
Computers & Operations Research 36 (2009) 329–343
www.elsevier.com/locate/cor

Pure cycles in flexible robotic cells
Hakan Gultekin, Oya Ekin Karasan, M. Selim Akturk∗

Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

Available online 10 October 2007

Abstract

In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the
machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure
cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as
well as parameters. We focus on two specific cycles among the huge class of pure cycles. We prove that, in most of the regions, either
one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles. We also prove that
the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider
the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle
time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Flexible manufacturing systems; CNC; Industrial robots; Cellular automation; Optimization; Production control

1. Introduction

A manufacturing cell which consists of a number of machines and a material handling robot is called a robotic cell. An
m-machine robotic cell can be seen in Fig. 1. Such manufacturing cells are used extensively in chemical, electronic and
metal cutting industries. In this study, we will restrict ourselves with the metal cutting applications in an environment
in which the machines are predominantly CNC machines so that the machines and the robot can communicate in a
real-time basis. These machines are highly flexible and capable of performing several different operations by fast and
inexpensive tool changes as long as the required tools are loaded in their tool magazines. There are no buffers at or
between the machines. Hence, at any time instant, a part is either on one of the machines, on the robot or at the input
or output buffer. Each of the identical parts to be produced is assumed to have a number of operations to be performed
on the machines. As a consequence of the flexibility of the machines, these operations can be performed in any order
on each of the machines. Furthermore, each operation can be assigned to any one of the machines. In order to use such
systems efficiently, problems including the scheduling of the robot moves and the determination of the machines to
perform each operation of each part should be solved. Throughout this study, these problems will be tackled with the
objective of maximizing the throughput rate.

There is an extensive literature on robotic cell scheduling problems as summarized in the surveys of Crama et al.
[1] and Dawande et al. [2]. Most of the research on this area assumed the cell to work as a flowshop-type system.
More formally, each part is assumed to visit all of the machines in the same order, machine 1 through machine m in

∗ Corresponding author. Fax: +90 312 266 4054.
E-mail address: akturk@bilkent.edu.tr (M.S. Akturk).

0305-0548/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2007.10.007

http://www.elsevier.com/locate/cor
mailto:akturk@bilkent.edu.tr

330 H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343

Linear Tracks
Robot

Input Buffer Output Buffer
Machine 1 Machine 2 Machine m

Fig. 1. m-Machine robotic cell.

an m-machine cell. Although this assumption might be valid for chemical or electroplating operations, it unnecessarily
limits the number of alternative solutions in a flexible manufacturing cell (FMC), such as the one studied in this paper.
Sethi et al. [3] developed the necessary framework for these scheduling problems and proved that for two machine
producing identical parts, the optimal solution is a 1-unit cycle, where an n-unit cycle is defined to be a robot move
cycle in which, starting with an initial state, the robot loads and unloads all of the machines exactly n times and returns
back to the initial state. Note that in an n-unit cycle exactly n parts are produced. A similar result for three-machine case
was proved by Crama and Van de Klundert [4]. However, the optimal solution is not necessarily a 1-unit cycle when the
number of machines is greater than three [5]. Flexible robotic cells have recently been a topic of research. For example,
in Akturk et al. [6], a robotic cell with two identical CNC machines possessing operational and process flexibility was
considered. Operational flexibility is defined as the ability to interchange the ordering of several operations and process
flexibility is defined as the ability to perform multiple operations on the same machine. For this problem, they proved
that the optimal solution is either one of the two 1-unit cycles or the only 2-unit cycle.

In this study, we consider a new class of robot move cycles, named the pure cycles, resulting from the flexibility of
the machines. Pure cycles are defined as the robot move cycles in which the robot loads and unloads all m machines
with a different part during one repetition of the cycle. The terminology “pure” is to reflect the fact that each part is
completely performed by only one machine and no part is transferred from one machine to another. Part movement
is from the input buffer to one of the m machines and from this machine to the output buffer. A different sequence of
loading and unloading operations leads to a different pure cycle. In earlier studies, we defined these cycles and showed
that they perform efficiently in two-machine [7] and three-machine cells [8] in comparison to flowshop-type robot
move cycles. These results are achieved by comparing one of the most simple and practical cycles among the class of
pure cycles with the flowshop-type robot move cycles. However, the general problem of determination of the best pure
cycle in an m-machine robotic cell was not tackled before. In this study we consider this problem.

This problem is somehow related with the parallel machine scheduling problem with a common server which can be
reviewed in Hall et al. [9]. However, in that literature the setup time of the machines is arbitrary for each job and is given
as a problem parameter. On the contrary, in our study, the setup time (transporting the part to the machine from the input
buffer and loading it) is a variable depending on the robot move sequence. Additionally, different from that literature,
the robot also performs the unloading of the machines. Finally, in that literature, it is assumed that a finite number
of parts is to be produced and typically the objective function is either the minimization of the makespan or the total
completion time. However, since we assume identical parts to be produced indefinitely and since the robot repeatedly
follows a computer program, we consider cyclic scheduling. In a related study from this literature, Abdekhodaee et al.
[10] considered scheduling of n different jobs on two parallel machines with the objective of minimizing the makespan
where each job has its own processing and setup times given as problem parameters. Knowing that the general problem
is NP-hard in the strong sense, they considered special cases of equal processing times and equal setup times. For the
case of equal processing times, which is more related to our study, the authors prove that the problem is NP-hard in the
ordinary sense when the setup times are small in comparison to the processing times and trivially solvable otherwise.

CNC machines possess several types of flexibilities. Such flexibilities are achieved by considering alternative tool
types for operations and loading multiple tools to the tool magazines of the machines. This study focuses on the
consequences of introducing such machine flexibilities to our system. We show that two specific pure cycles among

H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343 331

the huge class of feasible robot move cycles perform significantly better than the others and derive the regions of
optimality for these two cycles. For the remaining small region, we derive the worst case performance of these cycles.
Furthermore, our study also provides a very useful managerial insight into the FMC design problem. We need to study
the impact of design decisions, such as the number of identical CNC machines and the tool magazine capacity of each
CNC machine, on system capabilities, since these critical design issues affect the productivity as well as the investment
cost of the FMCs. We determine the optimal number of machines that minimizes the cycle time for both of these studied
pure cycles. The machining of a typical part can require a sequence of operations using many tools. The finite capacity
of tool magazines limits the set of operations that can be assigned to a machine. One of the possible disadvantages of
the pure cycles in comparison with the classical flowshop-type robot move cycles is the fact that we allocate a copy
of each required cutting tool to every CNC machine, which will increase the tool inventories. Furthermore, all the
required tools to manufacture a certain part must be loaded to the tool magazine prior to the actual machining, which
might necessitate a larger tool magazine (equivalently higher machine investment cost). As already discussed in Gray
et al. [11], tool magazine capacity is among the most significant parameters for the determination of expected system
throughput, yet little work has been done to evaluate the relative cost imposed on the system by the size of the tool
magazine. Therefore, we compare the pure cycles with the classical flowshop-type robot move cycles to assess the
marginal value of increasing tool magazine capacities on the cycle time and show that the proposed cycles dominate
all flowshop-type robot move cycles for an m-machine robotic cell.

In the following section, the notation and basic assumptions pertinent to this study will be introduced. In Section 3,
the pure cycles will be defined. Two specific pure robot move cycles will be distinguished and compared with the rest
of such cycles and with the classical flowshop-type robot move cycles considered in the existing robotic cell scheduling
literature in Section 4. Section 5 is devoted to the concluding remarks and future research directions.

2. Notation and assumptions

In this section we present the basic assumptions and the notation to be used throughout this study. Crama and Van
de Klundert [12] introduce the following definition for the representation of the flowshop-type robot move cycles.

Definition 1. Ai is the robot activity defined as: robot unloads machine i, transfers part from machine i to machine
i + 1, loads machine i + 1. The input buffer is denoted as machine 0 and the output buffer is denoted as machine
(m + 1).

We shall proceed with an example in order to explain flowshop-type robot move cycles and how they are represented
using these activities. Let us consider two-machine robotic cells for this example. There are two 1-unit cycles in a two-
machine robotic cell: S1 cycle is represented by A0A1A2 activity sequence and S2 cycle is represented by A0A2A1
activity sequence. S2 cycle starts with the state where the first machine is waiting for a part to be loaded, the second
machine is loaded with a part and the robot is in front of the input buffer just starting to take a part to load the first
machine. The first activity is A0; the robot takes a part from the input buffer and loads the first machine. Then in order
to perform A2, the robot travels from the first machine to the second machine. If the processing of the part is completed
when the robot arrives in front of the machine it immediately unloads the part, otherwise waits in front of the machine
to finish the processing and then unloads the part. Finally, it transports the part to the output buffer and drops the part.
In order to perform A1, it travels to the first machine and unloads the machine after waiting in front of it if necessary.
Later, it transports the part to the second machine and loads it. In order to perform the A0 activity of the next repetition
of the cycle, the robot travels back to the input buffer. Just after reaching this machine, the initial and the final states
become the same. Hence, the cycle is completed with one part produced. As is apparent, all parts pass through all of
the machines in the same sequence. This is why these cycles are called flowshop-type robot move cycles.

Such a definition of robot activities is necessary and enough for the traditional research in this area where the system
is assumed to be a flowshop. However, in this study, we assume that each machine has the capability of performing all
of the operations of a part. This flexibility allows the possibility of new cycles which can be represented by modifying
the robot activity defined above as follows:

Definition 2. Li is the robot activity in which the robot takes a part from the input buffer and loads machine i,
i = 1, 2, . . . , m. Similarly, Ui , i = 1, 2, . . . , m, is the robot activity in which the robot unloads machine i and drops
the part to the output buffer. Let A = {L1, . . . , Lm, U1, . . . , Um} be the set of all activities.

332 H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343

In an m-machine robotic cell there are exactly m loading and m unloading activities. We can define new cycles by
using these activities as follows:

Definition 3. Under a pure cycle, starting with an initial state, the robot performs each of the 2m activities (Li, Ui, i =
1, . . . , m) exactly once and the final state of the system is identical to the initial state.

Note that under these cycles all of the operations of each part are performed completely by one of the machines
and between two loadings of any one of the machines, all other machines are loaded exactly once. Each permutation
of the 2m activities defines a pure cycle. However, some permutations define the same pure cycle. For example, in
two-machine case, L1L2U1U2 and U1U2L1L2 are different representations of the same cycle. In this study, without
loss of generality we will assume that all cycles start with activity L1. As a result, after eliminating the different
representations, there exists a total of (2m − 1)! different pure cycles in an m-machine cell. This makes six cycles for
two-machine cells and 120 cycles for three-machine cells. In order to clarify the definitions, we list below all possible
cycles in a two-machine cell:

L1L2U1U2 L1L2U2U1
L1U1L2U2 L1U1U2L2
L1U2U1L2 L1U2L2U1

Let us analyse L1U2L2U1 cycle further in detail. Initially, the first machine is empty, the second machine is loaded
with a part and the robot is in front of the input buffer just starting to take a part. The robot transports the part to the
first machine and loads it. In order to perform U2, it travels from the first machine to the second machine, unloads the
second machine after waiting in front of it if necessary, transports the part to the output buffer and drops it. In order to
perform L2, the robot travels back to the input buffer, takes another part, transports it to the second machine and loads
it. In order to perform U1, it travels back to the first machine. If necessary, it waits in front of the machine, unloads it
and drops the part to the output buffer. In order to start the next repetition of the cycle, the robot travels back to the input
buffer. Just after reaching the input buffer, the cycle is completed. Note that two parts are produced in one repetition
of this cycle (the animated views of some of the pure cycles and the flowshop-type robot move cycles can be found at
the web site http://www.ie.bilkent.edu.tr/∼robot).

Before we proceed let us list the remaining notation to be used throughout the text:

Cm
i ith pure cycle in an m-machine robotic cell.

P total processing time of the parts on the machines.
� the load and unload time of machines by the robot. Consistent with the literature we assume that load-

ing/unloading times for all machines are the same.
� time taken by the robot to travel between two consecutive machines. The robot travel time is assumed to

be additive. That is, travelling from machine i to machine j is equal to |i − j |�.
TCm

i
cycle time of cycle Cm

i , that is, the total time required to complete the cycle.
�Cm

i
per unit cycle time of the cycle Cm

i , that is, the long run average time to produce one part.

One repetition of a pure cycle produces m parts. Hence, �Cm
i

= TCm
i
/m. The following example contrasts the

flowshop-type robot move cycles with pure cycles.

Example 1. Let us consider two-machine cells with �= 1, �= 2 and P = 22. In order to be able to compare flowshop-
type cycles with pure cycles we also need the partial processing times of the parts on the machines for the flowshop-type
robot move cycles. Let P1 = 14 and P2 = 8 so that P1 + P2 = P = 22, where P1 (P2) denotes the processing time of
each of the parts on the first (second) machine. Let us compare cycles S2 and L1U2L2U1 as defined previously. This
pure cycle is named as C2

2 according to the above notation. The Gantt charts in Fig. 2 depict these two cycles on the
same time line. Since one repetition of the C2

2 cycle produces two parts, the S2 cycle is repeated twice. The bold dashed
line in the middle of the Gantt chart of the S2 cycle illustrates the point where the first repetition is completed and the
second repetition is started. As it is seen, with the given parameters, �C2

2
= TC2

2
/2 = 38

2 = 19, whereas �S2 = 26. This

http://www.ie.bilkent.edu.tr/robot

H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343 333

Robot

Mc1

Mc2

Robot

Mc1

Mc2

Time

S 2
C

22

First repetition Second repetition

4 10 18 22 26 30 38 44 52

: Loading/unloading time

: Robot travel time

: Processing time

: Waiting/idle time

7

Fig. 2. Gantt charts for the S2 and the C2
2 cycles.

corresponds to 27% reduction in the unit cycle time when a pure cycle is used instead of an optimum classical flowshop
robot move cycle for this particular problem.

In the next section we will present a mathematical programming formulation for the problem and present the solution
procedure.

3. Solution procedure

We can formulate this problem as a travelling salesman problem (TSP), where each of the activities L1, . . . , Lm,

U1, . . . , Um represents a city to be visited. Let [clk] for l, k ∈ A be the 2m× 2m cost matrix for this TSP. In particular,
for activities l, k ∈ A, clk will correspond to the total travel time (including loading/unloading and transportation) in
between the completion of activity l and the completion of activity k, assuming that activity k immediately succeeds
activity l. Additionally, let wj denote the robot waiting time in front of machine j = 1, 2, . . . , m. Note that wj is zero
if the processing of the part is completed when the robot arrives in front of this machine to unload it. Otherwise, it is
equivalent to the remaining processing time. Let tl denote the time of completion of activity l ∈ A. Also, let vj denote
the total activity time of the robot in between just after loading machine j (tLj

) and arriving in front of machine j to
unload it (let taj

denote this time epoch). Hence we can represent wj as follows:

wj = max{0, P − vj }. (1)

taj
can be calculated using tUj

as follows: after arriving in front of machine j to unload it (time taj
), the robot waits for the

remaining processing time (wj), unloads the machine (�), transports the part to the output buffer ((m + 1 − j)�), drops
the part (�) (time tUj

). This makes a total of (2�+ (m+1−j)�+wj). As a result, taj
= tUj

− (2�+ (m+1−j)�+wj).
Calculation of vj differs according to the respective order of the Lj and Uj in the activity sequence representing the

pure cycle. If Lj precedes Uj in the activity sequence of a cycle, then as depicted in Fig. 3A, vj can be calculated to be
tUj

−(2�+(m+1−j)�+wj)− tLj
. Otherwise, as depicted in Fig. 3B, vj =T −(tLj

− tUj
+(2�+(m+1−j)�+wj)).

As a result, we have the following:

wj =
{

max{0, P − (tUj
− (2� + (m + 1 − j)� + wj) − tLj

)} if Lj precedes Uj ,

max{0, P − (T − (tLj
− tUj

+ (2� + (m + 1 − j)� + wj)))} otherwise.
(2)

Note that, if Uj immediately succeeds Lj , then after loading a part to machine j, the robot waits in front of the
machine to finish the processing of the part. Hence, the waiting time in such a case is equal to P. Since the tl values are

334 H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343

Fig. 3. Representation of the waiting times.

variables which depend on the sequence of the robot move activities, the waiting times are also variables. In order to
determine clk for l, k ∈ A, let us consider the four possibilities regarding the activity sequences l and k:

(1) Lj immediately succeeds Li , i �= j : Just after completing Li , the robot is in front of machine i. It travels to the
input buffer to take another part (i�), takes a part from the input buffer (�), travels to machine j (j�) and loads it
(�). In particular, cLiLj

= 2� + (i + j)�.
(2) Uj immediately succeeds Li : The robot travels from machine i to machine j (|i − j |�), if necessary waits in

front of the machine to finish the processing of the part (wj), unloads the machine (�), travels to the output buffer
((m + 1 − j)�), drops the part (�). Hence, cLiUj

= 2� + (m + 1 − j + |i − j |)�.
(3) Lj immediately succeeds Ui : Just after completing Ui , the robot is in front of the output buffer. It travels to the input

buffer ((m+1)�), takes a part (�), travels to machine j (j�) and loads it (�). In other words, cUiLj
=2�+(m+1+j)�.

(4) Uj immediately succeeds Ui , i �= j : The robot travels from the output buffer to machine j ((m + 1 − j)�), waits if
necessary (wj), unloads the machine (�), travels to the output buffer ((m + 1 − j)�), drops the part (�). This makes
cUiUj

= 2� + 2(m + 1 − j)�.

Let dlk denote the total time from the completion of activity l to the completion of activity k, l, k ∈ A. The distance
from any activity, l ∈ A, to a loading activity, Lj , j = 1, . . . , m, denoted by dlLj

, does not contain a waiting time in
front of machine j. However, the distance from any activity, l ∈ A, to an unloading activity, Uj , j = 1, . . . , m, denoted
by dlUj

, requires a waiting time in front of machine j, wj . Therefore, we have the following:

dlLj
= clLj

, ∀l ∈ A, j = 1, 2, . . . , m and

dlUj
= clUj

+ wj , ∀l ∈ A, j = 1, 2, . . . , m.

As a result, the matrix composed of the dlk values appears to be as follows:

Lj Uj

Li 2� + (i + j)� 2� + (m + 1 − j + |i − j |)� + wj

Ui 2� + (m + 1 + j)� 2� + 2(m + 1 − j)� + wj

The following is an example of a distance matrix for a three-machine cell:

L1 L2 L3 U1 U2 U3

L1 – 2� + 3� 2� + 4� 2� + 3� + P 2� + 3� + w2 2� + 3� + w3
L2 2� + 3� – 2� + 5� 2� + 4� + w1 2� + 2� + P 2� + 2� + w3
L3 2� + 4� 2� + 5� – 2� + 5� + w1 2� + 3� + w2 2� + � + P

U1 2� + 5� 2� + 6� 2� + 7� – 2� + 4� + w2 2� + 2� + w3
U2 2� + 5� 2� + 6� 2� + 7� 2� + 6� + w1 – 2� + 2� + w3
U3 2� + 5� 2� + 6� 2� + 7� 2� + 6� + w1 2� + 4� + w2 –

H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343 335

As can be observed, this time matrix is not solely composed of fixed parameters as in the classical TSP, but it also
consists of variables such as wi’s. Let xlk be the binary variable denoting whether activity l immediately precedes
activity k or not in the best pure cycle. Then the following formulation determines the pure cycle with the minimum
cycle time value:

Minimize T (3)

Subject to tk � tl + dlkxlk − (1 − xlk)M, ∀l, k ∈ A, l �= k, k �= L1, (4)

T � tl + xlL1(dlL1 − (2� + �)) − (1 − xlL1)M, ∀l ∈ A, (5)∑
k

xlk = 1, ∀l ∈ A, l �= k, (6)

∑
l

xlk = 1, ∀k ∈ A, k �= l, (7)

xlk ∈ {0, 1}, ∀l, k ∈ A. (8)

The formulation above minimizes the cycle time. Constraint set (4) guarantees that, if activity k immediately follows
activity l, then the completion of activity k is greater than or equal to the completion time of activity l plus the time from
the completion time of activity l to the completion time of activity k. In this constraint, M denotes a big number which
must at least be equal to the cycle time, T, so that if activity k does not immediately follow activity l, i.e., when xlk = 0,
then this constraint becomes redundant. We can determine a worst case value for the cycle time and use this value as M.
In order to determine the worst case value we will consider the three components of the cycle time separately. Namely,
the total loading/unloading time component, the total travelling time component and the total waiting time component.
Since all parts are taken from the input buffer, loaded to any one of the machines, unloaded after the processing is
completed and dropped to the output buffer, the total loading/unloading time is identical for all feasible pure cycles and
is equal to 4m�. The maximum waiting time required for one machine is equal to its processing time, P. For producing
m parts, the total waiting time is equal to mP. Finally, for each part, the robot transports the part from the input buffer
to machine i, i = 1, 2, . . . , m (i�), from machine i to the output buffer ((m+ 1 − i)�) and, in order to take another part,
the robot must travel from the output buffer to any one of the machines. Maximum travel time from the output buffer
is to the input buffer which is equal to ((m + 1)�). Hence, for m machines, the maximum total travel time cannot be
greater than 2m(m + 1)�. As a result, we can use as M value any value which is at least as large as 4m� + 2m(m + 1)

� + mP .
The second constraint states that the cycle time must be greater than or equal to the completion time of the last

activity in the sequence plus the return time from the position of the robot just after completing this last activity to the
input buffer (initial state of the system) denoted by dlL1 − (2� + �) in the constraint. If the last activity is a loading
activity, Li , then dLiL1 − (2� + �) = i� and if it is an unloading activity, Ui , then dUiL1 − (2� + �) = (m + 1)�. The
last two constraints are the classical assignment constraints of a TSP formulation.

Note that this formulation is a mixed integer nonlinear programming formulation. dlkxlk multiplication in constraint
(4) is the cause of nonlinearity. In order to linearize this, we consider loading and unloading activities separately. We
know that dlLj

xlLj
=clLj

xlLj
. However, dlUj

xlUj
=clUj

xlUj
+wjxlUj

. Let us introduce a new variable, ylUj
=wjxlUj

.
Then we can replace constraint (4) with the following constraints:

tLj
� tl + clLj

xlLj
− (1 − xlLj

)M, ∀l ∈ A, ∀j ∈ [1, . . . , m], l �= Lj , j �= 1, (9)

tUj
� tl + clUj

xlUj
+ ylUj

− (1 − xlUj
)M, ∀l ∈ A, ∀j ∈ [1, . . . , m], l �= Uj , (10)

ylUj
�wj − M(1 − xlUj

), ∀l ∈ A, ∀j ∈ [1, . . . , m], (11)

ylUj
�wj + M(1 − xlUj

), ∀l ∈ A, ∀j ∈ [1, . . . , m], (12)

ylUj
�MxlUj

, ∀l ∈ A, ∀j ∈ [1, . . . , m], (13)

ylUj
�0, ∀l ∈ A, ∀j ∈ [1, . . . , m]. (14)

The set of constraints (11)–(14) together force that if any activity l is immediately followed by an unloading activity
Uj(xlUj

=1), then ylUj
=wj . For the big number M in these constraints, we can use the same value determined already

for constraint (4). If xlUj
= 0, then the set of constraints (11)–(12) becomes redundant and (13) forces ylUj

= 0.

336 H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343

Additionally, the max term in Eq. (1) can be linearized with the inclusion of the following constraints:

wj �0, ∀j , (15)

wj �P − vj , ∀j . (16)

Furthermore, since vj has two alternatives as shown in Eq. (2), we can write these as the following set of constraints:

vj � tUj
− tLj

− (2� + (m + 1 − j)� + wj) − Mzj , ∀j , (17)

vj � tUj
− tLj

− (2� + (m + 1 − j)� + wj) + Mzj , ∀j , (18)

vj �T − (tLj
− tUj

+ (2� + (m + 1 − j)� + wj)) − M(1 − zj), ∀j , (19)

vj �T − (tLj
− tUj

+ (2� + (m + 1 − j)� + wj)) + M(1 − zj), ∀j , (20)

vj �T , ∀j , (21)

zj ∈ {0, 1}, ∀j . (22)

As a result we have the following mixed integer linear programming formulation:

Minimize T

Subject to (5).(22).

The TSP is a well-known NP-hard problem. The formulation above is more general than the classical TSP formulation
and requires a great amount of computational effort even if the number of machines in the cell is small. In our limited
computational study on 20 randomly generated problems, the average CPU time required to solve problems with
four machines was 7.72 s using CPLEX 9.0 commercial solver, whereas with five machines it was 1866.7 s. We only
performed a single run with six machines, and had to cease the run after 805184.4 s with a 7.33% optimality gap.
Consequently, we focused our attention on two specific pure cycles from the huge number of pure cycles of an m-
machine cell and showed that they perform very effectively compared to others. We will determine the regions of
optimality for these two cycles. For the remaining regions, we will derive their worst case performance bounds. Let us
first define these two cycles.

Definition 4. Cm
1 is the robot move cycle in an m-machine robotic cell with the following activity sequence: L1LmUm−1

Lm−1Um−2Lm−2 . . . U2L2U1Um.

Definition 5. Cm
2 is the robot move cycle in an m-machine robotic cell with the following activity sequence: L1UmLm

Um−1Lm−1 . . . U2L2U1.

In the first pure cycle, Cm
1 , in the initial state of the system, the machines 1 and m are idle and the rest of the machines

2 to m − 1 are already loaded with a part. In cycle Cm
2 , only the first machine is idle and the remaining ones are busy

in the initial state. In the following two lemmas we derive the cycle times of these two cycles.

Lemma 1. The cycle time of Cm
1 is the following:

TCm
1

= 4m� + 2m(m + 1)� + max{0, P − ((4m − 6)� + 2(m2 − 2)�)}. (23)

Proof. For the clarity of the presentation, the proof is placed in Appendix.

Lemma 2. The cycle time of Cm
2 is the following:

TCm
2

= 4m� + 2((m + 1)2 − 2)� + max{0, P − ((4m − 4)� + 2(m − 1)(m + 2)�)}. (24)

Proof. For the proof please refer to Appendix.

The following theorem provides a lower bound for the cycle time of the pure cycles. We will use this bound to prove
the dominance of these two cycles.

H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343 337

Theorem 1. For an m-machine robotic cell, the cycle time of any pure cycle is no less than

Tpure = max{4m� + 2m(m + 1)�, 4� + (2m + 2)� + P }. (25)

Proof. The first argument results from the following observation: any part to be produced with one of the pure cycles
is taken from the input buffer (�), loaded to one of the machines and unloaded after the processing is completed (2�)
and dropped to the output buffer (�), which makes a total of 4�. Since a cycle produces m parts, the total time amounts
to 4m�. Also for each part, the robot travels from the input buffer to output buffer and returns back either to take another
part or to complete the cycle which makes 2(m + 1)�. For all of the m parts this totals to 2m(m + 1)�. On the other
hand, the second argument of the lower bound is the minimum time between two consecutive loadings of any machine.
After loading any machine, the minimum time required before the robot can unload it is P. Let us consider machine
i without loss of generality. The robot unloads the machine (�), travels to the output buffer ((m + 1 − i)�), drops the
part (�), travels to the input buffer ((m + 1)�), takes a part (�), brings the part to machine i (i�) and loads the machine
(�). This makes a total of 4� + (2m + 2)� + P . �

In the following theorem, we compare Cm
1 and Cm

2 cycles with each other.

Theorem 2. If P < (4m − 6)� + 2(m2 + m − 3)�, then Cm
1 dominates Cm

2 ; else if P > (4m − 6)� + 2(m2 + m − 3)�,
then Cm

2 dominates Cm
1 . If P = (4m − 6)� + 2(m2 + m − 3)�, then both cycles perform equally well.

Proof. We will compare the cycle times of these two cycles in the following cases:

1. If P �(4m − 6)� + 2(m2 − 2)�, then TCm
1

= 4m� + 2m(m + 1)��4m� + 2((m + 1)2 − 2)� = TCm
2

.

2. If (4m − 6)� + 2(m2 − 2)� < P �(4m − 4)� + 2(m − 1)(m + 2)�, then TCm
1

= 6� + (2m + 4)� + P . If P = (4m −
6)� + 2(m2 + m − 3)�, then TCm

1
= TCm

2
= 4m� + 2((m + 1)2 − 2)�. Hence, if P < (4m − 6)� + 2(m2 + m − 3)�

that means TCm
1

< TCm
2

. Else ifP > (4m − 6)� + 2(m2 + m − 3)�, then TCm
1

> TCm
2

.
3. If P > (4m − 4)� + 2(m − 1)(m + 2)�, then TCm

1
= 6� + (2m + 4)� + P �4� + (2m + 2)� + P = TCm

2
.

This completes the proof. �

In the following theorem, we determine the regions of optimality of Cm
1 and Cm

2 cycles.

Theorem 3. 1. If P �(4m − 6)� + 2(m2 − 2)�, then Cm
1 is the optimal pure cycle.

2. If P �(4m − 4)� + 2(m − 1)(m + 2)�, then Cm
2 is the optimal pure cycle.

Proof. 1. If P �(4m − 6)� + 2(m2 − 2)�,

TCm
1

= 4m� + 2m(m + 1)� = Tpure.

2. If P �(4m − 4)� + 2(m − 1)(m + 2)�,

TCm
2

= 4� + (2m + 2)� + P = Tpure. �

In the following lemmas we consider the remaining region where (4m−6)�+2(m2−2)� < P < (4m−4)�+2(m−1)

(m + 2)�, and derive worst case performances of the Cm
1 and Cm

2 cycles. Let T ∗
m denote the optimal pure cycle.

Lemma 3. If (4m − 6)� + 2(m2 − 2)� < P �(4m − 6)� + 2(m2 + m − 3)�, then TCm
1

�(1 + 1/(2m)) · T ∗
m.

Proof. For P > (4m − 6)� + 2(m2 − 2)�, TCm
1

= 6� + (2m + 4)� + P . Then, we have two cases:

1. If P �(4m − 4)� + 2(m2 − 1)�, from Eq. (25), Tpure = 4m� + 2m(m + 1)�. Hence, we have the following:

TCm
1

T ∗
m

� 6� + (2m + 4)� + P

4m� + 2m(m + 1)�
.

338 H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343

Since P �(4m − 4)� + 2(m2 − 1)�,

TCm
1

T ∗
m

� (4m + 2)� + (2m2 + 2m + 2)�

4m� + 2m(m + 1)�
�1 + 1

2m
− (m − 1)�

4m� + 2m(m + 1)�
�1 + 1/(2m).

2. Else if P > (4m − 4)� + 2(m2 − 1)�, from Eq. (25), Tpure = 4� + (2m + 2)� + P . Hence, we have the following:

TCm
1

T ∗
m

� 6� + (2m + 4)� + P

4� + (2m + 2)� + P
= 1 + 2(� + �)

4� + (2m + 2)� + P
.

Since P > (4m − 4)� + 2(m2 − 1)�,

TCm
1

T ∗
m

< 1 + � + �

2m� + m(m + 1)�
< 1 + 1

2m
− (m − 1)�

2(2m� + m(m + 1)�)
< 1 + 1/(2m). �

Lemma 4. If (4m − 6)� + 2(m2 + m − 3)��P < (4m − 4)� + 2(m − 1)(m + 2)�, then TCm
2

< (1 + 1/m) · T ∗
m.

Proof. For P < (4m − 4)� + 2(m − 1)(m + 2)�, TCm
2

= 4m� + (2m2 + 4m − 2)�. Then, we have two cases:

1. If P �(4m − 4)� + 2(m2 − 1)�, from Eq. (25), Tpure = 4m� + 2m(m + 1)�. Hence, we have the following:

TCm
2

T ∗
m

� 4m� + (2m2 + 4m − 2)�

4m� + 2m(m + 1)�
= 1 + (m − 1)�

2m� + m(m + 1)�

= 1 + 1

m
− 2(� + �)

2m� + m(m + 1)�
.

Hence,

TCm
2

T ∗
m

< 1 + 1/m.

2. Else if P > (4m − 4)� + 2(m2 − 1)�, from Eq. (25), Tpure = 4� + (2m + 2)� + P . Hence, we have the following:

TCm
2

T ∗
m

� 4m� + (2m2 + 4m − 2)�

4� + (2m + 2)� + P
.

Since P > (4m − 4)� + 2(m2 − 1)�,

TCm
2

T ∗
m

<
4m� + (2m2 + 4m − 2)�

4m� + (2m2 + 2m)�
= 1 + (2m − 2)�

4m� + (2m2 + 2m)�

= 1 + 1

m
− 4(� + �)

4m� + (2m2 + 2m)�
< 1 + 1/m. �

4. Managerial insight

In this section we will compare the flowshop-type robot move cycles considered in the robotic cell scheduling
literature with the pure cycles considered in this study. Recall that in a flowshop-type robot move cycle, a part starting
from the first machine visits all machines in the same sequence where the last operation is performed by the mth
machine. A flowshop-type cycle can be defined as an “n-unit cycle” if one repetition produces n parts. This means
that all machines are loaded and unloaded exactly n times and each machine performs some specific operations on the
parts. In these cycles, robot makes a loaded travel only between two consecutive machines. However, in pure cycles, a
part is completely processed by only one machine. Robot makes a loaded move only between the input/output buffer
and a machine but not between two machines. In one repetition of a pure cycle all machines are loaded and unloaded
exactly once. Since there are m machines in the cell, one repetition of a pure cycle produces exactly m parts.

H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343 339

Interestingly, pure cycles are used extensively in industry, not because they are proved to be optimal but because
they are very practical, easy to understand and implement. The main question was to select the best pure cycle among
the many feasible pure cycle alternatives that were addressed in the previous sections. In what follows below, we prove
that the pure cycles are not only simple and practical but also dominate all classical flowshop-type robot move cycles.
As a final remark, in any pure robot move cycle each part is loaded and unloaded only once, which means less gaging,
probably one of the important reasons why this cycle is preferred in practice.

Let Tf s(m) denote the lower bound of the cycle times of the flowshop-type robot move cycles of an m-machine
robotic cell. The following theorem is proved by Gultekin et al. [7].

Theorem 4. (Gultekin et al. [7]) For an m- machine flowshop-type robotic cell, the cycle time of any n-unit cycle is no
less than

Tf s(m) = max{2m(m + 1)(� + �) + min{P, �}, 4m� + 4m� + (P)}. (26)

With the following theorem, we prove that pure cycles dominate the flowshop-type robot move cycles.

Theorem 5. Pure cycle Cm
1 dominates all flowshop-type robot move cycles.

Proof. In order to prove this theorem we will compare the lower bound of the cycle times of the flowshop-type robot
move cycles with the cycle time of the Cm

1 cycle and prove that even only the Cm
1 cycle dominates the flowshop-type

robot move cycles. The cycle time of the Cm
1 cycle is given in Eq. (23) and the lower bound of the cycle time of

flowshop-type robot move cycles is given in Eq. (26). We will compare these in the following cases:

1. If P ��, then

TCm
1

= 4m� + 2m(m + 1)� < (2m2 + 2m)� + 2m(m + 1)� + P = Tf s(m).

2. If � < P �(4m − 6)� + 2(m2 − 2)�, then TCm
1

= 4m� + 2m(m + 1)�. We have to consider the following cases with
respect to Tf s(m):

2.1. If P �2m(m − 1)� + (2m2 − 2m + 1)�, then

Tf s(m) = 2m(m + 1)� + (2m2 + 2m + 1)� > 4m� + 2m(m + 1)� = TCm
1

.

2.2. If P > 2m(m−1)�+(2m2−2m+1)�, then Tf s(m)=4m�+4m�+P . Since P > 2m(m−1)�+(2m2−2m+1)�,
we have

Tf s(m) = 4m� + 4m� + P > 4m� + 4m� + 2m(m − 1)� + (2m2 − 2m + 1)�

= (2m2 + 2m)� + (2m2 + 2m + 1) > 4m� + 2m(m + 1)� = TCm
1

.

3. If P > (4m − 6)� + 2(m2 − 2)�, then TCm
1

= 6� + (2m + 4)� + P . We have to consider the following cases with
respect to Tf s(m):

3.1. If P �2m(m − 1)� + (2m2 − 2m + 1)�, then

TCm
1

= 6� + (2m + 4)� + P �(2m2 − 2m + 6)� + (2m2 + 5)�

= 2m(m + 1)� − (4m − 6)� + (2m2 + 2m + 1)� − (2m − 4)�.

For m�2,

TCm
1

�2m(m + 1)� − (4m − 6)� + (2m2 + 2m + 1)� − (2m − 4)�

< 2m(m + 1)� + (2m2 + 2m + 1)� = Tf s(m).

3.2. If P > 2m(m − 1)� + (2m2 − 2m + 1)�, then

TCm
1

= 6� + (2m + 4)� + P = 4m� − (4m − 6)� + 4m� − (2m − 4)� + P .

340 H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343

For m�2,

4m� − (4m − 6)� + 4m� − (2m − 4)� + P < 4m� + 4m� + P = Tf s(m).

This completes the proof. �

This theorem proves that the set of pure cycles dominates all flowshop-type robot move cycles. As a result, if
the considered cell is an FMC consisting of CNC machines, then assuming the system to be a flowshop-type sys-
tem, as it is done in the current literature, results in suboptimal solutions. By fully utilizing the flexibility of the
machines, the throughput rate of these systems can be increased even further. Furthermore, with the reduced cycle
times (increased throughput), our results enable the justification of additional tool inventories that will be incurred
when loading a copy of every required tool to each one the tool magazines (this might also necessitate a larger tool
magazine).

Another factor affecting the throughput rates of such cells is the design of the cell. Most of the earlier research on
this considered operational problems such as finding the part input sequence and the robot move sequence. However,
the number of the machines in a cell can be considered as a decision variable and, for given parameters such as
the processing times on the machines, the robot travel times and the loading/unloading times of the machines, the
optimum number of machines that minimizes the cycle time can be determined. The results of such analysis are useful
for determining the equipment requirements and the designs of such cells. In the sequel, we determine the optimum
number of machines for the Cm

1 and Cm
2 cycles separately that minimizes the per unit cycle time, �S .

Let us first consider the Cm
1 cycle. The per unit cycle time for the Cm

1 cycle can be found by dividing the cycle time
given in Eq. (23) by m, which can be written as follows:

�Cm
1

= max{4� + (2m + 2)�, 2� + (6� + 4� + P)/m}. (27)

The following theorem determines the optimal number of machines to be used with the Cm
1 cycle for given P, � and �.

Theorem 6. The optimal number of machines, m∗, for the Cm
1 cycle is one of the two integers �(1/�)(�2 + (�P)/2 +

6�� + 8�2 − �)� or �(1/�)(�2 + (�P)/2 + 6�� + 8�2 − �)� + 1.

Proof. The first argument of the max function in Eq. (27), 4� + (2m + 2)�, is linear with respect to m and the sec-
ond argument, 2� + (6� + 4� + P)/m, is convex with respect to m. Since the maximum of two convex functions is
also a convex function, �Cm

1
is convex with respect to m. For such functions, the minimizer of the max function is

either the minimizer of one of the two functions or the intersection point of the two arguments of the max function.
The first argument is a linear increasing function with respect to m, for which the minimum is attained at m = 0.
However, the number of machines in the cell must be at least one. The minimum of the second argument is attained
for m → ∞. However, since the first argument is an increasing function, as m → ∞, 4� + (2m + 2)� → ∞.
Hence, this point cannot be a minimizer of the max function. Let us now consider the intersection point of the two
arguments:

4� + (2m + 2)� = 1/m(6� + (2m + 4)� + P).

After a few manipulations we get the following:

2�m2 + 4�m − (6� + 4� + P) = 0.

This equation has two roots, one of which is negative. However, since the decision variable is the number of machines,
we take the positive root:√

�2 + (�P)/2 + 6�� + 8�2 − �

�
.

Since the number of machines cannot be fractional, we take the smallest integer larger than and the largest integer
smaller than this value. The optimal solution is found by comparing these with each other and selecting the one which
gives the smallest cycle time value. �

H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343 341

Similarly, the following theorem determines the optimal number of machines for the Cm
2 cycle. The per unit cycle

time of the Cm
2 cycle can be found by dividing TCm

2
given in Eq. (24) by m as follows:

�Cm
2

= max{4� + 4� + 2m� − (2�)/m, 2� + (1/m)(4� + 2� + P)}. (28)

Theorem 7. The optimal number of machines, m∗, for the Cm
2 cycle is one of the two integers �(1/2�)(4�2 + 2�P +

12�� + �2 − 2� − �)� or �(1/2�)(4�2 + 2�P + 12�� + �2 − 2� − �)� + 1.

Proof. Both arguments of the max function are convex and maximum of these is also convex. The minimizer of the
first argument is m = √−1, which is not a real value. On the other hand, the minimizer of the second argument is
m → ∞. However, as m → ∞, 4� + 4� + 2m� − (2�)/m → ∞. Thus, this cannot be a minimizer of the cycle time.
As a consequence, the minimizer is the intersection point of the two arguments of the max function.

4� + 4� + 2m� − (2�)/m = 2� + (1/m)(4� + 2� + P).

After a few manipulations we get the following:

2�m2 + (4� + 2�)m − (4� + P) = 0.

This equation has two roots, one of which is negative. For the number of machines, we take the positive root:
√

4�2 + 2�P + 12�� + �2 − 2� − �

2�
.

Since the number of machines cannot be fractional, we take the smallest integer larger than this and the largest integer
smaller than this value. The optimal solution is found by comparing these with each other and selecting the one which
gives the smallest cycle time value. �

Next section concludes this study and suggests some future research directions.

5. Conclusion

In this study, an m-machine robotic cell used for metal cutting operations is considered. The machines used in
such manufacturing cells are CNC machines which are highly flexible. As a consequence, each part is assumed to be
composed of a number of operations and each machine is assumed to be capable of performing all of the required
operations of each part. We investigated the productivity gain attained by the additional flexibility introduced by the
CNC machines.

A new class of robot move cycles, namely the pure cycles, which resulted from the flexibility of the machines are
defined. The problem is formulated as a TSP, where we have a special time matrix. Due to the extensive computational
effort required to solve this formulation, we determined two specific pure cycles which perform effectively. We deter-
mined the regions of optimality for both of these cycles. For the remaining small region, we determined worst case
bounds for both of these cycles. We also proved that the set of pure cycles dominates all flowshop-type robot move
cycles. The results show that these proposed cycles are not only simple and practical but perform very efficiently as
well. As a design problem, we considered the number of machines in a cell as a decision variable and determined the
optimal number of machines for the two specific pure cycles. Extending the analysis to the multiple parts case can
be considered as a future research direction. In such a case, the determination of the part input sequence must also
be tackled which will certainly increase the complexity of the problem even further.

Acknowledgements

The authors would like to thank Prof. Gerd Finke from University Joseph Fourier, Leibniz-IMAG, France, for his
helpful comments on an earlier draft of this paper. This work is partially supported by a grant from Turkish Academy
of Science (TÜBA).

342 H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343

Appendix A. Derivation of the cycle times of Cm
1 and Cm

2

Proof of Lemma 1. Let tl be the completion time of activity l ∈ A. More specifically, if l = Li , then tl is the time
just after loading machine i. If l = Ui , then tl is the time just after dropping the part to the output buffer. Then, for the
cycle Cm

1 , we have the following:

tL1 = 2� + �,

tLm = tL1 + 2� + (m + 1)�,

tUi
= tL(i+1)

+ 2� + (m − i + 2)� + wi, i = m − 1, m − 2, . . . , 3, 2,

tLi
= tUi

+ 2� + (m + i + 1)� = tLi+1 + 4� + (2m + 3)� + wi, i = m − 1, m − 2, . . . , 3, 2,

tU1 = tL2 + 2� + (m + 1)� + w1,

tUm = tU1 + 2� + 2� + wm.

Since the cycle is completed after the robot returns back to the input buffer, the cycle time of the Cm
1 cycle can be

written as: TCm
1

= tUm + (m + 1)�. Considering the equations above, one can determine the following:

TCm
1

= 4m� + (2m2 + 2m)� + w1 + w2 + · · · + wm,

where wi denotes the waiting time in front of machine i. This can be represented as wi = max{0, P − vi}, where vi

denotes the time between loading machine i and the arrival time of the robot in front the same machine to unload it. We
can calculate these as follows: Let us first calculate v1. Just after arriving in front of the first machine, the robot waits
for the processing to be completed (w1), unloads the machine (�), travels to the output buffer (m�), drops the part (�),
travels to machine m (�), waits for the remaining processing time (wm), unloads the machine (�), travels to the output
buffer (�), drops the part (�), travels to the input buffer ((m + 1)�), takes a part (�), travels to the first machine (�),
loads it (�). This makes a total of 6� + (2m + 4)� + w1 + wm. Then, v1 is equivalent to the remaining time of a cycle.
That is,

v1 = TCm
1

− (6� + (2m + 4)� + w1 + wm) = (4m − 6)� + (2m2 − 4)� + w2 + · · · + wm−1.

Similarly,

vm = TCm
1

− (6� + (2m + 4)� + wm) = (4m − 6)� + (2m2 − 4)� + w1 + w2 + · · · + wm−1.

After arriving in front of machine i, i =2, 3, . . . , m−1, the robot waits for the remaining processing time (wi), unloads
the machine (�), travels to the output buffer ((m − i + 1)�), drops the part (�), travels to the input buffer ((m + 1)�),
takes a part (�), travels to machine i (i�), loads the machine (�). This makes a total of 4� + (2m + 2)� + wi . Hence, we
have the following:

vi = TCm
1

− (4� + (2m + 2)� + wi) = (4m − 4)� + (2m2 − 2)� + w1 + · · · + wm − wi, i = 2, . . . , m − 1.

Note that vm = v1 + w1 and vi = v1 + w1 + wm − wi + 2� + 2�, i = 2, 3, . . . , m − 1. We have two cases:

1. If v1 �P , then w1 = 0. Since vm �v1, then wm = 0. vi = v1 − wi + 2� + 2�. Let us consider these two cases. First
let wi = P − vi > 0. Then, vi = v1 − P + vi + 2� + 2� ⇒ P = v1 + 2� + 2�, which contradicts with v1 �P . As a
result, if w1 = 0, then wi = 0, for i = 2, 3, . . . , m.

2. If v1 < P , then w1 = P − v1. As a consequence, vm = v1 + P − v1 = P ⇒ wm = 0. From here, vi =
v1 + P − v1 − wi + 2� + 2� = P − wi + 2� + 2�. Let wi = P − vi > 0. Then, vi = P − P + vi + 2� + 2� =
vi + 2� + 2�, which is not possible. As a result, if w1 > 0, then wi = 0, for i = 2, 3, . . . , m.

Hence, w1 + w2 + · · · + wm = w1. As a result, TCm
1

is found to be as follows:

TCm
1

= 4m� + 2m(m + 1)� + max{0, P − ((4m − 6)� + 2(m2 − 2)�)}. �

H. Gultekin et al. / Computers & Operations Research 36 (2009) 329–343 343

Proof of Lemma 2. For the cycle Cm
2 , we have the following:

tL1 = 2� + �,

tUm = tL1 + 2� + (m)� + wm,

tUi
= tL(i+1)

+ 2� + (m − i + 2)� + wi, i = m − 1, m − 2, . . . , 2, 1,

tLi
= tUi

+ 2� + (m + i + 1)�, i = m, m − 1, . . . , 3, 2.

Since the cycle is completed after the robot returns back to the input buffer, the cycle time of the Cm
2 cycle can be

found as: TCm
2

= tU1 + (m + 1)�. Considering the above, one can determine the following:

TCm
2

= 4m� + (2m2 + 4m − 2)� + w1 + w2 + · · · + wm.

In this cycle, after arriving in front of machine i, i = 1, 2, . . . , m, to unload it, the robot waits for the processing to be
completed (wi), unloads the machine (�), travels to the output buffer ((m − i + 1)�), drops the part (�), travels to the
input buffer ((m+1)�), takes a part (�), travels to machine i (i�), loads it (�). This makes a total of 4�+ (2m+2)�+wi .
Then, vi is equivalent to the remaining time to complete the cycle. That is,

vi = TCm
2

− (4� + (2m + 2)� + wi)

= (4m − 4)� + 2(m − 1)(m + 2)� + w1 + · · · + wm − wi, i = 1, . . . , m.

Now let us consider the two possible cases that might arise:

1. If P �mini∈[1,...,m]{vi}, then wi = 0, for i = 1, 2, . . . , m.
2. If ∃k ∈ [1, . . . , m] such that P > vk , then wk = P − v1 = P − (4m − 4)� − 2(m − 1)(m + 2)� − ∑

i �=kwk . Hence,
w1 + w2 + · · · + wm = P − (4m − 4)� − 2(m − 1)(m + 2)�.

As a consequence, w1 +w2 +· · ·+wm =max{0, P − (4m−4)�−2(m−1)(m+2)�} and the cycle time is as follows:

TCm
2

= 4m� + 2((m + 1)2 − 2)� + max{0, P − ((4m − 4)� + 2(m − 1)(m + 2)�)}. �

References

[1] Crama Y, Kats V, Van de Klundert J, Levner E. Cyclic scheduling in robotic flowshops. Annals of Operations Research 2000;96:97–124.
[2] Dawande M, Geismar HN, Sethi S, Sriskandarajah C. Sequencing and scheduling in robotic cells: recent developments. Journal of Scheduling

2005;8:387–426.
[3] Sethi SP, Sriskandarajah C, Sorger G, Blazewicz J, Kubiak W. Sequencing of parts and robot moves in a robotic cell. International Journal of

Flexible Manufacturing Systems 1992;4:331–58.
[4] Crama Y, Van de Klundert J. Cyclic scheduling in 3-machine robotic flow shops. Journal of Scheduling 1999;4:35–54.
[5] Brauner N, Finke G. On cycles and permutations in robotic cells. Mathematical and Computer Modeling 2001;34:565–91.
[6] Akturk MS, Gultekin H, Karasan OE. Robotic cell scheduling with operational flexibility. Discrete Applied Mathematics 2005;145:334–48.
[7] Gultekin H, Akturk, MS, Karasan OE. Scheduling in robotic cells: process flexibility and cell layout. International Journal of Production

Research 2007, in press.
[8] Gultekin H, Akturk MS, Karasan OE. Scheduling in a three-machine robotic flexible manufacturing cell. Computers and Operations Research

2007;34:2463–77.
[9] Hall NG, Potts CN, Sriskandarajah C. Parallel machine scheduling with a common server. Discrete Applied Mathematics 2000;102:223–43.

[10] Abdekhodaee AH, Wirth A, Gan HS. Equal processing and equal setup time cases of scheduling parallel machines with a single server.
Computers and Operations Research 2004;31:1867–89.

[11] Gray AE, Seidmann A, Stecke KE. A synthesis of decision models for tool management in automated manufacturing. Management Science
1993;39:549–67.

[12] Crama Y, Van de Klundert J. Cyclic scheduling of identical parts in a robotic cell. Operations Research 1997;45:952–65.

	Pure cycles in flexible robotic cells
	Introduction
	Notation and assumptions
	Solution procedure
	Managerial insight
	Conclusion
	Acknowledgements
	Appendix A. Derivation of the cycle times of C1m and C2m
	References

