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In many production systems a certain level of flexibility in the production capacity is either inherent or can be acquired. In that case,
system costs may be decreased by managing the capacity and inventory in a joint fashion. In this paper we consider such a make-
to-stock production environment with flexible capacity subject to periodic review under non-stationary stochastic demand, where we
allow for positive fixed costs both for initiating production and for acquiring external capacity. Our focus is on tactical-level capacity
management which refers to the determination of in-house production capacity while the operational-level integrated capacity and
inventory management is executed in an optimal manner. We first develop a simple model to represent this relatively complicated
problem. Then we elaborate on the characteristics of the general problem and provide the solution to some special cases. Finally, we
develop several useful managerial insights as to the optimal capacity level, the effect of operating at a suboptimal capacity level and

the value of utilizing flexible capacity.
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1. Introduction and related literature

The issue of capacity management is of vital importance in
most production systems, especially under demand volatil-
ity. In a make-to-stock system with fixed capacity and
volatile demand, elevated levels of inventory and/or signif-
icant underutilization of capacity is unavoidable in order
to be able to meet demand in a timely fashion. Neverthe-
less, in many production systems a certain level of flexibil-
ity in the production capacity is either inherent or can be
acquired. In that case, system costs may be decreased by
managing the capacity and inventory in a joint fashion. In
this paper we consider such a make-to-stock production en-
vironment with flexible capacity subject to periodic review
under non-stationary stochastic demand, where our focus
is on tactical-level capacity management.

Capacity can be defined as the total productive capability
of all the utilized productive resources including workforce
and machinery. These productive resources can be perma-
nent or contingent. We define permanent capacity as the
maximum amount of production possible in regular work
time by utilizing the internal resources of a company such
as existing workforce level on the steady payroll or the ma-
chinery owned or leased by the company. Total capacity can

*Corresponding author

0740-817X © 2008 “IIE”

be increased temporarily by acquiring contingent resources,
which can be internal or external, such as hiring temporary
workers from external labor supply agencies, subcontract-
ing, overtime production, renting work stations, and so on.
We refer to this additional temporarily acquired capacity
as the contingent capacity. Capacity flexibility refers to the
ability to adjust the total production capacity in any period
with the option of utilizing contingent resources in addition
to permanent resources.

The capacity decisions can be made in all decision-
making hierarchies: strategic, tactical and operational. Ex-
amples of these decisions include determining how many
production facilities to operate, determining the permanent
capacity of a facility and making contingent capacity ad-
justments, respectively. Our focus is on the tactical level.
In particular, we consider the problem of determining the
permanent capacity of a facility, while the operational level
integrated capacity and inventory management is executed
in an optimal manner. For ease of exposition, we refer to the
workforce capacity setting in some parts, but this does not
mean that our analysis is solely confined to that environ-
ment. A possible application area of the problem we con-
sider is an environment in which the production is mainly
determined by the workforce size. This workforce size is flex-
ible, in the sense that temporary (contingent) workers can
be hired in any period in addition to the permanent work-
force that is fixed through the planning horizon. Contingent
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workers are paid only for the periods they work, whereas
permanent workers are on a payroll. The firm wishes to
find the optimal permanent workforce size as well as their
optimal operating policies. We assume that the lead time
to acquire contingent labor is zero. Indeed, it takes as little
as 1 or 2 days to acquire temporary workers from external
labor supply agencies for jobs that do not require high skill
levels, according to our experience. In some cases tempo-
rary labor acquisition is actually practically immediate. In
some developing countries workers looking for a tempo-
rary job and companies in need of temporary labor gather
in known venues early in the morning and the companies
hire the workers that they are going to make use of that very
day.

Changing the level of permanent capacity as a means of
coping with demand fluctuations, such as hiring and/or fir-
ing permanent workers frequently, is not only very costly
in general, but it may also have many negative impacts on a
company. In the case of labor capacity, the social and moti-
vational effects of frequent hiring and firing makes this tool
even less attractive. Utilizing flexible capacity, such as hiring
temporary workers from external labor supply agencies, is
a means of overcoming these issues, and we consider this as
one of the two main operational tools of coping with fluc-
tuating demand, along with holding inventory. However,
long-term changes in the state of the world can make per-
manent capacity changes unavoidable. Consequently, we
consider the determination of the permanent capacity level
to be a tactical decision that is made at the beginning of a
finite planning horizon and not changed until the end of the
horizon. The capacity-related decisions are the determina-
tion of the permanent workforce size to utilize through the
planning horizon, and the number of temporary workers to
hire in each period. The productivity of temporary work-
ers is allowed to be different to that of permanent workers
in our model. Our model also allows for the incorporation
of fixed costs associated with: (i) initiating production in
each period (including setup costs of production); and (ii)
ordering contingent capacity. Finally, we note that hiring
contingent workers may not be a feasible option for tem-
porarily increasing production capacity in certain environ-
ments due to unavailability or special skill requirements. In
these situations, overtime production using permanent ca-
pacity could be the means to create capacity flexibility. We
also analyze this problem environment.

Capacity management problems have received significant
attention in the relevant literature at all levels of the hi-
erarchical decision-making process. Van Mieghem (2003)
presents a survey of the literature and focuses on strate-
gic decisions whereas Wu et al. (2005) focuses on tac-
tical and operational level decisions. Capacity manage-
ment problems include, among others, capacity planning
in terms of the determination of the capacity levels of pro-
ductive resources and the timing of the capacity adjust-
ments. Since the problem of concern in this article is a
tactical-level capacity planning problem coupled with pro-
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duction/inventory decisions, we mainly review articles in
the capacity management literature that attempt to exploit
the interactions between capacity planning and produc-
tion/inventory decisions.

The papers by Bradley and Arntzen (1999), Atamturk
and Hochbaum (2001) and Rajagopalan and Swaminathan
(2001) are examples of research that deals with the joint
capacity and inventory management problem at tactical
and operational levels under a deterministic demand as-
sumption. They provide formulations and solution ap-
proaches under different problem settings. However, these
approaches do not apply to our problem since we consider
stochastic demand in our model.

There are a number of studies in the literature that as-
sume stochastic demand and are closely related to our work
in terms of the problem environment. We discuss the major
differences between these papers and our work after pre-
senting a brief review of them. Bradley and Glynn (2002)
deal with a continuous-review problem where the fixed ca-
pacity level of the productive resources are to be determined
as well as the production quantities in a single-item, infinite-
horizon environment. It is assumed that the item is replen-
ished according to the base stock policy and that the capac-
ity level is not subject to changes, permanent or temporary.
Bradley (2004) extends this model to the case where the
capacity level can be increased temporarily with the use of
subcontracting, which is similar to the use of contingent
capacity in our model. Their models are on a continuous
time scale whereas ours is discrete, which might represent a
contingent workforce environment more closely, where the
decisions on hiring temporary workers are typically made
on a period basis. Tan and Gershwin (2004) also deal with
a similar make-to-stock environment where any demand
that exceeds the current capacity is satisfied from one of
the available subcontractors. The demand rate is assumed
to have two states either high or low, and is dependent on
the current backordering level. The decision variables are
the production rates for in-house production and subcon-
tracted production. The authors prove that there exist a
series of threshold levels in the optimal policy for in-house
production and for each subcontractor that indicate when
there is sufficient surplus and when there is a need to use
the subcontractors. Their model is a continuous-time model
and does not accommodate setup costs for production and
subcontracting. Another paper that is related to our work
is by Kekre et al. (2004) (although what they refer to as
strategic and tactical capacity planning stands for what we
refer to as tactical and operational capacity planning, re-
spectively), where the authors utilize stochastic program-
ming with recourse to decide on the permanent capacity
and to determine the production quantities in a similar
problem environment. There are a number of major dif-
ferences between their work and ours. Kekre ez al. (2004)
use linear production costs whereas we consider a neither
concave nor convex production cost function. The model-
ing approaches are also different in the sense that we use
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stochastic dynamic programming which permits the use of
optimal operating policies whereas their paper is not in-
tended for policy characterization for inventory and con-
tingent capacity decisions. Finally, our model is capable of
handling a cheaper contingent capacity option, unlike their
model.

Even though there are some similarities between the stud-
ies mentioned above and our work, we extend the literature
in this stream of research in the following sense. We in-
corporate the fixed costs of production and fixed costs of
acquiring contingent capacity in the problem environment
under study for the first time in the literature, to the best of
our knowledge. In addition, we utilize the optimal produc-
tion/inventory decisions when we optimize the permanent
capacity levels. Moreover, we provide an extension which
can be used to solve the problem when flexible capacity is
created through overtime production. We characterize the
optimal policy in some cases of the problem and for the
remaining cases we demonstrate through numerical studies
that the optimal policy does not have a simple form. The
existence of fixed costs in the system considerably changes
the structure of the model and the analysis, causing the cost
functions to be intractable in the most general case. Finally,
we provide structurally different and useful managerial in-
sights that stem from intricate tradeoffs between fixed costs
and other problem parameters.

We also want to mention a number of studies from the
capacity management literature that deal with related prob-
lems under different settings. Kouvelis and Milner (2002)
and Pinker and Larson (2003) deal with problems where
the starting capacity levels are optimized with inventory
carry overs not allowed. Cheng et al. (2004) deal with
a single-item problem without a contingent capacity op-
tion where the firm determines a fixed capacity level to
be used in a medium-term planning horizon that cannot
be changed through this horizon but with the option of
expanding or contracting the capacity when starting the
next planning horizon. The authors characterize the op-
timal capacity management policy. Zhang et al. (2004) ex-
ploit the tradeoff between capacity expansion and lost sales
costs in an environment where multiple products and ma-
chine types exist, the demand is non-stationary and in-
ventory holding and backordering are not allowed. Van
Mieghem and Rudi (2002) deal with the problem of deter-
mining the optimal capacity and the base stock levels in a
single-period multi-resource problem. The authors extend
this problem to the multi-period case and show that the
myopic policy is optimal when the unmet demand is lost
and they also provide the conditions for which the myopic
policy is still optimal for the backordering case. Angelus
and Porteus (2002) deal with the joint capacity and inven-
tory management problem of a short-life-cycle product and
they characterize optimal policies under certain assump-
tions where demand is assumed to exhibit a stochastically
increasing structure followed by a stochastically decreasing
nature.
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Finally, we note that Hu et al. (2004), Tan and Alp (2008)
and Yang et al. (2005) deal with the characterization of
optimal capacity planning and inventory decisions under
problem settings in which the capacity level can be increased
temporarily by the use of contingent resources, but they do
not deal with the problem of optimization of the initial
capacity level.

In this paper, we first develop a simple model to rep-
resent this relatively complicated problem and we charac-
terize the solution when the fixed costs are negligible. For
the case with positive fixed costs, we provide the solution
to the single-period problem and elaborate on the general
characteristics of the solution to the multi-period problem.
Finally, we develop several useful managerial insights. In
particular, we investigate the sensitivity of the optimal so-
lution to changes in the parameters, we study the effects of
operating under a suboptimal permanent capacity level and
we explore the parameter settings where capacity flexibility
is more valuable.

The rest of the paper is organized as follows. We present
our dynamic programming model in Section 2. The optimal
policy for the integrated problem is discussed in Section 3.
In Section 4 we provide an extension of the model which
assumes overtime production as the means of flexibility.
Our computations that result in managerial insights are
presented in Section 5. We conclude the paper in Section 6.

2. Model formulation

In this section, we present a finite-horizon dynamic pro-
gramming model to formulate the problem under consid-
eration. Unmet demand is assumed to be fully backlogged.
The relevant costs in our environment are the inventory
holding and backorder costs, the unit cost of permanent
and contingent capacity, the fixed cost of production and
the fixed cost of ordering contingent capacity, all of which
are non-negative. We assume that there is an infinite supply
of contingent workers, raw material is always available and
the lead time of production and acquiring contingent ca-
pacity can be neglected. The notation is introduced as need
arises, but we summarize our major notation in Table 1 for
ease of reference.

We consider a production cost component which is a lin-
ear function of the permanent capacity in order to represent
the costs that do not depend on the production quantity
(even when there is no production), such as the salaries of
permanent workers. That is, each unit of permanent ca-
pacity costs ¢, per period, and the total cost of permanent
capacity per period is Ucp, for a permanent capacity of
size U, independent of the production quantity. We do not
consider material-related costs in our analysis. In order to
synchronize the production quantity with the number of
workers, we redefine the “unit production” as the number
of actual units that an average permanent worker can pro-
duce; that is, the production capacity due to U permanent
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Table 1. Summary of notation

Variable Definition
T Number of periods in the planning horizon
K, Fixed cost of production
K. Fixed cost of ordering contingent capacity
p Unit cost of permanent capacity per period
Ce Unit cost of contingent capacity per period
h Inventory holding cost per unit per period
b Penalty cost per unit of backorder per period
o Discounting factor (0 < o < 1)
0, Number of items produced in period ¢
W, Random variable denoting the demand in period ¢
G(w) Distribution function of W,
U Size of the permanent capacity
Xt Inventory position at the beginning of period ¢
before ordering
Ve Inventory position in period ¢ after ordering
f:(U, x;) Minimum total expected cost of operating the system
in periods ¢,¢ 4+ 1, ..., T, given the system state
(U7 xl‘)

workers is U units per period. We also define the cost of
production using temporary workers in the same unit basis,
where the cost for flexible workers is related to their produc-
tivity. In particular, let ¢/ be the hiring cost of a temporary
worker per period, and let ¢ denote all other relevant vari-
able costs associated with production by temporary workers
per period. It is possible that the productivity rates of per-
manent and temporary workers are different. Let y be the
average productivity rate of temporary workers, relative to
the productivity of permanent workers; that is, each tem-
porary worker produces y units per period. Assuming that
this rate remains approximately the same over time, the unit
production cost using temporary workers, ¢, can be writ-
ten as ¢, = (c, + c)/y. It is likely that 0 < y < 1, but the
model holds for any y > 0.

For the sake of generality, we allow for non-negative fixed
costs, both for production and contingent capacity order-
ing. Let K, denote the fixed cost of production and K. de-
note the fixed cost of ordering contingent capacity. K, is
charged whenever production is initiated, even if the per-
manent workforce size is zero and all production is due to
temporary workers. Therefore, together with the structure
of the unit permanent capacity costs, this implies that it is
never optimal to order contingent capacity unless the per-
manent capacity is fully utilized. On the other hand, K. is
charged only when temporary workers are ordered, inde-
pendent of the amount. Fixed costs of contacting external
labor supply agencies and training costs may be among the
drivers of K.. We ignore the costs that may be associated
with acquiring permanent capacity that is incurred at the
beginning of the planning horizon, nevertheless we discuss
in Section 6 how such costs can be incorporated in the anal-
ysis.
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Under these settings, it turns out that the production
quantity of a period, Q,, is sufficient to determine the
number of temporary workers to be hired in that pe-
riod, m,, for any level of permanent capacity determined
at the beginning of the planning horizon. In particular,
m, =[(Q; — U)*/y], ignoring integrality, where (-)* de-
notes the value of the argument inside if it is positive and
assumes a value of zero otherwise. Consequently, the prob-
lem translates into a production/inventory problem where
the level of capacity is a decision variable and the produc-
tion cost is piecewise linear, which is neither convex nor
concave under positive fixed costs. See Fig. 1 for an illustra-
tion. Note that when K}, and K. are both zero, this function
is convex.

The order of events is as follows. At the beginning of the
first period, the permanent capacity level U is determined.
At the beginning of each period ¢, the initial inventory level
x; 1s observed, the production decision is made and the
inventory level is raised to y; by utilizing the necessary ca-
pacity means; that is, if y, < x, + U then only permanent
capacity is utilized, otherwise a contingent capacity of size
m; = [(y; — x; — U)*/y] is hired on top of full permanent
capacity usage. At the end of period ¢, the demand d; is
met/backlogged, resulting in x;; = y, — d;. We denote the
random variable corresponding to the demand in period ¢
as W, and its distribution function as G,(w). The state of
the system consists of the permanent capacity level and the
initial inventory level, (U, x;). Denoting the minimum cost
of operating the system from the beginning of period ¢ un-
til the end of the planning horizon as f,(U, x;), we use the
following dynamic programming formulation to solve the
integrated Capacity and Inventory Management Problem
(CIMP):

Ji(U, x;) = Ucep + min {Kp5(J’t - X;)

YiixXi =y
+ K8y, —xi — U+ [y —x, — Ul ce
+ Li(y/) + «Elfi 11(U, y, — W)}
forr =1,2,..., T,

KP+KC+ U’*Cp

Kp+U*Cp

U e

Production Quantity

Fig. 1. Production cost function under positive fixed costs.
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where L, (y,) = hf()yr(J’t —w)dG,(w) + b fyfo(w = y0)dG(w)
is the regular loss function, §(-) is the function that attains
a value of one if its argument is positive, and zero other-
wise, and the ending condition is defined as /71 (U, x741) =
0.

3. Analysis

3.1. Analysis with no fixed costs

We first handle the case where the fixed costs are negligi-
ble. Tan and Alp (2005) show that the optimal operational
policy for any given permanent capacity level is of state-
dependent order-up-to type, where the optimal order-up-to
level, y;(x;), is

vy if x <y;—U,
sy i+ U ify—-U<x <y"-1U,
Y=y if y) = U<x <y M
Xt if J/;lfxt,

and y}' and y; are the minimizers of the functions
Ji) = Li(y) + aElfis1(y — Wi)]l and Ji(yIx) = Ji'(y) +
c.(y — x — U), respectively.

First we provide a convexity result which is useful in de-
termining the optimal level of the permanent capacity.

Lemma 1. Let X =R x R". Note that X is a convex
set. Let Y(x, U) be a non-empty set for every (x, U) € X,
C={xUy):(x,U)e X,y € Y(x, U)} is a convex set,
and the function g(x, U, y) is a convex function on C. Then,
f(x, U) =min,cyig(x, U, y)} is also convex on X.

Proof. See the Appendix. [ ]

Theorem 1. Let X =R x R*. Then, f;(x,, U) is convex on
X.

Proof. See the Appendix. [ |

Consequently, one can search for the optimal permanent
capacity level using this convexity result for any starting in-
ventory level. We next consider the single-period problem
and provide the solution explicitly, which is a newsboy-type
solution. Although the optimal tactical-level capacity de-
termination problem implies a multi-period setting in the
problem environment we have discussed, there are some
useful insights that can be gained from the analytical solu-
tion that the single-period problem brings. We suppress the
time subscript in the analysis of the single-period problem.

Theorem 2. The optimal permanent capacity level of the
single-period problem is given by

0 l.prZCc

ifep < cc
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Proof. See the Appendix. [ ]

Note that U* is independent of ¢, as long as ¢, < c., be-
cause no contingent capacity would be used in the single-
period problem in that case. Note also that U* is de-
creasing in ¢, which means that expensive permanent re-
sources result in a smaller permanent capacity. If ¢, <
ce, then y¢ — x < U* < y¥ — x, where y* = G~ 1(b/(h + b))
and y¢= G (b — c.)/(h+ b)). Consequently, y*(x)=
x + U*, which implies that in a single-period problem the
optimal policy is first to install a permanent capacity of U*
and then to produce in full terms without hiring any contin-
gent capacity. If the unit cost of permanent capacity exceeds
that of the contingent one, then it is optimal to hold no per-
manent capacity at all and to utilize only the contingent
resources to produce up to y°. In the multi-period problem,
the optimal permanent capacity still takes the value of zero,
as shown later in Theorem 4, when ¢ < ¢p.

Finally in this section, we analyze the behavior of the op-
timal permanent capacity level as a function of the number
of periods in the planning horizon. We show in Table 2, by
the use of a stationary problem instance, that there exists
no monotonic relation between the two. In this particular
example, the optimal capacity level first increases and then
decreases converging to U* = 10 as the length of the plan-
ning horizon increases. We also observe that there are other
problem instances where U* either monotonically increases
or decreases where such a relation depends on the problem
parameters. In any case, the solution converges after a num-
ber of periods.

3.2. Analysis with fixed costs

In this section, we analyze the problem when both fixed
costs are positive. First we present our results on the optimal
capacity level of a single-period problem. Upon solving the
single-period problem we elaborate on the structural prop-
erties of the optimal solution in the multi-period problem.

Although it is more likely that the problem environ-
ment that we have discussed has a multi-period structure,
there are also some problem environments where the single-
period model is appropriate. When the demand for the
product is mostly observed in a condensed time interval,
such as the Christmas period, the single-period model is
clearly relevant. Another application would be a product
selection problem where the item(s) to produce in a finite

Table 2. Optimal capacity levels vs length of the horizon when
h=1,b="7¢,=15,¢c. =3, =0.99 and W, is Poisson with
E[W,] =10 for all ¢

T

12 3 4 5 6 7 & 9 10 50

v 11 12 12 11 11 10 10 10 10 10
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planning horizon is (one) to be selected. In that case, this
problem could be handled by representing the total plan-
ning horizon as a single period. In particular, such a firm
may be capable of producing a variety of items and would
like to determine the capacity to dedicate for the production
of each alternative, if any. In such environments, product
selection decisions might be based on the expected total
costs of producing items (along with the associated rev-
enues) depending on their probabilistic demand behaviors,
starting inventories, productivity of permanent and tempo-
rary resources and operating costs. The single-period prob-
lem could be solved for all possible alternatives (with K,
denoting the fixed cost of production changeover for that
alternative) in order to make the decision as to how much
capacity should be dedicated for that alternative, if any.
Let QP denote the production that is conducted solely
by making use of permanent capacity, let Q¢ denote the
production that is conducted solely by making use of con-
tingent capacity, and let Q = QP 4+ Q° denote the total pro-
duction. Then we can write the following Lemma.

Lemma 2. In the optimal solution to the single-period prob-
lem, U = QP.

Proof. See the Appendix. [ |

Lemma 2 states that the permanent capacity to be in-
stalled, if any, must be equal to the production that is re-
quired to be conducted with that capacity. That is, there
should be no underutilization in the optimal solution.

The following complementarity result is useful in solving
the single-period problem.

Lemma 3. In the optimal solution to the single-period prob-
lem, QPQ° = 0.

Proof. See the Appendix. [ |

Lemma 3 states that the production will be due to one
type of capacity only, either permanent or contingent. That
is, the optimal solution is either to set the permanent ca-
pacity to the level of desired production and not to utilize
any contingent capacity, or to set the permanent capacity
level to zero and conduct all production with contingent
capacity, depending on the cost parameters.

Let yP = G (b — ¢p)/(h+ b)) and recall that y° =
G7'((b — co)/(h+ b)),and y* = G~'(b/(h + b)). Define two
auxiliary functions as

s°(x) = min{s : L(s) = K, + Kc + L(°) + ¢.(° — )T},
sP(x) = min{s : L(s) = Kp + ¢p(0* — )T + LOP)}.

The following theorem characterizes the optimal capac-
ity level and the production quantity of a single-period
problem.

Theorem 3. Let U = yP — x for a starting inventory level of
x. Then, the optimal capacity and order-up-to levels, (U*, y*),
of a single-period problem can be characterized as follows.
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Case 1. ¢, < cc:

(U, yP)
(0, x)

if x < sP(x),

otherwise.

(U, y") = {

Case 2. ¢, > c:

0,9 ifx=s%(x) andsP(x) < s5°(x),
(U*, )= {(U,y?) ifx <sP(x) ands(x) < sP(x),
0, x) otherwise.
Proof. See the Appendix. [ ]

Theorem 3 suggests that

1. If the unit cost of permanent capacity is less than that of
contingent capacity, then no contingent capacity should
be utilized. }

2. The optimal permanent capacity level is either U or zero.

3. Contingent capacity will only be utilized if its unit cost
is cheaper than that of the permanent capacity and the
required production quantity is high enough to compen-
sate for the additional fixed cost that will be incurred for
utilizing contingent capacity, in which case no perma-
nent capacity will be installed. In that case the inventory
level after production will be higher than that with the
alternative option of producing with the permanent ca-
pacity.

The following result is an implementation of Theorem 3
when the starting inventory level is zero.

Corollary 1. When ¢, < c. and the starting inventory level is
zero then:

e |7 TEIN) = (e + Ky + LOP) /b,
0 otherwise.

When the starting inventory level is zero, it is optimal
to make production and install permanent capacity if the
expected demand is greater than a prespecified value given
by the problem parameters and distribution of demand.
Otherwise production is not economic.

We note that the single-period model with ¢, < ¢, fits also
to a case where “contingent capacity” refers to the alterna-
tive of conducting the production in a developing country
with cheaper production costs. In that case, K, mimics the
investment that is required independent of the country of
investment (such as the specific machinery that needs to be
procured), K. mimics the additional costs that would be
undertaken to begin production in that developing coun-
try (such as the costs of the additional research required to
invest there, the additional risks taken, etc.), and the single-
period production quantity mimics the total production
that will be produced. In that case, the investment should
only take place if the required production amount is large
enough to recoup the additional investment costs. If that
is the case, our solution suggests that all the production
should be performed there, which brings the inventory to a
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level that is higher than that of producing with the alterna-
tive option of more expensive local production.

When we have more than one period in the planning
horizon, it is not possible to obtain closed-form expressions
for the optimal capacity levels. Nevertheless, we present the
solution of a special case in the following theorem without
proof.

Theorem 4. If K, > 0, K. = 0, and c. < c¢p then U* = 0.

This theorem states that when the contingent resources
are cheaper than permanent resources, it is optimal to out-
source all production or to produce in house with only con-
tingent resources.

In some cases the myopic (single-period) solution pro-
vided in Corollary 1 gives the optimal or near-optimal so-
lution to the general multi-period problem, especially when
K, is low. Moreover, the optimal solution is U* = 0 in both
problems when K, is extremely high relative to the other
cost parameters of the problem. Nevertheless, for the val-
ues of K, in between, the system may prefer to avoid paying
K, every period in the multi-period problem and to produce
in large quantities when production is initiated to cover the
demand of a number of periods (as discussed later in this
section) possibly by setting U* = 0, while the single-period
problem does not have such an option and may go for a
high level of permanent capacity, creating a gap between
those two solutions. Moreover, Lemma 3 provides a prop-
erty of the myopic solution that does not necessarily hold
in the multi-period case. Finally, yP is independent of the
cost parameters of the contingent capacity. Consequently,
the myopic solution does not necessarily solve the multi-
period problem and it may even be far from the optimal
solution. It may be possible to devise a heuristic solution
to the multi-period problem that makes use of the myopic
solution, nevertheless we focus on some other aspects of the
problem in this paper.

It is shown in Section 3.1 that the expected total costs of
the system is convex in the permanent capacity levels when
there are no fixed costs. This result enables us to easily de-
termine the optimal permanent capacity level. One could
expect a similar behavior of the expected total cost function
under the existence of positive fixed costs, since extremely
high and low levels of capacity would still be more costly
than an intermediate level. However, this intuition turns
out to be incorrect, as we demonstrate in Fig. 2. This figure
denotes the expected total costs of the system for vary-
ing permanent capacity levels with problem parameters of
K,=20,K.=30,T=12,b=10,h=1,c,=3.5,0 =0.99
and a seasonal Normal demand pattern with a cycle of
four periods with expected demand values of 15, 10, 5 and
10, respectively and a coefficient of variation, CV value
of 0.1.

The reason why the convex structure does not hold any-
more is as follows. If the system is working under a very low
or zero permanent capacity, then the only way of avoiding
both of the fixed costs in every period (other than cumula-
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Fig. 2. Expected total costs plotted against permanent capacity.

tive backlogging of the demand) is to operate with elevated
inventory levels by making use of contingent capacity in
large amounts every time production is initiated, followed
by a number of periods with no production. In that case,
a marginal increase in permanent capacity may increase
the system costs despite the decreased production costs in
the periods where there is positive production, because that
capacity will be paid in the periods with no production as
well. However, as the permanent capacity level becomes suf-
ficiently high, the total costs may decrease due to decreased
production costs, since permanent capacity would be uti-
lized most of the time. Finally, as the permanent capacity
becomes excessively high, the system costs will increase due
to low utilization. Moreover, the expected total cost func-
tion does not necessarily have only one local minimum in
this region'. In particular, a certain relatively low perma-
nent capacity level that makes the best use of contingent
capacity may be a local minimum, whereas some higher
permanent capacity level(s) may decrease or eliminate the
need of contingent capacity (and hence its fixed cost) re-
sulting in another local minimum. The reason why the cost
may be partly increasing in between is that the additional
permanent capacity in between may not be large enough to
eliminate or significantly decrease the need of contingent
capacity while resulting in increased permanent capacity
costs.

We illustrate the reason for the cost behavior that we dis-
cussed above for low permanent capacity levels in Fig. 3.
This figure depicts the expected production quantities un-
der two different values of low permanent capacity, namely
U =0 and 2, where the other parameters are the same
as those we reported for Fig. 2, with ¢, = 1.5. E[Per] de-
notes the expected production by permanent resources, and
E[Con] denotes that by contingent resources. Expected pro-
duction quantities are found by simulating the system by

'Tn all the numerical tests that we conducted, other than zero
we faced no more than two local minima. However, we restrain
ourselves from stating that this is necessarily so for other problem
parameters as well.
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using the optimal policies. Observe that no production takes
place in a number of the periods in both cases.

Establishing the exact form of the expected total
cost function requires full characterization of the opti-
mal ordering policies, which is difficult even for special
cases. Therefore, we apply explicit enumeration in our
computations.

Similar to the case of no fixed costs, there are problem
instances where a non-monotonic relation between the op-
timal capacity levels and the length of the planning horizon
exists in the case of positive fixed costs. Table 3 lists examples
under stationary demand. When ¢, = 1.5, the optimal ca-
pacity level of a single-period problem is 12, which is slightly
higher than the expected demand, whereas it jumps to 20
for a two-period problem. In this case, keeping a larger per-
manent capacity level but initiating production only once is
preferred to keeping a lower permanent capacity level and
initiating production twice in the optimal solution as a re-
sult of the tradeoffs between the cost components of this
specific problem instance.

For planning horizons with more than three periods, we
observe a structure in which the optimal capacity level al-
ternates between zero and 16 until a certain length of the
planning horizon. In these situations, the expected total
costs of two local minima (see Fig.2) U = Oand U = 16 are
very close to each other and they exhibit structurally differ-

Table 3. Optimal capacity levels vs length of the horizon
when K, =50,K. =10,h=1,b=10,c. = 3,2 =0.99 and W,
is Poisson with E[W;] = 10 for all ¢

T

1 2 3 4 5 6 7 & 9 10 --- 50

=1 U*
=15 U*
=2 U

13 21 16 21 18 20 18 20 19 19 --- 19
12 20 15 0 16 16 0 0 16 0 --- O
2 0 0 0 0 0 0 O O O0--- 0

ent operating characteristics. In Table 4, the expected pro-
duction using permanent or contingent resources in each
period are presented for the same problem instance with
T =5. When U = 0, all production is due to contingent
resources and in order to alleviate the effect of large fixed
costs in the system, there is only one major production setup
scheduled in the first period followed by occasional produc-
tion instances towards the end of the horizon. As a matter
of fact, the optimal operating policy is to hold a perma-
nent capacity of size 16 and make more frequent produc-
tion runs using permanent resources and almost neglect
the use of contingent capacity. As T increases the solu-
tion converges to U* = 0. In Fig. 4, we present the nor-
malized expected total costs for some values of 7 in this
problem instance (we normalize the cost of each T to a
unit cost at U = 0) where the convergence can easily be
observed.

When ¢, = 1 in Table 3, we observe a fluctuating struc-
ture, which converges to a high permanent level due to a
relatively cheaper permanent capacity cost, whereas the
optimal permanent capacity level becomes zero starting
from the two-period problem when ¢, = 2. Consequently,
we conclude that the optimal permanent capacity size may

Table 4. Expected production by permanent and contingent re-
sources for a five-period problem

t E[Permprod]® E[Cont prod]* E[Perm prod] E[Cont prod]

1 0 45 16 0
2 0 0 13.91 0
3 0 0.01 6.49 0.01
4 0 1.72 11.18 0.09
5 0 1.26 3.56 0

“Expected production with permanent resources.
bExpected production with contingent resources.
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show significant differences as the length of the planning CIMP-OT:
horizon changes when a short horizon problem is con- )
sidered, whereas this does not hold for a long planning Si(U, x1) = Ucp + min {Kpd(y: — x1)

horizon.

As this example points out, it is very difficult to character-
ize the optimal structure of the capacity levels in problems
with fixed costs as there are many alternative potential ways
of coping with the demand uncertainty with the help of the
flexibility inherent in the system.

4. An extension: overtime production

In industries where the majority of the production must be
executed by specially skilled or trained workers, the use of
contingent labor may not be a viable option to temporarily
increase the permanent capacity. In such an environment,
the use of overtime production could be the means to create
flexibility in capacity. In this section, we provide a modifi-
cation of the basic model presented in Section 2 that can
be used to solve the integrated CIMP under the option of
overtime use. We also present a brief analysis of this model.

Overtime production is defined as production that is
performed using permanent resources in addition to pro-
duction during regular working hours. Owing to capaci-
tated permanent resources and time limitations, the total
amount of overtime production is also limited. We reflect
this limit by defining an overtime coefficient, », which pro-
vides the upper bound on the total production quantity
in any given period. We define 5 as the ratio of the maxi-
mum total production (including overtime) to production
with permanent capacity, which implies that n > 1. The in-
tegrated CIMP model can be modified for this purpose as
follows resulting in the following model, which we refer to as

VX <y <x+nU
+ Ky —x = U)+ [y —xi — U]+Cc
+Li(y) + «Elfi-11(U, ye = W)}
fort=1,2,...,T.

Similar to CIMP, we solve CIMP-OT for the single-
period setting, the solution of which is presented in the
Appendix. The following theorem establishes the convexity
of the minimum cost function in the multi-period setting,
when the fixed costs in the system are zero.

Theorem 5. Let X =R x R*. Then f;(x;, U) is convex on
X when both K, and K. are zero.

Proof. See the Appendix. [ |

There is an important structural difference between
CIMP and CIMP-OT in the sense that the model may prefer
to set the permanent capacity level to zero in CIMP (for ex-
ample, as stated in Theorem 4), which refers to production
with only contingent resources. However, such an action is
not sensible in overtime situations since setting the perma-
nent capacity level to zero merely refers to backordering
of the whole demand, which could only be optimal at rel-
atively very low values of the unit backordering cost with
respect to other problem parameters.

The multi-period minimum expected total cost func-
tion (f; (U, x;)) of CIMP-OT is neither convex nor quasi-
convex under positive fixed costs. The function has a de-
creasing structure as U starts increasing from zero and has
an increasing structure for very large values of U. In be-
tween, we observe that there may exist more than one local
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Table 5. The set of parameters used in the computations

K, 0, 10, 20, 30, 40, 50, 60
K. 0, 10, 20, 30, 40

h 1

b 3,4, 5,10, 50

¢ 1.5,2.5,3.5, 4.5

ce 1.5,2.5,3.5, 4.5

a 0.99

T 12

minima, similar to the case of CIMP as discussed in
Section 3.

Finally, we note here that the non-monotonic behavior
of the optimal permanent capacity level with respect to an
increase in the length of the planning horizon still persists
when overtime production is considered.

5. Computations

In this section we present the results of our computational
study that was conducted to gain insights on the character-
istics of the problem. In our computations, we used the pa-
rameter set presented in Table 5. A seasonal demand stream
having a cycle of four with expected demand values of 15,
10, 5 and 10 was used. The demand distribution was as-
sumed to be Poisson, Normal and Gamma. We used three
different values of CV for the Normal distribution: 0.1, 0.2
and 0.3. Similarly, we used three different values of CV for
the Gamma distribution: 0.5, 1 and 1.5. While investigat-
ing the effect of a change in one parameter, we kept the
other parameters unchanged. In order to avoid trivialities,
we assumed that the starting inventory level was zero. We
provide intuitive explanations to all of our results below and
our findings are verified through several numerical studies.
However, one should be careful in generalizing them, as
for any experimental result, especially for extreme values of
problem parameters. In the results that we present, we use
the term “increasing” (“decreasing”) in the weak sense to
mean “non-decreasing” (“non-increasing”).

We first present our computational analysis for CIMP in
Section 5.1. Then we briefly state our computational anal-
ysis for CIMP-OT, mainly stressing the results that are not
similar, in Section 5.2.

5.1. Contingent labor usage

5.1.1. Optimal capacity level

In this section we investigate the sensitivity of the opti-
mal permanent capacity level as the problem parameters
change. Our first observation is on the effects of the fixed
cost of production, as we illustrate for a certain param-
eter setting (K. = 10,6 =10, ¢, = 1.5, ¢c = 3.5, Normal
distributed demand with CV = 0.3) in Table 6. Namely, we

Alp and Tan

Table 6. Optimal capacity levels for different values of fixed cost
of production

Ky
0 10 20 30 40 50 60
U* 11 12 13 15 0 0 0

observe that as the fixed cost of production increases, the
optimal permanent capacity level also increases up to a cer-
tain threshold point. Until this threshold level, an increased
fixed cost of production calls for a higher permanent capac-
ity level, in case it is economical to hold a positive perma-
nent capacity in the first place, so that production does not
need to be initiated every period. After this threshold, pro-
duction is initiated only a few times due to a high fixed cost
and all production becomes due to contingent resources.
In this region, the optimal permanent capacity level be-
comes zero because paying for the permanent resources in
the non-productive periods becomes too costly.

For the remaining capacity cost parameters, we have the
following observations. When the unit cost of permanent
capacity increases, the optimal capacity level decreases since
the utilization of contingent resources becomes more crit-
ical, as discussed in Section 5.1.3. On the other hand, as
the cost of contingent resources (fixed and/or variable) de-
crease, the proportion of the production that is conducted
by the contingent resources increases and hence the opti-
mal permanent capacity levels decrease. We also note at this
point that there is a correspondence between the unit cost
of temporary workers, ¢, and the productivity rate of them,
y, as explained in Section 2. As y, increases, we have lower
¢. values. Hence, the effect of y on the optimal permanent
capacity (and on all other measures discussed throughout
this section) can be deduced from the effect of a change in
¢. on that corresponding measure.

One might expect that the optimal permanent capacity
level increases as the variability of the demand increases.
This was investigated using the parameters listed in Table 7.
We observe that when the cost parameters related to con-
tingent capacity are so high that the system tries to avoid
using contingent capacity, the optimal permanent capacity
level increases as the variability of the demand increases, as
illustrated in problem 1 (Prob. 1) of Table 8, for CV < 0.5.

Table 7. The problem parameters

Prob. Prob. Prob. Prob. Prob. Prob. Prob.
) 2 3 4 5 6 7 8

K, 0 0 20 0 30 60 0 0
K. 20 10 0 60 00 20 40 40
b 10 10 10 10 10 10 10 5
cp 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5
cc 35 25 2.5 45 oo 3.5 1.5 1.5
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Table 8. Optimal capacity levels for different CV values

Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob.

cv 1 2 3 4 5 6 7 8
0.1 11 10 12 13 15 17 10 10
0.2 13 10 11 13 15 17 10 11
0.3 14 10 10 14 16 18 9 11
0.5 14 10 0 15 17 19 1 6
1 13 8 0 15 23 0 0 0
1.5 12 6 0 15 28 0 0 0

Nevertheless, an interesting observation that we make
about our computations is that most of the time the in-
teractions between the problem parameters are so intri-
cate that the relation between the coefficient of variation
of the demand and the optimal capacity levels exhibit com-
pletely different behaviors for different parameter settings.
As shown in Table 8, the direction of the change in the opti-
mal capacity level (if any) may vary as the variability of the
demand increases. Even for the above-mentioned example
of expensive contingent capacity, the optimal permanent
capacity levels show a decrease when the coefficient of vari-
ation of demand is further increased (see Prob. 1 of Table 8
for CV > 0.5), because the expensive option of flexible ca-
pacity turns out to be reasonably attractive under a high
demand variability, compared to holding very high levels of
permanent capacity. For increasingly expensive contingent
capacity, we observe a monotonic behavior as illustrated in
Prob. 4. For the extreme case in which the contingent ca-
pacity is restrictively expensive, the problem reduces to one
without contingent capacity, in which case the increase in
the optimal permanent capacity level in demand variability
is structural, as illustrated in Prob. 5, but this special case
is of little interest in this paper.

The decrease in problems 2 and 3 can be explained in a
similar fashion. For instance, in problem 2 the contingent
capacity is not very expensive, yet requires a fixed cost. As
the demand variability increases, the contingent capacity
needs to be employed more often, which makes the option
of keeping a smaller permanent capacity and producing
more with the contingent capacity more economic (the to-
tal expected cost for CV = 1.5 decreases from 814.94 to
804.87 when U decreases from ten to six). We also note
that a zero permanent capacity is always an option that
can be explored if performing the production with contin-
gent capacity becomes more economic than holding any
permanent capacity at all and utilizing contingent capac-
ity frequently (such as in Prob. 3), which may also be due
to high fixed costs of production (such as in Prob. 6), as
discussed earlier in this section. Finally, we note that when
¢c < ¢p, the optimal permanent capacity will always be zero,
unless K. > 0. When K. > 0, the optimal permanent ca-
pacity may increase or decrease as the demand variability
increases, possibly eventually becoming zero, due to similar
arguments as discussed above (see problems 7 and 8).
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In conclusion, while it is difficult to draw “hard conclu-
sions” on the behavior of the optimal permanent capacity
level as a function of demand variability, we summarize
our observations as follows. Since the increase in demand
variability requires a higher capacity flexibility, the opti-
mal permanent capacity level tends to increase in demand
variability as long as contingent capacity is relatively more
expensive in comparison to holding a higher level of perma-
nent capacity that will be kept partially idle, and it tends to
decrease otherwise, zero permanent capacity always being
an option.

5.1.2. Effect of operating at suboptimal permanent capacity
levels

We also evaluated the effect of operating at suboptimal
permanent capacity levels under different problem param-
eters. We measure this effect by the percentage penalty
of installing a suboptimal capacity which is defined as
%PSC = (fi(U, 0) — fi(U*, 0))/f1(U*, 0) where U* is the
optimal capacity level. By definition, the structure of the
%PSC function is expected to be very similar to the struc-
ture of the expected total cost function (see Fig. 2). Possible
and typical behaviors are presented in Fig. 5 for different
values of K,. We observe similar characteristics for other
problem parameters.

When deciding on the values of operating parameters in
a typical production/inventory environment, an intuitive
solution would be to base operating decisions on expecta-
tions of the demand together with its variability. However,
such a solution would incur significantly higher costs when
the value of the capacity flexibility is underestimated. For
example, for situations where the value of flexibility is high
and the optimal permanent capacity is zero, such an ap-
proach results in high percentage penalty values, as can be
observed in Fig. 5. When K, = 60 for example, the percent-
age penalty of operating with any permanent capacity level
between ten and 15 (recall that the expected demand is ten)
results in percentage penalty values around 15%. We note
that for some other problem instances this penalty may be
even more severe in the same range and is observed up to
40% in our computational study.

As for the sensitivity of operating at suboptimal perma-
nent capacity levels, we make the following observations as
the demand variability changes’. If the system has a high
level of suboptimal permanent capacity, %PSC decreases
as the demand variability increases. This is because the ex-
pected system cost function under a high permanent ca-
pacity level is relatively more robust to changes in demand
variability than that under the optimal permanent capac-
ity, since the contingent capacity will mostly not be utilized

’In some cases the optimal permanent capacity itself changes as
the demand variability changes, but then the costs in those switch-
ing points for a given CV are close to each other, and our discus-
sions still hold in general.
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and a Normal demand with CV' = 0.1.

anyway. For example, when production with the contingent
capacity is more economic than that with the permanent
capacity, the optimal permanent capacity size is zero and
this discussion will hold for any permanent capacity level
higher than a sufficiently high threshold value. Similarly,
when the system is operating with a low suboptimal perma-
nent capacity when the optimal one is high, then expensive
contingent capacity is going to be often utilized in rather
a consistent manner, which results in the expected system
cost function being more robust to changes in demand vari-
ability than that under the optimal permanent capacity.
Consequently, %PSC decreases as the demand variability
increases in this case, as well. Nevertheless, in some cases
where the penalty of operating with a suboptimal perma-
nent capacity is not high, the variability degrades the perfor-
mance of this close-to-optimal system more than it does the
optimal system, and hence % PSC increases as the demand
variability increases. A typical example for this case is a low
permanent capacity level when the fixed costs are negligi-
ble and ¢, = ¢, in which case U* = 0. For instance, when
U =6 with ¢y = ¢c = 3.5and b = 10, %PSC = 0.75% for
CV = 0.1, and it increases in CV. However, it is difficult
to draw concrete conclusions as to when %PSC increases
in the demand variability, due to the intricate relations be-
tween the problem parameters.

5.1.3. The value of utilizing flexible capacity

In this section, our aim is to investigate the general behavior
of the value of flexible capacity (VFC) under different prob-
lem parameters. We define VFC as ETCyc — ETCgc where
ETC\c and ETCgc are the expected total costs of operating
in an inflexible environment (where no contingent resources
are available) and in a flexible environment, under the re-
spective optimal permanent capacity levels. Similarly, the
percentage value of utilizing flexible capacity is defined as
Y%VFC = VFC/ETCc.

First we analyze the effect of unit costs of permanent and
contingent capacity on VFC. In all problem instances that
we solved, we observe that VFC has an increasing struc-
ture as the unit cost of keeping permanent capacity (cp)
increases (Fig. 6). The average % VFCis observed as 7.02%,
18.87% and 30.33% in all problem instances with a Nor-
mal demand when ¢, is 1.5, 2.5 and 3.5, respectively. We
can also observe from Fig. 6 that the value of flexibility in-
creases as the unit cost of contingent resources decreases.
This indicates that one should search for more possibili-
ties to use contingent resources since their relative costs
decrease.

As to the effect of the fixed costs of production on the
value of flexibility (see Fig. 7), we first note that VFC (as
well as % VFC) exhibits a unimodal behavior after some
particular value of K. Because, for moderately large val-
ues of K,,, the inflexible system starts to prefer to completely
backorder all demand, that is perform no production at all,
whereas the flexible system may still be better off by using
contingent resources. Similarly, for very large values of K,
both systems are better off completely backordering with a
zero permanent capacity, and hence they converge to each
other so that VFC becomes zero. For the rest, we do not
necessarily observe a steady behavior. In almost all of the
cases, we observe either a monotonic increase or a mono-
tonic decrease followed by a monotonic increase, prior to
the unimodal behavior explained above, such as the example
provided in Fig. 7. The decrease in that specific example is
caused by ETCgc increasing with a higher rate than ETC\c
for an increase in K, while K is low, since the optimal
permanent capacity levels do not change (at least signif-
icantly). Similarly, the increase is caused by the inflexible
system’s inability to react to increased fixed cost of produc-
tion, which results in either underutilization of a large per-
manent capacity, or incurring the fixed cost of production
frequently, before complete backordering. Nevertheless, we
encountered some problem instances where VFC (as well
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Fig. 6. Effect of unit permanent capacity cost on the value of flexible capacity under a normal demand when K, = 10, K. = 10, A = 1

and b = 5.

as %VFC) fluctuates as the value of K, increases. Finally,
we note that VFC increases as the fixed cost of contingent
resources decreases as shown in Fig. 7.

For a given level of permanent capacity, Tan and Alp
(2005) demonstrate some monotonicity results for the value
of flexibility as a function of CV or b. Nevertheless, simi-
lar to the case in Section 5.1.2, we observe that there are
no monotonicity results for VFC (and % VFC) as CV or b
increases. For example, there are some problem instances
where the value of flexibility decreases (and there are some
others where it increases) as the variability in the system
increases, even when both of the fixed costs are zero. The
reason for the non-monotonicity is the system’s ability to
adapt itself to changes in CV or b by optimizing the per-
manent capacity level accordingly.

5.2. Overtime production

We conducted a computational study for the overtime
model, using the data set of Table 5, in order to reveal the
characteristics of the problem, especially the ones that are
different. We set n = 1.4 in all of our computations.

As K} increases, we observe a non-decreasing behavior in
the optimal permanent capacity level similar to CIMP, but
it never takes a zero value under higher K, values contrary
to what we observed for CIMP, since producing only with
contingent resources is not an option in this case. Moreover,
there is no monotonic relation between ¢, and U* and be-
tween K. and U* in CIMP-OT, as opposed to CIMP due to
the interactions between the fixed costs and the capacitated
nature of the problem. On the other hand, our observations
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Fig. 7. Effect of fixed costs on the value of flexible capacity when s = 1, b = 5, ¢, = 2.5, ¢ = 3.5and a normal demand with CV' = 0.1.
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remain similar for the relations between ¢, and U*, and be-
tween CV and U* in both of the models.

The penalty of operating at suboptimal capacity levels
exhibits a different structure in many problem instances
since setting U* to the zero level is not a viable option.
Figure 8 depicts the relation for the same problem instances
as Fig. 5. Indeed, in all problem instances we observe very
high %PSC values under low permanent capacity levels due
to limited production opportunity in CIMP-OT. However,
starting from moderate permanent capacity levels (a level
of ten in the problem instances of Fig. 8 for example), we
observe lower %PSC values in CIMP-OT when compared
to CIMP, because higher costs are incurred in CIMP-OT
due to capacitated production and hence the penalty of not
acquiring the optimal capacity is relatively lower.

For the overtime production case, there is still a consider-
able value of flexibility, however, the magnitude is less than
that of the external contingent capacity case, due to the
limit on the flexibility. We make similar observations as in
Section 5.1.3 as to the relation between the problem param-
eters and the value of flexibility, except for a few cases that
violate monotonicity due to the interactions of parameters
brought by the capacitated nature of the problem.

6. Conclusions

In this paper the problem of determining the permanent
capacity level in a make-to-stock environment under non-
stationary stochastic demand with the option of a tempo-
rary increase of capacity via contingent resources such as
temporary labor or overtime production was considered.
A dynamic programming model was built to represent this
problem, where the possibility of incurring distinct fixed
costs to initiate production and to order contingent capac-

ity is also incorporated. We ignored the fixed costs that may
be associated with installing permanent capacity, which are
incurred only at the beginning of the planning horizon.
However, under the existence of such costs (that are in-
dependent of the permanent capacity size), one can first
solve the problem by the proposed model and find the cor-
responding optimal permanent size. Then, the total mini-
mum expected cost of this solution plus the fixed cost of
installing this permanent capacity level could be compared
with the minimum total expected costs obtained by solving
CIMP when U is set to zero. The alternative with a lower
expected total cost would give the optimal solution.

For the multi-period problem when the fixed costs are
negligible, we showed that the expected total cost of the sys-
tem is convex in the permanent capacity level and the start-
ing inventory, using which the optimal permanent capacity
level for any starting inventory level can be searched. The
convexity result is intuitive, since too low levels of perma-
nent capacity would result in elevated production and/or
backorder costs and too high levels of permanent capacity
would result in a low utilization of capacity. Nevertheless,
this is not necessarily true for the case with positive fixed
costs. If the system is working under too low a permanent
capacity, then a marginal increase in permanent capacity
may increase the system costs, because that capacity will
be paid in the periods with no production as well, which
may occur in order to avoid incurring fixed costs in every
period.

Our computational analyses pointed out some useful
managerial insights. In particular, our computations re-
vealed that the optimal permanent capacity: (i) decreases as
the costs of the contingent resources decrease; (ii) increases
as the fixed cost of production increases until a threshold
level, after which it is economically better to conduct all
of the production with contingent resources; and (iii) de-
creases as the unit cost of permanent capacity increases.
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Consequently, the optimal permanent capacity level may
be equal to, greater than, or less than the expected aver-
age demand, with the possibility of zero as well. We have
shown (in some cases analytically and in some cases nu-
merically) that there are many problem instances where the
optimal permanent capacity level is zero. This solution re-
quires special attention from a managerial perspective since
the parameter settings that result with U* = 0 indicate the
situations where the optimal course of action is to outsource
all production or to produce in house with only contingent
resources. Also, note that U* may turn out to be zero even
though the outsourcing option or the contingent resources
are more expensive or less productive. For this case with
more expensive contingent resources and U* = 0, the so-
lution in the multi-period problem refers to having many
periods where no production takes place and the demand
is mainly satisfied from stock that results from bulk pro-
duction in some periods. Moreover, we have numerically
shown that if this optimal course of action is not taken and
a positive permanent capacity level is installed then the con-
sequences of taking such a suboptimal action may be very
costly.

One might expect that the optimal permanent capacity
level increases as the variability of demand increases. How-
ever, we show in our computations that the optimal per-
manent capacity level does not necessarily exhibit a mono-
tonic behavior as the variability of the demand increases.
In particular, since the increase in demand variability re-
quires a higher capacity flexibility, the optimal permanent
capacity level tends to increase in demand variability as
long as contingent capacity is relatively more expensive
in comparison to holding a higher level of permanent ca-
pacity that will be kept partially idle, and it tends to de-
crease otherwise, zero permanent capacity always being an
option.

As for the sensitivity of operating at suboptimal perma-
nent capacity levels as the demand variability changes, we
conclude that if the system has a high level of suboptimal
permanent capacity, %PSC decreases as the demand vari-
ability increases. Similarly, when the system is operating
with a low suboptimal permanent capacity when the op-
timal one is high, %PSC again decreases as the demand
variability increases. Nevertheless, in some cases where the
penalty of operating with a suboptimal permanent capac-
ity is not high, %PSC increases as demand variability in-
creases.

There exist relative values of problem parameters where
introducing flexibility reduces the costs of the system sig-
nificantly, even when the corresponding inflexible system
is operated with an optimal capacity level: (i) lower costs
of contingent capacity; and (ii) higher unit cost of keeping
permanent capacity. Finally, no monotonicity results can
be deduced for the value of flexibility as backorder costs
and demand variability change, due to the system’s ability
to adapt itself by optimizing the permanent capacity level
accordingly.
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Appendix

Proof of Lemma 1. (Due to Porteus (2002). Let (x, U)
and (X, U) be arbitrary elements of X. Let 0 <6 <1 and
0=1—6.Let§>0bean arbitrary number. There must
exist y € Y(x, U) and y € Y(x, U) such that g(x, U, y) <
f(x,U)+68and g(x, U,y) < f(x, U)+§. Then:

0f (x, U) +6f(x, U) = 0g(x, U, y) + 6g(x, U, 3) - 8
> g(@x+0x,0U+6U,0y +05)— 8
> f(Ox +0x,0U+0U) — 6.

Last inequality follows since § is an arbitrary number and
must hold for § = 0. [ |

Proof of Theorem 1. Let Y(x, U) =[x, o0). Y is non-
empty for every (x, U) € X. Set C as defined in Lemma 1
as a convex set. Note that f7;(-) = 0. Proof is by induc-
tion. For period T, let J7(x, U,y) =[y: — x, — UlTcc+
L7(yr). We first note that, for any pair of (x!, U', y!) e C
and (x2, U?, y?) € C, and every scalar A € [0, 1], defining
(x, U, y) = Ax", UL )y + (1 = a)(x2, U%, »?), we have
—x—-U" =" —x' = U'T+ A =1 — x* = U]F
<Ap! = x!' = U'T" + (1 = )[y? — x> — U?]*, which shows
that [y — x — U]" is convex on C. Hence, J7 is convex on
C as a summation of two convex functions is also convex.
By Lemma 1, f7(x;, U) is convex on X. By noting that
aEfi(x,, U) is convex on X if f; is convex as expectation
of the function f is basically a convex combination and by
using regular inductive arguments, we see that f;(x;, U) is
convex on X for every period . [ |

Proof of Theorem 2. The optimal replenishment policy
stated in Equation (1) implies that

S(U, x)
= Ucp+ min{(y —x — U)" ¢ + L(y)}
ViXsy
cc(f=—x—-0U) ifU=<y"—x
+L(y%)
=Ucp+{ Lix+U) ify—x<U=<y"—x
L(y") fo<y'—x=<U
L(x) ify*—x<0<U
c(f—x—-U)+LO% ifU=<y*—x
L(x+U) ify*—x<Uc<
:UCp+ yu_x
L(max{y", x}) ifyt—x < U.

Alp and Tan

Then,
(U, x)
oU
—Cc ifU <y°—x,
=+ h+b)Gx+U)y—>b ify°—x<U=<y"—x,
0 ify*—x < U.

When ¢, > ¢, (U, x)/d U is positive in the first and third
regions, and because of convexity it must also be positive
in the second region. Therefore, if ¢, > ¢, then U* = 0.

When ¢, < ¢, of (U, x)/9 U is negative in the first region
and positive in the third region. Therefore, the sign must
switch from negative to positive at a particular point in the
second region due to convexity. Consequently, noting also
that U must be non-negative:

Proof of Lemma 2. First note that QP < U by the defini-
tion of OP. The total cost of the capacity installed, Uc,,
does not depend on the production quantity and the pro-
duction cost increases by ¢, per each unit of capacity that
is installed but not used. Hence, U = QP. |

Proof of Lemma 3. By contradiction. Let O = QP + O°
be an optimal solution, where QP > 0 and Q¢ > 0. Then,
the production cost associated with Q is PC(Q) = K, +
K. + Qpcp + Qccc, since U = QP from Lemma 2. Now con-
sider two alternative ways of producing the same quan-
tity: Q= QP+ O = QwithQ* =0and 0 = QO° + O° = Q
with QP = 0. Then, the production cost associated with
0 is PC(Q) = K, + OPcp, and that with Q is PC(Q) =
K, + Ke + Q. If ¢, < ¢, then PC(Q) < PC(Q), since
K. > 0. If ¢y, > ¢, then PC(0) < PC(D). Consequently,
OP > 0 and O° > 0 cannot be an optimal solution. Note
also that if ¢, > ¢ and K. > (¢p — cC)QC, then PC(Q) <
PC(0). Hence, QP Q¢ = 0. |

Proof of Theorem 3. Due to Lemmas 2 and 3, we have
either one of the following in the optimal solution:

(i) production with only permanent capacity: U >
0, 0P = U, and Q0° = 0;
(ii) production with only contingent capacity: U =
0,0° =0and Q° > 0;
(ii1) no production: U = QP = Q° = 0.

By comparing the costs incurring in each of the above
situations, we prove the optimality for each case. If
the optimal solution has the form of (i) then the cost
function is fO(U, x) = K, + Ucp + L(x + U) since y* =
X+ QP = x+ U. The optimal U value that minimizes
this function is given by U = G~((b — ¢,)/(h + b)) — x =
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yP — x. By noting that U > 0, the optimal cost func-
tion can be rewritten as f(U, x) = K, + Uc, + L(x +
U) = K, + cp(y? — x)T + L(yP). In this case, we have
(U*, y*) = (U, x + U) = (U, yP). If the optimal solution
has the form of (ii) then the cost function is f(0, x) =
miny.,> {Kp + Kc 4+ c(y — x) + L(y)}. It can be shown
that y¢ = G~((b — c.)/(h + b)) is the unconstrained min-
imizer of the function inside the minimization. Hence, pro-
vided that Q¢ > 0, we have /(0, x) = K, + K¢ + cc()° —
x)+ L(y°) and (U*, y*) = (0, y°). If the optimal solution
has the form of (iii) then f)(0, x) = L(x) and (U*, y*) =
(0, x).

Case 1. ¢p < c.: In such a case only (i) and (iii) are
viable options. Since L(y) is convex, yP < y“,
and y" is the minimizer of L(y), if x <
sP(x) < yP then fU(0,x) = L(x) > L(sP(x)) =
Ky + cp(0° = )t + LOP) =fO(U, x). Hence,
(U*, y*) = (U, yP). The result of the other con-
dition (x > sP(x)) can be shown in the same
manner.

¢p > ¢c: In such a case all three options (i), (ii) and
(i) are viable. In this case we have yP < y© < pU.
Note also that s°x)<y" by definition. If
x < 5°x) and sP(x) < s°(x) then L(sP(x)) = K, +
(P = 1)+ LP) =AU, x) = Ls*(x) =
Ky + Ko + L(y°) + co(y¢ — x)T = f0)(0, x). Sim-
ilarly, L(x) = U0, x) > L(s¢(x)) = f(0, x).
Hence, (U*, y*) = (0, »°). The results of the other
conditions can be shown in a similar way. [ ]

Proof of Theorem 5. Setting Y(x, U) =[x, x + nU], we
see that Y is a non-empty set and the set C as defined in
Lemma 1 is convex. Therefore, Lemma 1 still applies to this
case. The proof of the convexity in this case goes along with
the lines of the proof of Theorem 1 and hence is omitted
here. [ ]

Case 2.

Solution of CIMP-OT for the single period

Theorem Al. The optimal permanent capacity level of the
single-period problem when both K, and K. are zero is given
by

_ 0 =w7
| or-xt

o7 if ep > cc
if e, < cc
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where y7 = G ((b—cp — co(n — 1))/(h+ b)) and yP =
G (b = ¢p)/(h + b)).

Proof. The proof goes along with the lines of the proof of
Theorem 2 and hence is omitted here. [ ]

Theorem A2. If c¢,y? —coy” + (¢p — CC)W <K +
L") — L(P), then:

« o JOP =0T, ¥P) if x < sP(x),
(U7 ) = {(O, 0) otherwise.
Otherwise
(U* y*) _ (%(y’) - x)+7 yn) lf-x =< S”(X),
' (0, 0) otherwise,
where

1
s7(x) = min :s (L) =—-0"—x) ey + Kp + K
n

+aQﬂ—x—%om—xﬁ>+L@h}

Proof. Omitted. [ ]

We note that, similar to the previous results, the optimal
capacity level in the single-period problem is independent
of ¢ and n when ¢, < ¢, since no overtime is utilized in
this case.
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