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Abstract. In this paper, an adaptive color transform for image compres-
sion is introduced. In each block of the image, coefficients of the color
transform are determined from the previously compressed neighboring
blocks using weighted sums of the RGB pixel values, making the transform
block-specific. There is no need to transmit or store the transform coeffi-
cients because they are estimated from previous blocks. The compression
efficiency of the transform is demonstrated using the JPEG image coding
scheme. In general, the suggested transformation results in better peak
signal-to-noise ratio (PSNR) values for a given compression level. C© 2011
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1 Introduction
Image compression is a well-established and extensively
studied field in the signal processing and communication
communities. Although the “lossy” JPEG standard1 is one
of the most widely accepted image compression techniques
in modern day applications, its resulting fidelity can be im-
proved. It is a well known fact that JPEG compression stan-
dard is optimized for natural images. More specifically the
color transformation stage is designed in such a way that it
favors the color components to which the human visual sys-
tem is more sensitive in general. However, using one fixed
color transformation for all types of natural images or even
for all the blocks of an image may not be the most effi-
cient way. One possible idea is to find a color transform that
represents the RGB components in a more efficient manner
and can thereby replace the well-known RGB-to-YCbCr or
RGB-to-YUV color transforms, used by most practitioners.
Usually such approaches aim at reducing the correlation be-
tween the color channels.2 An optimal solution would be to
use Karhunen–Loève transform (KLT) (see Ref. 3). How-
ever, in KLT there is an underlying wide-sense stationary
random process assumption which may not be valid in nat-
ural images. This is because autocorrelation values of the
image have to be estimated to construct the KLT matrix,
since most natural images cannot be considered as wide-
sense stationary random processes, due to edges and different
objects. A single auto-correlation sequence cannot represent
a given image. Another approach to an optimal color space
projection on a four-dimensional colorspace was developed
in Ref. 4.

A new transform based on the color content of a given
image is developed in this paper. The proposed transform
can be used as part of the JPEG image coding standard,
as well as part of other image and video coding methods,
including the methods described in Refs. 5, 6, and 7.
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2 Algorithm
A typical colorspace transform can be represented by a matrix
multiplication as follows:⎛
⎝ D

E

F

⎞
⎠ = T ·

⎛
⎝ R

G

B

⎞
⎠ , (1)

where T = [ti j ]3×3 is the transform matrix, while R, G and B
represent the red, green, and blue color components of a given
pixel, respectively, and D, E, F represent the transformed val-
ues, see Refs. 8 and 9. For example, JPEG uses luminance-
chrominance type colorspace transforms and chooses the
coefficients in T accordingly. Examples for these include
RGB-to-YCbCr,10 as definded in JPEG file interchange for-
mat, as well as RGB-to-YUV and a digital version of RGB-
to-Y′CbCr from CCIR 601 Standard that are used in our
experiments as baseline color transforms. Their respective
transform matrices are given by

T′
RGB−to−YCbCr =

⎛
⎝ 0.299 0.587 0.114

−0.169 −0.331 0.500

0.500 −0.419 −0.081

⎞
⎠ , (2)

T′
RGB−to−Y′CbCr =

⎛
⎝ 0.257 0.504 0.098

−0.148 −0.291 0.439

0.439 −0.368 −0.071

⎞
⎠ , (3)

and

T′
RGB−to−YUV =

⎛
⎝ 0.299 0.587 0.114

−0.147 −0.289 0.436

0.615 −0.515 −0.100

⎞
⎠ . (4)

The Y component of the resultant image is usually called
the luminance component, carrying most of the information,
while the Cb and Cr components, or U V components, re-
spectively, are called the chrominance components.

In our approach, we manipulate the luminance compo-
nent, while leaving the chrominance components as they
are, i.e., only the coefficients in the first row of the T-
matrix are modified. The second and third rows of the
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Table 1 The condition numbers of the baseline transforms and the
mean and standard deviations of the condition number of our trans-
forms for the Kodak dataset.

Baseline Condition Condition

color number number

transform baseline our transform

YCbCr 1.75 1.41 ± 0.07

Y′CbCr 1.75 1.38 ± 0.08

YUV 2.00 1.72 ± 0.05

matrix remain unaltered because in natural images, al-
most all of the image’s energy is concentrated in the Y
component.11 As a result, most of the bits are allocated
to the Y component. Consider this: The image “01,” from
the Kodak dataset12 used in our experiments is coded
with 2.03 bpp using standard JPEG with a quality fac-
tor of 80%. The PSNR is 33.39 dB. The Y component
is coded with 1.76 bpp, while the chrominance components
are coded with 0.27 bpp. Similarily, the “Barbara” image
from our expanded dataset is coded with 1.69 bpp and a
PSNR of 32.98 dB, when coded with a quality factor of
80%. The Y component is coded with 1.38 bpp, while the
chrominance components are coded with 0.31 bpp.

Recent methods of color transform design include
Refs. 13–15, but all of these methods try to optimize their
designs over the entire image. However, different parts of
a typical natural image may have different color character-
istics. To overcome this problem, a block adaptive method
taking advantage of the local color features of an image is pro-
posed. In each block of the image, coefficients of the color
transform are determined from the previously compressed
neighboring blocks using weighted sums of the RGB pixel
values, making the transform specific to that particular block.

We calculate the coefficients t11, t12, t13 of the first row
of the color transform matrix, using the color content of the
previous blocks in the following manner:

t11 = 1

2
·
[

t ′
11 +

∑M
i=1

∑N
j=1 I(i, j, 1)∑M

k=1

∑N
l=1

∑3
m=1 I(k, l, m)

]
, (5)

t12 = 1

2
·
[

t ′
12 +

∑M
i=1

∑N
j=1 I(i, j, 2)∑M

k=1

∑N
l=1

∑3
m=1 I(k, l, m)

]
(6)

and

t13 = 1

2
·
[

t ′
13 +

∑M
i=1

∑N
j=1 I(i, j, 3)∑M

k=1

∑N
l=1

∑3
m=1 I(k, l, m)

]
, (7)

where I denotes a three-dimensional, discrete RGB image
composed of the used subimage blocks, which are to be dis-
cussed below, M and N denote the number of rows and
columns of the subimage block, respectively, and t ′

1 j denotes
the element in the 1st row and the j’th column of the 3×3
baseline color transform matrix, e.g., RGB-to-YCbCr. Nor-
mally, M and N are equal to 8 if only the previous block is
used in JPEG coding.

Equations (5)–(7) have to be computed for each image
block, therefore, the proposed transform changes for each
block of the image. The extra overhead of encoding the color
transform matrix can be easily avoided by borrowing an idea
from standard differential pulse-code modulation (DPCM)
coding in which predictor coefficients are estimated from
encoded signal samples. In other words, there is no need
to transmit or store the transform coefficients because they
are estimated from previously encoded blocks. However, the
specific 3×3 color transform matrix for a given block has
to be inverted at the decoder. The computational cost for
the inversion of a N×N matrix is usually given as O(N 3),
however this is valid only in an asymptotic sense. For 3×3
matrices, a closed form expression exists, where the inverse
can be found using 36 multiplications and 12 additions. In
our case where we only alter the first row of the color trans-
form matrix, this narrows down to 24 multiplications and 6
additions.

Since the color transform matrix is data specific, one may
ask how numerically well-conditioned it is. A common tech-
nique to measure this is the condition number of a matrix. The
condition number is defined as the ratio of the largest to the
smallest singular value of the singular value decomposition
of a given matrix.16 A condition number with a value close to
1 indicates a numerically stable behavior of the matrix, i.e., it
has full rank and is invertible. In order to investigate this, the
condition number for each transform matrix of each block of
the Kodak dataset was computed. Those results are averaged

Table 2 Mean and standard deviations of the correlation coefficients ρij for the baseline color transforms
and our transforms as computed over the Kodak dataset.

Color transform ρ12 ρ13 ρ23

YCbCr − 0.0008 ± 0.2250 − 0.0436 ± 0.1308 − 0.1683 ± 0.2372

Y′CbCr − 0.0006 ± 0.2260 − 0.0444 ± 0.1306 − 0.1691 ± 0.2369

YUV − 0.0008 ± 0.2264 − 0.0444 ± 0.1308 − 0.1696 ± 0.2378

Our YCbCr 0.0087 ± 0.2255 0.0043 ± 0.1308 − 0.1683 ± 0.2337

Our Y’CbCr 0.0096 ± 0.2263 0.0073 ± 0.1306 − 0.1691 ± 0.2337

Our YUV 0.0087 ± 0.2269 0.0041 ± 0.1308 − 0.1696 ± 0.2343
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Fig. 1 A general description of our prediction scheme. To predict
the color content of the black-shaded image block, color contents of
previously encoded gray-shaded blocks, marked by arrows, are used.

Fig. 2 PSNR versus CR performance of the 24 image from the Kodak
dataset for fixed color transforms and our method. (a) Original image,
and (b) rate-distortion curve. Our method outperforms the baseline
transforms.

Table 3 PSNR-Gain values for the whole dataset with different base-
line color transform. PSNR-Gain of each image is measured at dif-
ferent rates and averaged. α is equal to 2.5.

Average PSNR Average PSNR Average PSNR

gain [dB] gain [dB] gain [dB]

using YCbCr using Y′CbCr using YUV

Image as baseline as baseline as baseline

1 0.0624 0.0928 0.0732

2 − 0.0668 − 0.0845 − 0.0368

3 − 0.2394 0.0824 − 0.6358

4 − 0.0325 0.0017 − 0.2449

5 0.0423 0.1008 0.0863

6 0.0966 0.1302 0.1564

7 0.0480 0.0767 0.0115

8 0.0958 0.1237 0.1326

9 0.1147 0.1349 0.1868

10 0.1395 0.2309 0.2167

11 0.0300 0.0791 0.0263

12 0.0781 0.0534 0.1261

13 0.1179 0.1162 0.1236

14 − 0.0517 − 0.0901 − 0.0538

15 − 0.0518 − 0.0486 0.0024

16 0.0812 0.1545 0.1415

17 0.0845 0.1265 0.1553

18 0.0952 0.1283 0.1113

19 0.0500 0.1003 0.0947

20 0.0399 0.0581 0.1320

21 0.0799 0.1535 0.1305

22 0.0642 0.1371 0.0762

23 − 0.4293 0.0525 − 1.1956

24 0.1448 0.1903 0.2081

1pmw 0.1832 0.1659 0.2331

ATI 0.0289 0.1388 0.1586

Airplane 0.5197 0.5079 0.4287

Baboon 0.0003 0.2097 − 0.4955

Barbara 0.1054 0.1294 0.1155

Boats 0.0913 0.0840 0.1348

DCTA 0.2134 0.2063 0.2457

Gl_Boggs 0.4427 0.3519 0.4673
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Table 3 (Continued.)

Average PSNR Average PSNR Average PSNR

gain [dB] gain [dB] gain [dB]

using YCbCr using Y′CbCr using YUV

Image as baseline as baseline as baseline

Goldhill 0.2324 0.2395 0.2485

Huvahendhoo 0.2076 0.2254 0.2698

LagoonVilla 0.0791 0.0551 0.1229

Lake June 0.1223 0.1211 0.1388

Lenna 0.2070 0.2472 0.2197

Patrick 0.1130 0.0778 0.1489

Pepper 0.2158 0.2130 0.1769

PMW 0.1696 0.2188 0.2078

Serous-02 0.1245 0.0917 0.1606

Sunset Water Suite’ 0.2036 0.3482 0.7866

Whole dataset 0.0967 0.1435 0.0952

Success rate 36/42 39/42 35/42

and can be seen alongside the values of the baseline trans-
form matrices in Table 1. We find that for the given dataset,
the condition number of our transform is in fact lower than
the respective condition number of the baseline transform. It
may also be of interest if our modified transform increases
the interchannel correlation. In order to investigate this, the
correlation coefficients ρi j , denoting the correlation between
the i’th and j’th channel of a color transformed image, were
calculated for the baseline transform matrices and for the
modified transform matrices over the whole Kodak dataset.
The average results can be seen in Table 2. We find that for
the given dataset, the correlation between channels was not
significantly increased by our method.

In most cameras, image blocks are raster-scanned from
the sensor and blocks are fed to a JPEG encoder one by one.5

For the first block of the image, the baseline color transform
is used and the right-hand side of Eqs. (5)–(7) are computed
from encoded–decoded color pixel values. For the second im-
age block these color transform coefficients are inserted into
the first row of the baseline color transform and it is encoded.
The color content of the second block is also computed from
encoded–decoded pixel values and used in the coding of the
third block. Due to the raster-scanning, the correlation be-
tween neighboring blocks is expected to be high, therefore,
for a given image block, the color content of its neighboring
blocks is assumed to be a good estimate of its own color
content. Furthermore, we are not restricted to use a single
block to estimate the color transform parameters. We can
also use image blocks of previously encoded upper rows as
shown in Fig. 1 in which shaded blocks represent previously
encoded blocks and the black shaded block is the current
block. The neighboring blocks marked by an arrow are used
for the prediction of the current block. In Ref. 17 an adaptive

scheme is presented in which the encoder selects for each
block of the image between the RGB, YCoCg, and a simple
green, red-difference and blue-difference color spaces. This
decision is signaled to the decoder as side information. Our
method, however, does not require any transmission of side
information to the receiver.

The current block’s color content may be significantly
different from previously scanned blocks. In such blocks we
simply use the baseline color transform. Such a situation may
occur if the current block includes an edge. We determine
these blocks by comparing the color content with a threshold,
as follows

1

2
· ||xc − xp||1 > δ, (8)

where xc is the normalized weight vector of the current
block’s chrominance channels, xp is the mean vector of
the chrominance channels’ weights for all the neighboring
blocks used in the prediction, and δ is the similarity threshold.
The L1 norm was chosen due to its low computational cost.
Note that in our prediction scheme we are not changing the
chrominance channels. Therefore, we can use these for esti-
mating the color content of the previous and current blocks,

Fig. 3 PSNR versus CR performance of the 23 image from the Kodak
dataset for fixed color transforms and our method. (a) Original image,
and (b) rate-distortion curve. The baseline transforms outperform our
method.
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Fig. 4 PSNR versus CR performance of a microscopic image image
from the Serous dataset for fixed color transforms and our method. (a)
Original image, and (b) rate-distortion curve. Our method outperforms
the baseline transforms.

regardless of the changes we make in the luminance channel.
The threshold is chosen after investigating the values of the
left-hand side of Eq. (8) for the Kodak dataset and calculating
its mean and standard deviation. δ is then chosen according to

δ = μ + α · σ, (9)

where μ and σ denote the mean and standard deviation of
the left-hand side of Eq. (8), respectively α can take values
between 2 and 3, since we assume a Gaussian model for the
left-hand side of Eq. (8). In a Gaussian distribution, about
95.4% of the values are within two standard deviations
around the mean (μ ± 2 · σ ), and about 99.7% of the values
lie within 3 standard deviations around the mean (μ ± 3 · σ ).
Therefore, in Eq. (8) we intend to measure if the L1 norm of
the difference between the weight vectors of the current and
the previous block lies within an interval of 2 to 3 standard
deviations of the mean value. If it does not, we assume that

Fig. 5 PSNR versus CR performance of the Lenna image for fixed
color transforms and our method. Rate-distortion curve. Our method
outperforms the baseline transforms.

it is an outlier and therefore use the baseline color transform.
In Sec. 3 we investigate the performance of several α values.

Due to our prediction scheme, no additional information
on the color transform needs to be encoded by implementing
a decoder inside the encoder as in standard DPCM signal
encoding. It should also be pointed out that optimized color
transform designs of Refs. 13, 14, and 15 can also be used
in our DPCM-like coding strategy. Instead of estimating the
color transform over the entire image the transform coeffi-
cients can be determined in the previously processed blocks
as described above. The goal of this article is to introduce
the block-adaptive color transform concept within the frame-
work of JPEG and MPEG family of video coding standards.
Therefore, a heuristic and a computationally simple color
transform design approach is proposed in Eqs. (5)–(7). Since
only the first row of the transform is modified it is possible to
use the binary encoding schemes of JPEG and MPEG coders.

3 Experimental Studies and Results
A dataset of 42 images was used in our experiments.
This includes the Kodak dataset, 10 high-resolution images
(“1pmw,” “ATI,” “DCTA,” “Gl_Boggs,” “Huvahendhoo,”
“Patrick,” “PMW,” “LagoonVilla,” “Lake June,” “Sunset
Water Suite”), the microscopic image “Serous-02” (Ref. 18)
and the standard test images Lenna, Baboon, Goldhill, Boats,

Table 4 PSNR-gain values for the whole dataset with different base-
line color transform. PSNR-gain of each image is measured at differ-
ent rates and averaged. α is equal to 3.

Average PSNR Average PSNR Average PSNR

gain [dB] gain [dB] gain [dB]

using YCbCr using Y′CbCr using YUV

Image as baseline as baseline as baseline

Whole dataset 0.0948 0.1432 0.0941

Success rate 36/42 39/42 35/42
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Fig. 6 A visual result of image 24 from the Kodak dataset coded by
JPEG using a quality factor of 80%. (a) Original, (b) JPEG coded
version using Y′CbCr, and (c) JPEG coded version using our method
with Y′CbCr.

Pepper, Airplane, and Barbara. The high-resolution images
have dimensions ranging from 1650×1458 to 2356×1579.
The JPEG coder available in MATLAB’s imwrite function is
used in our experiments. The color transformation stage of
the baseline JPEG is replaced with the proposed form of
transformation. The weights of Eqs. (5)–(7) are computed
using the previously processed blocks neighboring the cur-
rent block as shown in Fig. 1.

We show several tables in which we alter the α value
of Eq. (9). We choose α to be 2, 2.5, and 3, as explained in
Sec. 2. The results can be seen in Tables 3–5. Results for using

Table 5 PSNR-gain values for the whole dataset with different base-
line color transform. PSNR-gain of each image is measured at differ-
ent rates and averaged. α is equal to 2.

Average PSNR Average PSNR Average PSNR

gain [dB] gain [dB] gain [dB]

using YCbCr using Y′CbCr using YUV

Image as baseline as baseline as baseline

Whole dataset 0.0967 0.1411 0.0965

Success rate 35/42 39/42 35/42

Table 6 PSNR-gain values for the whole dataset with different base-
line color transform. PSNR-gain of each image is measured at differ-
ent rates and averaged. No threshold was used, i.e., the whole image
was coded with our method.

Average PSNR Average PSNR Average PSNR

gain [dB] gain [dB] gain [dB]

using YCbCr using Y′CbCr using YUV

Image as baseline as baseline as baseline

Whole dataset 0.0609 0.1207 0.0521

Success rate 31/42 34/42 31/42

no threshold at all, i.e., the whole image being coded by our
method, can be seen in Table 6. Note that the δ threshold
from Eq. (8) was computed using the data from the Kodak
dataset but still performs well on the 18 additional images.

The PSNR-gain of our method over the baseline color
transform is measured at five different compression ratios
(CRs), spread over the whole rate range, for each image.
The averages of these gain values are shown in the tables.
Additionally, the mean of all these gain values is presented
for the whole dataset. Furthermore, a success rate for the
dataset is given. The decision for a success is binary and
is made in case the average gain value of a given image is
positive. These results show that, on average, the proposed
method produces better results than the baseline JPEG al-
gorithm using the RGB-to-YCbCr, RGB-to-YUV, or RGB-
to-Y′CbCr matrices, respectively. Using the threshold from
Eq. (8) yields better results than using no theshold. On av-
erage, our method used with Y′CbCr yields the best com-
pression gain. This tendency can be seen in most images.
The two images were the performance of our method is the
worst are images “3” and “23.” In those cases, Y′CbCr has a
positive gain but significantly smaller than its average gain,
thus a negative tendency on the coding performance in those
images is perceivable for all color spaces. Especially in those
images, many sharp edges are visible and the color content
on one side of the edge is not highly correlated to the color
content on the other side of the edge. The differences in color
content of certain blocks compared to their previous blocks
are not as well detected by the threshold approach of Sec. 2
as in most other images of our dataset. The color estimate is
therefore not accurate, resulting in a larger coding error.

In Figs. 2–5 the rate-distortion curves for 24, 23, Serous-
02, and Lenna are given. While 24, Serous 2, and Lenna are
images where our method outperforms the baseline trans-
forms, in image 23 this is not the case. Images with strong,
saturated color content that changes abruptly seem to perform
worse with our method than with the baseline transform.

In Fig. 6, a visual example of our coding results is given.
In Fig. 6(a), the original cropped image is shown, while
Figs. 6(b) and 6(c) show the coded versions using Y′CbCR
and our method based on Y’CbCr, respectively.

4 Conclusion
A method of extracting an image-specific color transform
based on the color content of an image is presented. The
transform coefficients are adaptively computed for each
image block. The first row of the transform matrix is
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determined by the color component ratios of previously com-
pressed image blocks. Our experiments suggest that when
this transform is used in standard JPEG, it results in higher
PSNR for a given CR than standard colorspace transforms in
general. Due to its conceptual simplicity and computational
efficiency, our method can also be used in video compres-
sion. An application where the suggested method may be es-
pecially useful may be microscopic images where the color
bandwidth is limited due to the staining process.
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