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Abstract— In this paper, we propose a decision making
algorithm for autonomous vehicle control at a roundabout
intersection. The algorithm is based on a game-theoretic model
representing the interactions between the ego vehicle and an
opponent vehicle, and adapts to an online estimated driver type
of the opponent vehicle. Simulation results are reported.

I. INTRODUCTION

Autonomous vehicle control in urban traffic is still facing
enormous challenges. Many of these challenges involve
intersection traffic scenarios. According to [1], almost 40%
of car crashes in the U.S. are intersection related. In an
intersection scenario, it is typical to have multiple traffic
participants interacting with each other. A driver or an
automation controlling a vehicle at an intersection should
account for these interactions in her/its decision making.

Intersections are usually categorized into two types: sig-
nalized intersections and unsignalized intersections, of which
roundabout is a particular kind [2]. At a signalized inter-
section, the motions of all vehicles and of all other traffic
participants are guided by traffic lights or traffic signs, which
act as centralized traffic controls. On the other hand, at an
unsignalized intersection, the driver/automation controlling a
vehicle needs to decide on her/its own, whether, when and
how to enter and cross the intersection, in which accounting
for the interactions between traffic participants is particularly
important, as each participant’s actions influence and are also
influenced by the actions of the other participants.

Game theory is a useful tool to model the interactions
between strategic decision makers. Game-theoretic model-
ings of driver and vehicle interactions in highway traffic
scenarios for use in autonomous vehicle control development
are discussed in [3], [4], [5]. Game-theoretic autonomous
vehicle control algorithms for intersection traffic scenarios
are proposed in [6], [7]. In [6], vehicle-to-vehicle interactions
at an unsignalized four-way intersection are modeled using a
game-theoretic framework, and then an autonomous vehicle
controller for such an intersection is developed based on the
vehicle interaction model.

A roundabout intersection involves a merge/de-merge type
traffic where a vehicle first merges into the center circle,
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travels counter-clockwise (in the U.S.), and then de-merges
from the circle [8]. Autonomous vehicle control particularly
for roundabouts have been investigated in [9], [10], where
vehicle interactions in multi-vehicle scenarios are not con-
sidered.

In this paper, we exploit the game-theoretic vehicle in-
teraction modeling framework in [6] to develop an au-
tonomous vehicle controller for a roundabout intersection.
The contributions of this paper are: 1) We develop a game-
theoretic model representing the interactions between two
vehicles at a roundabout intersection. Such a model can have
multiple uses, such as for developing autonomous vehicle
control systems [6] or for the verification, validation, and
calibration of such systems [3], [4]. We focus on the former
in this paper. 2) We propose a decision making algorithm
for an ego vehicle at such a roundabout intersection that
is based on the vehicle interaction model and adapts to
an estimated driver type of an opponent vehicle. 3) We
describe an explicit online implementation scheme exploiting
function approximation techniques to avoid the need for
solving optimization problems related to the algorithm in
real time.

II. VEHICLE MODEL

A. Vehicle kinematics

The control of a vehicle is typically modeled using a
hierarchical architecture [11]: a high-level decision making
layer plans the desired path for the vehicle, and then a
low-level dynamics and actuation control layer controls the
subsystems, e.g., engine, transmission, steering, etc., to track
the references generated by the high level.

In this paper, we focus on the high-level decision making
and we use a discrete-time model to represent the vehicle
kinematics at a roundabout intersection as follows,

x(t+ 1) = x(t) + v(t) cos
(
θ(t)

)
∆t, (1a)

y(t+ 1) = y(t) + v(t) sin
(
θ(t)

)
∆t, (1b)

v(t+ 1) = v(t) + a(t) ∆t, (1c)
θ(t+ 1) = θ(t) + ω(t) ∆t, (1d)

where x(t) and y(t) represent, respectively, the vehicle’s
position in the x-direction and y-direction at the discrete time
t; v(t), a(t), θ(t), and ω(t) are, respectively, the vehicle’s
speed, acceleration, yaw angle and yaw rate at t; ∆t is
the time step size. An action, denoted by γ, is an input
pair (a, ω) to the model (1). In this paper, we assume that
the vehicle can choose actions from a finite action set,
Γ = {γ1, γ2, . . . , γm}, to execute.
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B. Scenario of interest

In this paper, we model the vehicle-to-vehicle interactions
at a roundabout intersection, see Fig. 1(a). A vehicle can
enter or exit the roundabout in the directions indicated by the
blue arrows. When in the roundabout, all vehicles must travel
counter-clockwise (indicated by the orange arrows). In this
paper, we consider the interactions between two vehicles, the
ego vehicle (represented by the blue solid box in Fig. 1(a))
and the opponent vehicle (represented by the red solid box
in Fig. 1(a)). The double lines indicate the front ends of the
vehicles.

(a) (b)

Fig. 1. The roundabout intersection and traffic scenario to be considered.

C. Reward function

The vehicle decision making process is based on receding-
horizon optimal control: At each time step t, the vehicle
selects a sequence of actions Γ(t) = {γ(t), · · · , γ(t+n−1)}
to maximize a cumulative reward over a horizon of length

n, R(t) =
n∑
j=1

λj−1R(t + j), where R(t + j) represents a

stage reward at step t+ j over the horizon, and λ ∈ [0, 1] is
a discount factor.

The stage reward function, R(t), is defined as

R(t) = wᵀΦ(t), (2)

where Φ(t) = [φ1(t), φ2(t), φ3(t), φ4(t), φ5(t), φ6(t)]
ᵀ is

the feature vector at t, and w is the weight vector that
contains the weights for the features.

The feature φ1(t) is an indicator that characterizes the
collision status of the vehicle. We bound the geometric
contour of the vehicle by a rectangle (the dashed boxes
in Fig. 1(a)). We refer to this rectangle as the collision
avoidance zone (c-zone). If the ego vehicle’s c-zone has an
overlap with the opponent vehicle’s c-zone, which indicates
a danger of collision, φ1(t) = −1; φ1(t) = 0 otherwise. In
this paper, the size of the c-zone is 5 [m]× 2 [m].

The feature φ2(t) is an indicator that characterizes the on-
road status of the vehicle. If the ego vehicle’s c-zone crosses
the road boundaries, i.e., the ego vehicle’s c-zone has an
overlap with the gray areas in Figure 1(a), φ2(t) = −1;
φ2(t) = 0 otherwise.

The feature φ3(t) characterizes the distance-to-objective
status of the vehicle. We define φ3(t) as

φ3(t) = − |xr − x(t)| − |yr − y(t)|, (3)

where (xr, yr) are the coordinates of a reference point on
the vehicle’s objective lane.

The feature φ4(t) characterizes the safe separation of the
ego vehicle from the opponent vehicle. When driving in
traffic, a vehicle is supposed to keep a reasonable distance
from its surrounding vehicles to improve safety. We define a
safety zone (s-zone) that over-bounds the vehicle’s c-zone
with a safety margin. If the ego vehicle’s s-zone has an
overlap with the opponent vehicle’s s-zone, φ4(t) = −1;
φ4(t) = 0 otherwise. In this paper, the s-zone is concentric
with the c-zone and is 8 [m]× 2.4 [m] in size.

The feature φ5(t) penalizes crossing the lane markings
that separate traffic of opposite directions and driving into
a wrong lane (not the vehicle’s objective lane) when exiting
the roundabout. If either occurs, φ5(t) = −1; φ5(t) = 0
otherwise.

The feature φ6(t) rewards the vehicle’s speed, defined as
φ6(t) = v(t).

III. GAME THEORETIC DECISION MAKING

Based on the definitions of the features, the rewards of a
vehicle not only depend on its own states and actions, but
also depend on the states and actions of its opponent vehicle
(e.g., φ1(t) and φ4(t)). Such an interdependence reflects the
interactive nature of vehicle decision making in a multi-
vehicle traffic scenario. The receding-horizon optimal control
problem is thus formulated as: At each time step t, to select

Γ∗ego(t) = {γ∗ego(t), · · · , γ∗ego(t+ n− 1)} = (4)

arg max
γego(t+j)∈Γ

n−1∑
j=0

λjR
(
X(t+ j), γego(t+ j), γopp.(t+ j)

)
,

and execute γ∗ego(t) over one time step, where X(t) =
[xego(t), yego(t), θego(t), vego(t), xopp.(t), yopp.(t), θopp.(t),
vopp.(t)]

ᵀ represents the state of the traffic, which contains
both the ego vehicle’s states and the opponent vehicle’s
states; γego(t + j) is the ego vehicle’s action at t + j over
the horizon and is to be optimized, and γopp.(t + j) is the
opponent vehicle’s action at t+ j over the horizon and is to
be predicted. We note that for the two interacting vehicles,
either is the “ego vehicle” from its own perspective, and is
also the “opponent vehicle” from the other’s perspective, that
is, (4) can be used to describe the decision making of either
of the two vehicles.

To obtain Γ∗ego(t), the ego vehicle needs to predict the
sequence Γopp.(t) = {γopp.(t), · · · , γopp.(t + n − 1)}, which
contains the actions that the opponent vehicle executes over
the prediction horizon. Approaches such as data-driven driver
behavior prediction may be used for such predictions [12].
In this paper, we exploit a game-theoretic approach for such
predictions as it accounts for vehicle-to-vehicle interactions.

Our approach is based on the level-k game theory [13].
Level-k game theory relies on a hierarchical cognitive struc-
ture to model human reasoning in games. Each player is
assumed to be of a particular reasoning level, indicated by
k ∈ {0, 1, · · · }. A level-k player assumes that all other
players can be modeled as level-(k − 1) reasoners and acts
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accordingly. The development of the reasoning hierarchy
starts from a level-0 player’s model, which usually repre-
sents instinctive decision making without accounting for the
interactions between players. Then a level-1 player’s model
can be obtained by assuming that all the players except for
the ego player can be modeled as level-0 players. Based
on this assumption, a level-1 player’s model can predict
the actions of the other level-0 players, e.g., the sequence
Γopp.(t) in (4), and then compute its own optimal actions
Γ∗ego(t) based on (4). This procedure continues – a level-
k player’s model is generated by assuming that all other
players act according to level-(k−1) models, until the desired
highest level is obtained. This reasoning hierarchy has been
observed in human interactions for other application domains
by experimental studies and it is shown that humans are
commonly level-0, 1 and 2 reasoners [13], [14].

In [6], such a level-k game-theoretic framework is em-
ployed to model the driver and vehicle interactive behavior
at an unsignalized four-way intersection. By assuming that
a level-0 driver treats the other vehicles on the road as
stationary obstacles (this way, a level-0 driver may be viewed
as an aggressive driver in human traffic, who usually assumes
that the others will yield the right of way) and constructing
the corresponding level-1 and 2 driver models using the
procedure described above, we observe that the behavior of
a level-0 driver and that of a level-2 driver are similar as
they both represent aggressive drivers. Therefore, instead of
considering three driver levels (level-0, 1 and 2), we consider
two driver types, type-1 and 2, in this paper.

A type-1 driver model represents a conservative driver
who predicts the opponent vehicle’s actions based on the
assumption that the opponent vehicle’s driver is an instinctive
decision maker, who maximizes her cumulative reward (4) by
treating the other vehicles on the road as stationary obstacles.
On the other hand, a type-2 driver model represents an
aggressive driver who predicts the opponent vehicle’s actions
by assuming that the opponent vehicle’s driver is a type-1
driver. Indeed, the type-1/2 driver model meets the level-1/2
driver model defined in the level-k game-theoretic framework
described above.

Specifically, a type-1 driver selects actions, Γ
(1)
ego(t) =

{γ(1)ego (t), · · · , γ(1)ego (t+ n− 1)}, based on

Γ(1)
ego(t) = (5)

arg max
γego(t+j)∈Γ

n−1∑
j=0

λjR
(
X(t+ j), γego(t+ j), γ(0)opp.(t+ j)

)
,

where γ(0)opp.(t+j) represents the predicted opponent vehicle’s
action at t + j over the horizon under the assumption that
the opponent vehicle’s driver treats the ego vehicle as a
stationary obstacle. Note that based on this assumption, the
actions γ(0)opp.(t + j), j = 0, · · · , n − 1, are independent of
Γ
(1)
ego(t), and thus can be determined first.

Similarly, a type-2 driver selects actions, Γ
(2)
ego(t), based on

Γ(2)
ego(t) = (6)

arg max
γego(t+j)∈Γ

n−1∑
j=0

λjR
(
X(t+ j), γego(t+ j), γ(1)opp.(t+ j)

)
,

where {γ(1)opp.(t), · · · , γ(1)opp.(t + n − 1)} are computed using
(5) by switching the roles of “ego” and “opp.”

IV. ADAPTIVE GAME-THEORETIC AUTONOMOUS
VEHICLE CONTROL

A. Adaptive control strategy

Based on the type-1, 2 driver models, we develop an
autonomous vehicle (AV) control algorithm. At each time
step t, the AV controller predicts the opponent vehicle’s
actions over the horizon, Γopp.(t), based on an estimate of
the opponent vehicle’s driver type. Specifically, Γopp.(t) =

Γ
(1)
opp.(t) computed using (5) if the opponent vehicle’s driver is

estimated as type-1, and Γopp.(t) = Γ
(2)
opp.(t) computed using

(6) if the opponent vehicle’s driver is estimated as type-2
(with the roles of “ego” and “opp.” switched). Then, the
controller computes the optimal actions Γ∗ego(t) for the AV
to execute using (4) with the predicted Γopp.(t) substituted
in.

The estimate of the opponent vehicle’s driver type is
updated after each time step. Specifically, at time t + 1,
we compare the opponent vehicle’s actually applied action
γopp.(t) to the first action γ(1)opp.(t) in the sequence Γ

(1)
opp.(t) and

to the first action γ(2)opp.(t) in the sequence Γ
(2)
opp.(t). If γopp.(t)

matches γ(η)opp.(t) better for some η ∈ {1, 2}, we increase the
probability that the opponent vehicle’s driver can be modeled
as type-η.

Such an adaptive game-theoretic AV control strategy has
been tested versus different driver models for the opponent
vehicle at a non-roundabout type four-way intersection in [6],
and exhibits reasonable performance. The action sequences
Γ
(1)
opp.(t), Γ

(2)
opp.(t), and Γ∗ego(t) are computed based on (5),

(6), and (4) using a tree-search based method, which can be
computationally demanding when the prediction horizon is
large. Thus, in what follows, we propose an explicit online
implementation scheme exploiting function approximation
techniques, to avoid the need for solving optimization prob-
lems in real time.

B. Explicit online implementation

We note that a function g :
(
X(t), η(t)

)
7→ γ

(η(t))
opp. (t),

where η(t) ∈ {1, 2} indicates the opponent vehicle’s driver
type at t, is implicitly defined by (5) and (6) (with the roles
of “ego” and “opp.” switched). Given the traffic state X(t),
we denote the X(t)-section of g by gX(t) : η(t) 7→ γ

(η(t))
opp. (t).

The procedure to update the opponent vehicle’s driver type
estimate described in Section IV-A requires the inverse map
of gX(t),

(
gX(t)

)−1
: γ

(η(t))
opp. (t) 7→ η(t) ∈ {1, 2}. Such

an inverse map
(
gX(t)

)−1
may be multi-valued because at

some traffic states, the opponent vehicle may select the same
action γopp.(t) regardless of its driver types, e.g., when the
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two vehicles are far from each other. To have a single-valued
function so that it can be fitted using a function approximator,
we want to restrict

(
gX(t)

)−1
to be defined on a subset

of the state space of X(t), denoted by Xcritical, such that(
gX(t)

)−1
is single-valued on Xcritical. To find the set Xcritical

is to find the subset of the state space of X(t) where the
action γ(1)opp.(t) selected by a type-1 driver model is different
from the action γ

(2)
opp.(t) selected by a type-2 driver model.

More specifically, for each X(t), we compare γ(1)opp.(t) and
γ
(2)
opp.(t): if γ(1)opp.(t) 6= γ

(2)
opp.(t), X(t) ∈ Xcritical; X(t) /∈ Xcritical

otherwise. The construction of Xcritical can be done offline,
then approximated and described using a clustering neural
network (NNB).

After the set Xcritical is identified, when X(t) ∈ Xcritical,
through the function

(
gX(t)

)−1(
γopp.(t)

)
, we obtain an es-

timate of the opponent vehicle’s driver type at t, η(t)

(assuming that γopp.(t) = γ
(η)
opp.(t), for some η ∈ {1, 2}).

The function g−1
∣∣
Xcritical

:
(
X(t), γopp.(t)

)
7→ η(t) ∈ {1, 2} is

constructed offline and approximated using a neural network
(NNC).

Taking historical data into account, we update the AV
controller’s belief on the opponent vehicle’s driver type based
on

P(2)(t+ 1) = (1− β)P(2)(t) + β I{η(t) = 2}, (7)

where P(2)(t) represents the probability that the opponent
vehicle’s driver can be modeled as type-2, β ∈ [0, 1] is an
estimate update step size, and I{η(t) = 2} is an indicator
function, taking 1 if the event {η(t) = 2} is true and 0
otherwise.

Based on P(2)(t), the AV controller predicts the opponent
vehicle’s actions over the horizon, Γopp.(t), using different
models: If P(2)(t) < 0.5, the opponent vehicle’s driver is
more likely to be a type-1 driver, and thus the AV controller
sets Γopp.(t) = Γ

(1)
opp.(t). Otherwise, the opponent vehicle’s

driver is more likely to be a type-2 driver, and thus the AV
controller sets Γopp.(t) = Γ

(2)
opp.(t). Finally, the AV controller

computes the optimal actions Γ∗ego(t) using (4) with the
predicted Γopp.(t) substituted in. Similar to the function g
implicitly defined by (5) and (6), a control policy πego :(
X(t), η(t)

)
7→ γ∗ego(t) ∈ Γ, where η(t) ∈ {1, 2} indicates

the estimated opponent vehicle’s driver type at t, is implicitly
defined by (4). The policy πego is constructed offline and
approximated using a neural network (NNA).

With the use of the above three neural networks, we move
the computations to solve the optimization problems (4), (5),
and (6) from online to offline. The online control is policy-
based and requires only neural network evaluations, where
the policy adapts to the opponent vehicle’s driver by the
adaptation law (7). The overall structure of the AV controller
is shown in Fig 2.

C. Controller training

We randomly create states X(t), and compute Γ
(1)
opp.(t)

using (5) and Γ
(2)
opp.(t) using (6) (with the roles of “ego”

and “opp.” switched). If γ(1)opp.(t) 6= γ
(2)
opp.(t), we label X(t)

by ζ
(
X(t)

)
= 1; and ζ

(
X(t)

)
= 0 otherwise. This labeled

data set is used to train NNB .

Fig. 2. Structure of the proposed autonomous vehicle controller.

If ζ
(
X(t)

)
= 1, we label the pair

(
X(t), γ

(1)
opp.(t)

)
by

η
(
X(t), γ

(1)
opp.(t)

)
= 1, and label the pair

(
X(t), γ

(2)
opp.(t)

)
by

η
(
X(t), γ

(2)
opp.(t)

)
= 2. This labeled data set is used to train

NNC .
Finally, we compute the optimal actions Γ∗ego(t, η(t)) =

{γ∗ego(t, η(t)), · · · , γ∗ego(t + n − 1, η(t))} based on (4) with
Γopp.(t) = Γ

(η(t))
opp. (t), η(t) = 1, 2, substituted in, and label

the pair
(
X(t), η(t)

)
by γ

(
X(t), η(t)

)
= γ∗ego(t, η(t)). This

labeled data set is used to train NNA.
Table I lists the features and labels for the three neural

networks. Each data set is split into a training set and a
validation set with a ratio of 8:2. We use the same architec-
ture for each neural network (2 convolutional layers followed
by 6 fully connected layers) with different hyperparameters.
The validation accuracy of each neural network is shown in
Table I.

Neural Net Features Label Accuracy
NNA X(t), η(t) γ∗ego(t, η(t)) 97.4%
NNB X(t) ζ

(
X(t)

)
98.2%

NNC X(t), γ
(η)
opp.(t) η

(
X(t), γ

(η)
opp.(t)

)
96.7%

TABLE I
TRAINING FEATURES, LABELS AND VALIDATION ACCURACY.

V. SIMULATION RESULTS

In this section, we present simulation results to show
the performance of the adaptive game-theoretic AV con-
troller. The traffic scenario to be considered is shown in
Fig. 1(b). The vehicles are assumed to select actions from
the set in Table II. The weight in (2) is chosen as w =
[1000, 500, 5, 100, 50, 1]ᵀ. The discount factor in the cu-
mulative reward function is λ = 0.8, and the update step
size in the adaptation law (7) is β = 0.6.

action γ a [m2/s] ω [rad/s]
maintain (γ1) 0 0
accelerate (γ2) 2.5 0
decelerate (γ3) -2.5 0
hard brake (γ4) -5 0

turn left (γ5) 0 π/4
turn right (γ6) 0 −π/4

TABLE II
ACTION SET Γ.

324



We first test the AV controller’s performance versus op-
ponent vehicles controlled by type-1 or 2 drivers. We then
test the controller’s performance versus driver models that
may not act exactly as type-1 or 2 models. In particular,
we let human operators control the opponent vehicle using
a keyboard.

A. AV controller versus type-1/2 drivers
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Fig. 3. Interactions between the ego vehicle (blue) controlled by the
proposed AV controller and a type-1 opponent vehicle (red in (a-1) - (a-
4)), and a type-2 opponent vehicle (red in (b-1) - (b-4)), at t = 1.75 s,
t = 2.5 s, t = 3.75 s and t = 6.25 s.
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Fig. 4. Time histories of P(2)(t) corresponding to the simulations in Fig. 3.
(a) Versus a type-1 opponent vehicle. (b) Versus a type-2 opponent vehicle.

Fig. 3 (a-1) - (a-4) and (b-1) - (b-4) show the responses
of the ego vehicle controlled by the AV controller when it
encounters, respectively, a type-1 opponent vehicle and a
type-2 opponent vehicle. The initial conditions, X(0), for
both cases are the same. Fig. 4 shows the controller’s belief
histories on the opponent vehicle’s type, P(2)(t), over the
simulations. When interacting with a type-1, conservative
driver, the ego vehicle chooses to pass the roundabout first,
since it predicts that the opponent vehicle will yield the right
of way. When interacting with a type-2, aggressive driver,
the ego vehicle chooses to decelerate, yields the right of
way, and then accelerates to pass the roundabout after the
opponent vehicle passes.

We run 1000 simulations, where the initial conditions and
the types of the opponent vehicle are randomly generated,
to statistically evaluate the controller’s performance. The
success rate is 93.4%, i.e., in 934 out of 1000 simulation
runs, the ego and opponent vehicles successfully reach their
objective lanes without colliding with each other, without
driving off the road or crossing the lane markings that
separate traffic of opposite directions, and without causing a
deadlock (neither vehicle decides to enter the roundabout or
both vehicles get stuck in the middle of the roundabout).

B. AV controller versus human drivers

We next test the proposed AV controller versus opponent
vehicles controlled by human operators. We note that neither
do the operators know the mechanism behind the controller,
nor does the controller know the operators’ driving styles in
advance.

Fig. 5 shows the interactions between the ego AV and
two opponent human-controlled vehicles, and Fig. 6 shows
the controller’s belief histories P(2)(t) over the simulations.
In the first experiment

(
(c-1) - (c-5)

)
, the human operator

acts aggressively, so the ego vehicle yields the right of way
and the controller identifies the opponent vehicle as type-
2 (Fig. 6(a)). In the second experiment

(
(d-1) - (d-5)

)
, the

human operator accelerates and tries to pass the roundabout
first at the beginning. The controller thus identifies the
opponent vehicle as type-2 and decelerates to avoid collision.
However, the human operator realizes soon that he gets too
close to the AV, thus decelerates. Then the AV controller
updates its belief on the opponent vehicle’s type to type-1
(Fig. 6(b)) and accelerates to pass the roundabout first.

We run 70 simulations conducted by 7 different human
operators (10 trials for each person) to statistically evaluate
the controller’s performance. The success rate is 88.6%. We
note that the human operators may have driven the vehicle
more aggressively than they usually do in real driving since
there are no safety issues [15].

We note that our neural network-based online imple-
mentation is also computationally feasible – the average
computation time for the AV controller to identify the traffic
state status, update the opponent vehicle’s type estimate,
and then generate the ego vehicle’s action, is 34.1 [ms] in
total, running on a laptop with Intel Core I7 processor and
NVIDIA GeForce GTX GPU.
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Fig. 5. Interactions between the ego vehicle controlled by the proposed
AV controller (blue) and opponent vehicles controlled by human operator
1 (red in (c-1) - (c-5)), and by human operator 2 (red in (d-1) - (d-5)), at
t = 1 s, t = 1.5 s, t = 2.5 s, t = 3.25 s and t = 5 s.

VI. CONCLUDING REMARKS

In this paper, we described an algorithm for autonomous
vehicle control at a roundabout intersection. The algorithm
is based on a game-theoretic model representing the interac-
tions between the ego vehicle and an opponent vehicle, and
adapts to an online estimated driver type of the opponent
vehicle. We further proposed an explicit online implemen-
tation scheme exploiting function approximation techniques.
Simulation results were reported to show the feasibility of
the proposed control algorithm.
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Fig. 6. Time histories of P(2)(t) corresponding to the simulations in Fig. 5.
(a) Versus human operator 1. (b) Versus human operator 2.
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