

� D: Depth of the feature map.
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A fully connected layer with a softmax activation function was added to per-

form multi-class classi�cation. The equations of the fully connected (linear) layer

can be mathematically formulated as follows:

Yc =
N∑
i=1

wi xi + b (3.6)

where

� Yc: Output for class c.

� wi : Weight for input xi.

� xi : Input value.

� b: Bias term.

The dropout regularization method was then applied to prevent over-�tting

during training. The equations of the softmax layer can be mathematically for-

mulated as follows:

P (y = c |X) =
eYc∑
c′ e

Yc′
(3.7)

where

� P (y = c |X): Probability of the input X belonging to class c.

� Yc: Output for class c.

�

∑
c′ e

Yc′ : Sum of exponential values of all class outputs.

The (hyper)parameters of the 3D-convolutional neural network classi�er were

optimized using the validation set (Table 3.4 ). The output of the best per-

forming 3D-convolutional neural network classi�er is a numerical value that indi-

cates a given patient's probability of belonging to one of the four classes, which

are COVID-19 pneumonia (CVP), other viral and bacterial pneumonias (VBP),

parenchymal lung diseases (PLD), or healthy subjects (HS).
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TABLE 3.4: The (HYPER)PARAMETERS of the 3D-CONVOLUTIONAL

NEURAL NETWORK CLASSIFIER

Dropout Ratio 0.25

Number of Epochs 200

Optimization Method Adam

Learning Rate 5 x 10−4

Batch Size 16

Loss Function Categorical Cross Entropy

The proposed BCDU-Net and 3D-convolutional neural network classi�er were

trained, optimized, and tested using a workstation with dual GPUs (Table 3.5 ).

TABLE 3.5: The PROPERTIES of the WORKSTATION

Operating System Ubuntu 20.04.3 LTS

CPU Intel Xeon W2245 (16 Cores)

GPU NVIDIA Quadro RTX 6000 x 2

Memory 128 GB

Platform Tensor�ow 2.6.0 (PYTHON 3.8)

Training Time 32 hours

3.0.2 Long Short-Term Memory based Deep Learning

Method for RT-PCR Curves

The proposed arti�cial intelligence-based hybrid clinical decision support tech-

nique contains a preprocessing method, 1D-convolutional �lter, and long short-

term memory-based supervised learning method, which we developed for analyz-

ing RT-PCR curves in the AUFM-CoV database. The raw data of all RT-PCR
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curves consisted of �uorescence values measured over 35, 40, or 45 PCR cycles,

which varied depending on the RT-PCR kit used. Initially, these data were

recorded in .REX (rotor gene experiment) format using the RT-PCR device.

Subsequently, they were converted to .CSV (comma separated values) format,

which is suitable for use in PYTHON, using Rotor-Gene Q Series software (Qi-

agen, Malaysia). Various preprocessing methods were developed to determine

the method that yields the best performance, which include median �ltering,

min-max scaling, and start padding (Figure 3.9 ).

Figure 3.9: The preprocessing method developed for the RT-PCR curves in the

AUFM-CoV database. It consists of median �ltering, min-max scaling, and start

padding.

We implemented median �ltering on the raw data of all RT-PCR curves to

e�ectively remove noise from the data, while preserving edge information. We

then normalized all median-�ltered RT-PCR data to the [0.0, 1.0] range using

the min-max scaling method to prevent the vanishing and exploding gradient

problem during the training of the long short-term memory classi�er.

By using the start-padding method, we equalized the lengths of RT-PCR

curves for all patients and subjects to ensure that all RT-PCR curves had a

maximum of 45 PCR cycles and to compensate for variations in the lengths of

RT-PCR curves among di�erent patients (Figure 3.10 ).
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(a) The original RT-PCR curve (green)

of a subject labeled as negative for

SARS-CoV-2 by the microbiologist.

(b) The original RT-PCR curve (green) of

a COVID-19 patient labeled as positive for

SARS-CoV-2 by the microbiologist.

Figure 3.10: The implementation of the developed preprocessing method on

RT-PCR curves in the AUFM-CoV database. RT-PCR curves were obtained

using the green (target) channel of the Rotor-Gene Q 5Plex HRM device. They

were preprocessed and visually displayed using PYTHON. The y-axis represents

�uorescence intensity, and the x-axis represents the number of PCR cycles. The

"pk" curve (blue) and the "nk" curve (pink) represent the positive and negative

control lines, respectively, indicating that the RT-PCR device was fully calibrated

and functioning correctly.

Preprocessed RT-PCR data in the AUFM-CoV database were divided into

non-intersecting training, validation, and test sets to perform binary classi�cation

(Table 3.6 ). The absence of class imbalance between the two classes in the

training and validation sets prevented bias and over-�tting during training, and

ensured that the developed classi�er generalizes well on previously unseen data.
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TABLE 3.6: PATIENT and DATA DISTRIBUTIONS in the TRAINING, VALIDATION, and TEST SETS for BINARY

CLASSIFICATION using 1D-CONVOLUTIONAL FILTER and LONG SHORT TERM MEMORY CLASSIFIER

Classes Training (p) Training (n) Validation (p) Validation (n) Test (p) Test (n) Total (p) Total (n)

Positive 278 300 97 100 291 320 593 720

Negative 283 300 99 100 668 792 838 1192

Total 561 600 196 200 959 1112 1431 1912

p: number of patients, n: number of data.

We developed various 1D-convolutional �lters with di�erent (hyper)parameters to extract feature maps from preprocessed

RT-PCR data (Figure 3.11 ).

Figure 3.11: The proposed 1D-convolutional �lter and long short-term memory (LSTM) classi�er were developed to

perform binary classi�cation for COVID-19 diagnosis using preprocessed RT-PCR data in the AUFM-CoV database.



By evaluating the performance of the developed 1D-convolutional �lters on

the validation set, we determined the best performing model with the ideal (hy-

per)parameters (Table 3.7 ).

TABLE 3.7: (HYPER)PARAMETERS of the 1D-CONVOLUTIONAL FILTER

Number of Convolutional Filters 32

Learning Rate 10−3

Kernel Size 5

RT-PCR curves demonstrate the characteristics of time series data. Therefore,

we utilized long short-term memory networks due to their ability to learn variable-

length sequential time series data with long-term dependencies and to overcome

the vanishing and exploding gradient problem. Feature maps obtained using the

best performing 1D-convolutional �lter were given as input to the long short-term

memory classi�ers to perform the reliable detection of COVID-19. We developed

various long short-term memory classi�ers with di�erent (hyper)parameters using

the training set.

The following equations elucidate the forward pass of the long short-term mem-

ory network, providing insight into how this network manages information �ow

and state updates.

� Input Gate:

it = σ(Wi [ht−1, xt] + bi) (3.8)

It regulates the �ow of information from the current input (xt) and the

previous hidden state (ht−1) by applying the sigmoid activation function

(σ). It determines how much of the candidate cell state is added to form

the updated cell state.
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� Forget Gate:

ft = σ(Wf [ht−1, xt] + bf ) (3.9)

It controls the �ow of information through the cell state, allowing the net-

work to decide what information to preserve and what information to dis-

card from the previous cell state.

� Output Gate:

ot = σ(Wo [ht−1, xt] + bo) (3.10)

It regulates the information �ow from the cell state to the hidden state.

Hence, it determines the �nal output of the long short-term memory cell.

The sigmoid activation function (σ) determines how much of the cell state

should contribute to the output.

� Candidate Cell State:

C̃t = tanh(Wc [ht−1, xt] + bc) (3.11)

It represents new information that can be added to the cell state based on

the current input and the previous hidden state by applying the hyperbolic

tangent activation function.

� Cell State:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (3.12)

It is updated by combining the previous cell state with the new candidate

cell state after applying the forget gate and input gate.
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� Hidden State:

ht = ot ⊙ tanh(Ct) (3.13)

It represents the output of the long short-term memory network and it

is computed by applying the output gate (ot) to the cell state (Ct) after

employing the hyperbolic tangent activation. This gate-controlled combi-

nation ensures that the hidden state retains relevant information from the

cell state, while suppressing irrelevant information.

The explanations of the notations in the above equations are summarized as

follows:

� σ: Sigmoid activation function.

� tanh: Hyperbolic tangent activation function.

� Wf , Wi, Wo, Wc : Weights for the respective gates and cell state.

� bf , bi, bo, bc : Biases for the respective gates and cell state.

� ⊙: Element-wise multiplication.

� [ht−1, xt]: Concatenation of the previous hidden state (ht−1) and the cur-

rent input (xt).

Moreover, we evaluated the performances of the developed long short-term

memory classi�ers on the validation set to determine the classi�er with the ideal

(hyper)parameters that provide the best performance (Table 3.8 ).

TABLE 3.8: (HYPER)PARAMETERS of the LONG SHORT-TERM MEM-

ORY CLASSIFIER

Hidden State Dimension 16

Number of Epochs 100

Dropout Ratio 0.25

Optimization Method Adam

Batch Size 32

Loss Function Binary Cross Entropy
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Dropout was applied to the hidden state (output) of the best-performing long short-term memory (LSTM) classi�er for

regularization. The hidden state (output) of the long short-term memory (LSTM) classi�er was then given as input to a

linear (sigmoid) layer to robustly estimate a patient's probability of having COVID-19 (Figure 3.12 ). The proposed 1D-

convolutional �lter and long short-term memory (LSTM) classi�er were trained, optimized, and tested using our workstation

(Table 3.5 ).

Figure 3.12: The proposed 1D-convolutional �lter and long short-term memory (LSTM) classi�er were developed to

perform binary classi�cation for COVID-19 diagnosis using preprocessed RT-PCR data in the AUFM-CoV database.



3.0.3 Arti�cial Intelligence based Hybrid Clinical Decision

Support Technique

The proposed automated arti�cial intelligence-based hybrid clinical decision sup-

port technique is an ensemble learning approach that utilizes multiple di�erent

learning algorithms to achieve better performance than what could be obtained

from a single arti�cial intelligence model alone. It comprises two preprocess-

ing methods, convolutional neural network-based deep learning method and long

short-term memory-based deep learning method, along with an arti�cial neural

network (ANN)-based machine learning method developed to provide rapid and

robust detection of COVID-19 (Figure 3.13 ). By jointly analyzing RT-PCR

curves, thorax computed tomography images, and laboratory data of each pa-

tient, it bene�ts from the diversity in di�erent data types that are critical for the

reliable detection of COVID-19 and leverages their strengths.

Convolutional neural network and long short-term memory-based deep learn-

ing methods were independently trained and optimized using thorax computed

tomography images and RT-PCR curves in the training and validation sets, re-

spectively. The feature maps generated by the latent space (global average pool-

ing layer) of the 3D-convolutional neural network classi�er and the hidden state of

the long short-term memory classi�er were sequentially concatenated with labo-

ratory data. All concatenated data were then split into non-intersecting training,

validation, and test sets to perform multi-class classi�cation for COVID-19 diag-

nosis (Table 3.9 ).
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Figure 3.13: The proposed automated arti�cial intelligence-based hybrid clinical

decision support technique that jointly analyzes RT-PCR curves, thorax com-

puted tomography images, and laboratory data in the AUFM-CoV database to

perform multi-class classi�cation. The four classes are COVID-19 pneumonia

(CVP), non-pneumonia COVID-19 (NPC), non-COVID-19 pneumonia (NCVP),

and not COVID-19 (NC).
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TABLE 3.9: PATIENT DISTRIBUTIONS in the TRAINING, VALIDATION, and TEST SETS for MULTI-CLASS CLAS-

SIFICATION using ARTIFICIAL INTELLIGENCE-based HYBRID CLINICAL DECISION SUPPORT TECHNIQUE

Classes Training Set Validation Set Test Set Total

COVID-19 Pneumonia (CVP) 149 37 187 373

Non-Pneumonia COVID-19 (NPC) 148 37 185 370

Non-COVID-19 Pneumonia (NCVP) 66 17 83 166

Not COVID-19 (NC) 269 67 336 672

Total 632 158 791 1581

We labeled all concatenated data in the training, validation, and test sets according to the patient labeling criteria

presented in Table 3.2 . These criteria indicate the multi-class classi�cation classes for the arti�cial intelligence-based

hybrid clinical decision support technique corresponding to the patients' �nal diagnosis. We developed various two-layered

arti�cial neural network classi�ers with di�erent (hyper)parameters and trained them using the training set.

To address class imbalance, we implemented a class-wise weighting technique, which is inversely proportional to the

number of data, during training. In other words, we assigned di�erent weights to di�erent classes in the training set.

The weight assigned to each class was inversely related to the class's size. Minority classes received higher weights, while

majority classes received lower weights. These weights determined how much the network focused on learning each class

during training and the importance the network assigned to each class. This helps the network learn more e�ectively and

make accurate predictions for the underrepresented (minority) classes during training, thereby improving its class-wise

performance.



The performances of the developed arti�cial neural network classi�ers were

evaluated on the validation set to determine the best-performing network with

ideal (hyper)parameters (Table 3.10 ). The softmax activation function was uti-

lized on the output layer of the network to perform multi-class classi�cation. The

output of the arti�cial neural network classi�er demonstrates a patient's prob-

ability of belonging to one of the four classes, which are COVID-19 pneumonia

(CVP), non-pneumonia COVID-19 (NPC), non-COVID-19 pneumonia (NCVP),

and not COVID-19 (NC) (Figure 3.13 ).

TABLE 3.10: The (HYPER)PARAMETERS of the ARTIFICIAL NEURAL

NETWORK CLASSIFIER

Number of Hidden Layers 1

Number of Hidden Neurons 32

Number of Output Neurons 4

Number of Epochs 100

Dropout Ratio 0.25

Optimization Method Adam

Learning Rate 10−3

Loss Function Categorical Cross Entropy

3.1 Statistical Analysis

Cohen's Kappa coe�cient was employed to measure the agreement between the

developed arti�cial intelligence models and physicians. p values less than 0.05

were considered signi�cant. The statistical analyses were carried out using IBM

SPSS statistics software v26 (IBM Statistics, U.S.), except for con�dence intervals

(CI), for which MedCalc v19 (MedCalc Software, Belgium) was utilized.

The statistical performance measures, such as sensitivity (TPR), speci�city

(TNR), positive predicted value (PPV), and F1-score (F1), were calculated

to evaluate the performance of the developed models, as shown in Equa-

tions 3.14, 3.15, 3.16, 3.17 . Here, TP represents true positive, TN represents



true negative, FP represents false positive, and FN represents false negative.

TPR =
TP

TP + FN
(3.14)

TNR =
TN

TN+ FP
(3.15)

PPV =
TP

TP + FP
(3.16)

F1 = 2 ∗ PPV ∗ TPR
PPV + TPR

(3.17)

3.2 Results

3.2.1 Performance Results of the BCDU-Net and 3D-

Convolutional Neural Network Classi�er

The multi-class classi�cation performance results of the proposed BCDU-Net and

3D-convolutional neural network classi�er were evaluated on the test set. The

confusion matrices in Figure 3.14 demonstrate the proposed classi�er's strong

ability to di�erentiate COVID-19 pneumonia (CVP) from other viral and bacte-

rial pneumonias (VBP) and parenchymal lung diseases (PLD).

Out of a total of 246 COVID-19 pneumonia (CVP) cases in the test set, the

proposed classi�er correctly classi�ed 226 cases, while misclassifying only 18 cases

as healthy subjects (HS), and 2 cases as parenchymal lung diseases (PLD). Out

of a total of 84 viral and bacterial pneumonias (VBP) cases in the test set, it

correctly classi�ed 69 cases, while misclassifying only 15 cases as parenchymal

lung diseases (PLD). Moreover, out of a total of 116 parenchymal lung diseases

(PLD) cases in the test set, it correctly classi�ed 94 cases, while misclassifying

only 1 case as healthy subjects (HS), 2 cases as COVID-19 pneumonia (CVP),

and 19 cases as other viral and bacterial pneumonias (VBP). Finally, out of a

total of 536 healthy subjects (HS) cases in the test set, it correctly classi�ed 478
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cases, while misclassifying 53 cases as COVID-19 pneumonia (CVP) and 5 cases

as other viral and bacterial pneumonias (VBP).

Cohen's Kappa was calculated as 0.814 ± 0.016 (p < 0.001), indicating strong

agreement between the proposed BCDU-Net and 3D-convolutional neural net-

work classi�er, and the expert radiologist.
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Figure 3.14: Multi-class classi�cation performance results of the BCDU-Net and

3D-convolutional neural network classi�er on the test set, where the four classes

are COVID-19 pneumonia (CVP), other viral and bacterial pneumonias (VBP),

parenchymal lung diseases (PLD), and healthy subjects (HS).

Table 3.11 illustrates the multi-class classi�cation statistical performance re-

sults of the proposed BCDU-Net and 3D-convolutional neural network classi�er

on the test set. Previous studies have reported that the speci�city of the tho-

rax computed tomography for COVID-19 diagnosis ranged from 25% to 53%

[121, 196, 197, 198]. In this study, the results obtained on the AUFM-CoV

database showed that the developed BCDU-Net and 3D-convolutional neural

network classi�er outperformed thorax computed tomography in terms of the

speci�city of COVID-19 diagnosis (Table 3.11 ).
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Furthermore, it has been shown that the proposed classi�er very successfully di�erentiates COVID-19 pneumonia (CVP)

from other viral and bacterial pneumonias (VBP), as well as parenchymal lung diseases (PLD). This di�erential diagnosis

presents a signi�cant challenge due to the high similarity in ground-glass opacities (GGO) and consolidation patterns ob-

served in radiological images of COVID-19 pneumonia (CVP), other viral and bacterial pneumonias (VBP), and parenchy-

mal lung diseases (PLD). Therefore, the proposed classi�er has great potential for successful use in the di�erential diagnosis

of pulmonary diseases containing ground-glass opacities (GGO).

TABLE 3.11: MULTI-CLASS CLASSIFICATION STATISTICAL PERFORMANCE RESULTS of the BCDU-NET and

3D-CONVOLUTIONAL NEURAL NETWORK CLASSIFIER on the TEST SET

Classes TPR (%) TNR (%) PPV (%) F1 (%) NP

COVID-19 Pneumonia (CVP) 91.9 92.5 80.4 86 246

Other Viral and Bacterial Pneumonias (VBP) 82.1 97.3 74.2 78 84

Parenchymal Lung Diseases (PLD) 81 98 84.7 83 116

Healthy Subjects (HS) 89.2 95.7 96.2 93 536

NP: Number of patients in the test set.



The binary classi�cation performance results of the developed BCDU-Net and

3D-convolutional neural network classi�er were evaluated on the test set. The

confusion matrices in Figure 3.15 demonstrate the strong ability of the proposed

classi�er to distinguish between patients with COVID-19 and those without

COVID-19. Out of a total of 246 COVID-19 cases in the test set, the proposed

classi�er correctly classi�ed 225 cases, while misclassifying only 21 cases as not

COVID-19 (NC). Furthermore, out of a total of 736 not COVID-19 (NC) cases

in the test set, it correctly classi�ed 698 cases, while misclassifying only 38 cases

as COVID-19.

Cohen's Kappa was calculated as 0.844 ± 0.020 (p < 0.001), indicating strong

agreement between the BCDU-Net and 3D-convolutional neural network classi-

�er, and the expert radiologist.
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Figure 3.15: The binary classi�cation performance results of the BCDU-Net and

3D-convolutional neural network classi�er on the test set, where the two classes

are COVID-19 and not COVID-19.

Table 3.12 shows the binary classi�cation statistical performance results of the

proposed BCDU-Net and 3D-convolutional neural network classi�er on the test



set. Previous studies have reported that the sensitivity of thorax computed to-

mography in COVID-19 diagnosis ranged from 60% to 94% [121, 196, 197, 198].

In this study, the results obtained on the AUFM-CoV database showed that

the developed BCDU-Net and 3D-convolutional neural network classi�er have

comparable sensitivity to thorax computed tomography in COVID-19 diagnosis

(Table 3.12 ). Furthermore, it is shown that the proposed classi�er provides a

highly reliable diagnosis of COVID-19 and very successfully di�erentiates be-

tween COVID-19 and not COVID-19 (NC) classes.

TABLE 3.12: BINARY CLASSIFICATION STATISTICAL PERFORMANCE

RESULTS of the BCDU-NET and 3D-CONVOLUTIONAL NEURAL NET-

WORK CLASSIFIER on the TEST SET

Classes TPR (%) TNR (%) PPV (%) F1 (%) NP

Not COVID-19 94.8 91.5 97.1 95.9 736

COVID-19 91.5 94.8 85.6 88.4 246

NP: Number of patients in the test set.

3.2.2 Performance Results of the 1D-Convolutional Filter

and Long Short-Term Memory Classi�er

The binary classi�cation performance results of the developed 1D-convolutional

�lter and long short-term memory classi�er were evaluated on the test set. The

confusion matrices in Figure 3.16 demonstrate the proposed classi�er's strong

ability to discriminate between Positive and Negative cases for SARS-CoV-2.

Out of a total of 320 Positive cases in the test set, the proposed classi�er correctly

classi�ed 309 cases, while misclassifying only 11 cases as Negative. Moreover, out

of a total of 792 Negative cases in the test set, it correctly classi�ed 786 cases,

while misclassifying only 6 cases as Positive.
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Cohen's Kappa was calculated as 0.963 ± 0.009 (p < 0.001), indicating almost

perfect agreement between the proposed 1D-convolutional �lter and long short-

term memory classi�er, and the expert microbiologist.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

786 6

11 309

(a) Confusion matrix.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.99 0.0076

0.034 0.97

(b) Normalized confusion matrix with re-

spect to the true labels.

Figure 3.16: The binary classi�cation performance results of the 1D-

convolutional �lter and long short-term memory classi�er on the test set, where

the two classes are Positive and Negative for SARS-CoV-2.

Table 3.13 shows the binary classi�cation statistical performance results of the

proposed 1D-convolutional �lter and long short-term memory classi�er on the

test set. Previous studies have reported that the RT-PCR test has a low sen-

sitivity ranging from 59% to 70% for COVID-19 diagnosis [116, 117, 192, 199].

In this study, the results obtained on the AUFM-CoV database showed that the

developed 1D-convolutional �lter and long short-term memory classi�er outper-

formed the gold standard RT-PCR test in terms of the sensitivity of COVID-19

diagnosis (Table 3.13 ). Furthermore, it is shown that the developed classi�er pro-

vides a highly reliable diagnosis of COVID-19 and very successfully distinguishes

between Positive and Negative cases for SARS-CoV-2.
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TABLE 3.13: BINARY CLASSIFICATION STATISTICAL PERFORMANCE

RESULTS of the 1D-CONVOLUTIONAL FILTER and LONG SHORT-TERM

MEMORY CLASSIFIER on the TEST SET

Classes TPR (%) TNR (%) PPV (%) F1 (%) NP

Negative 99.2 96.5 98.6 98.9 792

Positive 96.6 99.2 98.1 97.3 320

NP: Number of patients in the test set.

3.2.3 Performance Results of the Arti�cial Intelligence

based Hybrid Clinical Decision Support Technique

The multi-class classi�cation performance results of the proposed arti�cial

intelligence-based hybrid clinical decision support technique were evaluated on

the test set. The confusion matrices in Figure 3.17 demonstrate the strong abil-

ity of the proposed technique to distinguish COVID-19 pneumonia (CVP) from

non-COVID-19 pneumonia (NCVP), non-pneumonia COVID-19 (NPC), and not

COVID-19 (NC).

Out of a total of 336 not COVID-19 (NC) cases in the test set, the arti�cial

intelligence-based hybrid clinical decision support technique correctly classi�ed

308 cases, while misclassifying only 2 cases as non-pneumonia COVID-19 (NPC),

7 cases as COVID-19 pneumonia (CVP), and 19 cases as non-COVID-19 pneu-

monia (NCVP). Out of a total of 185 non-pneumonia COVID-19 (NPC) cases in

the test set, it correctly classi�ed 168 cases, while misclassifying only 6 cases as

not COVID-19 (NC), 10 cases as COVID-19 pneumonia (CVP), and 1 case as

non-COVID-19 pneumonia (NCVP). Moreover, out of a total of 187 COVID-19

pneumonia (CVP) cases in the test set, it correctly classi�ed 124 cases, while

misclassifying only 15 cases as not COVID-19 (NC), 28 cases as non-pneumonia

COVID-19 (NPC), and 20 cases as non-COVID-19 pneumonia (NCVP). Lastly,

out of a total of 83 non-COVID-19 pneumonia (NCVP) cases in the test set, it

correctly classi�ed 54 cases, while misclassifying 15 cases as not COVID-19 (NC),
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14 cases as COVID-19 pneumonia (CVP), and only 0 cases as non-pneumonia

COVID-19 (NPC).

Cohen's Kappa was calculated as 0.752 ± 0.022 (p < 0.001), indicating sub-

stantial agreement between the proposed arti�cial intelligence-based hybrid clin-

ical decision support technique and the expert physicians.
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Figure 3.17: The multi-class classi�cation performance results of the arti�cial

intelligence-based hybrid clinical decision support technique on the test set, where

the four classes are COVID-19 pneumonia (CVP), non-pneumonia COVID-19

(NPC), non-COVID-19 pneumonia (NCVP), and not COVID-19 (NC).

Table 3.14 illustrates the multi-class classi�cation statistical performance re-

sults of the proposed automated arti�cial intelligence-based hybrid clinical deci-

sion support technique on the test set. The four classes were determined according

to the patient labeling criteria in Table 3.2 .
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The results obtained on the AUFM-CoV database showed that the developed arti�cial intelligence-based hybrid clinical

decision support technique provides highly reliable diagnosis of COVID-19 by jointly using RT-PCR data, thorax computed

tomography images, and laboratory data.

Furthermore, it is shown that the hybrid clinical decision support technique exhibits higher speci�city compared to

thorax computed tomography in COVID-19 diagnosis (Table 3.14 ). Therefore, it holds great potential for successful use

in the di�erential diagnosis of COVID-19 pneumonia (CVP) and other pneumonias.

TABLE 3.14: MULTI-CLASS CLASSIFICATION STATISTICAL PERFORMANCE RESULTS of the ARTIFICIAL

INTELLIGENCE-BASED HYBRID CLINICAL DECISION SUPPORT TECHNIQUE on the TEST SET

Classes TPR (%) TNR (%) PPV (%) F1 (%) NP

Not COVID-19 (NC) 91.7 92.1 89.5 91 336

COVID-19 Pneumonia (CVP) 66.3 94.9 80 73 187

Non-Pneumonia COVID-19 (NPC) 90.8 95 84.8 88 185

Non-COVID-19 Pneumonia (NCVP) 65.1 94.3 57.4 61 83

NP: Number of patients in the test set.



Moreover, the arti�cial intelligence-based hybrid clinical decision support tech-

nique has demonstrated high performance in the di�erential diagnosis of COVID-

19 pneumonia (CVP), non-COVID-19 pneumonia (NCP), and not COVID-19

(NC). This is achieved through the joint analysis of RT-PCR data, thorax com-

puted tomography images, and laboratory data, bene�ting from the diversity

among various medical data types and leveraging their strengths.

However, its performance in diagnosing non-COVID-19 pneumonia (NCP) is

relatively low due to the limited number of patients in the training, validation, and

test sets who belong to the non-COVID-19 pneumonia (NCP) class. Therefore,

the performance of the hybrid clinical decision support technique in diagnosing

non-COVID-19 pneumonia (NCP) can be improved by increasing the number of

patients in the non-COVID-19 pneumonia (NCP) class. Similarly, overall perfor-

mance of the hybrid clinical decision support technique can be further improved

by increasing the number of patients in all four classes.

The binary classi�cation performance results of the proposed arti�cial

intelligence-based hybrid clinical decision support technique were evaluated on

the test set. The confusion matrices in Figure 3.18 demonstrate the strong ability

of the hybrid clinical decision support technique to distinguish between patients

with COVID-19 and without COVID-19.

Out of a total of 372 COVID-19 cases in the test set, the proposed hybrid

clinical decision support technique correctly classi�ed 335 cases, while misclassi-

fying only 37 cases as not COVID-19 (NC). Furthermore, out of a total of 419

not COVID-19 (NC) cases in the test set, it correctly classi�ed 389 cases, while

misclassifying only 30 cases as COVID-19.

Cohen's Kappa was calculated as 0.850 ± 0.021 (p < 0.001), indicating strong

agreement between the proposed arti�cial intelligence-based hybrid clinical deci-

sion support technique and the expert physicians.
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Figure 3.18: The binary classi�cation performance results of the arti�cial

intelligence-based hybrid clinical decision support technique on the test set, where

the two classes are COVID-19 and Not COVID-19.

Table 3.15 presents the binary classi�cation statistical performance results of

the proposed arti�cial intelligence-based hybrid clinical decision support tech-

nique on the test set. The results obtained on the AUFM-CoV database indicated

that the developed hybrid clinical decision support technique outperformed the

gold standard RT-PCR test in terms of the sensitivity of COVID-19 diagnosis

(Table 3.15 ). Moreover, the proposed hybrid clinical decision support technique

has demonstrated remarkable success in distinguishing between patients with

COVID-19 and those without COVID-19.

Additionally, previous studies have reported that the sensitivity and speci-

�city of laboratory data in diagnosing COVID-19 were approximately 62% and

76%, respectively [194, 200, 201]. In this study, the results obtained on the

AUFM-CoV database showed that the proposed arti�cial intelligence-based hy-

brid clinical decision support technique exhibits superior sensitivity and speci-

�city compared to laboratory data in COVID-19 diagnosis (Table 3.15 ).
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TABLE 3.15: BINARY CLASSIFICATION STATISTICAL PERFORMANCE

RESULTS of the HYBRID CLINICAL DECISION SUPPORT TECHNIQUE on

the TEST SET

Classes TPR (%) TNR (%) PPV (%) F1 (%) NP

Not COVID-19 92.8 90 91.3 92.1 419

COVID-19 90 92.8 91.8 90.9 372

NP: Number of patients in the test set.

3.3 Discussion

To the best of our knowledge, the AUFM-CoV database constructed in this study

has the widest variety of medical data compared to any publicly available COVID-

19 databases [118, 119, 120, 122, 202]. Moreover, it is the most comprehensive

database containing thorax computed tomography images of a wide variety of lung

diseases containing ground-glass opacities (GGO), which are very di�cult to dis-

tinguish from COVID-19 pneumonia (CVP). By intentionally including RT-PCR

tests with gray zones and thorax computed tomography images with disease-

indeterminate groups in the AUFM-CoV database, we aimed to develop an auto-

mated arti�cial intelligence-based hybrid clinical decision support technique that

can perform robust and reliable detection of COVID-19.

The drawback of existing arti�cial intelligence studies investigating COVID-

19 diagnosis or classi�cation is that they rely solely on RT-PCR test positivity

to diagnose patients with COVID-19 [203, 204, 205, 206, 207, 208, 209, 210,

211, 212]. However, these studies did not address the issue of false-negative

RT-PCR tests, which present the main challenge faced by clinicians. If patients

are labeled only based on their RT-PCR test results, it will not be possible to

improve the performance of COVID-19 diagnosis due to the high false-negative

rate associated with the RT-PCR test.

In contrast to previous studies, in our study, patients were labeled through the
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joint evaluation of their RT-PCR curves, thorax computed tomography images,

and laboratory data, in accordance with the patient labeling criteria presented in

Table 3.2 . These criteria combine the interpretations of microbiologists, radiolo-

gists, pulmonologists, and clinicians.

Moreover, suspicious RT-PCR test results falling within the gray zone are sus-

ceptible to misinterpretation by microbiologists. In such cases, the radiological,

laboratory, and clinical data of the respective patients become essential for ac-

curately diagnosing COVID-19 [124, 166, 167, 193, 213, 214, 215, 216, 217, 218].

However, in the midst of a pandemic or when dealing with an increased daily

workload, it is not feasible to expect a microbiologist to review all these diverse

types of medical data.

In our study, suspicious RT-PCR curves in the gray zone were re-evaluated and

labeled as either positive or negative for SARS-CoV-2 by all of the physicians,

who also independently evaluated patients' radiological images, laboratory data,

and clinical data. Eventually, the �nal labels were determined through consensus

among the microbiologists, radiologists, pulmonologists, and clinicians.

As a result, suspicious RT-PCR curves in the gray zone were correctly classi�ed

as either positive or negative, eliminating the need for unnecessary re-testing.

This ensured the e�cient utilization of resources and prevented the accidental

discharge of patients with false-negative results.

To the best of our knowledge, only two studies in the literature have utilized

arti�cial intelligence techniques on RT-PCR data to detect COVID-19 [199, 208].

One study investigated anomaly detection on RT-PCR data using a machine

learning method to determine positive, negative, and abnormal classes [208].

The abnormal class was used to identify suspicious cases in the gray zone. How-

ever, unlike our study, it did not provide any decision support to the physicians.

Another study aimed to reduce the diagnosis time of COVID-19 by analyzing

RT-PCR time series data using a deep learning method [199].
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Unlike the two previous studies [199, 208], in our study, we utilized several RT-PCR data of each patient, all obtained

within ± 7 days from the respective patient's thorax computed tomography date, when developing the automated arti�cial

intelligence-based hybrid clinical decision support technique.

Table 3.16 illustrates the performance comparison between our 1D-convolutional �lter and long short-term memory

classi�er, as well as the two previous arti�cial intelligence studies that utilized RT-PCR data for COVID-19 diagnosis

by performing binary classi�cation. The binary classi�cation performance results of our 1D-convolutional �lter and long

short-term memory classi�er showed that it has comparable sensitivity, higher speci�city, higher precision, and higher

F1-score when compared to the previous studies in the literature.

TABLE 3.16: PERFORMANCE COMPARISON of the PROPOSED 1D-CONVOLUTIONAL FILTER and LONG

SHORT-TERM MEMORY CLASSIFIER with PREVIOUS ARTIFICIAL INTELLIGENCE STUDIES investigating

COVID-19 DIAGNOSIS by performing BINARY CLASSIFICATION using RT-PCR DATA

STUDY METHOD TPR (%) TNR (%) PPV (%) F1 (%)

[208] Random Forest 99.3 - 91.5 95.3

[199] Long Short-Term Memory Network 93.3 75.7 29.9 -

Proposed

Study

1D-Convolutional Filter + Long

Short-Term Memory Network
96.6 99.2 98.1 97.3



Furthermore, most of the existing arti�cial intelligence techniques developed

for COVID-19 diagnosis or classi�cation are based on various convolutional neu-

ral network architectures, usually trained using transfer learning or �ne-tuning

methods [196, 197, 198, 207, 209, 210, 212, 215, 216, 217, 219, 220]. In con-

trast to these existing techniques, in our study, we trained the 3D-convolutional

neural network classi�er end-to-end from scratch, which is a more challenging

and time-consuming approach compared to using transfer learning or �ne-tuning

methods.

Furthermore, most of the existing arti�cial intelligence techniques developed

for the diagnosis or classi�cation of COVID-19 utilized only digital radiological

images [118, 124, 143, 145, 147, 148, 149, 152, 153, 158, 160, 164, 196, 197,

198, 203, 204, 205, 207, 209, 210, 211, 216, 217, 219, 220, 221, 222, 223, 224].

However, current guidelines from the American College of Radiology indicate

that radiological images are necessary, but not su�cient for the reliable diagnosis

of COVID-19 [121]. In contrast to these existing techniques, our study utilized

thorax computed tomography images, RT-PCR curves, and laboratory data of the

patients to develop a reliable and robust automated arti�cial intelligence-based

hybrid clinical decision support technique.

Additionally, most of the previous arti�cial intelligence studies have performed

binary classi�cation to distinguish between COVID-19 pneumonia (CVP) and

healthy lungs [118, 124, 143, 145, 147, 148, 152, 153, 160, 164, 196, 197, 198,

203, 204, 205, 207, 209, 211, 216, 217, 219, 220, 221, 222, 223]. A few studies

have investigated the di�erential diagnosis of COVID-19 pneumonia (CVP), other

pneumonias, and/or healthy lungs by performing multi-class classi�cation [50,

115, 149, 158, 210].

In contrast to these previous studies, our BDCU-Net and 3D-convolutional

neural network classi�er learned to accurately distinguish COVID-19 pneumonia

(CVP) from other viral and bacterial pneumonias (VBP), parenchymal lung dis-

eases (PLD), and healthy subjects (HS) by performing four-class classi�cation,

which is a very di�cult task compared to binary classi�cation.
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Additionally, the performance of our BCDU-Net and 3D-convolutional neural

network classi�er was evaluated using the AUFM-CoV database, which comprises

a wide variety of lung diseases with ground-glass opacities (GGO) that are par-

ticularly challenging to distinguish from COVID-19 pneumonia (CVP).

Table 3.17 presents the performance comparison between our BCDU-Net and

3D-convolutional neural network classi�er, and recent arti�cial intelligence stud-

ies that employed radiological images for COVID-19 diagnosis by performing

multi-class classi�cation. The multi-class classi�cation performance results of

our BCDU-Net and 3D-convolutional neural network classi�er indicated that it

has higher sensitivity, comparable speci�city, comparable precision, and com-

parable F1-score compared to existing methods in the literature that performed

four-class classi�cation.

Moreover, our classi�er exhibits relatively higher sensitivity, lower speci�city,

lower precision, and lower F1-score compared to existing methods that conducted

three-class classi�cation. This is a highly anticipated result, since three-class

classi�cation is an easier task compared to four-class classi�cation, which was

performed by our classi�er.

To the best of our knowledge, this is the �rst study that proposed an au-

tomated arti�cial intelligence-based hybrid clinical decision support technique,

which consists of both deep learning and machine learning methods that jointly

analyze RT-PCR data, thorax computed tomography images, and laboratory

data to perform fast and robust detection of COVID-19. The binary and multi-

class classi�cation performance results of the proposed technique on the AUFM-

CoV database showed that it provides highly accurate and reliable diagnosis of

COVID-19.

Since there are no other studies in the literature that proposed a hybrid arti�-

cial intelligence technique that jointly utilizes RT-PCR curves, thorax computed

tomography images, and laboratory data to diagnose or classify COVID-19, it is

not possible to compare the performance results of our arti�cial intelligence-based

hybrid clinical decision support technique with those of other previous studies.

146



TABLE 3.17: PERFORMANCE COMPARISON of the PROPOSED BCDU-NET and 3D-CONVOLUTIONAL NEURAL

NETWORK CLASSIFIER with RECENT ARTIFICIAL INTELLIGENCE STUDIES investigating COVID-19 DIAGNO-

SIS by performing MULTI-CLASS CLASSIFICATION using RADIOLOGICAL IMAGES

STUDY METHOD # of CLASSES TPR (%) TNR (%) PPV (%) F1 (%)

[207] Convolutional Neural Network 3 98.2 - 98.2 98.2

[198]
Visual Geometry Group16 (VGG16)

Residual Network (ResNet50)
3

65

55

90

92.3

79

81

71

66

[219] DarkCovidNet 3 85.3 92.1 89.9 87.3

[211] Capsule Network (CapsNet) 3 84.2 91.7 84.6 84.2

[212] E�cientNet 3 96.6 - 97.5 97.1

[220] Stacked Convolutional Neural Network 3 97.6 98.5 97.4 97.5

[225] DenseNet169 + XGBoost 3 88.5 100 94.1 92.4

[197] InceptionV2 3 76 - 69 72

[226] COV19-CNNet 3 94.3 96.9 - 94.2

[215] Visual Geometry Group16 (VGG16) 3 76 - 79 78

[216] ULNet 3 89.7 - 87.9 88.3

[223] LW-CBRGPNet 3 98.7 98.6 97.3 -

[227] COVID-Transformer 3 89 - 93 91

[217] NASNet Large 4 90 92 87 -

[209] Deep Convolutional Neural Network 4 85.6 92.3 80.9 80.8

[210] Coronet 4 89.9 96.4 90 89.8

[203] XGBoost (XGB-L) 4 74.5 95.3 83.8 -

Proposed

Study

BCDU-Net +

3D-Convolutional Neural Network
4 91.9 92.5 80.4 86



Chapter 4

Conclusions and Future Works

Firstly, we have proposed a novel automated hybrid arti�cial intelligence tech-

nique that simultaneously and robustly detects anomalies in the 12-lead CSNA

and ECG data for fast, early, and accurate diagnosis of coronary artery diseases.

We evaluated the performance and generalizability of the proposed automated

arti�cial intelligence-based hybrid anomaly detection technique using the fully-

labeled STAFF III and PTBD databases. The experimental results have demon-

strated that the automated arti�cial intelligence-based hybrid anomaly detection

technique yields highly promising results for the reliable and robust detection of

coronary artery diseases using the 12-lead ECG and CSNA data.

Secondly, we constructed a new fully-labeled COVID-19 database that con-

tains RT-PCR curves, thorax computed tomography images, and laboratory data

of patients with COVID-19 pneumonia (CVP), other viral and bacterial pneumo-

nias (VBP), parenchymal lung diseases (PLD), and healthy subjects (HS). Among

the publicly available COVID-19 databases [190, 191], our database contains the

widest variety of medical data, which are critical for the reliable diagnosis of

COVID-19.

We proposed a new automated, arti�cial intelligence-based hybrid clinical de-

cision support technique that provides highly reliable diagnosis of COVID-19 by
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jointly analyzing RT-PCR curves, thorax computed tomography images, and lab-

oratory data. Hence, this approach bene�ts from the diversity in di�erent data

types and leverages their strengths. The proposed arti�cial intelligence-based

hybrid clinical decision support technique is an ensemble learning approach con-

sisting of preprocessing methods, long short-term memory network-based deep

learning method, convolutional neural network-based deep learning method, as

well as arti�cial neural network-based machine learning method that performs

fast and accurate detection of COVID-19. It has been proven to be highly suc-

cessful in performing di�erential diagnosis of COVID-19 pneumonia (CVP) and

other pneumonias.

In the future, the automated arti�cial intelligence-based hybrid anomaly de-

tection technique and arti�cial intelligence-based hybrid clinical decision support

technique can be integrated into hospitals' software systems and clinically val-

idated through multi-center prospective studies to demonstrate their high per-

formance, generalizability, and robustness on a larger and more diverse patient

population. This process will also help determine the amount of time they can

save physicians in daily clinical practice.

After ensuring the reliability of the arti�cial intelligence-based hybrid anomaly

detection technique for widespread clinical applicability, it can be seamlessly inte-

grated into wearable devices, such as wireless patches and smartwatches, for con-

tinuous, simultaneous, and long-term monitoring of CSNA and ECG in real-time.

This integration may provide early warnings to patients for improved diagnosis

and treatment of coronary artery diseases, highlighting the potential bene�ts of

this study in real-world medical scenarios.

Consequently, the automated arti�cial intelligence-based hybrid anomaly de-

tection technique and arti�cial intelligence-based hybrid clinical decision support

technique may serve as e�cient decision-support systems to increase the suc-

cess rate and reduce the workload of physicians in fast and accurate diagnosis of

coronary artery diseases and COVID-19, respectively. This can help reduce the

risk of misdiagnosis by human experts or the gold standard diagnostic tests, and

it can assist physicians in making well-informed diagnostic decisions e�ciently.
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The contribution of the automated arti�cial intelligence-based hybrid anomaly

detection technique to the reliable diagnosis of coronary artery diseases can be

signi�cantly greater than that of conventional ECG devices, and the utilization

of CSNA in the diagnosis of cardiovascular diseases can gain a new perspective.

In addition, the promising areas for future research and development concern-

ing the joint detection of COVID-19 and COVID-19-related heart diseases using

various arti�cial intelligence techniques can be summarized as follows:

� Multimodal Data Fusion: Development of comprehensive diagnostic and

predictive arti�cial intelligence models capable of analyzing and fusing data

from various modalities and sources, including medical images, electronic

health records, and wearable devices, to enable robust detection of COVID-

19 and its associated heart diseases.

� Explainable Arti�cial Intelligence: Improvement of the transparency

and interpretability of arti�cial intelligence models to gain trust and accep-

tance from healthcare professionals and facilitate their integration into clin-

ical practice. Development of arti�cial intelligence models to o�er clear ex-

planations for their predictions and recommendations, particularly in com-

plex medical decision-making scenarios associated with COVID-19-related

heart diseases that could have signi�cant clinical consequences.

� Few-Shot Learning: Exploration of transfer learning techniques, such

as pre-trained models and few-shot learning, to develop diagnostic arti�cial

intelligence models with high performance that can quickly adapt to emerg-

ing variants of the virus or new heart diseases associated with COVID-19.

These techniques will be highly valuable and bene�cial, especially in situa-

tions where the availability of labeled data is limited, as it can signi�cantly

reduce the amount of data needed for model training, making it more ap-

plicable to real-world scenarios where collecting large databases may be

challenging.
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� Clinical Decision Support Systems: Development of arti�cial

intelligence-powered clinical decision support systems that can further as-

sist physicians in real-time by o�ering treatment recommendations and risk

assessments for COVID-19 patients with associated heart diseases.

� Long-Term Health Monitoring and Predictive Modeling: Conduct-

ing longitudinal studies to understand the long-term health consequences

of COVID-19 on the cardiovascular system by tracking patients over ex-

tended periods. Developing arti�cial intelligence models that can predict

and anticipate the evolution and progression of heart diseases in COVID-19

survivors over time.

� Ethical Considerations and Data Privacy: Investigation of the eth-

ical implications of arti�cial intelligence-driven healthcare solutions, with

a focus on issues such as data privacy, patient consent, and bias mitiga-

tion. Development of guidelines and regulations to ensure the responsible

utilization of arti�cial intelligence in clinical settings.

� Validation and Clinical Trials: Conducting validation studies and clin-

ical trials to assess the real-world impact of arti�cial intelligence-based di-

agnostic tools for COVID-19 and related heart diseases. Working with reg-

ulatory authorities to ensure that these diagnostic tools meet the necessary

safety and e�cacy standards for clinical use.

� Personalized Medicine: Arti�cial intelligence can play a pivotal role in

customizing treatment plans for patients with COVID-19-related heart dis-

eases. Future research can focus on developing arti�cial intelligence-driven

methods for optimizing and personalizing treatment based on patient-

speci�c characteristics.

� Large-Scale Data Collaboration: Encouraging collaborative e�orts

among healthcare institutions, researchers, and scientists is essential for

collecting large and diverse databases for the development and validation

of arti�cial intelligence models. Initiatives focused on data sharing can

accelerate advancements in the detection of COVID-19 and its associated

heart diseases.
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The aforementioned future research directions represent a roadmap for advanc-

ing arti�cial intelligence-driven solutions in the diagnosis of COVID-19-associated

heart diseases. Incorporating these future works into research agendas will con-

tribute to improving both the diagnosis and treatment of COVID-19-related heart

diseases. It is our hope that this thesis will serve as a foundation for future re-

search endeavors in this critical and rapidly evolving �eld.
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