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ABSTRACT

STATISTICAL CHARACTERIZATION OF THE POINT
SPREAD FUNCTION (PSF) OF A TURBULENCE
DEGRADED IMAGING SYSTEM

M.Fatih Erden
M.S. in Electrical and Electronics Engincering
Supervisor: Assist. Prof. Dr. Gurhan Saplakoglu
February 1993 |

In this thesis, the eflect of atmospheric turbulence on an incoherent imag-
ing system s analyzed. The combination of the atmosphere and the imaging
system is modelled as a lincar system with a stochastic point spread function
(PSIF). The mean and the covariance of the PSI are evaluated and plotted for
a varicty of system parameters and atmospheric conditions. The results pre-
dicted by this work arc shown to be in very good agreement with experimental

results published in the literature. ,

Keywords : Atmospheric turbulence, atmospheric imaging, PSEF
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OZET

M.Fatih Erden
Elektrik ve Elektronik Miithendisligi Boliunii Yiksek Lisans
Tez Yoneticisi: Yard. Dog¢. Dr. Gurhan Saplakoglu
Subat 1993

Bu tezde, atmosferik tirbllansin esevresiz ( incoherent ) gorintileme sis-
temleri tizerindeki etkisi analiz edilmigtir. Gorantileme sistemi ile atmosler,
bir dogrusal stokastik nokta yayilim fonksiyonu, NYI* (Point Spread Function,
PSI) ile modellenmigtiv. NY'nin ortalama degeri ve korelasyonu hesaplanip,
gesith sistem parametreleri ve atmosler gartlar igin grafikleri verilinigtir. Bu

¢aligmanin sonuglari, yayinlanan deneysel veriler ile ¢ok 1yi derecede uyugmaktadir.

Anahlar Kelimeler : Atmosferik tirbilans, atmosferik gortintileme, NYI®
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Chapter 1

INTRODUCTION

The resolution of an ideal, i.e., aberration free, imaging system is determined
by the size of its aperture stop. Larger the size of the aperture stop, better
the resolution. However, for atmospheric imaging systems this is not always
the casc, because the atmosphere through which the waves must propagate is a
mediwm with spatially and temporally varying index of refraction, which may

have detrimental effects on the resolution.

Our purposc in this thesis is to investigate the ellects of the atmosphere on
a general imaging system which consists of an aberration free, ideal thin lens

of finite size.

The outline of the thesis is as follows; in the Introduction, we will state the
major limitations of the study, notations and definitions, model of the atmo-
sphere, and available methods in studying atmospheric propagation. In chapter
2, Imaging Through The Almosphere, the combination of the atmosphere and
the imaging system will be modelled as a linear system with a stochastic 1m-
pulse response function which is called Point Spread Function (PSF) in optics.
The mean, variance and covariance [unctions of the PSIF will be obtained. In
the 3rd chapter, these stalistics will be interpreted and compared with related
work in the literature. The thesis will be concluded in chapter 4 with an

overview and some proposals of future work on this subject.

In the published literature, there is very little work done on imaging through
turbulent atmosphere under incoherent llumination. Consequently, the main
results of this thesis i.c., the first and the second order statistics of the PSI
arc original contributions. The only published literature that is closely related

to our work is [1]. It is shown in chapter 4 that, when compared with [1], the



results obtained in this thesis is in moch closer agreement with the experimental

data given in [2].

1.1 Assumptions

Throughout this study, it is assumed that the objects of interest cither radiate
or are illuminated by incoherent light. Such an assumption can also be made
for an object that is illuminated by laser light, since the reflected lighL that
is emitted is essentially incoherent when the scale of the irregularities of the

object surface is large compared to the coherence length of the light beam [3].

Furthermore, the radiation (or illumination) is assumed to be monochro-
matic. Practically, this assumption implies the existence of a narrow band

filter at the entrance aperture of the inaging systemn.

[t is also assumed that, the scale size (i.e., correlation length) of the turbu-
lence induced inhomogeneities in the index of refraction are much larger than
the wavelength of the radiation being used. This assumption eliminates from
consideration problems involving imaging through clouds or acrosols, [or which
the refractive index changes are sharp. This latter class of problems may be
referved Lo as imaging through turbid media, whercas we are concerned here
with émaging through turbulent media. The clear atmosphere of the Earth is

the prime example of a lurbulent medium [4].

Finally, it is assumed that, all parts of the image is subjected to the sta-
tistically identical (turbulence induced) detoriation. That is, the statistics of
the noise that distorts the image is constant throughout the image plane. A
region satisfying the above condition is referred to as an isoplanatic patch [5).
In gencral an image may consist of several isoplanatic patches since the rays
that form a certain portion ol an image may have propagated through a region
of the turbulence having different statistics compared to the region travelled
by rays that form a ncighboring isoplanatic patch. In the long exposure case
(i.c., exposure lime > = sec.), the image is assumed to lie within a single
isoplanatic patch since the temporal fluctuations of the turbulence average out
any statlistical dillerences that may exist over short time intervals. However,
the short exposure casce (i.c., exposure time < ﬁ sec.) consists of several iso-
planatic patches. In [5], it is theoretically shoYvu that the secing limit, which

is the resolution limit of the human eye, can resolve the isoplanatic patches.



1.2 Notations and Definitions

‘The refractive index of the Barth’s atmosphere varies over space, time, and

wavelength [1] and can be expressed as,
n(#, L, A) = no(F, 4, A) + ng (7,6, A) (1.1)

where ng is the deterministic (nonrandom) portion of n, whercas n; represents
random [luctuations of n about the mean value ng. Ior typical values of ny,

Inll << Ny [’1]

The deterministic part of the refractive index varies very slowly with time,
consequently the time dependence of ng can be ignored. Furthermore, the
turbulent eddies of the atmosphere have a range of scale sizes much larger
than the optical wavelengths, hience the wavelength dependence of ny can also

be ignored,

n(r, L, A) = no(F, A) + ny (7, 1) (1.2)

Since the time required for light to propagate through the atmosphere is
only a small fraction of the temporal fluctuation time of the random refractive
index component n;, the time dependence of n; can be suppressed. When tem-
poral propertics are of inlerest in a given problem, they can be taken into ac-
count by invoking the frozen turbulence hypothesis [4] (also known as Taylor’s
hypothesis), which assumes that a given rcalization of the random structure
ny drifts across the measurement aperture with constant velocity (determined

by the local wind conditions).

Assuming monochromatic radiation and accepting that ng is essentially
constant over the region of our propagation experiment, the refractive index

can be further simplilied as,

n(r) = ng + ny(7) (1.3)

The statistics of (1.3) is well documented in literature [4]. In our calcu-
lations, we will often use the spatial autocorrelation [unction of ny which is
'

defined as,

Pu(Fy,72) = Blng(71)n (7)) (1.4)
When n; is spatially stationary in three-dimensional space, we say that it is
statistically homogencous, and its autocorrelation function takes the simpler

form

I.(7) = E[ny (7)) (7y — 7)) (1.5)



If 7y is also assumed to be statistically isotropic in addition to homogeneity,

the autocorrelation function comes out to be only a function of |7.

The power spectral density of ng is the three-dimensional Fourier transform
ol (1.5),
| , o
=Y — = —JR.T \3—, N
$, (k) = ——~—(2ﬂ_)3 /v (e d’7 (1.6)

where & = (Kg, £y, £2) is the wavenumber vector and may be regarded as a

vector of spatial [requencies with units of radians per meter.

1.3 Atmospheric Model

At optical [requencies the refractive index of air is given by [4]
[)

n=1+177.6(1+7.52x 10‘3/\‘2);1; x.107° (1.7)
where A is the wavelength of light in micrometers, P is the atmospheric pressure
in millibars, and 7" is the temperature in Kelvin. Throughout the literature, it
is mentioned that the variations of n with respect to P is negligible compared
to the variations with respect to T'. Consequently, the random [luctuations of
the relractive index ny, is caused predominantly by the temperature induced

inhomogencitics.

Temperature induced inhomogeneities result in refractive index inhomo-
geneitics, called turbulent eddies, which may be seen as packets of air, each
with a characteristic refractive index. The power spectral density, ¢, of a ho-
mogenecous turbulence, may also be regarded as a measure of the relative abun-
dance of eddies with dimensions Ly = 27 /kx, Ly = 2w /sy, and Lz = 27 /k3.
When the turbulence is isotropic, ®,,(«) is a function of only one wavenumber

t, which may be considered as related to eddy size L through L =27 /x [4].
Tzking the classic work ol Kolmogorov [6] as the basis for modelling turbu-
lence, the power spectral density @,,(x) has the general shape shown in I'igure
L.1.
For very small £ (very large scale sizes), the mathematical form for ¢, is
not predicted by the theory, as the geographic and meteorological conditions
are of greal importance in this region.

For w larger than some critical wavenumber kg, $, is assumed to be in

the inertial subrange ol the spectrum, where the form of ¢, is well defined.
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Ifigure 1.1: Power spectral densities of ny

Relerring to Kolmogorov’s work, the form of ¢, in the inertial subrange is

given by

b, (k) = 0.033C2,~11/3 (1.8)

where C? is called the structure constant of the relractive index fluctuations
and serves as a measure of the strength of the turbulence. A detailed summary

of Kolmogorov’s derivation of ¢,(x) can be found in [7].

When « is beyond another critical value &,,, ®,, is assumed to drop rapidly.
Tatarski includes the rapid decay of ®,, for & > k,, by use of the analytical

model
_x?

—)

-
hm

0, (k) = 0.033C2 k=1 eap( (1.9)

However, the two spectra given above have nonintegrable poles at the origin.
This contradicts with the physical reality because, as mentioned above, the
power spectral density for homogeneous and isotropic medium may also be
regarded as a measure of the relative abundance of eddies with dimensions
27 [k, so the nonintegrable poles at the origin means infinite amount of eddies
with infinite sizes. However, there is finite amount of air that surrounds the

Earth. Conscquently, there cannot be infinite number of air packets having

5



extremely large dimensions. This defect is remedied by another model known

as the von Kdrman spectrum, which is expressed as

0.033C2  —&?

, . _cap(—
(k2 + k21176 7(,%

b, (k) = )- (1.10)

1.4 Solution of the Wave Equation in a Tur-
bulent Medium

[Having characterized the statistical properties of the refractive index inhomo-
geneitics in the atmosphere, the effects of these inhomogeneities on the electro-
magnetic wave propagation are now considered. Specifically, the propagation
of a monochromatic electromagnetic wave through the Earth’s atmosphere will
be investigated. The refractive index of the atmosphere will be assumed to be

of the form as given in (1.3).

The atmosphere is assumed to have constant magnetic permeability u, but
space variant diclectric constant ¢. Hence, using Maxwell’s cquations, the wave
equation, valid in any source-[rec region, can be writtcu as,

T U1
VA 4 (— ) I + 2V[I5.VIn(n)] = 0 (1.11)
v
where 7 is the electric field, v is the velocity of light, n is the position dependent

reflractive index (1.3).

The last term in this equation introduces coupling between the three com-
ponents of [, and thus corresponds to a depolarization term. It has been well
established by past work that in the visible region of the spectrum, this term
is completely negligible and can be replaced by zero [7]. Thus (' 1.11) can be
simplified to,

Vi + (%’1)213“ =0 (1.12)

This cquation is different from the conventional wave equation only through
the fact that n? in the coellicient of the second term is a random function of

position 7.

Since all the three components of the clectric field obey the same wave

equation, the vector equation can be replaced by a scalar equation,

VU 4 (<) =0 (1.13)

c

0



where U can represent 19,15, or 2.

At this point and hercalter, the mean refractive index ng is assumed to be
unity, which is a very good approximation for the case of atmospheric optical

propagation.

An exact solution of (1.13) is not possible, however, several perturbation
solutions exist. These can be obtained in two ways. One is to expand U in a

series with decreasing magnitudes,
U=Uy+U +Up+--- (1.14)

and solve (1.14) for the first [ew terms. In the other method, the same technique

is applied to the exponent of U;
U:CIII])(\I’Q-l-\l/l-f-‘l}z—f-"‘) (115)

These techniques are relerred to as Born and Rylov approximations respec-

tively.

In Born approximation, the solution for the first 2 terms of the series in
( 1.14) can be obtained [8]. Consequently, the ficld can be written as U = Uy +
U;. However, the theoretical results obtained using the Born approximation
are not in agreement with the experimental data when the field is represented
by the first two terms. The theory is supposed to match the experimental data
better when the number of the terms in the series given in ( 1.14) increases,

however, this increases the complexity of the problem considerably.

1.4.1 Rytov Transformation

It has been demonstrated experimentally that the Rytov approximation, unlike
the Born approximation, gives fairly accurate results in propagation problems.
Conscquently, the results of the Rylov method will be used throughout this
thesis. As mentioned previously, in the Rytov method,the field is represented

with the help of an auxiliary function ¥, via
U(7) = exp[¥(7)] (1.16)

A scries solution is obtained for W(7). Using the closed form expressions for ¥
and Wy, the field is approximated as U = exp(Vo+ ¥1). This technique, known
as the Rytov approximation of the first kind, is widely used in propagation

problems. There are sceveral theoretical and cexperimental evidences (8], [4]

7



whicli show that for propagation problems, the Rytov approximation of the
first kind is superior to the solution when the field is represented by the first

two terms of the Born approximation.

When the Rytov approximation of the first kind was first developed, it
appecarcd to yield results in quite good agrecment with all the available exper-
imental data, which had been taken over propagation paths of less than 1 km
in the atmosphere. However, when the experiments were performed using hor-
izontal propagation paths much greater than 1 km, it was found that [9] the
experimental data deviated significantly from the theoretical results obtained
by using the Rytov approximation of the first kind. In particular, it was found
that, for the Kolmogorov model of the atmosphere, if the propagation path z

is such that the condition [9)]
o} = 1.23k7/5C21/6 5 0.3

is satisfied, the Rytov approximation ol the first kind is no longer valid. This

situation is remedied by including ¥, in the expression for the field solution.

However the Rytov method is analytically suitable only for finding basic
field solutions like plane wave and spherical wave propagation. I'or problems in-
volving the propagation of general fields, several methods are available. Among
them are the Markov approximation and the Extended Hugens-Fresuel princi-

ple.

The Markov approximation is good for giving acceptable results over long
paths up to the second order mowment of the wave propagating through the
turbulent media, but it is quite messy for the [ourth and higher order field
moments. Moreover, these fourth and higher order field moments canuot be

solved in closed form using the Markov approximation (8].

1.4.2 Extended Hugens-Fresnel Principle

The Hugens-Iresnel principle states that the field due to some arbitrary com-
plex disturbance specified over an aperture can be computed for propagation
distances that arc large compared with the size of the aperture, by superim-
posing spherical wavelets that radiate [rom all elements of the aperture. This
principle can be extended to an inhomogeneous random medium, which is than
relerred to as Bxtended Hugens-Fresnel principle. Extended Hugens-Iresnel

principle follows directly [rom Hugens-Fresnel principle and a field reciprocity



theorem that relates the observation and source points ol spherical waves prop-

agating in turbulent media [10].

Using the Extended Hugens-Fresnel principle, the field U(p) at an obser-
vation point j due to an arbitrary complex disturbance U4(f ) can be written
as "

V) = =2 [ e, 5 U5 (1.17)
where the integration is carried out over the aperture, & is the optical wavenum-
ber, 7 and ji are transverse coordinate vectors in the aperture and observation
planes respectively, linally, /L([),ﬁ') is the field of a spherical wave at point p,
propagating from a point source located at p'. The above equation is valid for
optical propagation for which the scattered field varies slowly over a wavelength
for all propagation distances of interest, and for sufliciently small scattering an-
gles [10].

The expression for h(f, 5 ) under paraxial conditions is given by,

hp,p ) =z eap|jkz +jk|p—;:£ +¥(5,5)] (1.18)
where z is the distance between the object plane and the aperture stop. The
[unction W(p,7) describes the eflects of the inhomogeneous medium on the
propagation of a spherical waves more specifically, \l/(p',ﬁ) represents the tur-
bulence induced log amplitude and phase perturbation of the field at p from a

. L . . . . J—
point source al p. Rylov approximation is used to determine ¥(p,p ).

Unlike the Rytov approximation of the first kind, the term W(p, ) is mod-
clled as

U(p,5) = Wo(p,7) + Vi(5, 7)) + Va2, P)- (1.19)

Up to the second order in ny, the addition of W,(p, 5 ) makes the solution of the

propagating wave conserve energy, predict the correct average field magnitude

and give correct phase statistics [11]. One more advantage of adding Wa(p, ')

is that, the Extended Hugens-Fresnel principle Iyiel(ls correct results in strong

turbulence regime [§].

On the basis of this principle, the geometry of the problem i.e., the aper-
ture field distribution, can be separated from the propagation problem, which
is determined by the propagation of a spherical wave through the turbulent
medium. For this reason, the integral equation form (1.17) is quite good for
optical applications, and h(p, ) can be interpreted as the spatial impulse re-
sponsc of the system. Using this interpretation, all the higher order moments
of h(p, ) can be obtained in closed form, utilizing the higher order moments

of U(j, 7).



In view of these advantages, the Extended Hugens-Fresnel principle is cho-
sen as the preferred method in calculating and interpreting the higher order

field moments.

As mentioned in the very beginuning of this chapter, in this thesis, the mean
and covariance functions of the PSF of a turbulence degraded imaging system
under incoherent illumination arc determined and interpreted. To the best of
our knowledge, these resulls are original and have not appeared in the literature
previously. The only published literature that is closely related to our work
is [1]. It is shown in chapter 4 that, when compared with [1], the results
obtained in this thesis is in moch closer agreement with the experimental data

given in [2].

1 0 1



Chapter 2

IMAGING THROUGH
TURBULENT ATMOSPHERE

As mentioned in the Introduction, this thesis is concerned with the problem
of imaging an extended object through the turbulent atmosphere. For this

purpose, the model shown in Figure 2.1 will be used.

In the configuration shown in Figure 2.1, the object is located at a distance
of dy meters from a thin positive lens of focal length [, and the resulting image

1s localed dy meters at the opposite side of the lens.

The distances dy, dy and the local length [ are related by the well known

imaging condition;
1 1 1
—+t-—== (2.1)

(l] (12 f
The medium between the image plane and the pupil plane is considered
to be turbulence free, and the turbulent medium between the object and the
lens is characterized by the power spectral density of the index of refraction

fluctuations @, given in (1.10).

11



object plane ll(i)) image planc

TURBULENT MEDIUM

o
=

N

z=-d, z=0
Figure 2.1: lmaging system model used in this thesis
2.1 Impulse Response of an Incoherent At-
mospheric Imaging System
Relerring to Figure 2.1, let g_q, (p) be the complex field distribution at the
z = —d; plane. To find the field distribution just before the pupil plane, the
lixtended Hugens-Fresunel principle (1.17) is used (The terms that don’t depend

on the transverse coordinates will only have a scaling cllect on the resulting

expressions, consequently, for simplicity they will be omitted in the rest of this

work. );
' ryoak f’-P’ 2 55
Go- (P) — /(1]5 J-d; (]j )ch 2d] +¥(.5) (2_2)
which is related to the complex field distribution just alter the pupil plane via,
_ oy =gkl o
9o+ (P) = go=(P)lp(P)e ™% (2.3)
_jklﬂﬁ

where {,(p) is the pupil [unction, and e™%'2 is the complex amplitude trans-

mittance [unction of the thin lens.

As the medium between the pupil plane and the image plane is assumed to
be turbulent [ree, the image plane ficld distribution can easily be found by,

. k
9a. (P) = go+ x ¢’ 2% (2.4)
where, () represents the convolution operation.
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Using the imaging condition (2.1), and combining (2.2), (2.3) and (2.4)
yields alter some algebra, an expression that relates the image plane field dis-

tribution to the object plane distribution [5]

wi(p) = [ dp'usa, ()G, (2.5)

where,
Wi, ) = / dp’ Ly (p")e A 0PI VG ) (2.6)
d. .
m = f (2.7)
B
gl (2.8)

Ud, (]7) = Gd, ([3)6

_ N
u—dl (])) — g_dl (__]%)e] 2méd; (2.9)

In (2.5) the coordinate  is measured using the image scale, i.e., it corre-
*r

sponds to tll(, location of the object on the image plan(,.

Since g-q, (p) is an incoherent field, it is physically meaningful to consider
only its intensity distribution [13]. Using the incoherence property of the field,
and assuming that the atmospheric turbulence and the field distributions are
statistically independent, the intensity distribution at the image plane is found

to be,

L) = wa (P, () = [ 5 T ()15, ) (210)

I I v . . .
where, hi(jp,p ) = |h(p,p)]* is delined as the impulse response of the atmo-

spheric imaging system usually referred to as the Point Spread Function (PSTP).

Conscquently, analyzing the ellects of the turbulent atmmosphere on the
imaging system boils down to a linear [iltering problem as shown in IFigure
2.2. The intensily distribution of the object is considered as the input, and
the intensity distribution of the image is considered as the output of the filter

. . . - !
whose ( spatial ) impulse response is hp(p,p );

1

hi(p, i) /(11) /d]) Lo( m)c_j%(ﬁ_ﬁ/)’(ﬁ”"3”/)6\1’(” ’_?'T)H' "5
(2.11)

where hy(p, ]'5') represents the field at p resulting from a point source located

= . . . -
al p with scaled image plane source coordinate p .

13



1,(5) ()

FFigure 2.2: Linear filter model of the imaging system and the atmosphere

2.2 Statistical Averages of the Impulse Re-

sponse

Note that (2.11) represents the combined effects of the atmosphere and the
imaging system. Consequently, the impulse response is a random quantity.
Hence, it is meaningful to talk only about its statistical averages. In the rest
of this study, the first and the second order statistics of the impulse response

are determined.

2.2.1 Mean of the Impulse Response

Using the above definition of the impulse response of the optical imaging sys-
tem, and observing that W is the only random variable in (2.11), the mean of

the impulse response is,

’ " " " "t _.k e jI 5/1__
Llhi(p,p)] = /dp /d[) LG e ig5 (=0 )P ~p

[ 1
- . - 57 _ Py gy B . : :
I'he statistical average E[e?® =¥ (0=3)] was evaluated in [10]. Substi-

"

! ]
oy ot p
)E[ew(” — L)+t (i .—%,;)]

(2.12)

tuting this result into (2.12) yields,

Bl i) = [ [d" )" ETTT

¢~ [y e [ drsen (=t~ (9 13)

1"

)

where ¢,,() is as delined in (1.6).
It is seen from (2.13) that the mean function depends only on the difference
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Figure 2.3: Mecan of the PSI as a function of position (C? = 10715 m=2/3,
D =0.2m, A =550nm, d; =2.052m, z = 5km, kg = 27/3, k,, = 2960, and
m = 1/17)

between p and 7. i.c.,
Elhi(p,7)] = Blh(p— 7)) (2.14)

Thus, it is sullicient to cvaluate (2.13) for i = 0. Morcover, for a circular
pupil function of diameter D, it can be shown that (see Appendix A), the

mean function depends only on p = |p], and is given by;

s 4 :
Elhi(p)] = 7r])l/0 dee Jo(Fe)(cos™' 55 = /1= (5)?)

c_,l,,rzk’zzfol dt fooo di kb (1)1 =Jo (ter)) (215)

The mean of the impulse response as a function of p [or typical system and

turbulence paramcters is shown in Figure 2.3.



2.2.2 Correlation of the Impulse Response

Using (2.11), the correlation function of k;(p,p) can be written as,

5[y (p, p )/)1 I)A,])A /(/7) /d}) /dp”"/dp”"' c—]"z ((5=7)-0" =5" )+ (B a~7y). (5" =5""))
tp(ﬁ )t;(plll)tp (p”“)L;(pm”)

F (2.16)
where ,
I = Bl e = )" Ly 5 L) (2.17)

Using the results obtained in Appendix B, the function [ is evaluated in

Appendix C, and it is expressed as;

2, Yt 1% ds s .
= c--’lﬂ' Lzzfo dtjo de £Pn(r)fe (218)

where

1t _ ]3///// | ,“/)

Jo= 2= Jo(Up" = p"|K) — Jo(t|p

(| (0= 1)+ 45" = "))
Jo(|EZa (L = 1) + LG — 7))
([~ 1) + (G = 7))
FI(1EEEa (L= 1) + 15" = 5 Iw) (2.19)

[t is impossible to progress analytically to simplily the correlation function
further. 1t is also practically impossible to numerically evaluate the correlation
function using this expression, because it takes time on the order of several
months to obtain the numerical results. For these reasons, the correlation

function is further manipulated.

Looking at (2.18), it can be observed that the function F' consists of several

expressious containing the integral 1(&,5) where,
(& ) = / / dr kO (k) Jol |l + flx) (2.20)

By choosing & and f properly, (2.18) can be expressed in terms of I. Conse-
quently, approximating / would simplify the numerical evaluation of the corre-
lation function. Using the von Kédrindn spectrum (1.10) for ¢,(x) and defining

a new integral variable as &' = = 25 (2.20) can be written as,

0 5) = 252 [ degla(o) (2.21)
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where

o=/ (rm[ro)?
J[’Y ]"/ th—T‘l—)l—,/g;Jo['ﬂ’Y(t)] (2.22)
and
1(1) = |t + Blro (2.23)

Aflter numerically evaluating (2.22) as a {unction of v, a polynomial fit can
be found for g,
' S =2
J ) =Y s 224
; v+ (2:24)
where, the values for r; and p; are given in Appendix D. Using (2.24) in (2.20)
and evaluating [ dt analytically (see Appendix D), the correlation function is

obtained as,

L[/LJ(]) 7 )hl p/hPA /d[) /([}) /dp’“’/dp““’ C—J@[P 7). -5 ")+ (A 7),1)( )
LG E L )G0™)

ele (2.25)
where
fc = 21](0 0) __[j(p __p ,0) _If( i _ﬁ”’“,a)
+1f(]_ll _ L + —]) —]3 ;—7-37 )
_[f(]__// . um + 7) —p , _E.I_—_]'IA)
_If(])lll _ i)lll! _I_ p ;Lp , —]) ;Z) )
+" -+ ——A‘ PPy _Pa) (2.26)

1;(&, B) is the function that properly fits I(&, ) (see Appendix D).

It is possible now to numerically evaluate the corrclation function. To speed
up the numerical calculation, the integral variables of the correlation expression
are modified. The steps and the modified expression for the actual form of the
correlation function used in numerical calculations is shown in Appendix LS.

The plots of the variance and correlation functions are given in chapter 3.

17



Chapter 3

RESULTS

In this chapter, the {irst and the second order statistics of the PST derived in

Chapter 2, will be interpreted and compared with related work in the literature.

3.1 Effect of C? on the Mean Function

In section 1.3, the structure constant of the refractive index {luctuations, C2,
was introduced as a measure of the strength of turbulence. Experimental cvi-
dence [8], [7] point out that, C? ranges between 107'7 and 10713, with these
values corresponding to exceptionally clear and extremely turbulent conditions

respectively.

In Figure 3.1, the mean function, E[k(p,p )], as given in (2.15) is plotted
for different C? values. 1t is observed that when C? (i.e., the strength of tur-
bulence) increases, the peak values decrease and the spread increases. The
increase in the spread with increasing turbulence strength is logical since, ob-
viously an imaging system operating at higler levels of turbulence will produce
a more blurred image compared to dilfraction limited systems. The increase
in the spread can be observed more easily in Figure 3.4, which shows the same

PSE’s plotted in Figure 3.1, with normalized peak values.

Another observation thal can be made is the arcas under the PSF's shown
in Figure 3.1. Note that, the curves as depicted in IMigure 3.1 are single di-
mensional, since they represent a rotationally symmetric impulse response.

Consequently, the physically meaningful arca under the PSF is [ dpp B[R (p)]],

18
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Figure 3.1: The mean of the PSF for different C} parameters (D = 0.2m,
A =550nm, dy = 2.052m, z = 5km, ko = 27/3, K = 2960, and m = 1/77)

i.c., the volume under the 2-D PSF. Calculation of this volume for each PSF
yields a constant value. This fact can also be seen analytically. Using (A.1),

the mean function can be written as (assuming a source point at the origin i.e.,

.75’ = 0)’ :
Ehi(p) = FIQ(P )} =2, (3.1)

where 17{.} is the two dimensional Fourier transform operator and,
Q) = ey T b =0 [ g Sy - 2) (32)
Irom the propertics of Fourier Transform, we know that
/wmmzﬁwmko (3.3)
Combining (3.3) with (3.1), we obtain
[ i Bl (3)) = Ada2(0) = My [ dif 1y ()P (3.4)
As a result of (3.4), the arca of the mean function comes out to be invariant

under €2 and is directly proportional to the arca of the aperture stop. This

means that, the total intensily that comes [rom a point source located at the
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origin, is directly proportional to the area of the aperture stop of the imaging

system.

This conclusion is consistent with our assumptions, in particular with the
paraxial approximation which was used throughout this thesis. Physically,
paraxial approximation states that, all the rays emitted by the source are
assumed to be travelling close to the z-axis even in strong turbulence regime.
Hence, exactly the same portion of the rays emitted by the source are captured
by the lens of our imaging system regardless of the strength of turbulence, as
long as the width of the PSI is sufliciently small so that it can be contained
fully in the image plane. For practical systems, this latter condition is usually

mef.

The fact that the area of the PSI is constant for a fix aperture diameter D,
implies that the peak values of the PSE will be inversely proportional to the
turbulence strength. In Ifigure 3.2, the peak values of the mean functions are
shown as a function of C2. This plot shows that taking C? between 10717 and
10=1% will be enough to model the strength of turbulence of the atmosphere,
since outside these limits the variation in C2 do not effect the PSF. This result

exactly matches the published results in the literature [8], [7].

3.2 Resolution of the Optical System

In the Introduction, it had been pointed out that, ideally, the resolution of
an aberration-free optical system is only a function of the size of the optical
clements. It has also heen pointed out that the medium through which the
waves propagate may not be optically perfect, which will drastically effect the
resolution. In this section, the resolution of the optical system in the presence

of turbulence is discussed.
We will use the lollowing resolution measure;
R=2r J/ QH(02)d0) (3.5)

where /() is the normalized Fourier transform (OTF) of E[h;(p)]. This
measure is used in [4] in connection with a coherent imaging system. We will
use it here for our incoherent imaging system, since the physical implications
of the measure in both cases are identical, viz, it is a measure of the volume
under the normalized mean functions. Using the above resolution definition,

the plot in Figure 3.3 is obtained. This plot shows the resolution as a function
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Figure 3.2: Peak values of the mean of PSI’s as a [unction of C? (D = 0.2m,
A =550nm, dy = 2.052m, z =5 km, ko = 27/3, £ = 2960, and m = 1/77)

of the diameter of the pupil function, for a fix C2.

The plot in Figure 3.3 quantitatively confirms the statement that was made
in the beginning of this section, viz the drastic eflects of the turbulence on the
imaging systems. Irom the figure it is observed that increasing the diameter
increases the resolution up to a maximum value of D. This maximum value,
Doz, is a lunction of C2% Incrcasing D above D, does not increase the
resolution significantly, and eventually, the resolution saturates to a fixed value.
As a result, in the presence of turbulence, increasing the size of the aperture
above D,,q, which significantly increases the cost of the system, gains nothing

in terms of resolution.

In the previous section, the volume under the PST for different C? values,
was shown to be constant for a fix aperture diameter D. Consequently, the
arca can be thought of as a measure indicating the average intensity of the
captured image. Consequently, disregarding this inflormation, an indication
about the resolution of the system can also be gained by normalizing the peak

values of the PSIP’s and looking at the widths of the resulting functions
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Figure 3.3: R (3.5) as a [unction of Diameter for different C? values
(A = 550 nm, dy = 2.052m, z = 5km, ko = 21 /3, K = 2960, and m = 1/77)
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, 1

[dpp*h(p)

which mathematically yields a value proportional to the spread of a function.

R (3.6)

Figure 3.5 shows R as a function of C2. This plot shows the effect of
turbulence strength on the resolution of the system. It is also observed that

C? ranges between 10717 and 107" as deduced previously.

‘1

. . . . ! .
It is also of interest to look at the variation of R as a function of the
diameter of the aperture stop. This is plotted in Figure 3.6, which shows very
similar characteristics to Pigure 3.3. IHence, the same arguments made for

Figure 3.3 can also be applied to Figure 3.6.

3.3 Effect of xy and «,,

In section 1.3, the von [{drmdn spectrum was given as the most suitable model

for the power spectral density of the random fluctuations of the atmosphere.
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Figure 3.4: Normalized means of PSF for different C? values (D = 0.2m,
A =550nm, dy = 2.052m, z=5km, ko = 27/3, K = 2960, and m = 1/77)

[n this model, there are 3 important parameters, namely Ko, &, and C2, which

are neeessary in modelling the atmosphere.

Throughout the numerical calculations, it was observed that &,, had no
significant effect on the results. This is because the magnitude of ¢,,(x) comes

very close to zero when & increases up to fy,.

However, the clfect of kg was found to be significant throughout this thesis.
In order to show its effect on the results two important plots are given in Figure

3.7 and 3.8.

In Figure 3.7 the mean of the PSF is plotted as a function of position f[or

dilferent 2, paramecters, where

2
py = G (3.7)

= _.—"_3
)\2/;3/

It is obscrved that when x; increases (which can also be caused by decreasing
ko), the peak values of the mean function and the resolution of the system
decreases. This behavior can easily be seen from (3.7), since decreasing ko for
a fixed C? is equivalent to increasing C? (i.c., increasing turbulence strength)

for a fixed sy.
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Pigure 3.5: 1 (3.6) as a function of C* (D = 0.2m, A = 550nm, d;, = 2.052m,
z=5km, ko =2n/3, km = 2960, and m = 1/77)

In Figure 3.8, the mcan of the PSI® is shown as a [unction of position [or

dilferent z, parameters, where
€Ly = D/‘Co (38)

The effect observed in Figure 3.7 is also observed in this figure. In other words,
when z, increases (which can also result [rom increasing k), the peak values

of the mean function and the resolution of the system increases.

As kg is roughly proportional to 47 /h, where h is the height above the
ground, the above conclusion seens contradictory, because decreasing kg im-
plies imaging at higher altitudes which is known to increase resolution. How-
ever, it should be noted that, C? is very much dependent on h, hence the
combined effects of C? and k¢ as b is increased, is a significant improvement

on resolution.
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Figure 3.6: R (3.6) as a function of Diameter for different C? values
(A = 550 nm, dy = 2.052m, 2 =5km, ko = 21 /3, £, = 2960, and m = 1/177)

3.4 Shape of the Mean Function

It is also of interest to find an analytically simple curve that fits the mean

functions for a given CZ2. In the literature, the usual Gaussian [unction is
. . 5/3

widely used to model the PSF. However, a function of the form a;e®® offers

a better numerical fit. Both of these functions are shown in Iigure 3.9.

: . . Y

It is also worth analyzing, how the constants a; and a; in ¢e®*" changes
with respect to C2. The constant a; is not important, because it only eflects
the scaling of the expression. The dependence of a; on C? is given by the

following expression;

@y = da (m)° (3.9)

where ] | —0.2412
— U. 24 m

= - 3.10
¢ = (942 70.0288m = 0013z (3.10)

-15 . , . . g .
and m = 1002 . Equation (3.10) was obtained by numerical techniques.
n
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Figure 3.9: Curves which fit to mean of the PSF (C? = 107 m=2/° D = 0.2m,
A =550nm, dy = 2.052m, z =D km, kg = 21/3, £, = 2960, and m = 1/77)

3.5 EIffect of the Exposure Time

As pointed out in section 1.1, all the analysis done in this work is true in a
particular region of the image plane formed by the rays which have propagated
through the same locally homogeneous and isotropic part of the atmosphere.
These regions of the image plane which have been subjected statistically to the

same detoriation are called isoplanatic patches.

In the short-exposure case, the object is considered to lie within a number
of isoplanatic patches. However, in [5] it is shown that under typical turbulent
conditions, the sceing limit can resolve the isoplanatic patches. This means
that the different portions of the image that lie in different isoplanatic patches
can be identified. So, the analysis for the short-exposure case (i.e., existence
of a number of isoplanatic patches) boils down to analyzing each isoplanatic

patch using the techniques developed in this thesis.

In the long-exposure case, because of the time averaging, the image consists
of a single isoplanatic patch. So, the tools developed in this thesis can directly

be applicd to the long-exposure case.
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To swmimarize, the main difference between the short-exposure and the
long-exposure cases are the number of isoplanatic patches that constitutes the
image. lHowever, this difference creates no problem, and with a little care, the

analysis proposed in this thesis can be applied to both of these cases.

3.6 Variance of the System

In this scction, an expression for the variance of the PSI is derived. Using the
t
correlation expression (12.6) and the mean expression in (2.13), the following
. . . . . ! - —_ _
expression [or the variance is oblained by setting p = p, = 0 and p = pg;

"o nn

Vip)= [ dp” [ dp” [dp"" [ (liimuc_j%[ﬁ'(ﬁ - A =i )]
W 5
Cfm(cfu _ l) (311)
where
fv — [J,(I;” _ ]3////, (_)) _ lf(I_)_// _ ]j//lll, (_))
—If(]jm . I;IIII, 0) + If (ﬁ/” _ 13””/’ 0) (3'12)
and
S =21;(0,0) - L;(p" = p",0) = [;(p" =7 ,0) (3.13)
The function I;(&, ) is defined in (D.5).

To simplify the numerical calculations, the covariance function was calcu-
lated using the modified version of the correlation function given in (E.6). The

result of this calculation is shown in Figure 3.10.

Obscrvation of Figure 3.10 and Figure 2.1 reveals that the noise power (i.c.,
the variance) is maximum when the signal level (i.c., the mean) is maximum,

and it decrcases when the signal level starts to decay.

3.7 Covariance of the System

The covariance function is defined as

CB, 7 in i) = Elhi(p, 9 )i (Parig)] = Elhe(B, 5 ) Elha(pa, py)]
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Pigure 3.10: Variance vs |pl, (h = pa, p =y =0, C2 = 107", D = 0.2m,
A=550nm, dy = 2.052m, 2 =5km, kg = 27 /3, k,, = 2960, and m = 1/77)

Using the equations (2.13) and (2.25) together with (D.5), an expression for
C(p, D ,pa,P4) can be obtained;

1 1" 1" [ " 1t
(=P )P =P )+(Pa~da)-(F =5 )]

o L " i _n 717 — Pk
C(pyp,paspa) = [dp [dp [dp~ [dp e’
tp(p”)[,;(pm)tp (f)’l” )t;(i)m”)

efmele — 1) (3.14)
where
o= L0~ + I, L)

_]j(]j" _ 7;/”” + 7')' ;Lﬁ 7 —ﬁ ;ij )

_[f(]_)_m _ ]_jm/ + P ;Lp , —]7 ;Lﬁ )

H (0" = S =) (3.15)
and

./_7)1 — ZII(U, O) _ ]f(z;ll . 1_)_’//, (—)) _ If(j)'”” _ 1_)_/!111, 0) (:3-1(5)

The covariance [unction is plotted for several cases which are shown in figures

3.11, 3.12 and 3.13 ( The modified version of the correlation function given in
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Pigure 3.11: Covariance vs |p|, (p = —pa, p =p, =0, C2 =107, D = 0.2m,
A =550nm, dy = 2.052m, z = 5km, ko = 21/3, &, = 2960, and m = 1/77)

(E.6) is used in order to get the plots). In Figure 3.11 and Figure 3.12 the

covariance function is plotted as a function of a single variable.

Figure 3.11 shows the covariance as a function of |p| when p = —p4 and
P o= iiq = 0. Inother words, both of the object coordinates are set Lo zero, and,
the distance between the image coordinates are varied. As seen [rom the figure,
the covariance function is maximum when [p| = 0 (i.c.,when the points in the
image plane are coincident), and starts to decrease when |p| increases (i.e.,
the distance between p and pa increases). This is an expected result because
of the definition of the covariance function, viz, it shows that, the correlation
between two obscrvation points starts to decrease when the distance between

the observation points on the image plane increases.

The above comment also applies to Figure 3.12 which shows the covariance
as a function of |§]| when 5 = —p, and 5 = pp = 0. That is, the correlation
between the observation points located at fixed distances {rom cach other,
starls 1o decrease when the distance between the source points on the object

plane increases.
. o g . . _ _ _t _t
Figure 3.13 shows the covariance as a function of j = —p4 when p and p,
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Rigure 3.12: Covariance vs |p}, (p = —pa, D=pa=0,C2=10"1% D =0.2m,
A =550nm, dy = 2.052m, z=5km, kg = 27/3, kn, = 2960, and m = 1/77)

are fixed. This figure indicates that the covariance function is maximum when
. ' . iy . . . . .

P = s is in between pand jiy. In other words, the noise is maximum in the
image plane, at that point, which corresponds on the object plane to the point

in the middle of the source points.
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Pigure 3.13: Covariance vs |p|, (5 and p, are lixed, p = pa, C? = 10719,
D =02m, A =550nm, dy = 2.052m, z = 5km, ko = 27/3, km = 2960, and
m = 1/77)
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Chapter 4

CONCLUSION

In this thesis, the mean and the covariance functions of the point spread func-
tion (PSI), of a turbulence degraded incoherent imaging system, are deter-
mined and interpreted. As lar as the previously published literature is con-

cerned, the results obtained throughout this work are original.

In particular, we werc unable to find any material on the covariance or
variance of a turbulence degraded PSIF. A rather old reference exists [1] for
the optical transfer [unction (OTF) of a turbulence degraded immaging system.
Since OTF is the Fourier transform of PSF, this result is directly related to our
work. For purposcs of comparison, the results of the above cited work together
with the results of an experiment performed by [2], is compared in Figure 4.1
with the OTI predicted by our theory. In Ifigure 4.1, the solid line represents
the curve obtained by the expressions derived in this thesis, the dotted one is
the result derived in [1], and the discrete points indicated by ‘o,4,x,** are the

results ol the experiment performed by [2].

As il can be observed, the result predicted by this work is in very good
agreement with the experiment. Furthermore, although the particular condi-
tions for which the experimental data in [2] was collected, are not affected by
the finite size of the lens, in most situations this is a very important parame-
ter.. The theory presented in (1] does not take the finite size of the lens into

account.
The main results of this thesis can be summarized as;

. . . i . 5/3 .
1) The functional form of mean of PSI is; ¢;e®® ", where x is the absolute

valuc ol the diflerence between the source ((in image plane coordinates) and the
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IFigure 4.1:  OTI" versus  spatial  frequency (I1/mm), (height=>50mn,
C2? = 4.822107"° m=2/3  \=550um, z=11km)

observation point. The relationship between the constant ap and C? is stated

in section 3.4.

2) The resolution of the system is a function of the strength of the turbu-
lence as well as the diameter of the aperture stop. Increasing the diameter of
the aperture stop ( which also increases the cost ) beyond a predefined value
(which is a [unction of the turbulence strength) gains nothing in terms of the

vesolution (This result is cited in the literature by many authors).

3) The kg value has significant effect on the resolution of the system. Mak-
ing xo as large as possible (i.c., decreasing the altitude of the system) improves
the resolution with other system parameters remaining unchanged. However,
C2 s also highly dependent on elevation, which, combined with the variation in
Ko, makes the total resolution of the system decrease with increasing elevation

above ground.
4) The variance of PSI" is maximum at the peak of the mean.

5) The correlation function decreases either when the distance between the
1

image points increase given that the source points are coincident, or when
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the distance between source points increase if the image points are coincident,

which is consistent with the general behavior of correlation [unctions.

This thesis can be a starting point of a variely of future rescarch projects.

Some of which is listed below;

1) In parallel with increasing computational speed, the expressions given
for the variance and covariance of the PSI can be evaluated using a large set
of system parameters. Such an extensive set of results would give considerable

insight into the behavior of the second order statistics of a PSIF.

2) IFrom the point of image processing, the mean and variance results can
be used in image reconstruction algorithms. There are a lot of reconstruc-
tion techniques for turbulence degraded images one of which is given in [14].
This technique directly requires the results driven in this thesis, since it gives
the frequency response of a Wiener filter when the mean and the covariance

function of the PSIF of an imaging system is known.

3) The effect of polychromatic illumination on the statistics of the PSF may

be investigated.

4) A formulation may be investigated for a more straightforward specifica-

tion of a short exposure PSI statistics.
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Appendix A

In this appendix, (2.15) is derived.

Using the change of variables

_n Lt

€=p —p
=0 +p)/2
in (2.13) we have,
(7) P )s J—-hrzkzzf dtf des sy (1)1 =Jo (t]E)R)]

Jdij (i + )60 — %) (A.1)

Elhy(,p)) = [dec™

For a circular pupil [unction with diameter D, it 1s casy to show that,

g —2-co.«31 - L 2l
)z{%[ \/_ 7t <D,

€ €
dij Ly (4 5) (0 — =
/ ol 3) ]( 2 otherwise

Substituting (A.2) into (A.1), we have,

. . D ol ;
mmmﬁﬂ:ﬂﬂA(kehﬁqyamm*g—g 1=(5)%)
6—47r2k22f01 di f0°° dr x®n (k)[1-Jo(ter)] (A3)

10 ¢ - ! . . . . .
Since (A.3) depends only on [p — p|, it represents a shift invariant impulse

responsc.
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Appendix B

In [10] an expression for L[¥;(p, p )Wi(pa,p4)] has been given. Here, following
similar steps as [10] an expression for E[¥,(p, p )¥1(pa, py)] will be derived.

It is shown in [10] that,

_ /\,é _n _n o Cjklf_f”l
‘1/1(7',7‘ ) = W/d?‘ 711(7‘ )Uo(T ,7‘ )TTTT—:”— (Bl)
?
where Up (i, 7) = %, ni (7 ) is the random fluctuations of the refractive

index of the atmosphere, and all position vectors are members of a 3-D space.
Throughout this thesis, the symbol 7 is used to represent a vector in a 3-D

space, whereas p is used [or a vector in a 2-D plane.

Using (B.1) and invoking the paraxial approximation (B.1) can be written

as;

o zl‘ ik " g JL[U’ _P) +(P ‘I') ] .
V(5 5) = Sl 00 [ —-Q FER ()
Z7r - 2z")
e . - s — . .
where all the position vectors (i.c., p, j, pa, py) lie on a transverse plane
. . . . . T _t _t
perpendicular to the predominant direction of propagation. The p and p,
vectors are assumed to be on the z = 0 plane, and p and p4 points are assumed

to be on a planc located al a distance of z meters from the z = 0 plane.

Using (3.2), and assuming that n; is a stationary random variable, the
expression for 5[V (p, 5 )W, (s, pa)] can be written as;
" o o Zk' _ = N
B, 7)1 (4, 7)) = (52 E 0P Eam [arQ(r)  (B3)
As deflined in section 1.3, % is the wavenumnber vector with units of radians per

meter, and @ is given by;
L . o

"
=Y S " Fu(Rz -2 ) =JhAp —=p
Q(/u) = f(l'l f(h z”zm(z—z”)(z—z’”)e (

!
1L[(V —ﬁ) +(P "ﬁ) "'ﬂALZ_*_(p —])A)2]

e 2(z —z ) 2z 2(z~z '} (B4)
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where,

. " "t 1 - 1 1t " — -
Fy(iy 2" = 2") = (%)2/(1;7, Bu(p, 2" — 2") e/ (B.5)

In (B.5) B,(ps,2" —2") is defined as;
l},,,(ji/,z“ — ‘,w) Bn( — "m z” — zm) = [[n, (¥ ”)71,1(7_'”’_)] (B.6)

- . . . . » H Hi

Conforming to the notation introduced in (B.4), 2 and 2 are the components
_n .t . . o . 1 LA

of 7 and 7 along the dircction of propagation, and p and § = are the com-

ponents on the transverse plane perpendicular to the direction of propagation.

After evaluating the 5 and § integrals in (B4) and with some simplifica-

tion, the @) function turns out to be

Q(R) = — (iﬁ)cj (- a7 ]/ dz' / B eIl T ) R (gt
W4

eI BE " (a2 42" (22"

(R, 2" = 2") (B.7)

T—x

Pa).R]

With the new integral variables defined as,

1

n=(2"+z2")/2

and neglecting the terms that involve € in the exponent (because I5,(%, |e]) is
nonzero only when |e| is on the order of [, where [ is the scale length of the
inhomogencitics, and &l < 1 [10]), the final expression for the @ function

comes oul to be,

Q(7) = (‘;Z) =5V + (a5 y) ]/ (1,]/ de  Fo(R, |e|)e-ilipar-(1-Dpg)
U (B g)
where p;, = — jiy and g = p — pa.
It is given in [6] that

w -
/ Fo(%,€)de = 7,(7)
0
where @,,(%) is the spectral density of the index of reflraction {luctuations. Using
this result, and delining ¢ as t = 2, the expression for E[W,(p,p VYO (Fa, g)]
becomes '

13[‘11-1(]7,17,)\1’1(77/1715;1)] = ——27rk22/d7'»"1’n / dl e~ 3ltpa-R+(1- 7 7 (=)

(B.9)
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If 12y s assumed Lo be isotropie, (B.9) turns out to be,

, , . [6.¢) 1 P ., R2
B (5, 5 )Wy (g, )] = —dm?hide / dk kD, (k) / A Jo(|tpat(1=0)5, |k ) eI =)
0 0
(B.10)

The expression of E[W, (5,5 )Vi(fa,P4)] which is given in [10] is also used

in this work, so it is restated here for convenience;

! ! v D 0 1 !
LV (p, p )VT(Pa,Pa)] = /lﬂzkzz/ dk /c‘l)n(fc)/ dt Jo(|tpa + (L — U)py|&)
0 0
(B.11)
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Appendix C

Here, an expression for the function 7

1
1Hi

"= E[ ‘l'(P 1%)"'\1’ (P '_;711—)+w( '_m )+ (p ”/I/'.—_";ZA)] (C.l)

is obtained.

It is known [10] that, if f = log(y) is a random variable of order n; with

mean ][] and mean square E[f?], than E[y] can be written as,
Ely) = BN E(f-E[S])?] (C.2)
which is correct through terms of order n?.

Using (C.2), and the fact that ¥ = W, + ¥, [Rytov solution], (C.1) can be

written as,

1
—5 IIH — "t —p]
1" = L[‘Vz(]) ''m )+W (P ’_v%) I-W2( ''m )+\l} ( m )}
!
\ " 1"t — e —p,
C%E[[‘I’l(’) ''m )+l]l (P ' )+\I’]( ''m )+I/ ( ''m )]2] (0.3)

It is stated in [10] that the 1% and 2" order Rytov solutions are related
by; '
B[] = — B¢, (C.4)
Consequently, using (C.4) in (C.3) we have,

!
" —p

I
P . " -
| = c—2[5[|\1'1]2](:/3[\l/1(p " )‘l/ (p 5L ] L[Wl(p s =Ly, (5 ,—Am )]

CE[‘I’J(]'5”.:,3:—)\[’1‘(;1’””,_:‘ )] L[\P (P ,m )‘l’l( ””,—7’; )]
L[W //l':#?_-)\p;‘(ﬁ//lﬂ,—_yf;A)]CLN’l P“I, 2 )\1’ ( /rr//'-_']:lA)] (CS)
Substituting (B.10) and (B.11) in (C.5) we obtain,
= e-47r2k22f01 dtf0°° di kP (K)fe (CG)
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Figure C.1: &®,(x) versus & (C2 = 1071° m=% D = 02m, A = 550nm,
dy = 2.052m, z =5k, Ky = 2m/3, £, = 2960, and m = 1/77)

where

j.e — 2 _ jo(tll_)_ll _ I)’“I ) JU(L|])”” _ )IIIII IK/)

+J°(|p_;")‘1(t = 1)U =P R)e R
Il = 1)+ =)
[ = 1) 46" = 7))
A1) R (.1

At this point we will use some approximations to simplify the above equa-
tion. Figure C.1 shows x®,,(k) as a [unction of k. As it is secn, for £ > 20 this

function becomes very close to zero. Consequently,

Iy = %(/ — 1})5? (C.8)

has its maximum valuc [£7**® when { = % and & = 20;

zh 1
maer — (4 C.9
L} 5w 00 (C.9)
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When L7 < 0.1, the exponential terms that appear in the 2™ and the last
terus of (C.7) has no eflect. Thus, they can be taken as unity if the lollowing
condition is met;

;;17/—:-100<0.l = Az < 271073 (C.10)

FFor optical [requencies this restriction can easily be met for all practical
propagation distances z. llence, the exponential terms in (C.7) can be ne-
glected. Thus we have,

1"t IIIII

Je= 2—-/0(”1) “I’ “IK) = Jo(tlp" —

K)

i

+Jo(|&:ﬂ(t—1)+t(p —p )Ifﬂ)
—Do(EEa (= 1) + 45" — 5"Ir)
(|55 = 1)+ 1 = 5)l)
+Jo(li,1’i‘(t — 1)+t —p")lk) (C.11)

which together with (C.6) provides an analytical expression for (C.1).
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Appendix D

In this appendix, a polynomial {it to the function (&, ) defined in (2.20) is

derived.

Let |
R0
where

—2rip;

g y(v)]= P+

...
il M .
"

(D.1)

(D.2)

Substituting v(¢) = |at 4 B|ke into (D.2), the expression for I’ turns out to

be,
' 5.l —27:;
r=y [ a — D.3
; 0 2|a|?kd + 2t(a.f)kd + |53 + p? (D-3)
The ¢ integral in (D.3) can be calculated, and (D.1) can be written as,
) l_’)_ _—227‘,-1)," r 5 — O
] = .l—_l lncll .rfof*-l); (s 4 (& B2 (&5)r2 e (D.4)
i T '[l,a,n"(—l—‘ld ) — tan_l(—————ﬂ'd 2)] ifa#0
where
d = laP e (181263 + p2) — (@.5)*+4
Finally, ,
o 0.033C2 ,,_ - )
If(&>ﬂ) = 5/3 (&, p) (D.5)
Ko

is the desired numerical fit to 1(&, #) whose coellicients are,
ry =-0.2578, p; =-4.6881
ry = 0.3908, p, =-1.8562
r3 = 0.0967, ps =-0.8786

Ty = 00091, P4 =-0.2831
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rs = 0.0001, ps =-0.0458

With these coellicients, the error ( defined as |
0.033C2

order of ﬁ—ﬂlO“ which is quite acceptable.

/}](a

1GA) )| ) is at most on the
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Appendix E

In this appendix, the correlation [unction (2.16);
13[]”(73, 75/)]”(1_)_/1’]3//1)] _ fdpufd];///fdprmfdjum _]%[(75—]} )(ﬁ -p )+(pA_;3’A),(ﬁIIH__/////

ll) (]_)/ )l (1)///)[11 (I_;m/)[;(ﬁml/)](q (]C,l)

is modified for the sake of increasing the speed of the numerical calculations.

N

The expression for the function 7 was given in (2.18);

[ = =itk [t [ dr (s fe (B.2)
where
fo= 2= Jo(Uli" = p"k) = Jo(tlp" = " |s)
-FJo(l’_—_“( D+U" =0")x)
Jo(l’——“(t D+p" =p")lk)
Jo(l')—,_n'i“(l D +t(p" =5")lk)
+Jo(|£-,—f“(l D+1p" =5")x) (I5.3)

In the above expression, each integral variable has one 2 and one y compo-
nent, which are in the range [—7, 2] where D is the diameter of the pupil.

Changing the integral variables;

5_‘] — I_)_// _ I_)_III
=0 +p )2
g ] i _ ];IIIII
7 (] it + I;”’”)/2 (E.[l)

and defining new integral variables only for 7; and 7 as,
it = iy — i,
= (i +71)/2 (&
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the following expression for (E.1) is obtained:

Blhi(5, 9 )i (Pas ip)] /(/51/(/51/(/uc Gl p")Q]Tn/‘ (.6)

where
1(1' — C-’|7|'2L'22 fol (“fooo dnnq)n(rc)fé (E.?)
fi= 2~ Jo(tlg1]k) = Jo(t|E2| k)
(|24 (0 — 1) + t(a + 25%) x)
—Jo(|B2A (L — 1) + (@ + 222 k)
—Jo(|E22a(t — 1) + t(a — &2%2)|x)
+o(|ESEA (L — 1) + t(a - £52)|x)
(E.8)
and
' . - U é U 61 _ U 62 _
1= [dit(o+ 5+ 0+ 5 - -5 + D2 - 2) (L)

In (I5.6) the x and y components of &, and & (i.e., €15,25,E1y,E2,) are

between —D and D, the x component of @ (i.e., uy) is between —[r(e1;) +

"(€22)] and [r(e1;) + r(€2.)] and the y component of @ (i.e., u,) is between
—[r(ery) + r(ezy)] cmd [r(e1y) + 7(€2y)] where
D — [u]
r(u) = 5

Relerring to (15.9), the range for the & component of ¥ (i.e., v,) is given

below. To find the range for the y component, just change the z indices to y’s.

Ifr(e1z) > r(€2) *

o)+ (ese) lere) = el = wnlrlen) + 1) = 5
el (e1a) = eas) (eas) = 1(e1)] & vocl=r(ean) + 5%, r(eas) + 2]
Upc[r(€22) — 1(E12)y —T(€22) — 1(€12)] = vae[—1(E10) — 1;2,7.(&.%) n %]

]f 7'(513:) S 7'(522;) ;
Uy Uy

woc[r(€1e) + 1(€22), 1(62) = 7(E10)] = vae[—r(e22) + 5y 7(E12) — 7]
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Uy Uy

Uz €[r(€2z) ~ 7(€12), 7(€12) — 7(€22)] = voc[—7(E1c) — 5 r(e1z) — 7]
wec[r(e1s) — 1(E0), =1 (E1a) — 1(€22)] = vac|=1(€12) — % r(ess) + “7]

In order to numerically evaluate the expression for the correlation function,
the €1, €2 and @ integrals of (I5.6) were approximated by [1x11 points, and ¢

integral was approximated by 15z15 points.
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