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1. Introduction

We define, for a natural number &, and a prime p, ¥ = 9¥(p, k) to be the largest natural
number such that p? | k, and define v(p, k) by

942, ifp=2and?2|Ek,
= k =
7= k) { ¥+ 1, otherwise.
We then put K(k) =[],z 0"
Let H.(k) denote the smallest number of variables s such that every sufficiently large
integer n = s (mod K(k)) can be written in the form

n=ph+ - 4pk, with p1,...,ps € A, (1.1)
where p1,...,ps are primes that lie in the set
A.={|m°] : m € N}.

This set is named after I.I. Piatetski-Shapiro, since he was the first to prove an analog
of the Prime Number Theorem (cf. [10]) for primes in A, for ¢ € (1,12/11).

An asymptotic formula for the number of representations of n as in (1.1) was given
by the authors in [1]. In this paper, we intend to give an upper bound for H.(k) using
the recent result of Kumchev and Wooley (cf. [8]). Before we state our result, we shall
give some definitions from their paper.

Put  =1—1/k, oy ' = k(k — 1), t = [tklogk| and u = [klog(k?/2)] — t. Then,
define

Ni=(0+oa/k) T A<i<ut),

k2 _ Ht—S
Aut2 = W)\wh
E2—k—1 . .
Ati = T gt Awnt B<J <0

Finally, set A = >7, ., A, v = [(k—A)/20k] and A = Ay Note that A is the
minimum of the \;’s.

Theorem 1.1. For sufficiently large k,
H.(k) < (4k — 2)logk — (2log2 — 1)k — 1,

whenever

A

1 1 .
SOt T5(A 1 o)+ 13X
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Remark 1.2. It is computed in [8] that

ER b os(vak) -3 -+ 0012,
20’k 2

where v is the fractional part of u +t. We can also estimate ) easily to see that k) €
[1.9,2.1]. Thus, the length of the interval that ¢ lies in is of order k3.

2. Preliminaries and notation
2.1. Notation

Throughout the paper, the letters k, m and n are natural numbers with k& > 4, and p
always denotes a prime number. The notation = ~ X means that X < z < 2X for any
real number X. Furthermore, ¢ > 1 is a fixed real number and we put 6 = 1/c.

Given a real number z, we write e(x) = e2™* {x} for the fractional part of z, |z for
the greatest integer not exceeding x. We write £ = log N.

For any function f, we put

Af(z)=f(=(z+1)°) = f(=2°),  (z>0).

We recall that for functions F' and real nonnegative G the notations F' < G and
F = O(G) are equivalent to the statement that the inequality |F'| < oG holds for some
constant o > 0. If F' > 0 also, then F' > G is equivalent to G < F. We also write F < G
to indicate that ' <« G and G < F. In what follows, any implied constants in the
symbols < and O may depend on the parameters c, ¢, k, s, but are absolute otherwise.
We shall frequently use € with a slight abuse of notation to mean a small positive number,
possibly a different one each time.

2.2. Preliminaries

Lemma 2.1 (Vaaler [3, Appendiz]). Put ¢¥(z) = x — |x| — 1/2. Then, there exists a
trigonometric polynomial

@)= > ane(hw), (an < A7)

1<|h|<H

such that for any real x,

@)~ 0 @) < Y bre(ha), (b < H).

|h|<H

Lemma 2.2 (Vaughan’s Identity [}, Prop. 13.}]). Let u,v = 1 be real numbers. If n > v
then,
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A(n) = u(r)logs— > A(r Zu — > w(r)Als),

rs=n rs=n rst=n
r<u > d< r<u
s>u u s<'u

where A is von Mangoldt’s function.

Definition 2.3. We put

gr(a,x) = Ze(apk), Z ep*e(aph)

pr~x p~T
pEA.

Lemma 2.4. Assume that ¢ > 1, and there are coprime integers a and q with 0 < a <
< P such that |qa — a| < Pz~ k Then,

fk(Oé,IC) _ gk(a,x) + O($(447146)/31P7/31)
for sufficiently large x.

Proof. We shall assume below that ¢ € (1,14/13) and P < 2(87179)/7 since otherwise
the given error is worse than the trivial estimate.

The function |—n’| — | —=(n + 1)°] serves as the characteristic function of the set A,
and it can be rewritten as

|—n?| = [~(n+ 1)°] = 6n°~" + Avh(n) + O(n®~2).

Thus,

fulayz) = gi(a,x) + Y ep'Pe(ap®)Av(p) + O(1/ logz).
p~T
By Lemma 2.1

> ' le(apt) AW =) (p) < H 2P+ H Y Y

p~z 1<h<H

E n'~%e(hn’

n~xT

Partial integration yields

Z e(hn?)|.

r<n<t

Zn <<x Sup

t~x

n~xT

Using the exponent pair (1/2,1/2) (cf. [3, eqn. 3.3.4]) we obtain the estimate

Z e(hn’) < h'/220/2 4 p=1g179 (h>0,t ~x).

r<n<t
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Thus, assuming 1 < H < x, we conclude that

S e elaph) A — ) (p) € H 0?0 4 B2, (2.)

b~z

Next, we observe that the sum

> ' e(aph)Ag(p)

p~z

is

> ent JA(n)AY* (n)| +O(2*/27?),

r<n<t

sup
log Ttz

where A is von Mangoldt’s function. Recalling the definition of *, noting that a;, <
|h|~! and that ¢y, (t) = e (h(t +1)° — ht’) — 1 satisfies

on(t) < AL, G (t) < [R[t° 2,

we derive by partial integration that

Z ent JA(n)Ay*(n) < sup Z |Fh(2)]

z<n<t e<ast 1<|h|IKH

where

Z A(n)e(an® + hn?).

r<n<z

We have shown so far

S Telapt) AU () < s 3 ()]0, (22)

p~T 1<|h|<H

Assume that there exist coprime integers a, ¢ with 0 < a < ¢ < P such that |[ga—al <
Pz=%. Then,

Fa(z)=q"" ) Slabig) Y An)e(Gy(n)), (2.3)

—q/2<b<q/2 r<n<z

where Gy(t) = BtF + ht® —bt/q, f = a — a/q and

S(a, b q) = i e <M> .

m=1 q
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We shall apply Lemma 2.2 with u,v > 1 and 1 < < z to write
> An n)) =31 + X2 + X,
r<n<z
where

:Z,u(r) Z e(Gy(rs))logs

r<u z/r<s<z/r
Y (T awnm) X et
r<u S r=wt z/r<s<z/r
wu
t<v

and

Z A(s Zu e(Gy(rs))

r<rs<z d|r

s>v
r>u dsu

Si=— 3 (X mwr®)e(Girs)).

rz<rs<z r=wt
u<rLuv wsu
Ny

By partial summation

¥ < 10ngsup Z e(Gb(rs))‘.

e z/r<s<z/r

r<u
We have

0?Gy(rs)

952 E(k —1)8r*s*=2 4 hé(6 — 1)s° =20,

Note that since P < z(817)/7 and ¢ < 4/3, it follows that P = o(z°). Furthermore,
|B] < Pz~*. Thus, the second term above dominates the first for sufficiently large x when
s ~ x/r; that is, f(s) =< r22°~2|h|, where f(s) = G}(rs). Applying van der Corput’s
estimate in [4, Cor. 8.13] to f(s) on (z/r, z/r], we conclude that

¥ < log?x (u|h|1/2335/2 + x175/2|h\71/2) . (2.4)
Next, using dyadic division we can write

Dy <%y |T(R,S)|
R,S
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where

T(R,S)=> 7 Y. Xe(Gy(rs))

r~R s~S
T<rs<z

with R > u, S > v, RS <z, and ||, |7-| < 1. We note that 33 < logz 35 5 |[T(R, S)],
where T'(R,S) is a similar bilinear sum with different coefficients and R, S satisfy u <

R < wv, RS < x. To estimate T'(R,.S), we apply Weyl-van der Corput inequality (cf.
[3, Lemma 2.5]) to get

, _(RS)? RS?
T(R,S)* < =+~ 1<§€r‘<LS<£%QSF(z,S,R)|, (2.5)

where 1 < L < S is to be chosen optimally, and

I'(¢,s,R) = Ze (Gp(r(s+1€)) — Gy(rs)) .

rel

Here, I C (R, 2R)] is an interval determined by the conditions r ~ R, z < sr, (s+{)r < 2.
We have

Gy(r(s +10)) — Gy(rs) = BrF ((s + O)F — s*) + hr® (s +€))° — s°) — bre/q.
Thus, we conclude that when r ~ R and for sufficiently large z,

0? (Gy(r(s+£)) — Gy(rs))
0s2

| =2 eR
Applying [4, Cor. 8.13] once again, we obtain
L(€,s,R) < RY2((|nl]2~ )2 + (&' =2t 71)2).

Inserting this bound in (2.5) and using [3, Lemma 2.4] to choose L € [1, S] optimally we
obtain

T(R,S) < R™1/0g0H0)/0|p|t/6 4 g1 =0/4 | =14
+R1/2x1/2 +R_1/4x(‘5+3)/4|h|1/4 +xR_1/4.

This leads to the estimate

.’L'_E(Eg—f—zg) < xv_1/2+(uv)1/2x1/2+a:1_6/4\h|_1/4+xu_1/4

2.6
+ u_1/6$(6+5)/6|h|1/6 + u_1/4x(5+3)/4\h|1/4, ( )
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Combining estimates in (2.4) and (2.6) and choosing v = (z/u)/? yields the bound

Z A )<< 331 5/4|h| 1/4+u1/4 3/4

r<n<z
+ u71/4:}C + u71/6$(5+5)/6|h|1/6

+ u71/4x(6+3)/4|h|1/4 + ux5/2|h|1/2.

Inserting this estimate in (2.3) and then applying the bounds (cf. [11, Lemma 4.1 and
Theorem 4.2])

S(a,b;q) < ¢"/**¢ ged(b,q) for b#0, S(a,0;q) < g' M,

which hold for (a,q) = 1, we deduce that

Fh(z) <<x8q1/2+25(x175/4|h\71/4+u1/4x3/4+ux5/2|h|1/2
—|—u_1/6x(5+5)/6|h|1/6+u_1/4m(5+3)/4|h|1/4+u_1/4gc).

Going back to (2.2) and applying [3, Lemma 2.4] to choose 1 < u < x optimally, we
obtain

Zcp 5 Aw (» )<<:1:3/2 8§ 4 e q1/2+2e( 1-5/4 pr3/4

p~T
+ (6+6)/8 [r9/8 + 2(36+10)/14 ;r17/14 + 278 + 20/2 73/2 (2.7)
4 (80+6)/10 f13/10 | .(5+8)/10 g11/10 | ,3/4 g
+ /6 rT/6 4 . (5+2)/4 g5/ | x(6+8)/1OH11/10)'

Combining (2.1) and (2.7) we see that x7°(fr(a, z) — gr(a, x)) is

< H- 14270 1 [1/2,1-6/2 | ;3/2-5 | pl/2 (x1*5/4H3/4 1 /2 3/
4 p(6+6)/8F79/8 | T/8p o 1(36410)/14 pr17/14 | (36+6)/10 f713/10
4 p(O48)/10 FF11/10 | (5+4)/6 pr7/6 x(5+2)/4H5/4>.

Using [3, Lemma 2.4] to choose H € [1, z] optimally yields the bound

2(4=20)/3 4 (10-48)/7 p2/7 | ,(30-106)/21 p5/21 | ,(24-835)/17 p4/17
1 p(23-80)/16 p1/4 | (44-146)/31 pT/31 | ,(32-106)/23 p5/23

1 p(6-26)/5p1/5 4, (18-65)/13 p3/13 | . (12-45)/9 p2/9

4 pl/2 (x(5+8)/10 4 p7/8 _|_$(36+10)/14).
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The result follows by noting that for P < 2(187170)/7 and ¢ € (1,4/3), which we assumed

(44-145)/31 p7/31

above, the term = dominates the other terms. O

3. Proof of Theorem 1.1

Given n € N, we put N = %nl/’“, and define the integral

1

Ik7c(n):/fk(a,N)}"(a)Qe(—an)da,
0

where

u+t

F(a) = fx(a,N)® H frla, N2,
j=1
Definition 3.1 (Major and minor arcs). For 1 < P < Nk/Q, we define the set of major
arcs M = M(P) as the union of the intervals
M(a,q; P) ={a €[0,1) : |go —a| < PN™*}

with 0 < a < ¢ < P and (a,q) = 1. We define the corresponding set of minor arcs by
putting m = m(P) = [0,1) \ 7.

Lemma 3.2. For s =2(u+t+v) +1, P < NUO—I)N38=s2 4nq any A > 0,

/fk(a, N)F(a)?e(—an)da = G, (n)Ji.s(n) + Oa (XN_k,C_S_A) 7
m

where X = N?A+20+L & (n) is the singular series

Gor(n) =) > (sﬂ(q)‘1 > 6(%’“/(1)) e(—na/q),
g21 1<a<q 1<z<gq
(a,q)=1 (z,q9)=1

and Jy s(n) is the singular integral

o0 u-+t+v
Do) = [ VEN) T] VENPe(-pn)ds,
i=1

—00

in which
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Remark 3.3. As noted in [7, eqn. (4.3)], for all sufficiently large integers n with n =
s (mod K(k)),

657]@(72)1]]{,5(71) = XL7°%

and the conditions s > 3k + 1 and n = s (mod K(k)) ensure that the singular series is

positive.
Proof. Let
u+t
G(a) = gl N)* [ 9w, N ).
j=1

For a € M(a, q; P) with coprime a,q satisfying 0 < a < ¢ < P, we have |ga — a| <
PN—% < PN~k Thus, Lemma 2.4 yields

fk(a,N’\") — gk(OZ,N’\i) + O(NA1(44—146)/31P7/31) (31)
for sufficiently large N. Furthermore, by [5, Theorem 2] we have

g°N*i(log N)©

,N)\i < P1/2N11)\¢/20+€
gk(a ) + (q+ NEX:

qa —al)1/?

for some absolute constant C' > 0. Here, the second term dominates for each ¢ with
1 <i < u+t, provided that

P < N9V/20, (3.2)
in which case, we have
gila, NM) < g7 /2NAite,

We rewrite Zj .(n) in the form

1 S

/H fr(a, z;)e(—an)da, (3.3)

0

where each z; stands for N*i: for some appropriate index 1 < j; < u + t. Note in this
notation, [[;_, #; = X. It follows from (3.1) and (3.3) that

l (fk(a,N)f(a)Q —gk<a,N>g<a>2)e<—an>da (3.4

is
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< Z Z qulekr (X(44145)/31P7S/31
1<g<P O<axq
(a,9)=1

s—1
YD (%‘1"-mi,z)(13_146)/31Pm/glq_(‘g_l_e)/QXl"'E)

1=11<i1<...<ig<s

< PN~k (X(44—145)/31P1+7s/31

s—1 Y,
Loxle Z gD/ Z (N’\(13’145)/31P7/31q1/2) )
1<q<P =1

13-14)/31 p7/311/2

In the last sum over £ above, we need NA( < 1, since otherwise the

estimate above is worse than the trivial estimate. Thus, with this assumption and the
fact that s > 5, the above estimate is

< PN~* (X(44*145)/31P1+75/31 i X1+5N,\(13145)/31P7/31> )

It follows that (3.4) is <4 X N~*£75=4 if we further impose the condition that
P < N(146_13)>\/38_86. (35)

Note that if we assume (3.5), then (3.2) also holds. Finally, it follows from [9, Theorem 3]
that for any positive A,

/Hgk(o" z;)e(—na)da = &, (n)Jy,s(n) + Oa (XNFLT74).
m i=1

Therefore, the result follows. O

Next, we deal with minor arc contribution. We choose P = N(146-13)A/38=s¢  Giyen
«a € m, use Diophantine approximation to find coprime integers a,q with 1 < a < g <
N¥/P such that |gqoa — a] < PN~F. Since o € m, ¢ > P. Using [6, Theorem 1.2] with
(0 =1,k >4 and p = p(k)) together with [8, Lemma 2.1] we derive that for any £ > 0,

gk(Oé,N) < leo'k/3+€ 4 N1+€P71/2
< Nltse (N—ak,/:% + N—(146—13)/\/76)_
Note that Theorem 1.2 in [6] can be used with the improved exponent oy, as is mentioned

in the proof of [8, Lemma 2.2] due to the recent developments in Vinogradov’s mean value
theorem.
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It follows from [2, Lemma 2.11] that for ¢ € (1,2) and any € > 0,
fk(OZ,N) _ gk(a,N) < le(é(lfA)fA)+s,

where A = (v —1)/(2v — 1) and

k(k + 192, if 4 < k<11,
L= 2_
2 L3k/L2?£k(/L§Jk/ 2i D oitks 1o
Note that
1 1

S1—A)—A<1-24= = 01/3.

<
2v—1  3k(k-1)
Therefore, combining above estimates, we can write

sup | fi(a, N)| < N'*E(N~1 4 N7,

acm

where 1 = (146 — 13)A/76, and 1z = §(1 — A) — A. Thus,

1
[15da N)F(@lda < N1 (N 4 N7) [ (F(@)Pda
m 0

1
< N1+5(N—771 +N*?72)(X/N)176/|g(a)|2da,
0

where the passage from the integrand |F|? to |G|? is justified by interpreting the inte-
gral as a weighted sum over the solution set of a system of Diophantine equations. By
[8, Lemma 2.3],

1
/ ‘Q(a)ﬁda <« XN-1-kte,
0

Hence, we conclude

/ | fr(a, N)F(a)?|da < (N7 + N7m2) N20-0)AFv)+2e y =k
m

=o(XLSNTH),

provided that
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. 1 A
c-1 <mm{(4y—2)(A+v)+u—1’ 152(A+v)—|—13)\}' (36)

It follows from Remark 1.2 that for sufficiently large k, A +v > 7—é“. We can also see that
v < 27k?*/2 and A < 2.1/k?. Then,

vo14y 21/, 81k

This shows that the second term on the right side in (3.6) is the minimum. Finally,
the proof of Theorem 1.1 follows by combining the results in this section and using
[8, Theorem 1].
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