
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
 

ABSTRACT 

A simulation based learning mechanism is proposed in this 
study. The system learns in the manufacturing environment 
by constructing a learning tree and selects a dispatching 
rule from the tree for each scheduling period. The system 
utilizes the process control charts to monitor the perform-
ance of the learning tree which is automatically updated 
whenever necessary. Therefore, the system adapts itself for 
the changes in the manufacturing environment and works 
well over time. Extensive simulation experiments are con-
ducted for the system parameters such as monitoring 
(MPL) and scheduling period lengths (SPL) on a job shop 
problem with objective of minimizing average tardiness. 
Simulation results show that the performance of the pro-
posed system is considerably better than the simulation-
based single-pass and multi-pass scheduling algorithms 
available in the literature. 

1 INTRODUCTION 

One of the main functions of production systems is sched-
uling of limited resources. Scheduling problems encoun-
tered are stochastic and dynamic in nature. Thus, dispatch-
ing rules are commonly used in practice. There are 
hundreds of such rules in the literature.  The performance 
of these rules is usually tested by simulation. The results 
indicate that none of them is superior in every condition. 
Hence, the selection of appropriate rule/s is not a trivial 
task. Another result in the literature is that switching to the 
different rules (multi pass) yields better performance than 
using one rule (single pass) for the entire horizon. 

In a single-pass, a set of candidate rules is simulated and 
the one with the best long-run performance is selected and 
used during the whole planning horizon. On the other hand, 
multi-pass algorithms evaluate all the candidate dispatching 
rules at each short scheduling period and the best performer 
is selected to be used in that interval. Thus, in the long run, 

this process results in a combination of different dispatching 
rules. One of the shortcomings of this approach is that it re-
quires too much computer time to simulate the performance 
of each candidate dispatching rule. Also, the procedure de-
pends on the assumption that we know the probability distri-
bution functions and the parameters of the processing and 
arrival times. However, this may not be the case if the de-
mand patterns in the market and/or product types change 
rapidly, which is the situation for high tech industries. Also, 
the processing times may change due to the machines’ de-
preciation over time. Hence, the simulation models con-
structed to evaluate the performance of the rules might be-
come invalid after some time. 
 There are various studies in the literature that employ 
iterative simulation and artificial intelligence (AI) concepts 
for these applications. These are  Wu and Wysk (1988), 
Ishii and Talavage (1991),  Tayanithi, Manivannan, and 
Banks (1993), Shaw, Park and Raman (1992). Cho and 
Wysk (1993),  Jeong and Kim (1998), Pierreval and Me-
barki (1997), Kutanoglu and Sabuncuoglu (2001), and 
Suwa and Fujii (2003). 
  In this research, we develop a system to select the 
right dispatching rule among a set of candidate rules. The 
proposed system utilizes the intelligent machine learning 
techniques from computer science (i.e., data mining) and 
the process control charts from the statistical quality con-
trol as well as simulation. The objective of our system is to 
learn about the characteristics of the manufacturing system 
by constructing a learning tree and then selecting a dis-
patching rule for a scheduling period from this tree on-line. 
Therefore, we reduce the extensive simulation experi-
ments. Moreover, we use the control charts to monitor the 
actual performance of the learning tree. If these charts sig-
nal that the current learning tree begins to perform poorly, 
a new tree is constructed based on the recent information 
gathered from the manufacturing system via simulation. In 
this study, we also address to three important issues: how 
frequently should we update the dispatching and how fre-

 
 
 

A SIMULATION BASED LEARNING MEACHANISM FOR SCHEDULING SYSTEMS  
WITH CONTINUOUS CONTROL AND UPDATE STRUCTURE 

 
 

Gokhan Metan 
 

Industrial & Systems Engineering Department 
Harold S. Mohler Laboratory 

200 W. Packer Ave. 
Lehigh University 

Bethlehem, PA 18015, U.S.A. 

 Ihsan Sabuncuoglu 
 

Industrial Engineering Department 
Bilkent University 

Ankara, 06533 TURKEY 

   
   
   

2148



Metan and Sabuncuoglu 
 
quently should we monitor the performance of the manu-
facturing system that operates under a particular rule and 
how should we decide to update or continue with this rule 
at these monitoring points?” Both of these questions are 
also important for the success of the proposed system. 

The rest of the paper is organized as follows. In Sec-
tion 2, we present the proposed system.  We give experi-
mental design and the results of simulation experiments in 
Section 3. Finally, we explain the concluding remarks 
along with the future research directions in Section 4. 

2 PROPOSED SYSTEM: INTELLIGENT 
SCHEDULING 

The goal of the proposed system is to select the best dis-
patching rule (DR) among Candidate Dispatching Rules 
(CDRs) for a particular scheduling period. The general 
structure is shown in Figure 1. In this structure, there are 
five main subroutines, called modules. They operate in 
harmony to achieve the goal of selecting the best perform-
ing dispatching rule for each scheduling period (time inter-
val during which a selected DR is used to schedule jobs) 
throughout the planning horizon. The database provides 
necessary data for both the learning module and the simu-
lation module. It holds the instance data, which is com-
posed of a number of attributes and a class value where at-
tributes take values of manufacturing conditions and class 
value corresponds to the DR selected for a specific condi-
tion, for the learning algorithm to generate the learning 
tree. The realized scheduling period data, which represents 
the actual events that occur in a specific scheduling period 
such as the processing times, interarrival times and system 
conditions at the beginning of the scheduling period, is also 
stored in the database for assessment of DRs via simula-
tion. Note that, realized scheduling period data is com-

posed of random number generator seed numbers when we 
are experimenting with our approach in a computerized 
environment rather than a real life manufacturing system.  

The Simulation module is used to measure the per-
formances of the candidate dispatching rules. The simula-
tion module is invoked by the process controller module 
whenever necessary. The simulation module’s outputs (in-
stance data) are sent to the database. These results are then 
used by the learning module to generate the learning tree. 
The learning module is mainly composed of two parts: 
learning module-1 (LM1) and learning module-2 (LM2) 
(see Figure 2). LM1 contains the learning tree that is con-
structed by the learning algorithm in LM2. Its responsibil-
ity is to select a new DR from the existing learning tree 
based on the current values of the system state attributes. 
The on-line controller module provides the current values 
of these attributes to LM1 and requests a new DR. In re-
sponse, LM1 recommends the best DR to the on-line con-
troller (see Figure 2). LM2 contains the learning algorithm 
that is used to generate the learning tree in LM1. As seen 
in Figures 1 and 2, the algorithm is invoked by the process 
controller module and the necessary data (instance data) is 
retrieved from the D2 database. C4.5 algorithms (Quinlan 
1993) are used to create the learning tree.  

Whenever a scheduling decision is to be made accord-
ing to the current scheduling strategy (e.g., hybrid ap-
proach), the learning tree selects a new dispatching rule 
and this decision is implemented by the on-line controller 
module (i.e., it employs the selected DR in actual manufac-
turing conditions). It also supplies the realized scheduling 
period data to the database and monitors the real system for 
new rule selection symptoms, the triggering events that are 
defined in the scheduling strategy to answer the question of 
“when-to-schedule”. The process controller module moni-
tors the performance of the learning tree. It takes its inputs  

 

 
 

Figure 1: Proposed System - General Structure 

2149



Metan and Sabuncuoglu 
 
(realized value of average tardiness) from the on-line con-
troller module and monitors the performance of the learn-
ing tree. When the performance of the current learning tree 
is found to be insufficient, it requests from the simulation 
module to provide new training data (instance data) for the 
learning module and then sends a signal to the learning 
module to update the current learning tree with this new 
data set. As a result, new dispatching rules are selected 
from this updated learning tree and the process continues 
in this manner. 

 

 
 

Figure 2: Learning Module 
 
The scheduling strategy employed in this research is 

composed of two critical decisions: how-to-schedule and 
when-to-schedule. The How-to-schedule decision deter-
mines the way in which the schedules are revised or up-
dated. As discussed in Sabuncuoglu and Goren (2003), 
there are mainly three issues: scheduling scheme, amount 
of data used, and type of the response. Our implementation 
is based on the “on-line” scheduling scheme. Specifically, 
DRs are selected by the learning tree and the scheduling 
decisions are made one at a time using these selected rules. 
In terms of the amount of data, we apply the “full” scheme, 
and as the type of response, we use the “reschedule” op-
tion, since a new DR is selected at any time when the per-
formance of the existing DR in use is found to be poor. 

“When-to-schedule” determines the responsiveness of 
the system to various kinds of disruptions. In this research  
a hybrid approach is employed for “when-to-schedule” de-
cisions, in which two different triggering events, called 
new rule selection symptoms, are defined for determining 
the time of selecting a new DR. These new rule selection 
symptoms and their definitions are given in Table 1. 

 
Table 1: New Rule Selection Symptoms 

 

One of the distinguishing features of the proposed 
scheduling system is its mechanism that continuously up-
dates the learning tree. This continuous update is important 
since the manufacturing system often undergoes various 
types of changes in time. In this context, the process con-
trol charts ( X  and R charts) act as a regulator of the learn-
ing tree. Moreover, the process control charts may also 
need to be updated due to changes in manufacturing condi-
tions. Hence, as the proposed system evolves over time, 
two important decisions need to be made: 

 
• Is it necessary to update the existing learning tree 

at current time t? 
• Is it necessary to update the existing process con-

trol charts at current time t? 
 

These two questions are to be answered every time when a 
new data point is plotted on the process control charts ( X  
and R charts) and the decisions are made by the rules de-
fined in the logical controller sub-module of the process 
controller module. These rules are defined in Tables 2 and 
3 and are adapted from the literature (see, for example,  
DeVor et. al. 1992).  

 
Table 2: Update Only Learning Tree Rules 

Signal Definition Apply to 
Extreme 
Points iX  or Ri points that fall beyond the 

control limits of the X and R charts, 
respectively. 

X and R 
charts 

Zone-A 
signal 

Two out of three iX  points in Zone-

A (between 2σ and 3σ) or beyond.  
X chart 

only 

Zone-B 
signal 

Four out of five iX  points in Zone-B 

(between σ and 2σ) or beyond. 
X chart 

only 

 
Table 3: Update Both Learning Tree and Process Control 
Charts Rules 

Signal Definition Apply to 
8 successive 
points 

8 or more successive points 
strictly above or below the 
centerline 

X and R 
charts 

2 successive 
signals from 
Rule Set-1 

Two successive occurrences 
of “Update Only Learning 
Tree Signals” 

X and R 
charts 

 
The learning module of the system generates a learn-

ing tree that relies on the manufacturing system character-
istics. Decisions on selecting dispatching rules are given by 
the existing learning tree on-line. In such a system, the 
learning algorithm requires a number of attributes that can 
provide valuable information about the current manufactur-
ing system conditions. These attributes, therefore, play a 
key role in the performance of the proposed system, since 
they impact the quality of the tree in the construction phase 

2150



Metan and Sabuncuoglu 
 
as well as in the decision phase (i.e., selection of the right 
DRs from the learning tree for a scheduling period). 
Hence, appropriate attributes are defined and used in such 
a way that they can represent a variety of important manu-
facturing system characteristics.  

3 EXPERIMENTAL DESIGN AND 
COMPUTATIONAL RESULTS 

3.1 Preliminary Analysis on System Parameters 

In this section, we present the results of the experiments on 
the important system parameters, namely the scheduling 
period (SPL) and monitoring period lengths (MPL). SPL is 
a time interval during which a selected DR is used to 
schedule jobs. The rule can be changed before the end of 
the scheduling period if the performance of the system is 
found to be worse than a threshold value at the monitoring 
points. MPL is therefore defined to be the time interval be-
tween two successive monitoring points. In the following 
two sections, we present the results of the experiments on 
SPL and MPL, respectively. The simulation experiments 
are carried out under the following assumptions: 

 
• The problem considered is a classical job shop 

problem with four machines given by Baker 
(1984). 

• There is a set of candidate dispatching rules 
(CDR) that can be used (i.e., shortest processing 
time (SPT), modified due date (MDD), modified 
operation due date (MOD) and operation due date 
(ODD)). 

 
When explaining the experimental results, we use three 

performance functions, called Multi-pass Performance 
(MultiPass), Best Performance (BestPerf) and the Learning 
Performance (LearnPerf). MultiPass is the average tardiness 
value achieved by the decisions of a multi-pass scheduling 
simulator. BestPerf is the minimum average tardiness value 
that can ever be achieved for a scheduling period, say pe-
riod-j, by using any rule given in the candidate rule set. In 
other words, it is the best average tardiness value that we can 
achieve in period-j subject to the parameter values of the 
system, such as the scheduling and monitoring period 
lengths, the candidate dispatching rules and so on. We can 
calculate this value for a scheduling period-j only if the re-
alization of random events during period-j is already known 
(i.e., we gather the scheduling period data of period-j). Fi-
nally, the learning performance in period-j, LearnPerf, is the 
realized average tardiness value of the rule selected by the 
learning tree. Note that, BestPerf gives a lower bound for the 
other two performance functions. 

In the simulation experiments, two levels of utilization 
(i.e., low and high) and two levels of due date tightness 

(i.e., loose and tight) are considered. The two levels of 
utilization are taken to be 80% and 90%. Due dates are set 
by using the TWK due date assignment rule. The high and 
low levels are set in such a way that the percent of tardy 
(PT) jobs is approximately 10% and 40% under the FCFS 
rule for the loose and tight due date cases, respectively. 

3.1.1 Simulation Results on SPL 

As can be seen in Table 4, 11 different levels of scheduling 
period lengths are tested in the experiments for four due 
date and utilization level combinations. The simulation re-
sults are taken in steady state with 20 replications each 
with 200000 minutes of a planning horizon. To find Best-
Perf, scheduling rules are compared under the same ex-
perimental conditions using the common random number 
(CRN) scheme. 

 
Table 4: Experimental Design of SPL 

Factors Levels 
Scheduling pe-
riod length 

50, 100, 200, 500, 1000, 2000, 5000, 
7500, 10000, 12500 and 15000 

 
The result for the loose due date and 90% utilization 

case is depicted in Figure 3. Note that, results under 80% 
utilization case show the same behavior, as well. In this 
figure, single-pass performances of each dispatching rule 
are also displayed in addition to BestPerf and single-pass 
performance of SPT is found significantly worse than the 
other rules. The single-pass performances of MOD, ODD 
and MDD are almost equal. Also, BestPerf displays an ex-
ponential decay behavior as a function of SPL. It is inter-
esting to note that for short scheduling period length selec-
tions, BestPerf is found to be significantly worse than the 
single-pass performances of the three dispatching rules 
(MOD, ODD and MDD). This is due to the fact that as 
SPL decreases, even though the selected rules seem to be 
the best for these short scheduling periods, the system 
switches to different rules so frequently that the perform-
ance of the system in the long run deteriorates. When we 
increase SPL, BestPerf begins to improve and converges to 
the single-pass performance of the rules MOD, ODD and 
MDD. Since the performances of the individual dispatch-
ing rules (MDD, ODD and MOD) are very close to each 
other in the long run for loose due-dates (as also stated by 
Baker 1984), switching between these rules doesn’t pro-
vide any benefit. Therefore, BestPerf converges to a limit 
(single-pass performance of the rules) showing the behav-
ior of an exponential decay function. 

For the tight due dates, the experimental results show 
different behavior to some extent (see Figure 4-a and b). In 
Figure 4-a, single-pass performances of each dispatching 
rule are also displayed in addition to BestPerf. It is shown 
in the figure that the single-pass performances of the four 
dispatching rules are significantly different than each other 

2151



Metan and Sabuncuoglu 
 
and MOD performs at least twice better than the other 
rules. In addition, BestPerf displays an exponential decay 
behavior as we increase SPL, but having a minimum value 
at some point. For example in Figure 4, BestPerf reaches 
its minimum value at point A (i.e., SPL equals to 1000 
minutes) and then it begins to deteriorate and converges to 
a limiting value when we further increase the scheduling 

 

 
 
Figure 3: BestPerf under 90% Utilization and Loose Due-
Dates 
 

 
a. 

 
b. 

 
Figure 4: 80% Utilization, Tight Due-Dates: (a) Complete 
Display of the Results. (b) Zoom-In Version around Point A. 

period length. We explain this interesting behavior as fol-
lows: choosing a shorter scheduling period length results in 
misdetection of the best dispatching rule for the sake of 
better long-run performance of the system (i.e., system 
switches between rules frequently). When we increase the 
scheduling period length, system begins to select the best 
rule combination and BestPerf reaches its minimum. But, 
when we continue to increase the scheduling period length 
further, performance deteriorates and converges to a higher 
value than the minimum. This higher value is close to the 
long-run performance of the most dominant dispatching 
rule, because the system begins to choose that rule most of 
the time. Thus, this significant increase in system perform-
ance is attributable to the loss of the improvements that can 
be achieved by switching to different rules during those 
long scheduling periods. 

We also check whether the minimum points achieved 
in the tight due date case are statistically significant or not. 
Figure 4-b shows the magnified portion of Figure 4-a 
around the minimum point. We say that the point A is sta-
tistically smaller than the two neighboring points (i.e., 
points B and C) and this was verified by the paired-t test 
with 95% confidence. 

3.1.2 Simulation Results on MPL 

In this section we address the questions of how far the 
monitoring points should be apart from each other (i.e., the 
MPL) and what should be the value of the β-parameter, 
which is a parameter that defines the threshold value on the 
average tardiness measured at monitoring points. That is, if 
the average tardiness observed at any monitoring point is 
larger than β times the expected long run performance of 
the system ( X ), we select a new DR at that point in time. 

A nested experimental design is given in Table 5, in 
which the factor monitoring period length (MPL) is nested 
inside the factor scheduling period length (SPL). Note that, 
MPL of 1000 for SPL being 1000 corresponds to the case 
of no monitoring at all, since they are equal. 12 levels of 
the β parameter are used in the experiments. The value of 
X  is taken to be 0.6795 and 1.195 for 80% and 90% utili-
zations, respectively. These values are the BestPerf values 
for 80% and 90% utilizations with respective SPLs (i.e., 
SPL=1000 for 80%, SPL=7500 for 90% utilization), which 
we found in the previous section. 

 
Table 5: Experimental Design of MPL and β-Parameter 

 
 

2152



Metan and Sabuncuoglu 
 

As a summary of our results, we found that for both 
80% and 90% utilizations, monitoring the system perform-
ance at discrete points in time improves our objective func-
tion (i.e., average tardiness). Also, experiments show that it 
is vitally important to select not only the right monitoring 
period length, but also the right β parameter for that MPL. 
For example, for the 90% utilization case, a MPL of 2500 
with a β value other than 1 results in worse performance 
measures than no monitoring case (i.e., mean tardiness 
values greater than 1.195). Moreover, for both 80% and 
90% utilizations, system performance improves with small 
monitoring period lengths. In addition to that, for small 
monitoring period lengths, small β values work better. For 
example, for 80% utilization, it is best to choose β=0.2 
when MPL=250 whereas β=1 when MPL=500. 

3.2 Performance of Learning-Based System 

In this section, we test our system with a dynamic learning 
tree (i.e., all of its modules discussed in Section 2 are acti-
vated). In other words, we now continuously monitor the 
quality of the learning tree by the control charts and update 
it whenever necessary. Thus, we call this experiment 
scheduling with a dynamic learning structure. 

In the simulation experiments, we consider a manufac-
turing system in which its internal parameters change in 
time (i.e., arrival rate, due date tightness levels). The de-
tails of the experimental design are given in Table 6. Note 
that, we use 5 planning horizons, where each horizon con-
tains 1000 scheduling periods. At the beginning of each 
horizon, we change some of the parameters of the manu-
facturing system. For example, in Table 6, the factor “pa-
rameter sequence for arrival rate” represents the value of 
the arrival rate of the jobs during each horizon. Specifi-
cally, in horizons 1, 2, 3, 4 and 5, jobs arrive exponentially 
with parameters 0.8, 0.9, 0.7, 0.9 and 0.8, respectively. For 
the construction of the learning tree, we consider two dif-
ferent strategies, which are represented by the factor 
“Training Data Set” in Table 6. When this factor is at its 
level Full, the learning tree is constructed based on all the 
accumulated data points since the beginning of the experi-
ment. On the other hand, if its level is set to Partial, the 
most recent 200 data points (1/5 of a horizon length) are 
used each time when the learning tree is updated. 

We consider three levels for the SM2 type: reactive, 
non-reactive and partially reactive. When SM2 type is re-
active, the multi-pass simulation model is updated immedi-
ately when there is any parameter change in the actual 
manufacturing environment. In other words, if the arrival 
rate of the jobs changes in real world, this information is 
made available for the multi-pass simulation model imme-
diately. Intuitively, this is impossible in real world imple-
mentation, because when any parameter of the manufactur-
ing system changes it can be made available to the 
simulation model of the system after a period of time. This 

delay is inevitable since detecting the shift in the parame-
ters requires data collection and statistical analysis. For this 
reason, we also consider the partially reactive level for 
SM2 type.  When the type is partially reactive, the multi-
pass simulation model is updated for the arrival rate 
changes, but with some time delay and an accuracy level. 
Specifically, arrival rate is updated with a delay of 200 
scheduling periods (1/5 of a horizon length) after the actual 
change in the real world takes place and set to the values in 
the sequence {0.8, 0.875, 0.725, 0.875, 0.8} for each hori-
zon 1 through 5, respectively. The time delay for the up-
date represents the passage of time for collecting sufficient 
data, which is necessary to statistically determine the new 
arrival rate. As another extreme, we consider SM2 type as 
non-reactive. In this case the model is not updated for any 
changes in the manufacturing environment. For example, 
when the arrival rate changes from 0.8 to 0.9 in the real 
world, the multi-pass simulation model continues to oper-
ate under the initial arrival rate, which is 0.8. 

 
Table 6: Experimental Design for Scheduling with Dy-
namic Learning Structure 

Factors Levels 
DR set {MOD, MDD, ODD, SPT}, {MDD, ODD, 

SPT} 
Sequence for arrival 
rate parameter 

{0.8, 0.9, 0.7, 0.9, 0.8} 

Horizon lengths 
(number of SPs) 

1000 

Training Data Set Full, Partial (1/5 of horizon length) 
SM2 type Reactive, non-reactive, partially reactive 
Due date tightness Adjusted, not adjusted 
(SPL, MPL, β) {(1000, 250, 0.2), (7500, 500, 0.2)} 

 
Another factor considered in the experiments is due 

date tightness and it has two levels, adjusted and not ad-
justed. For the adjusted case, we set the allowance factor k 
for setting the due dates such that the percent tardy is al-
ways 40% under the FCFS rule. For the not adjusted case, 
the flow allowance factor is always at the level 5.5 for all 
arrival rates. Therefore, the first case corresponds to a pol-
icy such that the manufacturing firm adjusts its due date 
setting policy when the arrival rate of the jobs changes and 
in the second case no action is taken for setting the due 
dates of the jobs when the utilization of the shop floor 
changes. 

The last factor that we consider in the experiments is 
the choice of scheduling and monitoring period lengths 
along with the β value. For the levels of this factor, we 
simply consider the best combinations that we previously 
determined for 80% and 90% utilization levels. Therefore, 
the two levels, (1000, 250, 0.2) and (7500, 500, 0.2), are 
considered for this factor. At the beginning of each ex-
periment, there is a warm up period with a length of 200 
scheduling periods to provide necessary initial data to the 
system to construct the first learning tree and the control 
charts. System statistics are initialized after the warm up  

2153



Metan and Sabuncuoglu 
 

Table 7: Average Tardiness Values of the Experiments for DR Set {MDD, ODD, SPT} 

  Training data set: Full Partial 

  (SPL, MPL, β) (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)

Due date tightness: SM2 type:      
MultiPass 1.18 1.25 1.18 1.25 
LearnPerf 1.1 1.11 1.13 1.2 Reactive 

BestPerf 0.98 1.02 0.98 1.02 
MultiPass 1.37 1.52 1.37 1.52 
LearnPerf 1.1 1.11 1.13 1.2 Non-reactive 

BestPerf 0.98 1.02 0.98 1.02 
MultiPass 1.25 1.32 1.25 1.32 
LearnPerf 1.1 1.11 1.13 1.20 

Adjusted 

Partially Reactive 

BestPerf 0.98 1.02 0.98 1.02 
MultiPass 2.38 1.79 2.38 1.79 
LearnPerf 2.3 1.75 2.42 1.9 Reactive 

BestPerf 2.15 1.71 2.15 1.71 
MultiPass 2.59 2.26 2.59 2.26 
LearnPerf 2.3 1.75 2.42 1.9 Non-reactive 

BestPerf 2.15 1.71 2.15 1.71 
MultiPass 2.49 2.02 2.49 2.02 
LearnPerf 2.3 1.75 2.42 1.9 

Not Adjusted 

Partially Reactive 

BestPerf 2.15 1.71 2.15 1.71 
 

Table 8: Average Tardiness Values of the Eexperiments for DR Set {MDD, ODD, SPT, MOD} 
  Training data set: Full Partial 

  (SPL, MPL, β) (1000, 250, 0.2) (7500, 500, 0.2) (1000, 250, 0.2) (7500, 500, 0.2)

Due date tightness: SM2 type:      
MultiPass 0.81 0.65 0.81 0.65 
LearnPerf 0.81 0.65 0.82 0.68 Reactive 

BestPerf 0.71 0.6 0.71 0.6 
MultiPass 0.96 0.73 0.96 0.73 
LearnPerf 0.81 0.65 0.82 0.68 Nonreactive 

BestPerf 0.71 0.6 0.71 0.6 
MultiPass 0.87 0.69 0.87 0.69 
LearnPerf 0.81 0.65 0.82 0.68 

Adjusted 

Partially Reactive 

BestPerf 0.71 0.6 0.71 0.6 
MultiPass 1.52 1.2 1.52 1.2 
LearnPerf 1.2 1.15 1.61 1.27 Reactive 

BestPerf 1.15 1.1 1.15 1.1 
MultiPass 1.67 1.35 1.67 1.35 
LearnPerf 1.2 1.15 1.61 1.27 Nonreactive 

BestPerf 1.15 1.1 1.15 1.1 
MultiPass 1.6 1.26 1.6 1.26 
LearnPerf 1.2 1.15 1.61 1.27 

Not Adjusted 

Partially Reactive 

BestPerf 1.15 1.1 1.15 1.1 

2154



Metan and Sabuncuoglu 
 
period and each experimental condition is run for 5 con-
secutive horizons (5000 scheduling periods) as it is given 
in Table 6. The results of the experiments, MultiPass, 
LearnPerf and BestPerf, are summarized in Tables 7 and 
8. Note that, BestPerf provides the lower bound values for 
both MultiPass and the LearnPerf. 

From these results, our first observation is that our 
learning-based scheduling system outperforms the simula-
tion-based scheduling approach (MultiPass) in 38 ex-
perimental conditions out of 48. In these cases, LearnPerf 
is closer to BestPerf more than MultiPass in a range of 
2.34% to 40.87%. In 2 cases, both MultiPass and Learn-
Perf are found to be equal. In the remaining 8 cases simu-
lation-based scheduling (MultiPass) performs slightly bet-
ter than LearnPerf (i.e., between 1.68% and 7.83% 
better). However, in these cases SM2 type is reactive, 
which is a difficult condition to achieve in the real world. 

When we compare LearnPerf for full and partial 
training data set cases, we see that using all available data 
always results in better performance (see Tables 7 and 8). 
At first glance, this seems to be counter intuitive because 
when parameters of the manufacturing system change, 
learning with the most recent data is expected to yield bet-
ter performance. However, the results show that our learn-
ing algorithm gets benefit from the past data as well as the 
recent data. 

The third observation is related with the selection of 
SPL, MPL and β values. For the rule set of {MOD, MDD, 
ODD, SPT}, the combination (7500, 500, 0.2) always 
gives better results for LearnPerf than the combination 
(1000, 250, 0.2) (Table 8) regardless of partial or full data 
sets being used. The reason why the combination (7500, 
500, 0.2) yields better results when MOD is in the rule set 
is that the performance of MOD dominates the perform-
ance of other rules when it is used for a long period of 
time. Thus, the combination (7500, 500, 0.2) yields better 
results than the combination (1000, 250, 0.2). For the rule 
set {MDD, ODD, SPT}, the best choice of (SPL, MPL, β) 
combination depends on the parameter “due date tight-
ness”. When the due date tightness factor is at its level not 
adjusted, the choices of (7500, 500, 0.2) results again in 
better performance than (1000, 250, 0.2) regardless of the 
partial or full data sets being used. But, when it is at the 
adjusted level, (7500, 500, 0.2) and (1000, 250, 0.2) result 
in better performance for the full and partial training data 
sets, respectively, (Table 7). These results stress the im-
portance of the appropriate selection of SPL, MPL and β 
values once more. 

As stated before, partially reactive SM2 is a more re-
alistic case where the simulation model used for the 
scheduling decisions of multi-pass approach is updated 
with some time delay and inaccuracy that may exist in de-
tecting the parameter changes in the actual manufacturing 
environment. Therefore, the comparison of the learning-
based (LearnPerf) and the simulation-based (MultiPass) 

systems for this factor level is of special importance. 
When the SM2 type is partially reactive, LearnPerf is bet-
ter than MultiPass in 14 cases out of 16. That is, Learn-
Perf is closer to BestPerf more than MultiPass in a range 
of 3.26% to 34.79% in these 14 cases. In the remaining 2 
cases, MultiPass is closer to BestPerf more than Learn-
Perf only 0.9%, which means they are almost equal. 

4 CONCLUSION 

In this paper, we present a learning-based scheduling sys-
tem for a classical job shop problem with the average tar-
diness objective. We perform extensive simulation ex-
periments. The results indicate that it is very important to 
select the appropriate values for SPL, MPL and β. For 
poorly selected parameters, performance of multi-pass 
methods can be worse than the single-pass performances 
of the individual dispatching rules. The results also indi-
cate that the proposed system performs better than the 
simulation-based multi-pass scheduling and the single-
pass scheduling. But for very large values of monitoring 
intervals, the performance of the proposed system deterio-
rates to the level of the performance of the multi-pass 
scheduling system. Hence, at this point we conclude that 
the monitoring process is really essential for our learning 
based algorithm. Moreover, when we add a competitive 
dispatching rule (i.e., MOD) to our rule set, the perform-
ance of the proposed system as well as the MultiPass fur-
ther improves (gets closer to BestPerf). Hence, deciding 
the rules in the candidate dispatching rule set is also im-
portant for the performance of our learning algorithm.  

REFERENCES 

Cho, H., and Wysk, R.A. 1993. A robust adaptive sched-
uler for an intelligent workstation controller. Interna-
tional Journal of Production Research 31 (4): 771-
789. 

DeVor, R. E., Chang, T-h., and Sutherland, J. W. 1992. 
Statistical Quality Design and Control. New Jersey: 
Prentice Hall. 

Ishii, N., and Talavage, J.J. 1991. A transient-based real-
time scheduling algorithm in FMS.  International 
Journal of Production Research 29 (12): 2501-2520. 

Jeong, K. –C., and Kim, Y.-D. 1998. A real-time schedul-
ing mechanism for a flexile manufacturing system: 
using simulation and dispatching rules. International 
Journal of Production Research 36: 2609-2626. 

Kutanoglu, E., and Sabuncuoglu, I. 2001. Experimental 
investigation of iterative simulation-based scheduling 
in a dynamic and stochastic job shop. Journal of 
Manufacturing Systems 20: 264-279. 

Pierreval, H., and Mebarki, N. 1997. Dynamic selection 
of dispatching rules for manufacturing system sched-

2155



Metan and Sabuncuoglu 
 

uling. International Journal of Production Research 
35: 1575-1591. 

Quinlan, J.R. 1993. C4.5 Programs for Machine Learn-
ing, California: Morgan Kaufmann. 

Sabuncuoglu, I., and Goren, S. 2003. A review of reactive 
scheduling research: proactive scheduling and new 
robustness and stability measures. Technical working 
paper, Department of Industrial Engineering, Bilkent 
University. 

Shaw, M.J., Park, S., and Raman, N. 1992. Intelligent 
scheduling with machine learning capabilities: the 
induction of scheduling knowledge. IIE Transactions 
24: 156-168. 

Suwa, H., and Fujii, S. 2003. Rule acquisition for rolling 
horizon heuristics in single machine dynamic sched-
uling. Proceedings of the 7th World Multiconference 
on Systemics, Cybernetics and Informatics 13: 279-
284. 

Tayanithi, P., Minivannan, S., and Banks, J. 1993. A 
knowledge-based simulation architecture to analyze 
interruptions in a flexible manufacturing system.  
Journal of Manufacturing Systems 11 (3): 195-214. 

Wu, S.D., and Wysk, R.A. 1988. Multi-pass expert con-
trol system – a control/scheduling structure for flexi-
ble manufacturing cells. Journal of Manufacturing 
Systems 7 (2): 107-120. 

AUTHOR BIOGRAPHIES 

GOKHAN METAN is a Ph.D. student in industrial and 
systems engineering in the Lehigh University. In 2002 he 
received his M.S. and 2000 B.S. degrees in industrial en-
gineering from Bilkent University. His research interests 
include scheduling, simulation, AI and supply chain man-
agement. 

IHSAN SABUNCUOGLU is a Professor of Industrial 
Engineering at Bilkent University. He teaches and con-
ducts research in the areas of simulation, scheduling and 
manufacturing systems. He has over 50 papers in various 
scientific journals. 
 

2156




