
M A I N T E N A N C E  A N D  M A R Q I N A L  C O S T  A N A L Y S I S  

O F  A  T W O  U N I T  C O L D  S T A N D S Y  S Y S T E M

A T H E S IS

S U B M IT T E D  T O  T H E  D E P A R T M E N T  OP IN D y S T R lA L

E N G IN E ER IN G

A N D  T H E  IN S T IT U T E  OP EN G IN E E R IN G  A N D  S C IE N C E S

O F B IL K E N T  U N IV E R S IT Y

IN P A R TIA L  F U L F IL L M E N T  O F T H E  R E Q U IR E M E N TS

FOR T H E  D EG R E E O F 

M A S TE R  O F S C IE N C E

Chokri Ham daoui 

A u gu st, 1997



MAINTENANCE AND MARGINAL COST ANALYSIS 
OF A TWO-UNIT COLD STANDBY SYSTEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES 

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF 
MASTER OF SCIENCE

By
. , ■

V  -  C.. C, ./

Chokri Hamdaoui 

August, 1997



! 'о f''
Н36

iâ d i-
} Q - £i. ■> 0 d Ь



11

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Pro; (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, 
in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Selim Aktiirk

I certify that I have read this thesis and that in my opinion it is fully adequate, 
in scope and in quality, as a thesis for the degree of Master of Science.

/\ y-« 4· I 3 ^Assist. Prof. Emre Berk

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet^^ray 
Director of Institute of Engineering and Sciences



ABSTRACT

MAINTENANCE AND MARGINAL COST ANALYSIS OF A 
TW O-UNIT COLD STANDBY SYSTEM

Chokri Hamdaoui 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Ülkü Gürler 
August, 1997

The Marginal Cost Analysis (MCA) of maintenance policies is a concept 
gaining interest in the recent years. This approach, due to Berg, has been 
categorized as an Economics Oriented Approach, as different from the classical 
probability centered approach. The MCA has been successfully applied to the 
Age Replacement and the Block Replacement policies, and was shown to be 
flexible enough to permit extensions and generalizations.

In this thesis, we apply the MCA approach to a more complex model. We 
consider a two-unit cold standby system. Upon failure of the working unit in 
the time interval [0,T) the unit is replaced by the standby unit if available. 
If the standby unit is in repair, the system is down, and a downtime cost is 
incurred. The item inspected at time T is in one of two states: “good” , or 
“critical” . The good unit continues operation, whereas a unit in critical state 
is sent to repair. The switchover is immediate. We derive and compare the 
marginal cost function as well as the long-run cost per unit time function.

Key words: Maintenance Policies, Age Replacement, Block Replacement, 
Cold Standby System, Marginal Cost Approach.
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ÖZET

SOĞUK YEDEKLİ İKİ BİRİMLİ BİR SİSTEMİN 
BAKIM /ONARIM  VE MARJİNAL MALİYET ANALİZİ

Chokri Hamdaoui
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Ülkü Gürler 
Ağustos, 1997

Bakım/onarım politikalarının Marjinal Maliyet Analizi (MMA) ilgi kazan­
makta olan bir kavramdır. Berg tarafından ortaya atılan ve klasik olasılık 
yaklaşımından farklı olan bu kavram Ekonomik Bakışaçılı bir yaklaşımdır. 
MMA yaklaşımı yaşa bağlı ve blok yenileme politikalarında başarlı olarak uygu­
lanmış ve çeşitli yönlerde genelleştirilecek kadar esnek olduğu gösterilmiştir.

Bu tezde MMA daha komplike olan iki-birimli yedekli sistemlere uygu­
lanmıştır. Çalışan birim [0,T) aralığında bozulduğunda eğer yedek birim hazır 
durumdaysa onunla değiştirilmektedir. Eğer yedek birim tamirde ise, sistem 
durmakta ve bir durma maliyeti ortaya çıkmaktadır. T zamanında kontrol 
edilen birim “iyi” ya da “kritik” durumda olabilmektedir, “ iyi” durumda olan 
makina çalışmaya devam etmekte, “kritik” ise tamire gitmektedir. Makina 
değişimi anında olmaktadır. Bu çalışmada ortalama maliyet ve marjinal 
maliyet fonksiyonları bulunmakta ve karşılaştırılmaktadır.

Anahtar sözcükler: Bakım/onarım Politikaları, Yaşa Bağlı Yenileme, Blok 
Yenileme, Soğuk Yedekli Sistemler, Marjinal Maliyet Analizi.
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Chapter 1

INTRODUCTION

1.1 RELIABILITY AND DESIGN FOR RE­
LIABILITY

The field of reliability analysis dates back to the second world war. It was 
an outcome of problems with electronic systems designed during the 1940’s. 
The growth in complexity of the electronic systems prompted the US Air 
Force, Navy and Army to establish committees to investigate the reliability 

problem. In 1952, the Department of Defense established the Advisory Group 
on Reliability of Electronic Equipment (AGREE). In the recent years, the field 
of reliability has become important for systems design and development.

Reliability must be considered early in the design process of a system, 
where changes can be most easily and economically done. During this design 

process, the system configuration is chosen. Evidently, the choice of the system 

configuration has a direct effect on the reliability level. During the design 

phase, a preliminary reliability analysis should be performed, in addition to 
the other design factors. The system designer should be familiar with the 
basic reliability analysis concepts that can be used as performance measures to 
evaluate the system. It is important that the designer evaluate the reliability

1



levels, costs and trade-olFs to come up with a final decision or choice.

1.2 INTEGRATING MAINTENANCE AC­
TIVITY INTO PMS

Maintenance planning should be integrated in the Production Management 
System (PMS). In any organization, there are many resources such as 
workforce, equipment, machinery, work in process, raw materials, etc. However 
from a management viewpoint, the primary and most valuable resources are 
time and information. More specifically, timely information is of paramount 
significance, and is the key to success of today’s factory. The reason is obvious. 
For example, late deliveries of product may cause loss of customers’ good 
will. A plant may have the capacity to produce, but may not have the 
capacity to produce so many units in a certain period of time. Of course, 
the issue raised here is Production Activity Control (РАС), and its interface 
with PMS. We believe that reliability considerations should be integrated in 

РАС. Such considerations influence РАС in carrying out functions such as 
operation scheduling and loading, manufacturing order approval and release, 
capacity and quality control, process evaluation with respect to material and 
equipment costs and availability.

1.3 PERFORMANCE MEASURES AND RE­
LATED CONCEPTS

The concept of a system is needful.

CHAPTER 1. INTRODUCTION 2

D efin ition  1 A system is a collection of entities (e.g. people, machines, etc.) 

with a specified interaction to accomplish a goal.
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A system is completely characterized by its state vector, a collection of 
variables that contain all the information necessary to describe the system.

Grant & Leavenworth [29] suggest the following definitions for reliability.

Reliability is the probability of a device performing its purpose adequately 

for the period of time intended under the operating conditions encountered.

The reliability (of a system, device, etc.) is the probability that it will give 
satisfactory performance for a specified period of time under specified operating 
conditions.

The following definitions are suggested by AGREE.

Failure; the inability of an equipment to perform its required function.

Reliability: the probability of no failure throughout a prescribed operating 
period.

Similar definitions are due to Smith [54].

Failure: non conformance to some defined performance criterion.

Quality: conformance to specifications.

Reliability is the extension of quality into the time domain, and may be 
rephrased: the probability of no failure in a given period. Alternatively, quality 
is the projection of availability onto the space where time is zero.

These definitions are similar. However, there is no consensus as to what 

constitutes ‘ satisfactory performance.’ Naturally, this depends on the use 

as well as on the operating (or environmental) conditions. For example, a 
particular chip might have a short life under one set of specifications, and a 
long life under another set of specifications.

For repairable systems, the concept of minimal repair was first introduced 

to the literature by Barlow and Hunter [5]. Upon minimal repair, the repair
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action returns the system into an operational state in such a way that the 
system characteristics are the same as they were just before failure, i.e. the 
system is as good as old. In other terms, the repair restores operability, but 
makes no improvement. Mathematically, that means that the hazard function 
following a (minimal) repair is undisturbed, so that the failure process in the 
process is independent of this and of any other past repair action.

1.3.1 What Causes Failure?

There are many causes of failure, known as stresses. Smith [54] classifies 
stresses into two categories:

a) Environmental:

— Temperature,

— Radiation

— Shock (mechanical, thermal)

— Vibration

— Humidity

— Ingress of foreign body.

b) Self-generated:

— Power dissipation

— Applied voltage and current

— Self-generated vibration

— Wear

1.3.2 Preventive Maintenance

These are systems in which the operating units are sent for preventive 

maintenance according to an age-specific probability distribution. When the



age of an operating unit is in the interval { x ,x  +  A ), it is sent for preventive 
maintenance with probability o(a;).A, provided that this action of scheduling 
the preventive maintenance of the unit does not result in a system failure. 
Otherwise, the preventive maintenance is either deferred until one of the units 
under repair becomes available, or the preventive maintenance is cancelled. 
The concept of preventive maintenance is useful only when the failure rate 
of a unit is an increasing function of age, x, and the expected duration of 
maintenance is not larger than that of the repair time duration.

1.3.3 Performance Measures

CHAPTER 1. INTRODUCTION 5

We present some of the performance measures found in the literature of interest 
from the system’s design and analysis viewpoint.

One of the performance measures is termed serviceability, defined as the ease 
with which a system can be repaired. Clearly, ease of serviceability should be 
planned at the design stage, as it is a characteristic of the system’s design. 
However, this is not easy to measure on a numerical scale. Usually, it is 
measured by ranking, or by specifically developed rating procedures.

Maintainability is another performance measure, defined as the probability 
that a failed system can be made operable in a specified interval of downtime, 
which includes the total time that the system is out of service. Downtime 
comprises failure detection time, repair time, administration time and the 
logistics time connected with the repair cycle. The maintainability density 

function describes probabilistically how long a system remains in a failed state 
(or down).

A more restricted performance measure is termed repairability.

Repairability is the probability that a failed system will be restored to a 
satisfactory operating condition in a specified interval of active repair time. 

This performance measure helps quantify the workload of the repair facility, 

hence it allows a managerial support.



Operational readiness is the probability that either a system is operating or 
can operate satisfactorily when the system is used under stated conditions.

Availability is the probability that a system is operating satisfactorily at 
any point in time. It considers only operating time and downtime, thus it 
excludes idle time. Availability is a measure of the ratio of the operating time 
of the system to the operating time plus the downtime. Therefore, it includes 
both reliability and maintainability.

Intrinsic availability refers to the probability that a system is operating in 
a satisfactory manner at any point in time when used under stated conditions. 
Hence, time is confined solely to operating and active repair time. Availability 
is always smaller than or equal to the intrinsic availability. The difference 
between these two performance measures can be viewed as a measure of 
administrative and logistics time related to the repair cycle.

CHAPTER 1. INTRODUCTION 6

1.4 PRELIMINARIES

D efin ition 2 Lifetime of a component is the time, usually random, from the 
beginning of the operation until the occurrence of a failure.

The reliability, or survival probability, is formally defined.

D efin ition  3 The reliability of a component, with lifetime X  having a 
distribution F { · ), is F{x)  =  1 — F{x) .

D efin ition  4 The conditional reliability of a component at age t is the 

probability the component will survive x more time units given that it is 

operating at age t. Formally, F {x  \ t) =  if F{t)  >  0.

D efin ition  5 The failure rate r{t) at time t, of the random variable X  is,

r(t) =  M  
F { t y (1)



where F{t)  ^  0, and the density f { t )  exists.

A primary role is played by the failure rate function, sometimes called the 
hazard rate, force of mortality, and intensity rate. Failure rate of a component 
at time t is proportional to the probability that it will fail in the next short 
interval given that it is operational at the start of that time interval.

The failure rate has a particular usefulness in reliability analysis. The 
probability that a component will fail in the next A time units (for infinitesimal 
A) given that the component is surviving now is equal to r{t)A.  If r{t) is an 
increasing function of t, then the lifetime distribution F{t)  is an Increasing 
Failure Rate (IFR) distribution. This describes a class of distributions 
corresponding to adverse aging. Note that IFR class can alternatively be 
characterized by decreasing conditional reliability, F{x  | i), as a function of 
t, for each a; >  0. If r{t) is a decreasing function of t, then the lifetime 
distribution F{t)  is a Decreasing Failure Rate (DFR) distribution. In this 

case, aging is beneficial. A component whose lifetime distribution is in the 
DFR class has increasing survival probability, or equivalently, it has increasing 
conditional reliability, F{x  | f), as a function of f, for each a; >  0. The failure 
rate function r{t) at age t is derived from the conditional reliability at age t,

r(t) =  lim i [ l  -  F(A I i)l

A -o A  F{t)  ‘

=  ,im
A-^oA F{t)

CHAPTER 1. INTRODUCTION 7

F(i)

m
F{ty

1 j ^ + A )
A

Some useful identities are straightforwardly obtained from the above 

definitions. The reliability function and the failure rate function are intimately 
related to each other. Multiplying equation (1) by —1, then exponentiating.
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we have
- r { t ) m

F{ty (2)

Upon integrating both sides of equation (2) with respect to i,

— /  r{t)dt — \ogF{x)
J  0

F{x)  =

D efinition 6 The hazard function is the cumulative failure rate up to age x. 
Formally, it is

R(x) — f r{t)dt (3)
J O

The reliability function and the hazard function are related to each other, as 
follows,

F { x ) ^ (4)

D efin ition  7 Age Replacement Policy (ARP) is a policy where the component 

is replaced upon failure or at age T, whichever comes first. If ci is the 
replacement cost at failure and c ,̂ (t) <  C2 <  c\), is the replacement cost 
at age T , then the average long-run cost per unit time is given by,

CiF(T) +  C2F{T)
C(T)  =

¡0 m u
(5)

D efin ition  8 Block Replacement Policy (BRP) is a policy where the compo­

nent is replaced upon failure and at times T, 2T, 3T ,__  The expected cost per

unit time, in the long run, is given by,

Cim(T) +  C2
C (r )  = ( 6 )

where m{T) is the renewal function of failures, that is the expected number of 

failures in the interval [0, T ).



D efin ition  9 The Failure Replacement Policy (FRP) is a policy where no 
preventive replacements are made at all. FRP is a non-preventive policy, where 
action (replacement) is taken only after the failure has occurred.

Under FRP, the long-run average maintenance cost per component per 
unit time is where c is the replacement cost, and r is the expected life of a 

component. The result follows from the renewal theory. The interested reader 
is referred to Barlow & Proschan [7].

1.5 SCOPE OF THE THESIS

CHAPTER 1. INTRODUCTION 9

In this thesis, we study and perform Marginal Cost Analysis of a two-unit cold 
redundant standby system, supported by one repair facility. Our objective 
is to determine the optimal preventive maintenance time that minimizes the 
expected cost per unit time in the long run.

In Chapter 2, we review the related literature. Chapter 3 provides a 
complete description of the model. Two maintenance policies are studied. 
Their Marginal Cost Functions are derived. In Chapter 4, we present a general 
maintenance model and derive its objective and Marginal Cost Functions. 
Numerical results for this model are provided in Chapter 5. Finally, in Chapter 
6, we conclude and suggest some future research directions.



Chapter 2

LITERATURE REVIEW

The earlier work on reliability theory and replacement problems is the book, 
Barlow & Proschan [6]. The subsequent version of this book, Barlow & 
Proschan [7], is a good reference. It treats a wide range of topics, including 
coherent structure theory, the theory of extreme value distributions, fault tree 
analysis, availability theory, shock models, the Marshall-Olkin multivariate 
exponential distribution, as well as dependence of various kinds among random 
variables. This book is intended for reliability analysts, operations researchers, 
and statisticians.

Many survey papers covering the literature in maintenance and reliability 
theory have been published, including McCall [41], Pierskella & Voelker, Sherif 
& Smith [52], El-Neweihi & Proschan [21], Valdez-Flores & Feldman [57] 
and Cho & Parlai’ [17]. Review papers of standby systems include Osaki & 
Nakagawa [45], Kumar & Agarwal [38], and Yearout et al. [60]. Abouammoh & 

Quamber [1] trace the development and application of the statistical theory in 

modeling and solving problems in reliability engineering. They review criteria 

of aging; partial ordering; closure properties; discrete aging and shock model; 

and testing of exponentiality versus aging.

We start by single unit maintenance systems and policies, then we review 

some multi-unit systems. Finally, we review the two-unit redundant standby

10



CHAPTER 2. LITERATURE REVIEW 11

systems.

Berg & Epstein [12] describe and compare three failure replacement policies: 
the age replacement policy; the block replacement policy; and the failure 
replacement policy. They propose a rule to choose the best (least costly) policy 
under some conditions specified on model parameters. Langberg [40] studies 
and compares age replacement policy (ARP) and block replacement policy 
(BRP), based on number of failures and removals. The number of renewals in 
the time interval [0, s] under ARP is shown to be stochastically smaller than 
the number of renewals in the same interval under the corresponding BRP. The 

author introduces the concepts New Better Than Used (NBU) in sequence and 
New Worse Than Used (NWU) in sequence. Under the assumption of NBU in 
sequence, the author shows that the number of failures in [0, s] under ARP is 
stochastically smaller than the number of failures in [0, s] when no replacement 
is applied.

The age replacement policy is studied by Berg [9]. Using renewal theory, 
and continuous Markov decision processes, he proves that it is an optimal 
decision rule amongst all reasonable replacement policies. Block et al. [15] 
propose a general age replacement model with minimal repair. It is assumed 
that the cost of a minimal repair is dependent on the number of minimal repairs 
done so far. Two kinds of replacement are considered: planned (at age T) and 
unplanned replacement (upon failure, with probability p(y), where y is the 
age). They also consider a shock model, where the system is replaced at a 

fixed cost at periods T, 2T, 3T, etc. The authors derive the total expected 
long-run cost per unit time, and provide optimal results (replacement age, 
T*) for finite and infinite horizon. A similar study is done by Block et al. 
[14]. They investigate a maintenance policy where upon failure a maintenance 

action is undertaken. However, the maintenance action is a complete repair 

with probability p{t), and is a minimal repair with probability q{t) =  1 -  p{t), 

where t is the age at failure. Repairs are assumed to take negligible time. The 
authors establish that the successive complete repairs are a renewal process, 

and derive its interarrival distribution.



CHAPTER 2. LITERATURE REVIEW 12

Another variation of the age replacement model is the paper by Tilquin 
& Cleroux [56]. They investigate periodic replacement policies with minimal 
repair and discrete adjustment costs. The adjustment costs are those costs 
incurred to keep the system operating. They suggest the replacement age that 
minimizes the expected maintenance cost per unit time over an infinite horizon.

Kamien & Schwartz [3.3] study the problem of optimal maintenance policy 
for a machine subject to failure. It is assumed that the natural probability 
of machine failure is increasing with age, whereas the value of the machine’s 
output is independent of age. There is the option of selling the machine at any 
time, at a salvage value decreasing with time. The authors use optimal control 
theory, and distinguish between the machine’s natural failure rate and actual 
failure rate resulting from the application of a preventive maintenance policy, 
including when to sell the machine.

Cleroux et al. [18] treat the age replacement problem with minimal repair 
and random repair costs. They assume instant repair and replacement. At 

failure, the unit is replaced or repaired depending on the random cost of repair. 
Under this policy, at failure, the equipment is replaced if the repair cost is 
greater than ¿ci, where ci is the replacement cost and  ̂ is a predetermined 
fraction (parameter). They provide a method to determine the optimal 
replacement age that minimizes the long-run expected total maintenance cost 
per unit time.

Barlow & Hunter [5] define and investigate two preventive maintenance 
policies, one applicable to simple equipment and one applicable to large, 
complex systems. Policy I performs preventive maintenance after to hours 
of continuous operation. Policy II performs preventive maintenance on the 
system when its total number of working hours reaches U, even if operation 

has been interrupted because of failure. Failures are assumed to be repaired 

minimally. The system is assumed to restore its as good as new state after a 

preventive maintenance. The optimum policy is the policy which maximizes 

the fraction of up-time, over long time intervals. The policies are compared 
under various restrictions on Tg, Tg, and Tm, defined as the expected time



CHAPTER 2. LITERATURE REVIEW 13

to perform emergency maintenance, the expected time to perform scheduled 
maintenance, and the expected time to perform minimal repair, respectively.

A maintenance policy accounting for the accumulated damage is studied 
by Zuckerman [62]. It is assumed that upon failure, a system is replaced by 
a new identical one, and that the replacement cycles are repeated indefinitely. 
The system is subject to shocks occurring in a Poisson stream. The author 
establishes an optimal control limit policy, a policy in which the system is 
replaced either upon failure, or when the accumulated damage first exceeds 
a critical control level î *. He provides the optimal replacement policy that 
maximizes the total long-run average net income per unit time, and the policy 
that maximizes the total long-run expected discounted net income.

Most maintenance and replacement models consider deterministic time 
horizon. Banerjee &: Kabadi [4] study optimal replacement policies under 
random horizon. Upon failure of a functional part, the part is replaced 
immediately to keep the system in operation. There is the option to replace 
the part by two brands having different unit costs and life distributions. The 
authors determine a time-dependent replacement policy that minimizes the 
expected operational cost. They establish conditions that secure the existence 
of the optimal policy.

Technological advances and learning effects have also been considered in 
modeling some maintenance and replacement problems. Goldstein et al. 
[26] analyze a machine replacement model with an expected technological 
breakthrough. They assume a stationary environment of the time at which 
a new technology may appear, and devise a dynamic programming method to 
determine the optimal replacement age of an operating machine that minimizes 
the expected cost in the long run. Chand et al. [16] investigate the single 

machine replacement problem with learning. They assume that there is a setup 

cost to replace a machine, and that due to learning this cost is a nonincreasing 

function of the number of setups made so far. They develop a forward dynamic 
programming algorithm to determine how frequently replacements should be 
done over a finite horizon. They also obtain optimal results for what is
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effectively infinite-horizon problem, while only using data over a finite period 
of time. Nakagawa [43] study the effect of imperfect preventive maintenance. 
After repair, the unit is as good as new (i.e. repair is perfect). Preventive 
maintenance (PM) is imperfect is the sense that with probability p after PM 

the unit is the same as just before PM, and with probability p =  1 -  p it is 
as good as new. Repair and PM are assumed to take negligible time. The 
author studies three models: Model I the unit is repaired upon failure; Model 
II the unit undergoes minimal repair at failure; and Model III the failed unit 
is detected only by perfect PM. Expected cost rate is derived for each model, 
and is minimized and the optimal policy is determined.

After reviewing some well known maintenance policies, let us now focus 
on multi-state maintenance systems, with many units. Lam & Yeh [39] 
study optimal replacement policies of multistate deteriorating systems. They 
classify the deterioration of a system into a finite number of states (n 4- 2), 
and characterize it by a semi-Markov process. Furthermore, the failure rate 
function of the sojourn time distribution in each state is assumed to be 

independent of time. It is assumed that the system can be replaced at any point 
of time. Cost parameters, replacement and sojourn time distributions are state 
dependent. The authors investigate optimal state-age-dependent replacement 
policies that minimize the expected long-run cost rate. They show that under 
some regularity conditions the optimal policies have monotonic properties.

Kander [34] investigates inspection policies for deteriorating equipment. 

He deals with systems in which Â  +  1 quality levels can be diagnosed, 
characterizing them by a semi-markov process. He assumes no aging during 
the sojourn in any state. He develops optimal inspection policies yielding 
minimal loss. The optimal policy is a sequence of checking (inspection) times 
minimizing the loss per life cycle. He also deals with models of pure checking, 

truncated checking, and checking followed by monitoring.

Sharma et al. [51] study the transient behavior of multiple-unit reliability 

systems, characterizing a system by a Markovian process, representing the 

number of operable units at any point in time. They model the problem as a
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birth and death process. The repair time and lifetime distributions of a unit 
are assumed to be exponential. For the system to be operable, there must be 
at least k ( k < n ) operable units. The authors derive the reliability and the 
availability functions of the system for the transient state.

Wilken L· Langford [59] study n identical systems assumed to operate 
independently, each characterized by an exponential time to failure with mean 
1/ 7. Upon failure of a system, it is immediately replaced by a spare (if there 
are any.) The authors start by writing the probability of exactly i failures in a 
time period of length t in the case where no spares are provisioned. Then, they 
establish a recurrence relation between this probability and the conditional 
probability of exactly i failures in time t, given that the first failure of any 
system is at time t'. Finally, by induction, they derive the expression for the 
probability of exactly i failures in a time period of length i, for the general case 
when s spares are provisioned.

Van Der Duyn Schouten & Vanneste [48] propose two control policies for 
a multicomponent system, consisting of M  identical machines in series, with 
the objective of minimizing the long-run average cost of the system. Each 
component has four possible states: good (0), doubtful (1), bad (2), and 
down (3). The sojourn times in states 0 and 1 are taken to be exponentially 
distributed. The two policies are Policy A: a complete replacement is carried 
out if and only if a single component enters state 2 or 3 and the number of 
components in sate in state 1 is greater than or equal to K . Policy B: a complete 

system replacement is carried out at the first time epoch at which a component 

enters state 2 or 3 after the first moment at which the number of doubtful 

components has reached the level K . Average cost analysis of these policies 
is done, and the four states are identified with age intervals. Furthermore, 

the authors derive approximations for some performance measures, such as 
time to system replacement, and validate their results with simulation. Goel 
al. [22] present a cost-benefit analysis of a complex system comprised of two 

subsystems A and B connected in series. Subsystem B has one unit whereas 

subsystem A has two identical units. Failure and repair times for each unit 

are exponentially distributed. Switchover is instantaneous. The system fails
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either because of a failure of subsystem A or subsystem B, or because of a 
failure of subsystem B and one of the two units of subsystem A. The authors 
use the regenerative point technique, and derive some performance measures: 
mean time to system failure; availability measures; repairman busy period 
fraction. The authors perform profit analysis, and conclude that a high positive 
correlation between failure and repair times leads to a high mean time to system 
failure.

Drinkwater &: Hastings [20] study an economic replacement model of 
vehicles. They propose a theory of repair limits. They suggest two methods to 
determine the optimum repair limits, and show that these lead to financial 
savings. Dogrusoz and Karabakal [19] investigate a replacement problem 
of garbage collection trucks, with increasing operating costs and decreasing 
availability. Use the discounted value of all cash flows, they develop a measure, 
the average cost per unit quantity of service provided per truck load garbage 
collected throughout the service life of the equipment. They determine the 
optimal replacement age.

Baxter [8] derives some reliability measures for a two-state system. An 

alternating renewal process is used to model the operation and repair periods. 
The author defines an indicator variable Ik{t) which is equal to 1 if the system 
is operating at time t, and 0 otherwise, where A; =  0 if the system is initially 
down, and 1 otherwise. The concept of interval of a two-state system is defined 
as Rk{x,t)  =  p{Ikiu) =  IVu € [A,A +  a;]} for A; =  0,1. The author introduces a 
new density function representing the density of the asymptotic recurrence 
time of a renewal process whose renewal is according to the distribution 

F, as ‘ip{·) =  fii and /̂ 2 designate the expectations of F  and G

which are the distribution functions of the failure times and the repair times, 

respectively. Then the author establishes that the limiting interval reliability 
R( x̂) =  [1 — ^(a;)], where ^ is the distribution function with density ip.

The author also derives expressions for the joint availability and for the forward 

recurrence times to break down at time t given that Ik{t) =  1, A; =  0, 1.

We now focus on redundant cold standby systems. Khalil [37] derives an
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asymptotic distribution for the time to system failure, for the 1-out-of- (n +  
1) redundant cold standby system. There is one repair facility which starts 
repair only when the queue length becomes k. The repair time distribution is 
exponential, whereas the failure time distribution of the active unit is arbitrary. 
The author notes that in reality the time between failures of the active unit is 
considerably larger than the repair time. Using this observation, he shows that 
asymptotic distribution of the time to system failure is exponential. He takes 
the Laplace-Stieltjes transform of the system’s time to failure distribution, and 
shows that it converges to (1 +  where s is the number of spare units.

Shao L· Lamberson [50] examine an n-unit cold standby system with built-in 
test equipment (BIT), which can detect system failure, distinguish and report 
failure mode and occurrence time, and record all the information to a data 

base. If the BIT cannot detect a failed active unit, a system failure occurs. 
BIT itself has a failure rate. Switching is instantaneous. Time to failure of a 
unit is exponentially distributed. Units are non identical. It is assumed that 
the switch is under the command of the BIT, and that the successful switching 
probability is k. By properly defining the states of the system, and treating it 
as a discrete-state, continuous-time homogeneous Markov process, the author 

establishes a set of first-order linear differential equations. These are solved by 
taking Laplace Transforms. The system reliability is obtained. A numerical 
example is considered for three identical units.

The two-unit cold standby systems have a particular importance. Osaki 
& Asakura [44] study a two-unit standby redundant system with repair 
and preventive maintenance. Using Laplace-Stieltjes transform (L.S.T.), the 

authors provide the distribution of time to the first system down, and derive 
the mean time. They assume arbitrary time distributions for failure, repair, 

inspection and preventive maintenance. Switchover times are instantaneous. 
After repair, the unit can operate perfectly. At age t, the operating unit is 

inspected. To avoid system downtime, an inspection is not performed when 
the other unit is not in standby. Failure time distribution of a functioning 

unit has IFR. They define four states, which are time instance of the system. 

Then they establish the distributions and their L.S.T. of the time between
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these states. They provide an expression for the mean time to system down. 
In addition, they prove that repair is effective, under the condition that the 
failure rate of the failure time distribution is strictly increasing.

Gopalan & D ’Souza [27] investigate the two-unit system with a cold 
standby, with a single repair facility that performs repair and preventive 
maintenance, the lengths of which (i.e. service times) are governed by 
exponential distributions. Initially, one unit is in standby and one unit starts 
functioning. The times at which an operating unit is sent for preventive 
maintenance or repair are assumed to be exponential distributions. The 
authors derive the Laplace Transforms for the mean downtime of the system, 
and for the mean time to system failure, and obtain the availability and the 
reliability functions of the system.

Van Der Duyn Schouten & Wartenhorst [49] study a two-unit cold standby 
system with one repairman. After inspecting a failed unit, the repairman has 
the option to choose either a slow or a fast repair rate. The amount of work 
is known before repair is started. Additionally, the repairman can switch to 
the fast repair rate when the system breaks down. However, switching back to 
slow rate during a fast repair is not allowed. Based on the breakdown cost, the 
authors investigate long-run average costs. Using the theory of optimal control, 
and semi-Markov decision processes, they present some useful performance 
measures, including long-run average costs, all moments of system up- and 
downtimes, and system availability.

Wang [58] analyzes the steady state behavior of a cold standby system with 

R repairmen. The repair follows the FIFO policy. At most M  machines can 
be operating simultaneously, while S machines are cold standby spares. Two 

failure modes are allowed, and they have equal probability of repair. Failure 
times and repair times are exponentially distributed. The failure rates depend 

on the failure mode: that is, there are two failure rates which are exponentially 

distributed. The author develops a profit model to determine the optimal 

number of standbys and the optimal number of repairmen simultaneously, 

constrained by system availability. He uses a direct search method, which
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terminates after obtaining a global optimum value (S*,R*). The author uses 
birth and death balance equations, and describes the system by the number of 
failed machines in mode 1 and mode 2. A numerical illustration is provided. 
The profit function is unimodal, resulting in a unique optimal global solution. 
The author conjectures that the profit function is generally so, though not 
necessarily convex.

Gupta L· Chaudhary [30] study a two-unit standby system with Rayleigh 
downtime and Gamma failure time distributions. The system consists of two 
units: one priority and the other ordinary. The priority unit has three distinct 
failure modes: normal, partial failure, and total failure. The ordinary unit has 
2 modes: normal and total failure. Allowed downtime is T .̂ System failure 
occurs if the repair of the priority unit is completed during the downtime 
which is assumed to have a Rayleigh distribution. The author identifies 6 
states, depending on the state of each unit, and on whether in standby or 
repair. Using the technique of regenerative points, the author derives system 
characteristics, such as system reliability, transition probabilities, sojourn 
times, mean time to system failure, and the distribution of time to system 
recovery and its mean. Laplace and Laplace-Stieltjes transforms are used.

Agnihotri et al. [2] examine a two-unit cold standby system with 2 types 
of failure. The operating unit fails due to machinery defects as well as due 
to random shocks. The two units are non identical. Repair and unit life 
distributions are general. Failure rate of an operative unit after it undergoes the 
first shock is assumed to increase. The authors identify 8 up states and 2 down 
states. Using the regenerative point method, and Markov chains, the authors 
derive some characteristics of concern: transient and steady state transition 

probabilities; mean sojourn times in regenerative states; distribution of time 

to system failure; pointwise availability and steady state; availability of the 

system; expected busy period of the repairman and the expected number of 

visits he makes in the time interval (0,ij.

Gupta et al. [32] study a two-unit cold standby system, subject to random 

shocks and degradation. There is a single repairman. The two units are
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one priority and the other ordinary. The priority unit gets preference over 
the ordinary unit for both operation and repair. The priority unit has three 
operative stages: excellent, good and satisfactory. Shocks occur randomly, and 
may only affect the priority unit. Only a unit in a failure mode is repaired. 
Shock time and repair time are exponentially distributed. After repair, a unit 
is as good as new. Using the regenerative point technique, the authors perform 
profit analysis, and derive measures of system effectiveness, such as: reliability 
of the system, and mean time to system failure; the expected up time due to 
each unit and the expected number of repairs in the time interval (0, i].

Agnihotri et al. [3] investigate a two-unit warm standby system supported 
by a single repair facility. The units are identical. There are two types of 
failure: failure due to the machine effect, and failure due to critical human 
error. These have fixed probabilities. The warm standby unit can only fail 
due to machine defect. A failed unit is sent for fault detection to see the cause 
of the failure. After defining the states of the system, the authors use the 
regenerative point technique in the Markov process, and derive the transient 
probability matrix. Using Laplace Transforms, they determine some measures 
of system effectiveness, such as mean time to system failure, availability 
measures, expected number of visits by the repairman.

Goel & Shrivastava [24] investigate a two-unit cold standby system, with 
imperfect switch. One unit is priority and one is ordinary. The switch may be 
available with probability 0, and it is subject to failure. It is repaired before 

taking up a failed repair for repair. The failure and repair times for both units 
follow exponential distributions. Preventive maintenance is provided for the 
priority units at random epochs. The effect of correlated failure and repair 
times on system performance is studied. Profit analysis is performed, and 

various system effectiveness measures are derived: mean time to system failure; 

point availability and expected up-time; busy period of the repairman; expected 

frequency of preventive maintenance. The authors employ the regenerative 

point technique. They conclude that the preventive maintenance should be 

allowed as long as its cost is small compared to the cost of actual repair; 
otherwise it may be uneconomical. They also conclude that, other parameters
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held constant, a high positive correlation between failure and repair times is 
desirable to increase profits.

Gupta & Chaudhary [31] examine a two-unit cold standby system, 
supported by a repair facility. The units are identical. Each unit has 3 
modes: normal, partial failure, and total failure. A unit cannot fail totally 
directly without passing through a partial failure. The time to failure is 
exponentially distributed. The time to failure of a partially failed unit is 
exponentially distributed while the time to repair a totally failed units has 
a gamma distribution. After repair, the unit is as good as new. Using the 

regenerative point technique and Laplace Transforms, the authors perform 
profit analysis, and derive some useful measures: the reliability and the mean 
time to system failure; expected up-time of the system; and expected busy 
period of the repairman.

Goel L· Shrivastava [23] examine a two-unit cold standby system with two 
identical units. Each unit has three modes: normal, partial failure, and 
total failure. A unit cannot fail from normal to complete failure without 
passing through partial failure. Failure and repair times follow exponential 
distributions. The authors use the regenerative point technique, and study the 
effect of correlation between failure and repair times on the system effectiveness 
measures, such as the mean time to system failure and availability. They show 
that the increased correlation between failure and repair times tend to increase 
the mean time to system failure and the steady state availability.

Bhat & Gururajan [13] investigate a two-unit cold standby redundant 

system with imperfect repair, and one repair facility. Switchover is 
instantaneous. The two units are dissimilar. Each unit is assumed to have 
a random excessive available period. The repaired unit will not behave like 
a new one. After repair of a unit, the failure time distribution of the unit 

is different and its expected life decreases after each failure. A unit can be 

repaired at most k times beyond which it cannot be repaired any more. The 

regenerative point technique and Laplace transforms are used, and availability 

and reliability analysis is done.
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Goel & Tyagi [25] study a two-unit cold standby redundant system with 
allowed downtime T ,̂ i.e., time beyond which the system enters into the failed 
state, where one unit is under repair and the other is waiting for repair. Each 
unit has three modes: normal, partial failure, and total failure. A unit passes 

from normal to total failure through partial failure. Switching is perfect and 
instantaneous. The single repair facility repair a partially or totally failed unit. 
A unit in the partial failure mode can be repaired while operating. A partial 
failure supersedingly gets repair when a totally failed unit is under repair. 
Repair times from partial failure to normal mode and from total failure to 
normal mode are exponentially distributed. After repair, the unit is as good 
as new, and is taken to operation. It is assumed that repair and failure times 
are correlated, and that their joint distribution is bivariate exponential. The 
authors employ the regenerative point technique, and perform reliability and 
profit analysis, and derive the distribution of time to system failure and its 
mean; availability of the system; mean up time and down time, expected busy 
period and idle period of the repairman and expected profit during the time 
interval (0,ij. A particular case when no downtime is allowed (Td =  0) is 
studied. It is observed that more positive correlations lead to higher mean 
time to system failure.

Singh et al. [53] examine a two-unit cold standby redundant system. The 
units are identical, and have three modes: normal, partial failure, and total 
failure. Failure time is exponentially distributed. Repair time is arbitrary. 
After repair, the unit is as good as new. When an operating unit fails partially, 

its operation is stopped and the standby unit goes for operation. The method 

of regenerative point is employed, and system effectiveness measure are derived: 
distribution of time to system failure and its mean; pointwise and steady sate 
availability of the system. A numerical example is provided for illustration.

Mohamoud L· Mohie El-Din [42] study a two-unit cold standby system. 
Each unit has two modes: normal and total failure. The switch is imperfect. 

The probability that the switch is good when used is equal to p and the 

probability that it is bad is equal to  ̂=  1 —p. The repair consists of two stages. 

A unit on repair goes to the second phase of repair, called post repair. At age
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t an operating unit undergoes preventive maintenance provided that there is a 
unit in standby. All distributions are arbitrary. Using the regenerative point 
technique, the authors perform profit analysis, and derive system performance 
measures: distribution of time to system failure and its mean; availability of 

the system; busy period; expected number of visits by the repairman and the 
expected profit in (0, i] and steady state.

Kapur L· Kapoor [35] study a two-unit cold standby redundant system. 
They study 4 general models, each consisting of two identical units, and perfect 
switchovers. Model I is an intermittently available redundant system; Model II 
is an intermittently used system; Model III is a redundant system with repair 
and post repair; Model IV is a repair limit suspension model. The authors 
use the Markov renewal process technique, and derive system effectiveness 
measures, including the distribution to system failure, availability and expected 
number of system failures in (0,ij. Kapur & Kapoor [36] investigate the 
stochastic behavior of a two-unit standby system. Three models are studied. 
Model I is a warm standby redundant system with preventive maintenance; 
Model II is a cold standby redundant system with preventive maintenance; 
Model III is a warm standby redundant system with delay (set up or waiting 
for server.) For models I and II, the server is available intermittently. The 
authors use the Markov renewal processes and Laplace-Stieltjes transforms to 
derive such performance measures as the distribution of time to system failure 
and its mean; pointwise unavailability and the expected number of failures in

(0,ij.

Yeh [61] studies a maintenance model for two-unit redundant standby 
system with one repairman. After repair unit 2 is as good as new, while unit 1 
is not. He establishes differential equations and their Laplace transforms, and 
derives a formula for the rate of occurrence of failures as a function of time t. He 
suggests solving these equations numerically. Gopalan & Simhan [28]consider 

a two-unit cold standby redundant system, propose and analyze 4 monitoring 

policies: continuous monitoring of the switch and the units; continuous 

monitoring of the switch; continuous monitoring of the units; no monitoring at 
all. Continuous monitoring enables to detect failure instantaneously. All failure
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time distributions are exponential. Repair time distributions are arbitrary. For 
each of the monitoring policy, the authors derive net gains (revenues - costs), 
and conclude that suitable levels of monitoring depend on the monitoring cost 
as well as on the quantitative eifect of monitoring on the system performance. 
Srinivasan [55] investigates the eifect of cold standby redundancy on two 
models. In one of the models, demand pattern of the system is ignored; in 
the other model, intermittent demand of the system is considered. The author 
uses Laplace transforms, and derives the distribution of the system’s failure for 
each model, as well as the expected time to system failure. He also measures 
the gain resulting from introducing standby redundancy.

Our study is different from the above studies, since it is the first study that 
applies the marginal cost approach to the two-unit cold standby system, which 
is a relatively complex system. Furthermore, the general maintenance policy 
we study is different from the ones studied before. Our model resembles the 
one studied by Osaki & Asakura [44]. However, their objective function and 
their solution method are different from ours. In addition, the maintenance 
policies we deal with are quite realistic and practical.
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THE MODEL AND POLICIES

3.1 THE MODEL DESCRIPTION

We consider a two-unit redundant cold standby system, with a single repair 
facility, having exponential service time with rate ¡j,. The lifetime distribution 
is general. The switchover is immediate. Our aim is to find the optimal 
replacement age T*, the time interval that minimizes the total costs incurred 
per unit time, in the long run.

Figure 3.1 depicts the system at hand. Upon failure of the working unit 
at age x in the time interval [O,?"), the unit is replaced by the standby unit if 
available, at a cost C f{x). Unit repair cost is Cr- Preventive maintenance cost 
of a unit of age x is Cp{x). Denote the service cdf and pdf by H {·) and h{ · ), 

respectively, which is exponentially distributed with parameter fi.

Policy 1; At age T, replace the operating unit, even if the other unit is in 

repair.

Policy 2: At age T, replace the operating unit by the other unit if available; 
if not available, put off replacement for a while until the other unit returns from 

repair.

25
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Figure 3.1: Sketch of the System

Let >  0} and {R {t),t  > 0} denote, respectively, the number of
units available and the number of units in the repair facility, at time t. These 
are stochastic processes, with state spaces Sz =  {0 ,1 ,2 } and Sr =  {0 ,1 ,2 }. 
At any time t >  0, Z (i) +  R(t) =  2. This is trivial, since upon failure, the unit 
is carried to the repair facility in a negligible amount of time; the same is true 
upon repair completion.

A typical system behavior is illustrated in Figure 3.2.

3.2 THE MARGINAL COST APPROACH 
AND ITS MOTIVATION

The Marginal Cost Analysis (MCA) of maintenance policies is a concept 
gaining more interest in the recent years. This approach has been categorized 

as an Economics Oriented approach, as different from the classical probability 

centered approach. The MCA has been successfully applied to the Age 

Replacement and the Block Replacement policies, and was shown to be flexible 
enough to permit extensions and generalizations. The MCA concept was 

introduced by Berg [10] for the solution of maintenance problems. Denote
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Figure 3.2: A Typical Realization of the Processes Z(t) and R(t)

by C {T) the long-run expected cost per unit of time incurred when preventive 
maintenance is performed at time intervals of length T. Let Vi{x) be the costs 
incurred if the preventive maintenance is performed at age x. Let 14(3:, A ) 
stand for the expected costs incurred in (a;, a; + A ] if the preventive maintenance 
is deferred to age x -|- A  (for an infinitesimal A.)

D efin ition 10 The Marginal Cost Function (MCF), r]{x), is the cost incurred 
if the preventive maintenance action is put off by an infinitesimal amount of 

time A . That is,
V f i x , A ) - V f f x ) \

nix) =  lim ( 1)

In order to find C{T),  a renewal process has to be appropriately chosen. Let 

the renewal interval have a cdf and a pdf denoted by G (·) and g{·),  respectively. 

Furthermore, let D{T)  and U{T)  stand for the expected cost during a renewal 

interval (cycle) and the expected cycle length, respectively. Using the Renewal- 

Reward Theorem (see e.g. Ross [47]), the long-run expected cost per unit of 

time, C{T),  is obtained by dividing the expected cost during a cycle, D{T),  by 

the expected cycle length, U{T),
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C{T)  = DjT)
U(T) (2)

The aim is to determine T* that minimizes C{T),  that is, the problem is

m inxCiT).

There is a theorem from Mathematical Economics, Theorem 1, that makes the 
MCE a useful and a powerful tool for optimization. Here, we give the theorem, 
without proof.

T heorem  1 (B erg  [10], [11]) The optimal value T* in the problem miny C{T)  
is a solution to the equation

C(T)  =  , (T ) (3)

As shown in Figure 3.3, the C{T)  curve is flat in the neighborhood of T*, 
whereas the r]{T) curve is not. This improves the efficiency of algorithms to 
solve for T*, if the MCA is used. In addition to that, for the age replacement 
policy, the MCA has a particular usefulness. Extensions and generalizations 
are handled by slightly modifying the MCE. The interested reader is referred 
to Berg [11].

3.3 POLICY 1

Under this policy, at age T, the operating unit is replaced, even if the other 

unit is in repair. Hence the system is down. In the following derivations, failure 

cost and preventive maintenance cost are assumed to be independent of time, 

and are denoted by c / and Cp, respectively. In the marginal cost derivations, 

however, we allow them to depend on age.
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Figure 3.3: Total costs C(T), and marginal cost, t]{T),  functions versus time 
T.

3.3.1 Cycle Length

Figure 3.4 depicts the cycle length for this maintenance policy. 

We have the following:

Ti =  <

X if
T if
T +  T2 if
X  +  T2 if

if { X  < m i n { T , Y } }

\ i { T < X  < Y } o v  { T < Y  < X }

We write the corresponding probabilities to the above events,

Ti =

X  wp e-f^^dF{x)

T wp e->^^dF{x) +  -  e-^^)dF{x)

r  +  T2 wp (1 -  e-^^)F(T)

[ X A T 2  w p /o '( l - e -^ - )d F ’(x)

Let I  (A) denote the indicator function of the event A.

Ti =  X I { X  < T  < Y )  +  X I ( X  < Y  < T )  +  X I { Y  < X  < T )  

+  Te-^'^F{T)

+  T2l{Y < T  < X ) A T 2 l { Y  < X  < T )
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Upon taking the expectation, we obtain

E[Ti] =  [  x f ix )dxH{T)  +  I  (  xf{x)h{y)dydx +  I  f  xf{x)h{y)dydx
Jo Jx=0 Jy=x J x=0 Jy=0

+  TF{T)  +  E[Ti]  ̂e-^^F(T) +  £  e~'^^dFix)^

E\Ti] =  f xf{x)dxH {T)-\- i  [H{T) — H{x) ]xf {x)dx +  f xf {x ) H{ x) dx  
Jo Jo Jo

+  TF{T)  +  E[T^] e~>^^F{T) +  £  e~>^^dF{x)^

ElTi] =  r  xf {x)dx[H(T)  +  H(T)] -  T  x f { x ) { l  -  e~^^)dx +  Î  x f ( x ) { l  -  e~^^)dx
Jo Jo Jo

+  TF{T)  +  E[Ti]  ̂e-^^F(T) +  £  e~>^^dF{x)^

rT rx

After doing some algebra, we obtain

/J· x i F { x )  + T F ( T )
m \  = e-FTpiT) +  /o’ · e.-‘“ dF(x)

Finally, the expected value of the cycle length is

E [ C L ]  =  E [ Y ]  +  E[Ti\.

(4)

(5)

3.3.2 Cycle Cost

In a similar way, we derive E(CC), the expected cost incurred during a cycle. 
Let Ci denote the cost incurred during Ti,i =  1,2.

Ci =

Cf wp e  f ^ ^ d F { x )

Cp wp e->^^dF{x) +  -  e~>^^)dF{x)

Cr +  Cp +  (72 wp (1 -  e~^'^)F{T)

Cf +  Cr +  C2 wp / 0̂ (1 -  e~i^^)dF{x)

Upon taking the expectation, we obtain
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Е{Сг) =  Cf Г  e - ^ 4 F { x )  +  Cj,e-^^F{T) +  Cj , i l - e -^^)F{T)
J  0

+  E{Cx){\ -  e-^^)F(T) +  Cy Г { 1  -  e-^^)dF{x)
Jo

+  C r i l  -  e - ' ^ ^ ) F ( r )  +  C r  f  (1 -
Jo

+  E{CO  /  (1 -  e-^^)dF{x)  
Jo

c ; f ( r )  +  c ,f '(T )  +  c , ( l - e - » ’ - ) f '( r )  +  c , i ? ' ( l - e - ‘“ )o ii'W

Finally, the expected value of the cycle cost is

F[CC] =  CiPcr +  E[Cx]. (7)

Our objective function is the expected total cost per unit time, in the long 
run, which is, using the Renewal-Reward Theorem,

E{CC)
C{T)  =

E(CL) (8)

3.4 POLICY 2

Recall that under this maintenance policy, at age Г, the operating unit is 
replaced by the standby one if available; if not available, replacement is put 
off for a while until the other unit returns from repair. This policy, in contrast 

with Policy 1, tries to avoid system failure.

3.4.1 Cycle Length

Figure 3.5 depicts the cycle length for this maintenance policy.
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We have the following;

Tг =

' X if {X  <  m m {T, F } }  or {T  < X  < F  }
Y  +  T2 if {T  < F  < X  }
T +  T2 if { F  < T < X  }

 ̂ X  +  T2 if { F  < X  < T }

We write the corresponding probabilities to the above events,

X  wp /(f e-^^dF{x)  +  t-^^^dF{x)

Y P T 2 wp — e~^^)dF(x)

T +  T2 wp (1 -  e-^^)F(T)
[ X  +  T2 w p /o ^ (l-e - '^ ")d F (x )

Let I(A) denote the indicator function of the event A. Upon taking the 
expectation, we obtain

Ti =  X I { X  <  m m {T, F })  +  X I { T  <  X  < F) +  X I { Y  < X  < T )

+ YI{T < Y  <X) FTI { Y  <TX)

+  T2HT < F  < X) +  T2l{Y < T  <X)  A T2l{Y < X  <T)

-^[^1] — /  ^^dF{x) +  /  x{e — e ^^)dF{x) +  [  [  xf{x)h{y)dyd.
Jo Jo Jx=0 Jy—0

+
poo poo poo
/  xe~'-'^f{x)dx +  / yh{y)f{x)dxdy

JT Jx—yJy=T

+ r(l -  e-^^)^(T) 

+ E[Ti] i (e-^^ -  e~>^ )̂dF{x) +  (1 -  e~> '̂ )̂F{T) +  {I -  e-^^)dF{x)

pT pT poo poo _
E[Ti] =  /  xe~^^dF{x)+ x f { x ) H { x ) d x +  xe~^^f {x)dx+ xF(x)h(x)d:

Jo Jo Jt Jt
+  T(1 -  e-^^)F(T)

+  E[Ti] (e-^^ -  e-^^)dF{x)  +  (1 -  e-^^)F(T) +  j \ l  -  e"^^)dF(a:) j

pT poo poo _ m -
E[Ti] — J xdF{x)  +  J xe~''^^f{x)dx +  j  x/j,e~^^F{x)dx +  T(1 — e~^ )F{T)

X
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+ E[Ti] ( (e-^^ -  e-^ )̂dF(x) +  (1 -  e~>̂ )̂F{T) +  j \ l  -  e-^̂ )̂dF{x)

We obtain the following result

/(?’ xdF{x)  +  St xe->^=^f{x)dx +  x^e~^=^F(x)dx +  T (1 -  e~>^^)F{T)
E[Tr] =

/o~ e~^^^dF{x)

Finally, the expected value of the cycle length is

E[CL]^ E[Y] + E[Ti\.

(9)

( 10)

3.4.2 Cycle Cost

In a similar way, we derive E(CC), the expected cost incurred during a cycle. 
Let Ci denote the cost incurred during Ti,i — 1,2, —

c/
Cf +  CpNx{T)

if { X  < m i n { T , Y } }  
i i { T < X  < Y  }

Cl =  ^ Cr +  CpNY{T) +  C2 i i { T < Y < X }  

Cp A Cj· F  C*2 if{y^ A T X  }

 ̂ Cj A Cr A C2 \i {Y < X  < T ]

Ci =

c/
Cf +  CpNx{T)

Cp A Cr A C*2 
Cf A Cr A C2

wp e f =̂̂ dF(x) 

wp e-^^dF(x)

CrACpNv( T) AC 2 w p /~ (e )dF{x)

wp (1 -  e~^ '̂ )̂F{T)

wp Sq (1 -  e-^^= )̂dF{x)

Cx =  CfI{X < m i n { T , Y ] )

+ [cfAcpNx{T))I{T<X<Y)
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+  {cr +  CpNYiT) +  C2)I{T < Y  < X )

+  {Cp +  Cr +  C2)I{Y < T  < X )

+  {cf +  Cr +  C 2 ) I ( Y < X < T )

Upon taking the expectation, we obtain

E{C\) =  cf + J \ - '^ ^ d F {x )  + j \ l - e - ^ ^ ) d F { x ) ^

+  c, -  e~>^^)dF{x) +  (1 -  e~^'^)F{T) +  (1 -  e-^^)dF(x)J

+  c ,(l  -  e-'^^)F(T)

+  Cp ^ l . P r { T  < X  < 2 T , X  < Y }  +  2.Pr{2T  < X  < 3 T , X  < Y }  +

+  Cp  ̂ l . Pr { T  < Y  < 2 T , Y  < X }  +  2.Pr{2T  < Y  < 3T ,Y  < X }  +  ■ ■ j  

+  E[Ci] (e-^^ -  e~>^^)dF{x) +  (1 -  e~^'^)F{T) +  j \ l  -  e-^^)dF{x)

After simplifying and arranging terms, we obtain

E[C,] =
U

/o~ e ^̂ =̂ dF{x)

U =  Cf F{T)  +  e->^^dF{x^ P c r i ^ l -  e~^^dF{x^

+  Cp(l -  e-'^^).F(T)

+  c A Y ^ k . P r { k T < X < { k F l ) T ]
V k=\ /

Finally, the expected value of the cycle cost is

E[CC] ^ C i P c r P  E[Ci] ( 11)

(7(T), our objective function is the expected long-run cost per unit time,

E{ CC)
C{T)  =

E(CL)
( 12)
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3.5 POLICY COMPARISON

Let us compare the main policy (Policy 1) and the altered policy (Policy 2). 
We have two policies: Policy 1: take a machine off line immediately when it 
reaches the replacement age; Policy 2: wait a while if the repair facility is busy, 
until it becomes idle. Before any analysis, one is inclined to think that Policy 2 
is superior to Policy 1, since it tries to avoid system failure, which is very costly. 
In order to be able to compare, we experimented with the two policies under 
the same experimental conditions, i.e., parameters (cp=0.1; cy=3; Cr=0.5; 

Cd—5; [cx,l3) =  (5,2); ¡.i — 0.25). These parameters are reasonably chosen, 
as described in Section 5.1. Policy 1 achieves a reduction of about %8.48 
whereas Policy 2 achieves a reduction of about %8.37, which are comparable. 
Furthermore, if no preventive maintenance is performed (i.e. T —> oo), both 
policies incur 0.908, the same cost. The unit is monetary unit per unit time, 
in the long run. Actually, this result is intuitive, since there is no human 
intervention to the physical system. The numerical results confirm that policy 
2 is superior to policy 1, as shown in Figure 3.6.

3.6 MARGINAL COSTS

3.6.1 Policyl

We now apply the Marginal Cost Approach to the two maintenance policies 

introduced in Section 3.1. Note that here we allow the failure cost and the 
preventive maintenance cost to depend on age x.

L em m a 1 The cost incurred if an inspection is carried out at age x, is given 

by

V^{x) =  Cr>{x) +  H{x)Ci. (13)
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Proof: The cost incurred includes replacement cost, Cp{x). In addition, if the 
other unit is still in repair, downtime cost Cd is incurred. The probability of 
the latter event is H(x).

Lem m a 2 If the inspection is deferred to age a; +  A , then the expected cost 
incurred is given by

V2{x , A )  =  H{ x) r { x ) A( ^Hi A) Cd +  H { A ) C r ^ + r ( x ) A C f { x )

+  [1 -  r ( a ; )  A ]  (  C p{x  +  A )  +  H { x  +  A ) C d )

Proof: Below, we provide a sketch of the proof.

a) In the next A time units (for infinitesimal A ), the probability that 
a failure occurs, and the standby unit is not available is equal to 
H{x)[r{x)A].

— The probability that there will be no repair completion in (x, a; +  A] 
is equal to H{A) .  A downtime cost is incurred, Cd-

— The probability that there will be repair completion in (x, x +  A] is 
equal to H{A) .  Repair cost, (7r, is incurred.

b) If a failure occurs in (x ,x  +  A], a failure cost C'/(x) is incurred. This 
event has a probability equal to r(x )A .

c) The probability that the (operating) unit will not fail in (x ,x  +  A] is 
equal to [1 — r(x)A ].

-  At the end of the interval (x, x +  A] replacement cost is equal to 

Cp{x +  A).

-  In addition, the probability that the other unit is still in repair is 

equal to H{x  +  A ). A downtime cost, Cd, is incurred.
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Now recalling Equation 1, we write

V 2 { x , A ) - V i { x y
rjQ(x) — lim  ̂  ̂ A-i-O A

(14)

Using the results of Lemma 1 and Lemma 2, we derive the following,

Theorem 2 The MCE for Policy 1 is given by,

r}e{x) =  r(a;) (  Cfix)  -  C'p(a;)  ̂ +  C'p{x) -  h{x)Cd (15)

where the operator ’ stands for the derivative, and r ( · ) denotes the failure rate 
function of the lifetime of a unit.

Proof

n(x) =  lim '  ̂ A-̂ O
V 2 { x , A ) - m x y

A

rjix) =  lim ^   ̂ H{x)r{x)A[H{A)Cd  +  H{A)Cr]  +  r {x )ACf {x )

+  [1 -  r{x)A][Cj,{x + A + H(x + A)Q ] -  C^ix) -  H { x ) C ^

T}{x) =  lim ^  f H{x)r{x)A[Cd -  H{A)Cd +  H(A)Cr]  +  r ix )ACf ix )A—̂0 ¿\ \

+  Cpix +  A) +  H{x + A)Cd -  rix)ACj,{x +  A) -  rix)AHCd -  Cp(x) -  Hix)Cd 

riix) =  lim i  f  Hix)r{x)A[Cd -  H{A)Cd +  H{A)Cr] PCd-  H{x +  A )Q

-  Cd +  H{x)Cd -  r { x ) AH{ x  +  A)Cdj +  r{x)Cj {x)  +  C'p{x) -  r{x)Cy{x)^

T](x) =  H{x)r{x)Cd + r { x ) C f { x )  +  C'p{x) -  r{x)Cp{x) -  h{x)Cd -  r{x)H{x)Cd 

r]{x) =  r(a:) (  Cf{x)  -  C'p(a;)) +  C'Jx) -  h{x)Cd

3.6.2 Policy2

After applying it to Policy 1, we now apply the Marginal Cost Approach to 

Policy 2, described in Section 3.1.
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Lemma 3 The cost, Vi{x), incurred if an inspection is carried out at age x, 
is given by

V^{x) =  C^{x) (16)

Proof: The cost incurred includes inspection cost, Cp(x). In addition, if the 
other unit is still in repair, no cost is incurred. The probability of the latter 
event is H{x).

Lemma 4 If the inspection is deferred to age a; + A, then the expected cost, 
1/2(3;, A ), incurred is given by

1/2(3;, A ) =  H{x)  r{x)  A  H {A)  Cd +  Hi A)  c ) j  +  r(a;) A  Cj{x)

+  [1 -  r(a;) A]Cp{x +  A  )

Proof:

Below, we provide a sketch of the proof.

a) In the next A time units (for infinitesimal A ), the probability that 
a failure occurs, and the standby unit is not available is equal to 
H{x)[rix)A].

— The probability that there will be no repair completion in (x, x +  A] 
is equal to H{A) .  A downtime cost, Cd, is incurred.

— The probability that there will be repair completion in (x, x +  A] is 
equal to H{A) .  Repair cost, Cr, is incurred.

b) If a failure occurs in (x ,x  + A ], failure cost C'y(x) is incurred. This occurs 

with probability r(x )A .

c) The probability that the (operating) unit will not fail in (x ,x  +  A] is 

equal to [1 — r(x)A ].
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— At the end of the interval { x ,x  +  A] replacement cost is equal to 
C ,{x  +  A ).

— In addition, the probability that the other unit is still in repair is 
equal to H {x +  A ). The unit will continue operation, so no cost 
(downtime cost) is incurred.

Using the results of Lemma 3 and Lemma 4, we derive the following. 

T h eorem  3 The MCE for Policy 2 is given by,

t]q { x ) =  r ( a ; )  H { x ) C d  +  C j { x )  -  C p {x )  +  C 'A x ) (17)

where the operator ’ stands for the derivative, and r { - ) denotes the failure rate 
function of the lifetime of a unit.

Proof

7]{x)

p{x)

lim
A-»0

U2(a ;,A )-I /i(a )) '

1
=  hm̂  -  H{x)r{x)A[H{A)Cd +  H { A ) C r ]  +  r(a:)AC'/ 

+  Cp{x +  A) -  C,{x)  -  r { x )AC, {x  +  A ) )

7]{x) =  L m ^ \ ^ H { x ) r { x ) A [ C d - H { A ) C d  +  H { A ) C r

+  r{x)Cf {x)  +  Cl(x) -  r{x)Cp{x)

T]{x) =  H(x)r{x)Cd +  r{x)Cf{x)  P Cj,{x) -  r{x)Cp{x)

T]{x) =  r ( x )  (  H { x ) C d  +  C f { x )  -  C 'p (x )  I +  C'p{x)

3.7 EXPERIMENTATION

After deriving the cost objective function, and the marginal cost functions, we 

experiment with the model, using the math computer software Maple v.
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3.7.1 Policy 1

Бог this policy, results are summarized in Table 3.1, Table 3.2 and Figure 3.7. 
As shown in Figure 3.7, the minimum of the objective function occurs slightly 
to the left of the intersection of the cureves C{T)  and ri{T). Table 3.1 shows 
how flat the C{T)  is. Table 3.2 shows the cost rates C'{T).  Note that the 
optimal replacement age is T* =  4.2, as can be seen in Table 3.2.

3.7.2 Policy 2

For Policy 2, the results are summarized in Table 3.3 and Figure 3.8. As shown 
in Figure 3.8, the two curves C{T)  and ri[T) intersect at a point located slightly 
to the left of the optimal replacement age. Table 3.3 demonstrates how flat 
the C{T)  curve is.
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a =  5, ^ =  2, ^ =  0.25
T ECL(T) ECC(T) C(T) (10-3)
0 4.000 5.600 1400
1 5.263 5.913 1124
2 7.041 6.648 944
3 9.152 7.843 857

3.5 10.219 8.568 838
3.6 10.426 8.719 836
3.7 10.632 8.871 834
3.8 10.834 9.024 833
3.9 11.032 9.178 832
4.0 11.227 9..331 831
4.1 11.418 9.485 831
4.2 11.604 9.638 831*
4.3 11.787 9.791 831
4.4 11.964 9.942 831
4.5 12.137 10.092 832
4.6 12.305 10.241 832
4.7 12.467 10.388 833
4.8 12.624 10.532 834
4.9 12.777 10.675 835
5.0 12.923 10.814 837
5.1 13.065 10.952 838
5.2 13.201 11.086 840
5.3 13.332 11.218 841
5.4 13.457 11.346 843
5.5 13.577 11.471 845
6 14.102 12.044 854
7 14.819 12.926 872
8 15.212 13.489 887
9 15.409 13.815 896
10 15.500 13.988 902
11 15.540 14.072 906
12 15.555 14.110 907
13 15.563 14.125 908
14 15.563 14.131 908
15 15.564 14.133 908
16 15.564 14.134 908
17 15.564 14.134 908
18 15.564 14.134 908

Table 3.1: Numerical Results, Policy 1
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a =  ^ =  2, fi =  0.25
T C'{T) T C\T)
0 -0.312 3.8 -0.012

0.1 -0.307 4.0 -0.006
0.2 -0.301 4.1 -0.003
0.3 -0.294 4.2 0*
0.4 -0.287 4.3 0.002
0.5 -0.279 4.4 0.004
0.6 -0.270 4.5 0.006
0.7 -0.261 4.6 0.008
0.8 -0.251 5 0.014
0.9 -0.241 6 0.019
1.0 -0.231 7 0.017
1.2 -0.211 8 0.012
1.4 -0.190 9 0.008
1.6 -0.169 10 0.004
1.8 -0.148 11 0.002
2.0 -0.129 12 0.001
2.2 -0.111 13 0
2.4 -0.094 14 0
2.6 -0.078 15 0
2.8 -0.064 16 0
3.0 -0.051 17 0
3.2 -0.039 18 0
3.4 -0.029 19 0
3.6 -0.020 20 0

Table 3.2: Numerical Results, Policy 1: Cost Rates
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a =  5, /? =  2, ^ =  0.25
T ECL(T) ECC(T) C(T) (IQ-^)

0.5 10.517 10.502 998
1.0 10.734 9.926 925
1.5 11.062 9.832 889
2.0 11.470 9.912 864
2.5 11.923 10.105 847
3.0 12.405 10.383 837
3.1 12.501 10.446 836
3.2 12.597 10.512 834
3.3 12.692 10.580 834
3.4 12.786 10.650 833
3.5 12.880 10.722 832
3.6 12.973 10.796 832
3.7 13.065 10.871 832*
3.8 13.155 10.947 832
3.9 13.244 11.024 832
4.0 13.332 11.103 833
4.5 13.746 11.502 837
5.0 14.114 11.899 843
5.5 14.430 12.279 851
6.0 14.696 12.629 859
7 15.084 13.206 876
8 15.319 13.610 888
9 15.448 13.862 897
10 15.514 14.005 903
11 15.544 14.078 906
12 15.558 14.111 907
13 15.562 14.126 908
14 15.564 14.131 908
15 15.564 14.133 908
16 15.564 14.134 908
17 15.564 14.134 908
18 15.564 14.134 908

Table 3.3: Numerical Results, Policy 2
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Figure 3.4: Cycle length, for Policy 1, with preventive maintenance carried out 
at intervals of length T\ (a) A" < min{T^Y]]  (b) T < X  < Y \ [ c ) T  < Y  < X\ 
(d) r  < r  < X ; (e) r  < a: < T.
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Figure 3.5: Cycle length, for Policy 2, with preventive maintenance carried out 
at intervals of length T: (a,) X  < min{T^Y};  (h) T < X  < Y; (c) T < Y  < X]  
(d) Y  < T < X ;  (e) Y  < X  < T.
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Figure 3.6: Cost curves, C{T):  Comparison of Policy 1 (PI) and Policy 2 (P2)

Figure 3.7: Cost curve, C{T),  and marginal cost function, rj(T), versus 
replacement age T, for the simple Policy 1
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Figure 3.8: Cost curve, C{T),  and marginal cost function, r}{T), versus 
replacement age T, for the simple Policy 2



Chapter 4

GENERAL MODEL

4.1 GENERAL MODEL

Policy 1, as described in Chapter 3, considers replacement upon failure or at 
interval of length T. Suppose inspection is performed at intervals of length T. 
We consider a two-unit redundant cold standby system, with a single repair 
facility, having exponential service time with rate fx. The lifetime distribution is 
general. The switchover is immediate. Our aim is to find the optimal inspection 

time r* , the time interval that minimizes the total costs incurred per unit time, 
in the long run. Figure 3.1 depicts the system at hand. Upon failure of the 
working unit at age x in the time interval [0,T ), the unit is replaced by the 
standby unit if available, at a cost Cf{x).  Unit repair cost is Cr- Inspection 
cost of a unit of age x is Cp{x). The inspected item is in one of two states: 
Good, or Critical. The good unit continues operation, whereas a unit in critical 

state is sent to repair. Let 0(a;) denote the probability that an inspected unit 
at age a; is in a critical state. Denote the service cdf and pdf by H { · ) and h{ · ), 

respectively, which is exponentially distributed with parameter (x.

Recall that >  0} denotes the number of units available at time t.

The process {Z{t) ,  t >  0} is a continuous time regenerative process, with state 

space Sz — {0, 1, 2}. Let us define the renewal interval as follows.

48
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D efin ition  11 The renewal interval of the process {Z{ t ) , t  >  0} is the time 
between two consecutive epochs at which the process enters state 0.

An illustration of a cycle is given in Figure 4.1.

ONE C Y C L E

----[¿I - [x] -m -m-

F a ilu r e  E p o c h s

fx1 R e p a ir  C o m p le t io n  E p o c h s

Figure 4.1: Illustration of a Typical Cycle

4.1.1 Cycle Length - Without Inspection

Denote by the random variables X and Y the lifetime and repair time, 

respectively. Let p =  P { X  < Y }  =  e~^^dF{x) be the probability that
the lifetime of a unit is shorter than the repair time of a unit. We recall the 
repair time is exponentially distributed with parameter p.

CL denotes the cycle length, which is a random variable. As shown in 
Figure 4.2, the cycle length varies, depending on the number of times (if any) 

the process Z(t) enters state 2 from state 1.

CL =
Y +  X with probability p

Y X  p T i  with probability (1 — p)
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Z(t) 

2  .

(a)

Z(t)

XI

X2
X3

(b)

Figure 4.2: Cycle length: (a) The process Z(t) enters state 0 directly from state 
1. (b) The process Z(t) visits state 2 before state 0.

Ti =
X  with probability p
X  A T2 with probability (1 — p) 

where Ti, i =  1 ,2 ,··· are random variables.

C L ^

Y A X e with probability p

r  +  +  Xe with probability p(l — p)

r  +  JSf 1 +  X 2 + with probability p(l — pY

with probability p(l — p)"

We can also write the following

CL = X A Xi + X2 + · · · + Nn A Ne
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where N is a random variable.

N

E
z=0

FcLit) =  P { C L < t } (1)
TV

=  p { Y  +  X^ +  J ^ X , < t }
i= l

oo n

=  J2^{y +  ^e +  J 2 X i < t \ N ^ n } P { N  =  n}
n=0 i=0
oo n

= E P iy  + Xe + E ^ ‘< ‘}pi^-pr
n=0
oo

¿=0

E p i ^ - p r f y * f x . * f ^
(n )

(2)
n=0

where * denotes the convolution operator, and fx^ is the n-fold convolution of 
lifetimes.

Let Fx _̂{·) be the cdf of the random variable X^.

Fx^t )  =  P { X e < t )

=  P { X  <  i I X  < F }
P { X < t , X < Y ]

P { X  < Y }
/o‘ e -^ W (x )
P { X  < Y }

=  p-^ f  e-^^dF{x)
J  0

Using the Fundamental Theorem of Calculus, the pdf of Xg is

fxAi )  =  p - ' e ~ ^ m

(3)

(4)

4.1.2 Cycle Length - W ith Inspection

Recall that X and Y stand for the lifetime and repair time, respectively, and 

that repair time is exponentially distributed with parameter p. Assume that
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inspection is carried out at intervals of finite length T. If an inspected unit is 
in the “critical” state it is sent to repair.

Let p denote the probability that the inspected unit is in the “Good” state, 
and (1 — p) be the probability that it is in the “critical” state.

There are many cases:

• X < V  < T

• X < T < V

• T < X  < Y

• T < Y  < x

• Y < T < X

• Y < X  < T

See Figure 4.3 for illustrations.

Let us now calculate the corresponding probabilities to events of concern.

We note that [ X  < m i n { T , Y } }  =  { X  < T < Y }  ov { X  <  Y < T] .  
Therefore,

P { X  <  m m {T, r } }  =  P { X  < T < Y }  +  P { X  < Y  <T}

fT foo
P { X < T < Y }  =  /  /  f (x)dydx

Jx=0 Jy=T

= f  f {x )dx
Jx=0

I  f {x )dx
Jx=0

=  e

=  e-^^F{T)

roo fT
P { Y  < T < X }  =  /  /  f{x)dyd,

Jx=T Jy=̂ 0
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roo
/  (1 -  e~^'^)f{x)dx

Jx=T
roo

(1 -  /  f {x )dx
Jx=T

(1 -  e~>^^)F{T)

P { X  < Y  <  T]  =  I  I  jxe f {x)dydx
Jx=zO Jy=x

-fix _  ^-fiT ) f {x)dx=  /  (-

=  [  (e-^^ -  e-^'^)dF{x)
J 27=0

P { T < Y < X )  =
roo ry=x

=  / f (x)dydx
J x=T Jy=T

roo
=  -  e~^^)f{x)dx

= X('— flT  ̂— /4’̂ )dF{x)

P { T < X < Y }  =
roo roo

Jx—T Jy=x 
roo

It ‘
roo

/  ^Jt

He f [x)dydx  

f {x )dx

dF[x)

P { Y  < X  < T ]  =  f  [  ye f {x)dydx
Jxz=0 Jy=0

=  /  (1 -  e~^^)f{x)dxJo

=  /  (1 -  e-^^)dFix)
Jo

Let Nx{ T)  and Ny{T) be the random  variables defined by 

Nx{T)  =  { n : n T < X  < { n  +  1)T}  

Ny{T) =  {n  : n T  <  F  <  (n +  l ) r }
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P{Nx(T) = 0} 
P{Nx(T) = 1} 
P{Nx(T) -  2}

F(T)

F(2T) -  F(T) 
F(3T) -  F(2T)

P{Nx(T) = k} = F[(k-l·l)T]-F(kT),k = 0,l,2,

FN,(T)(k) =  +  m  -  F{zT)}  =  F[{k +  1)T]
i=0

i;[iV x(r)] =  E { i - i ' P + i ) r i ) .
k=0

Similarly,

E[Ny {T)] =
k=0

For the first two cases, the cycle length is CL =  Y F X. That is we have 
CL = Y + T i , T i ^  X ii X < mi n{ T,Y} .



CHAPTER 4. GENERAL MODEL 55

Ti =

T
2T

3T

kT

X  +  T2

T +  T2 

2T +  T2 
3T +  T2

if { X  < m i n { T , Y } }  or { T  < X  < Y;  all good } 
if { ! '  < X  <Y' ,  critical} or { T  < Y  < X]  critical} 
if {2T < X  < Y ‘, good, critical} 
or {2T < Y < X ]  good, critical} 
if {3T < X  <Y·,  good, good, critical} 
or {3T < Y < X;  good, good, critical}

if {kT < X  < Y ; good, · · ·, good, critical}
or {kT < Y  < X', good, · · ·, good, critical}
i f { T  < Y  < X -  all good}
or { Y  < X  < T }  or { Y  < T < X · ,  good}
if {F  < T < X', critical}
if {F  < 2T < X]  good, critical}
if {F  < 3T < X', good, good, critical}

kT +  T2 if { Y  < kT < X ‘, good, · · ·, good, critical}
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Ti =

X

T

2T

3T

kT

X + T2

T + T2 

2T + T2 

ST + T2

if { X  < min{T, Y } } o v  {T  < X  < Y  ,all good}
\i {T  < X  < Y ]  critical} or { r  < Y  < X., critical} 
if {2T < X  <Y\  good, critical} 

or {2T < Y  <  X ,; good, critical} 
if {3T < X  <Y·,  good, good, critical} 
or { 3T < Y < X · ,  good, good, critical}

if {kT < X  < Y] good, · · ·, good, critical}
or {kT < Y  < X;  good, · · ·, good, critical}
if {kT < X  < { k  +  l ) r ,T  < Y  < X - , k  good} 01  { Y  < X  < T }

or { k T < X  < {k +  l ) T ,r  < T; k good}
if { y  < T < X]  critical}
if {K  < 2T < X\ good, critical}
if {F  < 3T < X\ good, good, critical}

kT 4 -T 2 \i { Y  < kT < X\ good, · · ·, good, critical}

where Tj, i =  1,2 are iid random variables. Let 1(A) be the indicator 
function of the event A,

Ti =  X I { X  < T < Y )  +  X I { X  < Y  < T )  +  X I { T  < X  <Y·,  allgood)

+  T I { T  < X  < Y \ critical)-\-T I  [T < Y  < X·, critical)

+  2TI{2T < X  <Y·, good  ̂critical)

+  2TI{2T < Y  < X ;  good, critical)

+  STI{3T < X  < Y\good, good, critical)

+  3TI{ST < Y  < X·, good, good, critical)

+  kTI{kT < X  < Y ]  good, · · ·, good, critical)

+  kTI{kT < Y < X ‘, good, · · ·, good, critical)

+  X I { T  < Y < X ]  allgood) +  T2l {T  <  F  <  X\allgood) 

+  X I { Y  < X  < T ) T T 2 l { Y  < X  < T )
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+  X I ( Y  < T  < X;good)  +  T2l ( Y  < T < X ;  good)

-p (T  4" T2^I(Y <c. T <c. X\cvitico,V)

+  (2T +  T2) I { Y  < 2T < X]  good, critical)

+  {3T p T 2 ) I { Y  < 3T < X\good, good, critical)

+  {kT p T 2) I { Y  < kT < X;good, ·  ·· ,good,critical)

Ti =  X l i X  < T  < Y )  +  X I { X  < Y  < T )  +  X I { T  < X  <Y·,allgood)

+  T I { T  < X  < 2 T , X  <Y·,  critical) +  T I( T < Y  < 2 T , Y  < X·, critical) 

+  2T1(2T < X  < Y] good, critical)

+  2TI{2T < Y <  X·, good, critical)

+  3TI{3T < X  < Y·, good, good, critical)

+  STI{3T < Y <  X', good, good, critical)

+  kTI{kT < X  < Y ]  good,· ·· ,good, critical)

+  kTI{kT < Y  < X\good, · · · , good, critical)

+ X I { k T  < X  < { k p  l)T, T < Y  <x·, kgood)

+  X I ( Y < X < T )

+  X I ( k T  < X  < { k  +  l ) T , Y  <T-kgood)

+  T'2 l {kT  < X  < { k  +  1)T, T < Y  <X· ,  kgood)

+  T 2 l { Y < X < T )

+  T2 l(k T  < X  < { k  +  1)T, Y  < T- kgood)

+  (T +  T2) I { Y  < T  < X ;  critical)

+  {2T ■pT2 ) I { Y  < 2 T  < X\good, critical)

+  (3T -pT2 ) I ( Y  < 3T < X ;  good, good, critical)

+  {kT +  T2 ) I { Y  < kT < X\good, · · ·, good, critical)

Upn taking the expectation and noting that E[Ti] = E[Ti], i =  1,2,, we 

have the following
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E[Ti] =  j \ d F { x )  +  x[e ]dF{x)

+
OO p

k = l 

rT

( k + l)T

kT
xe ^^dt<(x x[e — e ^^]dF{x)

A:=l kT

^  , r[k-\-l)T

+  x [ l - e - ^ ^ ] d F { x )  +  J2p'^ x[l-e->^'^]dF{x)

+  r ( l  -  p) 2   ̂ e~^=^dF{x) +

+  T{\-p)e->^'^F{T)

+  T{V -  p){\ -  e~^'^)F{T)
, r{ k + l)T

+  E[T,] p̂  [e-^^ -  e-^^]dF(x)

T

+  E[Tг]J^ {1 -  e-^^)dF(x)

, /•(A:+l)T
+  E { T , ] Y p' Î^̂  { l -e->^'^)dF{x)

r{k+l)T 

k= l ■’ kT

+  E[Ti]{l -  p){l -  e->^'^)F{T)

+  T (1 - p ) Y  kp'^-\l -  e-^'^^)F{kT)
k=2

+  E [ T i ] { l - p ) Y p ' ^ - \ l - e - ^ ' ^ ^ ) F { k T )
k=2

E[T,] =  j\ -^ ^ d F {x )  + x { l - e - > ^ ^ ) d F { :  

+  T{1 -  p)e~^^F(T)
OO

+  ^(1 -  P) E  kp’'~'^e-^’̂ ^F{kT)
k - 2

+  T { l - p ) { l - e - ' ^ ' ’’ )F{T)
OO

+  T { l - p ) Y k p ' = - \ l - e - ^ ' ^ ^ ) F ( k T )
k=2

T

+  E[T^]J^ {1 -  e-^^)dF{x)

OO , f{ k + l)T

+  E [ X ] Y ; p ’‘ {1 -  t - ' ‘’ )dF(x)
k = l ■’ kT

+  £ [ r , ] ( l - p ) ( l - e - ' V ( r )

OO , f { k + l)T  

fc=l ^kT
xdF{x)
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+  E [ T i ] ( l - p ) J 2 p ’'~' ' { l -e-^'^^)F{kT)
k = 2

rT °° , Ak+pT
E[Ti] =  /  xdF{x)  +  Y;^p  ̂ xdF{x)

Jo JkT

+ T{l-p)F(T) + T{ l -p)J2 kp' -̂^HkT)
k - 2

/ fT oo /-(fc+nr
+ E[Tr]{ / (l-e-^^)dF{x) + J2 p (1 -  e-^ )̂dF(x)

\  k= i
OO \

+  (1  -  p )  -  e - ^ ^ ' ^ ) F { k T )  +  (1  -  p ) ( l  -  e - ^ ^ ) F { T )
k=2

The expected value of the random variable Ti is

E[Ti] =  § (5)

f T  CO f{ k + l)T

A =  /  xdF{x)  +  J2p'^ xdF{x)  +  T { l - p ) F { T )
Jo JkT

+  T { l - p ) ^ k p ' ^ - ' ^ F { k T )
fc=2

fT  CO flk+l)T
B = 1 -  /  (1 -  e-^^)dF(x) -  E p /  (1 -  e-^^)dFix)

Jo r E  JkTk=l

(6)

-  (1  -  p ) ( l  -  e - ^ ^ ) F { T )  -  (1  -  p )  E  p ' ' - ' ( l  -  e - ^ ^ ^ ) F { k T )
k=2

(7)

Finally, the expected value of the cycle length is

E[CL] = E[Y] + E[Ti] (8)

Let us now, in a similar way, determine E(CC), the expected cost incurred

during a cycle. Let Ci denote the cost incurred during Ti,i =  1, 2, ___Assume

the following cost structure:

• Cf·. failure cost
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• Cpi inspection cost

• Cdi down cost

• Cr'. repair cost.

Cf ii { X  < m i n { T , Y } }

C f  +  Cr +  C2 i i { Y  < X  < T}

Cf  +  CpNxiT) if { T < X  < Y ,  all good}
Cf +  Cr +  CpNx{T) +  C2 ii {T  < Y  < X,  all good} or { Y  < T  < X,  all good}
Cp if {T  < X  < Y,  critical} 0 1  { T  < Y  < X ,  critical}

kcp

Cr +  Cp +  C2 

Cr +  2cp C2

Cr +  kcp 4" C2

if {2T < X  < Y ,  good, critical} 
or {2T <C. Y  <C. X^ good, critical}

ii {kT < X  < Y,  good,· · ·, good, critical} 
or {kT < Y  < X ,  good,· · ·, good, critical} 
if { Y  < T < X ,  critical} 
if [ Y  < 2T < X ,  good, critical}

if [ Y  <C kT <C good,* · ·, good, criticcil}
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Ci =  i

c/
C/ +  Cr +  C*2 
Cf +  CpNx(T)

Cf + Cr + CpNx{T) + C2

2 c t i

kcp

Cr T Cp T C2

Cr +  2Cp +  C*2

c,. +  kcp +  C2

if { X  < m i n { T , Y } }

\ i {Y  < X  < T }

if { k T < X  < { k  +  1)T, T < X  < Y , a l l  good} 
if { k T < X  < { k  +  l ) r ,  T < Y  < X , a W  good) 

or {kT < X  < (k Y  < T < X^ all good}
if {T  < X  < F, critical} or {2̂  < Y  < X ,  critical} 
if {2T < X  < Y ,  good, critical} 
or {2T < Y < X ,  good, critical}

if {kT < X  < Y ,  good,· · ·, good, critical} 
or {kT < Y < X ,  good,· · ·, good, critical} 
if {F  < T < X , critical} 
if {F  < 2T < X,  good, critical}

if {F  < kT < X,  good,· · ·, good, critical}
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1̂ =

Cf wp g  e ^^dF{x)

Cf -\- Cr C2 wp g (1 -  e-^^)dF{x)
Cf +  kcp wp P̂  e~>^^f(x)dx

Cf Cj> kcp +  C2 wp P* -  e-^^]f{x)dx 
+?'' -  e~>^'^)f{x)dx

Cp wp {1 -  p) It e~>^^dF{x)

+(1 -  p) -  e~f^^]dF{x)

2cp wp { l - p ) p f ^ e ~ ^ ^ d F { x )  
+ ( i - p ) p m e - ^ ^ ^ - e - ^ ^ ] d F ( x )

kcp wp { l -p)p'^-^f^e->^^dF{x)

+(1 -  p)p^-i !k^[e-^^^ -  e-^^]dF{x)

Cr Cp C2 wp (1 — p )(l — e~^^)F[T)

Cr +  2cp +  C2 wp (1 — p)p(l — e“ ^^^)F(2r )

Crp +  kcp -h C2 wp (1 -  p)p'^-^{\ -  e-^^^)F(¿Γ)

c/
Cy +  Cr +  C*2 

C f  +  kcp

Ci =  {

wp e-^^dF{x)  
g  { I - e - ^ ^ ) d F { x )

wp e~^^dF{x), ¿ =  1, 2,· · · .
Cf FCr A kcp +  C2 wp p* (1 -  e~f^^)f{x)dx, ¿ =  1, 2,· · ·

wp (1 -p )e -^ ^ F (T ) 
wp (1 — p)p^“ ^e“ ^^^F(¿T'), ¿ =  2,3, · · ·. 

wp (1 - p ) ( l  - e - ^ ^ ) / ’( r )  
wp (1 — p)p ~̂̂ (1 — e“ ^^^)F(¿Γ), ¿ =  2,3,

¿c-p

Cr +  Cp +  C2
c,. kcp F C*2

Upon taking the expectation we have

£[Cil =  c f  i  jfJ  e-<‘*olP(i:) +  / ’ ’(1 -  +  E  p‘ e-^^dF{x)
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oo r ( k + l ) T  \

+  L  ( l - e - n d F { x ) ]
k= i )

+  Cr [ I {1
0° , r ( k + l ) T

(1 -  e-^^)dF{x)
0 “  Jk T

+  (1 - p ) ( l  -  e-^^)F(T) +  E (1 -  e-^'^^)F(kT)]
k=2 /

. f ( k + \ ) T

dF{x)  +  kp (1 -  e~'^^)dF{x)

+  (1 -  p)e-^'^F{T) +  (1 -  p )(l -  t-^'^)F{T)
OO CO >

+  1 ]  ¿(1 -  +  Y ^ k { \ -  p)p^-\l -  e~^^'^)F{kT)

.  . ( g V / r e - ^ ^

k=2 k=2

UT °o , /-(fc+l)T
(1 -  e-^^)dF{x) +  J 2  P (1 -  e -n d F (x )

OO \

+  (1 -  p)(l -  e-“'^)F(T) +  ^ ( 1  -  p)p '-’ (1 -  t->‘")F (k T )
k=2 )

E[Ci] =  c f dF{x)

Of T  ^  , r { k + p T

< (1 -  e-^^^)dF(x) +  E  /  /  (1 -  e-^^)dF{x)
° k= l dkT

OO \

+  (1 -  p)(l -  e->‘^ ) F ( T )  +  ^ ( 1  -  p)p‘ - ‘ (l -
k=2 /

/  OO r(k+i)T _ ^
+  Cp kp'̂  dF{x)  +  (1 -  p)F{T)  +  k{\ -  p)p^-^F{kT)

rT  OO r ( k + l ) T

+  E[Ci] I /  {1 -  e-^^)dF{x^ '
k=l kT

(1 -  e~>^^)dF{x)

+  (1 - p ) ( l  -  e - ^ ^ ) F ( T )  +  Y i l - p ) p ' ^ - \ l  -  e - ^ ’̂ ' ^ ) F { k T )

k - 2  /

The expected value of the random variable C\ is

U
E[Cг] =

V (9)

U =  c f
OO /•(fc+l)T

dF{x)
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/  fT  oo , /-(fc+l)T
+  c r {  { l - e - > ^ ^ ) d F i x )  +  J2p^ {1 -  e-^^)dF(x)

V k=l

oo \

+  (1 -  p )(l -  e - “^ )i '(T ) +  £ (1  -  p ) / - ( l  -  e->‘^'^)F(kT)
k = 2  J

(  ° °  , r(k+l)T _ \
+  Cp /  d F ( x ) - K l - p ) F ( T )  +  Y ; k ( l - p ) p ' - ' F ( k T ) \

7 ._ 1 J k T  ,.„o yk - \ k=2

/  fT  oo , r ( k + l ) T

V =  l - [  ( l -e->^^)dF{x)  +  J2P {1 -  e->^^)dF{x)V “'O k=l

oo \

+  (1 -  p )(l -  c-^'^)F{T) +  5](1 -  p)p^-\l -  e-^^'^)F{kT)
k=2 J

(10)

Finally, the expected value of the cycle length is

E[CC]  =  Cci +  Cr +  E\C-\\. ( 11)

Our objective function is the expected total cost per unit time, in the long 
run, which is, using the Renewal-Reward Theorem,

E{CC)
C{T)  =

E{CL)
( 12)

4.2 LIMITS

4.2.1 A s p ^  0

As p 0, looking at the cycle length formula we can write

A

B

=  r  xdF{x)  +  TF{T)
Jo

=  1 -  /^(1 -  e-^^)dF(x)  -  (1 -  e-^^)F{T)
Jo

=  e~^'^F{T)+ r  e~^^dF{x)
Jo
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E[T ]̂
xdFjx)  +  TF{T)

Looking at the cycle cost formula we can write

U

V

E[Ci

=  CfF{T)  +  c, -  e~>^^)dF{x) +  (1 -  e-^^)F(T) j  +  c,F iT )

=  1 -   ̂£ ( 1  -  e-^^)dF(x)  +  (1 -  e -^ ^ )F (T )j

=  e - ^ ^ F ( T ) +  r  e-^^dF{x)
J 0

CfF{T)  +  c, i  /¡’ll -  e - ‘“ )dF{x)  +  (1 -  e - “^)F (T)^ +  c ,F(T)

e-MTF(r) +  f f  e-t^^dF(x)

Notice that these results coincide with the results derived in Section 3.3.1 
and Section 3.3.2 for Policy 1.

4.2.2 As p 1

As p —> 1, looking at the cycle length formula we can write

A  =

B =

r l  POO

J xdF{x)  +  j  xdF[x)
POO

/  xdF{x)
Jo

pT p o o

1 -  (1 -  e-<^^)dF{x) -  (1 -  e-f^^)dF{x)
POO

=  /  e-^^dF(x)
Jo

£ ir ,l
/ “  xdF(x)  

/ “  t->“ dF{x)
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Looking at the cycle cost formula we can write

U =  Cf F{T)  +  dF(x)^ +  c, J \ l  -  e->^^)dFix) +  e~>^^)dF{x)

^  f { k + l)T

+  CpJ2k dF(x)

/  foo \  CO r ( k + l ) T

=  Cf +  Cr y l  — J e ^^dF{x)j +  Cp"^k J dF{x)

POO

V =  1 -  /  (1 -  e -^ndF(x)
Jo

POO

=  /  e-^^dF{x)
Jo

E[C,]
Cf +  C r ( ^ l -  e->^^dF{x)^ +  Cp E r=i k dF{x)

/o~ c->^^dF{x)

4.3 THE MARGINAL COSTS

4.3.1 Generalized Policy 1

Let us now derive the marginal cost function of this generalized policy.

Lem m a 5 The cost incurred if an inspection is carried out at age x, is given 

by

Viq{x ) =  Cp{x) +  e{x)H{x)Cd. (13)

Proof: The cost incurred includes inspection cost, Cp{x). In addition, if the 

other unit is still in repair, and the inspected unit is in critical state, downtime 

cost Cd is incurred. The probability of the latter event is Q{x)H{x) .  No 
additional cost is incurred if the inspected unit is in good state, or if the 

standby unit is available.
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Lem m a 6 If the inspection is deferred to age a; +  A , then the expected cost 
incurred is given by

V2q {x , ^ )  =  H{x)r{x)A(^H{A)Cd +  H { A ) C r ' ^ + r { x ) A C f { x )

+ [1 -  r (x )A] ( Cj,{x + A) + Q{x + A ) H( x  + A)Cd )

Proof: Below, we provide a sketch of the proof.

a) In the next A  time units (for infinitesimal A ), the probability that 
a failure occurs, and the standby unit is not available is equal to 
H { x ) [ r ( x ) A ] .

-  The probability that there will be no repair completion in (x, a; +  A] 
is equal to H(A) .  A downtime cost is incurred, Cd-

-  The probability that there will be repair completion in (x, x +  A] is 

equal to H{A) .  Repair cost, Cr, is incurred.

b) If a failure occurs in (x ,x  +  A], a failure cost C f { x )  is incurred. This 
event has a probability equal to r(x)A .

c) The probability that the (operating) unit will not fail in (x ,x  +  A] is 
equal to [1 — r(x)A ].

-  At the end of the interval (x ,x  +  A] inspection cost is equal to 

Cp(x +  A).

-  In addition, the probability that the unit inspected at age x +  A 
is in critical state and the other unit is still in repair is equal to 
0 (x  +  A ) H { x  +  A ). A downtime cost, Cd,  is incurred.

The MCF here is dependent on 0 , the deterioration state of the unit. Now 

recalling Equation 1, we write

I/20( x ,A ) - I / i e (x )\
7]q{x) =  VimA-̂ O \ A

(14)

Using the results of Lemma 5 and Lemma 6, we derive the following,
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T heorem  4 The MCE for the generalized Policy 1 is given by,

mix) -  r{x) Hix){i -  e(x))c, + Cfix) -  c,ix)'^ + clix) + e'{x)Cd

-  Cd(^e{x )h{x )  +  H{x ) e ' i x )^

where the operator ’ stands for the derivative, and r (·) denotes the failure rate 
function of the lifetime of a unit.

Notice that if 0 is substituted for 0(a;) in the above MCF, we obtain the 
MCF of the simple Policy 1, derived in Section 3.6.1, Theorem 2.

4.3.2 Generalized Policy 2

Let us assume that when an inspected unit (operating) is found in critical state 
and the other unit is still in repair, the inspected unit keeps operating, to avoid 

system failure. Recall that in the original policy (Policy 1) , such a unit is sent 
to repair, and a down cost, Cd, is incurred. Apart from this assumption, the 
policy is similar to the previous. See Figure 4.4 for a typical realization of the 
system, under this policy.

Lem m a 7 The cost, Vi0(a;), incurred if an inspection is carried out at age x, 
is given by

Vie(x) =  C,{x)  (15)

Proof: The cost incurred includes inspection cost, Cp(x). In addition, if the 
other unit is still in repair, and the inspected unit is in critical state, no cost 

is incurred. The probability of the latter event is 0{x )H{x ) .  No additional 

cost is incurred if the inspected unit is in good state, or if the standby unit is 

available.
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Lemma 8 If the inspection is deferred to age a; +  A, then the expected cost, 
V2e(a:, A ), incurred is given by

V2q {x , A )  =  H{x)  r{x)  A  H{ A)  Cd +  Hi  A)  C .j +  r(a;) A Cf{x)

+  [1 -  r(x) A]Cp{x +  A  )

Proof:

Below, we provide a sketch of the proof.

a) In the next A  time units (for infinitesimal A ), the probability that 
a failure occurs, and the standby unit is not available is equal to 
H{x)[r{x)A] .

— The probability that there will be no repair completion in (x, x +  A] 
is equal to H{A) .  A downtime cost is incurred, Cj,·

— The probability that there will be repair completion in (x, x +  A] is 

equal to H[A) .  Repair cost is incurred, Cr-

b) If a failure occurs in (x ,x  +  A], failure cost Cj{x)  is incurred. This will 
occur with probability r(x )A .

c) The probability that the (operating) unit will not fail in (x ,x  +  A] is 

equal to [1 — r(x)A ].

— At the end of the interval (x ,x  +  A] inspection cost is equal to 

Cp{x +  A ).

— In addition, the probability that the unit inspected at age x +  A 

is in critical state and the other unit is still in repair is equal to 

0 (x  +  A ) H [ x  +  A ). The unit will continue operation, so no cost 

(downtime cost) is incurred.

Using the results of Lemma 7 and Lemma 8, we derive the following.
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T h eorem  5 The MCE for the altered policy is given by,

T]@{x) =  r { x )  H { x ) C d  +  C f { x )  -  Cp{ x)  +  C J x ) (16)

where the operator ’ stands for the derivative, and r { · ) denotes the failure rate 
function of the lifetime of a unit.

Notice that this result coincides with the MCF of the simple Policy 2, 
derived in Section 3.6.2, Theorem 3. This result suggests that for Policy 2, 
as far as the MCF is concerned, the probability p that an inspected unit is 
in the good state is not important. Therefore, the MCF does not reflect one 
important aspect of the system.

We provide the proof of Theorem 4.

Proof:

By definition of the MCF,

ye{x)  =  h m ^ ( ^ H { x ) r { x ) A [ C d - H i A ) C d  +  H{A)Cr] +  r { x )ACf ix )

+  [1 -  r{x)A][Cp{x +  A ) +  e(x +  A ) H { x  +  A )Q ] -  Cp(x)

+  Q i x ) H { x ) C d { x ) - e { x ) C d ^

7]Qix) =  h I n ^ ^ H { x ) r { x ) A [ C d - H { A ) C d - l · H { A ) C r ]  +  r { x )ACf {x )

+  C p { x  +  A ) +  0(a; +  A ) H { x  +  A ) C d  -  r { x ) A C p { x  +  A )

-  r(;r)A0(rr +  A ) H { x  +  A)Cd -  Cp{x) -  e {x)Cd +  Q{x)H{x)Cd^

geix)  =  L m ^ ( ^ H { x ) r { x ) A [ C d - H i A ) C d  +  H{A)Cr] +  r { x )ACf {x )

+  Cpix +  A) -  Cp{x) +  e { x  +  A)Cd -  e { x  +  A ) H { x  +  A)Cd

-  r{x)ACp{x  +  A ) -  r {x )AQ{x  +  A)Cd +  r(a:)A0 (a; +  A ) H { x  +  A)Cd

-  e {x)Cd +  e { x ) H{ x ) Cd]
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Tje(x) = h m ^ ( ^ H ( x ) r ( x } A [ C d - H { A ) C d  +  H{A)Cr] +  r ( x ) A C f ( x )

+  C p ( x  +  A )  — Cp( x )  +  0 ( a ;  -|- A ) C d  — 0 ( x ) C d  — r ( x ) A C p ( x  +  A )

— r ( a ; ) A 0 ( x  +  A ) ^ ^  +  r ( a ; ) A 0 ( a ;  +  A ) H { x  +  A ) C d

-  0 ( x  +  A ) H { x  +  A ) C d  +  Q { x ) H { x ) C d ^

7]q { x ) =  H m  H { x ) r { x ) [ C d  -  H { A ) C d  +  H{A)Cr] +  r { x ) C f { x )  +  C l ( x )

+  Q ' i x ) C d  — r { x ) C p { x  +  A )  -  r ( a : ) 0 ( a ;  +  A ) C d  +  r ( x ) Q { x  +  A ) H { x  +  A ) C d  -  A

A  -
[ T o i l

A  =

A  = Cd lim ^  
A-i-O A

A  = Cd lim ^  
A-^O A

A =  Cd{^ e { x ) h { x )  +  0'(a;)77(x)j

r]e{x) =  r { x )  H(x)(l -  e ( x ) ) C d  +  C f ( x )  -  Cp(x)J +  C ' ( x )  +  6 ' ( x ) C d  

-  ( 7 d [ 0 ( x ) / i ( x )  + / i ( a ; ) 0 ' ( a : ) ] ^

Next, we provide the proof of Theorem 5.

Proof:

By definition of the MCF,

r]e(x) =  lim I  ( H ( x )  r { x )  A  [ H { A )  Cd +  H { A )  C , ]  +  r { x )  A  C f { x )  
A—)-0 Za V
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+  [1 -  r ( a : )  N]C.p{x  +  A  ) -  Cp{ x)

1
t)q{x ) =  ]im -  H{x)r{x)/AH{/N)Ci +  H{x)r{x)/AH{N)Cr +  r {x)NCf{x)

+  Cp{x +  A ) -  Cp{x) -  r(x)AC'p(a; +  A) j  

7/e (x) =  H{x)r{x)Cd-]r C'^[x)-L r{x)Cj {x)  -  r{x)Cp{x)  

tiq{x ) =  r{x)  H{x)Cd +  Cf{x)  -  +  C' {̂x)

As a consequence of Theorem 4, we have the following.

C orollary  1 The case with instantaneous repair reduces to the age dependent 
model, whose MCE is given by

g { x )  =  r ( x ) [ C f { x )  -  Cp{x)]  +  C'^{x)  +  O ' { x ) C d (17)

Proof:

The proof is straightforward. The service being infinitely fast means that 
H(x)  — 0 \/x > 0. This says that there is always a unit in standby. Therefore, 

the MCF reduces to r]{x) =  r{x) [Cj(x)  — Cp{x)] +  C'p{x) +  Q'{x)Cd·

The following is a consequence of Theorem 5.

C orollary  2 The case with instantaneous repair reduces to the age dependent 
model, whose MCF is given by (Berg [11])

7]{x) =  r { x ) [ C f { x )  -  Cp{x)]  +  C ' { x ) (18)

Proof:
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The case of infinitely fast repair is characterized by H{x)  =  OVa; > 
0,i.e., H{x)  =  1 Va; >  0. Hence, the MCF becomes r]{x) =  r{x)[Cf{x)  —

c , (x ) ]  +  c ; (x ) .

The above result’s importance is conspicuous. Note the case where the 
function 0(a;) is independent of a:, the MCF reduces to the well known result 

derived by Berg [11]. It demonstrates that our maintenance policy applied to 

our model reduces to the age replacement policy (ARP), extensively studied 
by researchers in the field of reliability and maintenance. Therefore, ours is an 
extension of the ARP.

At this point, to gain insight, let us turn our attention to the ARP. Berg
[11] applied the MCA to the ARP with minimal repair. Let us remain faithful 
to his notations, and denote by C\ and the failure cost and the preventive 
replacement cost, respectively. To justify preventive maintenance, failure cost 
should be larger than preventive maintenance cost, ie Ci > C2. Using the 
Renewal-Reward Theorem (see e.g. [47]), the long-run expected cost per unit 
of time, if the preventive maintenance is performed at age T, is given by

c, F [ T ) A c2F{T)
C { T ) ^

/o F{u) du
(19)

The numerator equals the expected costs incurred during a cycle, and the 
denominator equals the expected cycle length. This result is very well known 
in the literature. It was derived firstly by Barlow & Proschan [6].

The problem is solved by determining the value of T, T*, that minimizes 
(7(7’ ), that is solving miiiT C{T).  The optimal solution satisfies C{T*)  <

c ( T )  v r  >  0.

T h eorem  6 The optimal replacement age, T*, satisfies the equation

i T )  r  F { u ) d u F F { T )  =  
Jo

Cl

Cl -  C2
(20)

Proof:
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Differentiate C{T)  with respect to T, obtain C'{T)  and set it equal to zero. 

For convenience, rewrite C{T)  as

Cl +  (C2 -  C i ) F ( T )C{T)  =
fo F(u) du

implies

c '(T )  =  ^  =  o

-(C 2 -  C i)/(T ) r  F{u) du =  [ci +  (C2 -  c^)F{T)]F{T)  
Jo

= & ^ / ( r )  F(u) du =  c, +  (c, -  c^)F(T)

(ci -  C2)r(T ) f  F{u)  du =  Cl +  (C2 -  Ci)F{T)
Jo

r{T) r  F{u) du =  — ------- F{T)
Jo Cl — C2

r{T) r  F{u) du +  F(T)
Jo

Cl

Cl -  C2

The optimality equation given by Theorem 6 is derived by Berg [11] using 
the MCA. Let us elaborate on its derivation.

The cost, Vi(a;), of performing a preventive maintenance action at age 

x, and the expected cost, V2(a;, A ) , incurred in (x ,x  +  A] if the preventive 
replacement is deferred to age x +  A , are

Fi(x) =  C2,

V2(x, A ) =  r(x )A ci +  [1 -  r(x )A ]c2

The MCF of the ARP is now obtained,

Tj{x) =  (ci -  C2)r(x)

(21)

(22)

(23)

Consider the renewal process whose renewal interval, having cdf G (·), is 
the replacement epochs. We have

F{x)  if X < r
G ( x )  =

0 if X > 0
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The expected cost during the service life of an item is
TD{T) — f r){x)Ğ{x) dx + C2 Jo 

[ T
— / (ci -  C2)r{x)F{x) dx +  C2Jo

[ T
= (ci -  C2)  / fix) dx +  C2 Jo
=  (ci — C2)FİT) +  C2 
=  c,C (T ) +  (1 -  i '(T ) )c 2 

= CiF(T) + C2F(T) (24)

The expected service life is
/*00 _ rT _

U(T)  =  /  G{x) dx =  /  F(x)  dx 
Jo Jo

Recall that the long-run expected cost per unit of time is

D(T)C{T) = U(T)
Using the above equations, we obtain

c iF (T ) +  C2FİT)C[T) =
fo F(x) dx

Observe that this equation coincides with Equation 19.

According to the MCA, the optimal replacement age T* satisfies

C(T)  =  , ( T )

Substituting for C(T)  and rj(T), we get the optimality equation

cгF(T) +  C2F(T)cm = — ------------------------

¡0  F{x)  dx

which is equivalent to

AT) r  F{u) du +  F[T)  =  —
Jo C\ — C2

(25)

(26)

(27)

(28)

(29)

Note this equation coincides (as it must) with Equation 20, the optimality 

equation derived using differential (calculus) optimization.
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4.4 ASYMPTOTIC BEHAVIOR

We study the behavior of the objective cost function C{T)  and that of the 
marginal cost function t}(T) as the inspection interval T gets large. We begin 
with the behavior of the expected cycle length.

fo°^xdF(x)
m ]

Therefore,

ECL{T)  E[Y] +

e->^^dFix)

EIX]

EIX]
Ele-i‘ ^]

Now, we proceed with the behavior of the expected cycle cost.

C j  +  Cr(l -  e~“ ’ dF{x))
E[Ci

Therefore,

E CC (T )  —*· Crf +  Cr +

/o~ e-^^dF{x)
Cf +  C r { l  -  E [ e ~ ^ ^ ] )

E[e-^^]

Cf +  C r { l  -  E [ e ~ ^ ^ ] )

Finally, we have

C t
Q + c . +

E\y\ + iP t,
C/ +  Cr +  C d E [ e ~ ^ ^ ]

We turn our attention to the marginal cost function of our model.

(30)

(31)

(32)

(33)

(34)

r}{T) -  r(T )  ̂pcic A Cf -  Cpj -  (1 -  p)pe '̂ Ĉd (35)

As r  —> oo, r]{T) r{T){cf  — Cp) oo, assuming an increasing failure 

rate r(T ).
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Transitions A m on g  States
Z(t) Event (Change) in ( i ,i  +  A ) Z[t +  A) Probability

2 nothing occurs 2 1 - A A
1 repair completed 2 ¡J.A
2 failure occurs 1 AA
1 nothing occurs 1 1 — (A +  /.¿)A
0 repair completed 1 /J.A
1 failure occurs 0 AA
0 nothing occurs 0 1 — //A

77

Table 4.1; Analytical Results for Exponential Lifetime and repair Distributions

4.5 SPECIAL CASE: EXPONENTIAL LIFE­
TIMES

This case is quite well known in the literature. The interested reader is 
referred to Ravichandran [46]. Here, lifetime and repair time are independent 
random variables. They are exponentially distributed with parameters A and /u, 
respectively. Recall that {Z{ t ) , t  >  0} and {R{ t ) , t  >  0} denote, respectively, 

the number of units available and the number of units in the repair facility, at 
time t. These are stochastic processes, with state spaces Sz =  { 0, 1, 2} and 
S r  =  {0 ,1 ,2 }. Due to the memoryless property, we observe that

P { Z [ t s )  — j  I Z (u ),0  <  u < t} — P{Z{t-\-s) =  j  I Z { t ) } , j  E Sz =  {0 ,1 ,2 }.

(36)
Hence, the Markovian property holds, so {Z{ t ) , t  >  0} is a Markov process. 
Let us study its behavior in an infinitesimal time A.

Denote by Pj{t) the probability that the system is in state j  at time t, given 
that all units were operational at the time origin.

Pi(t) =  P { Z ( t )  =  , \ Z { 0 )  =  2]

From the Table 4.1 above, we can write
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Po{t +  A ) 

Po{t +  A ) — Po{t)
1

+  A) -  P3(i))]

Poit) -

Po(i)(l — /^A) +  Pi(i)AA 

—Po{t)fiA. +  Pi(i)AA 

Po{t)lJ' +  Pi{t)^

Pi{t)\ -  Po{t)ix (37)

Similarly, we derive

p;(i) =  P2(i)A + Pi(i)/i-Po(i)(A + i«) 

p ;(i)  =  P,{t)iJi-P^{t)\

(38)

(39)

The steady state distribution of the process >  0} is obtained by
setting the above time derivatives in the above Equations 37, 38 and 39 equal 

to zero.

AtTi — flTTo =  0

Xtt2 + ytiTTi -  (A + fi)TTo = 0
/iTTi — A7T2 =  0

0̂ T T 7T2 — 0

These have the solution

A2
7To = 

7Ti =  

7T2 =

A2 +  A/li +  2̂
\jX

A2 +  A/U +  2̂
jP

A2 +  A  ̂+  /̂ 2

(40)

(41)

(42)
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The stationary availability of the system corresponds the long run fraction 
of time that at least one unit is operational,

+  A/i
a; =  7Ti +  7T2 = (43)
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X < T < Y
T l - X

2

X c Y < T
Ti=x

T < X < Y  
X I - X

X c X c Y
T l ^ T

T < X < Y  
X I-^2X

X < Y c X
X 1 ^ 2 X + X 2

X1-=X̂ X2
’̂ <o
2

Y < X < X
X 1 = X -hX2

Y < X < X
X1=-2X+X2

Y < X < X
X 1 = X + X 2

Figure 4.3: Cycle length, generalized policy 1, with inspection carried out at 
intervals of length T: (a.) X  < min{T,Y} ]  (h) T <  X  < Y; {c) T < Y  <  X', 
{ d ) Y  < T  < X - , { e ) Y  < X  < T .
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R(t)

2 . _

Time

Figure 4.4: A typical realization of the system, for generalized Policy 2



Chapter 5

NUM ERICAL RESULTS

5.1 MODEL PARAMETERS

After determining the expected cycle costs and expected cycle length, let 

us experiment with the model, with the generalized Policy 1. Consider the 
following costs:

•  Cp=0.1;

• cy=3;

• Cr=0.5;

• Cd=5;

Recall that an inspected unit is in the critical state with probability 1 — p. 
To justify inspections, it is plausible to assume that the inspection cost, Cp, is 

much lower than the failure cost, c/.

The lifetime distribution is Weibull, whose parameters we shall denote by 

a and ¡5. The hazard rate function is

a p 

82
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This distribution is widely used in reliability analysis, as it covers IFR 
{J3 >  1) and DFR (J3 <  1) cases, and the exponential distribution as a particular 
case {/3 =  1). The Raleigh distribution is also a particular case of the Weibull 
distribution {/3 =  2), and its hazard rate function is linear. The mean value of 

the Weibull distribution is

E { X )  =  aT(l +  r " )

where F(·) is the Gamma function. We let the parameters of the lifetime 
distribution, X, be (ci,/3) =  (5,2). Recall that our work assumes that the 
repair time distribution is exponential with parameter fi. We take ¡x =  0.25. 
Hence, the expected values are E { X )  =  5 i/^ /2 , and E{Y)  =  4. This prevents 
congestion of the repair facility, since E[Y] < E[X].

5.2 p  CONSTANT

Expected cycle length, expected cycle cost and expected cost per unit time, 
in the long run are provided in Table 5.2, for p =  0.5. The objective function 
(7(T), the expected cost per unit time, in the long run, and the MCF r}(T) 
are provided in Figure 5.2 for p =  0.5. We note that the optimal inspection 
time, T*, almost occurs at the intersection of the two functions. This result 
parallels the similar results obtained by Berg [10] [11] for the Age Replacement 
maintenaance policy. Table 5.4 gives the marginal cost values. Note that 
these marginal cost values are increasing with T, since the lifetime is an IFR 

distribution. For the special case p =  1, it is clear that inspection is not 
economical, since whenever inspected, the unit is found in the good state. 

This is a degenerate case, and inspection should not be done. Table 5.1 and 
Figure 5.1 show this. Finally, Table 5.3 and Figure 5.3 show results for the 

special case p — 0, which reduces to the simple Policy 1, studied in Chapter 3.
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a =  5, ^ =  2, =  0.25, p =  1
T ECL(T) ECC(T) C(T) (10-3)
1 15.564 15.160 974
2 15.564 14.582 937
.3 15.564 14.389 924
4 15.564 14.293 918
5 15.564 14.235 914
6 15.564 14.197 912
7 15.564 14.171 910
8 15.564 14.154 909
9 15.564 14.144 908
10 15.564 14.139 908
11 15.564 14.136 908
12 15.564 14.135 908
13 15.564 14.135 908
14 15.564 14.134 908
15 15.564 14.134 908
16 15.564 14.134 908
17 15.564 14.134 908
18 15.564 14.1.34 908
19 15.564 14.134 908
20 15.564 14.134 908

Table 5.1:
p =  1

Numerical results, Generalized Policy 1, for the degenerate case
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a  =  5, /9 =  2, =  0.25, p =  0.50
T ECL(T) ECC(T) C(T) (10-^)
1 6.637 6.766 1019
2 9.388 8.512 907

.3.0 11.570 10.145 877
3.1 13.086 11.559 876
3.2 13.223 11.667 875
3.3 13..355 11.771 874
3.4 13.480 11.872 873
3.5 13.599 11.970 873
3.6 13.713 12.065 872
3.7 13.821 12.157 872
3.8 13.823 12.245 872
3.9 14.021 12.331 872
4.0 13.132 11.448 872
4.1 13.086 11.559 872
4.2 13.223 11.667 872
4.3 13.355 11.771 872
4.4 13.480 11.872 873
4.5 13.599 11.970 873
4.6 13.713 12.065 874
4.7 13.821 12.157 874
4.8 13.823 12.245 875
4.9 14.021 12.331 875
5 14.171 12.414 876
6 14.816 13.092 884
7 15.188 13.542 892
8 15.387 13.821 898
9 15.486 13.980 903
10 15.532 14.063 905
11 15.552 14.104 907
12 15.560 14.122 908
13 15.563 14.130 908
14 15.564 14.133 908
15 15.564 14.134 908
16 15.564 14.134 908
17 15.564 14.134 908
18 15.564 14.134 908

Table 5.2: Numerical results, generalized Policyl, with p =  0.50
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a — 5, ^ =  2, p =  0.25, p =  0
T ECL(T) ECC(T) C(T) (10-^)
1 5.263 5.913 1124
2 7.041 6.648 944
3 9.152 7.843 857

3.5 10.219 8.568 838
3.6 10.426 8.719 836
3.7 10.632 8.871 834
3.8 10.834 9.024 833
3.9 11.032 9.178 832
4.0 11.227 9.331 831
4.1 11.418 9.485 831
4.2 11.604 9.6.38 831*
4.3 11.787 9.791 831
4.4 11.964 9.942 831
4.5 12.137 10.092 832
4.6 12.305 10.241 832
4.7 12.467 10.388 833
4.8 12.624 10.532 834
4.9 12.777 10.675 835
5.0 12.923 10.814 837
5.1 13.065 10.952 838
5.2 13.201 11.086 840
5.3 13.332 11.218 841
5.4 13.457 11.346 843
5.5 13.577 11.471 845
6 14.102 12.044 854
7 14.819 12.926 872
8 15.212 13.489 887
9 15.409 13.815 896
10 15.500 13.988 902
11 15.540 14.072 906
12 15.555 14.110 907
13 15.563 14.125 908
14 15.563 14.131 908
15 15.564 14.133 908
16 15.564 14.134 908
17 15.564 14.134 908
18 15.564 14.134 908

Table 5.3: Numerical results, generalized Policy 1, for the special case p =  0
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p -  0.25
n(T)

Main Policy Alt. Policy
T p — 0 p =  1 p =  0.95 p - 0.90 p =  0.50 p =  0.10 p =  0.01 all p
1 -0.742 0.544 0.479 0.415 -0.099 -0.613 -0.729 0.544
2 -0.294 0.949 0.887 0.825 0.328 -0.170 -0.282 0.949
3 0.106 1.263 1.205 1.147 0.684 0.221 0.117 1.263
4 0.468 1.517 1.464 1.412 0.992 0.573 0.479 1.517
5 0.802 1.733 1.686 1.640 1.267 0.895 0.811 1.733
6 1.113 1.928 1.887 1.846 1.520 1.194 1.121 1.928
7 1.407 2.110 2.075 2.040 1.759 1.477 1.414 2.110
8 1.687 2.289 2.259 2.229 1.988 1.747 1.693 2.289
9 1.956 2.467 2.442 2.416 2.212 2.007 1.961 2.467
10 2.217 2.648 2.627 2.605 2.433 2.260 2.222 2.648
11 2.472 2.833 2.815 2.797 2.653 2.508 2.476 2.833
12 2.722 3.023 3.008 2.993 2.872 2.752 2.725 3.023
13 2.967 3.218 3.205 3.193 3.092 2.992 2.970 3.218
14 3.210 3.417 3.407 3.396 3.314 3.231 3.212 3.417
15 3.451 3.621 3.612 3.604 3.536 3.468 3.452 3.621
16 3.689 3.829 3.822 3.815 3.759 3.703 3.690 3.829
17 3.926 4.041 4.035 4.030 3.984 3.938 3.927 4.041
18 4.162 4.256 4.251 4.246 4.209 4.172 4.163 4.256
19 4.397 4.474 4.470 4.466 4.435 4.405 4.398 4.474
20 4.632 4.694 4.690 4.688 4.663 4.638 4.632 4.694
21 4.865 4.916 4.914 4.911 4.891 4.870 4.866 4.916
22 5.099 5.140 5.138 5.136 5.119 5.103 5.099 5.140
23 5.332 5.365 5.364 5.362 5.349 5.335 5.332 5.365
24 5.565 5.592 5.590 5.589 5.578 5.568 5.565 5.592
25 5.798 5.819 5.818 5.817 5.808 5.800 5.798 5.819
26 6.030 6.048 6.047 6.046 6.039 6.032 6.030 6.048
27 6.262 6.277 6.276 6.275 6.270 6.264 6.263 6.277
28 6.495 6.506 6.506 6.505 6.500 6.496 6.495 6.506
29 6.727 6.736 6.736 6.735 6.732 6.728 6.727 6.736
30 6.959 6.967 6.966 6.966 6.963 6.960 6.959 6.967
31 7.191 7.197 7.197 7.197 7.194 7.192 7.192 7.197
32 7.424 7.428 7.428 7.428 7.426 7.424 7.424 7.428
33 7.656 7.659 7.659 7.659 7.658 7.656 7.656 7.659
34 7.888 7.891 7.891 7.890 7.889 7.888 7.888 7.891
35 8.120 8.122 8.122 8.122 8.121 8.120 8.120 8.122

Table 5.4: Marginal Cost Values for Various Values of p
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Figure 5.1: Cost curve, C'(T), versus inspection interval T, for the degenerate 
case p — I

Figure 5.2: Cost curve, C{T),  and marginal cost function, 1]{T),  versus 
inspection interval T, with p =  0.50



CHAPTER 5. NUMERICAL RESULTS 89

Figure 5.3; Cost curve, C(T),  and marginal cost function, r}(T), versus 
inspection interval T, with p =  0

5.3 p  A  FUNCTION OF T

We now assume p to be a decreasing function of inspection time T. We let 
p(T) =  e~^ ,̂ where (S is a parameter. As a result, a unit that has survived 
the first inspection is less likely to survive the next inspection. Actually, 
the motivation behind assuming this functional form is that it is plausible to 
assume p(kT) =  [P (r)]*, k = l,2 ,.... The exponential function is a continuous 

function that nicely suits the purpose. To handle this realistic extention we 
only substitute p(T)  for p in our formulas. The results are similar, and the 
optimal instection interval T* occurs near at the intersection of the objective 
function and the marginal cost curves C(T)  and r}(T). For the Age Replacement 

policy, Berg [10] [11] showed that the optimal replacement age occurs at the 

intersection of the two curves. The interpretation of this finding is that the 

marginal cost function is below the average cost function in the region where 
the wastage of the remaining lifetimes of the units is higher than the gain in 
averting failures; the marginal cost function is above the average cost function 

in the region where the gain in averting failures is higher than the wastage of
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the remaining lifetimes of the units.

Expected cycle length, expected cycle cost and expected cost per unit time, 
in the long run are provided in Table 5.5-5.5 for 6 =  0.95 and for 6 =  0.50, 
respectively. The objective function C{T)  and the MCE ri(T) are provided in 
Figures 5.4-5.5 for 6 — 0.95 and for S — 0.50, respectively. We observe that 
the optimal inspection time, T*, is near the intersection of the two functions. 
Table 5.7 provides the marginal cost values.
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a =  5, ^ =  2, ^ =  0.25, 6 =  0.95
T ECL(T) ECC(T) C(T) (10-3)
1 6.148 6.430 1046
2 7.554 7.015 929

.3.0 9.378 8.045 858
3.1 9.572 9.559 853
3.2 9.768 9.704 850
3.3 9.964 9.850 846
3.4 10.159 9.995 843
3.5 10.354 10.140 840
3.6 10.548 10.283 838
3.7 10.740 10.425 836
3.8 10.930 10.565 835
3.9 11.118 10.704 834
4.0 11.303 9.413 833
4.1 11.485 9.559 832
4.2 11.664 9.704 832
4.3 11.839 9.850 832*
4.4 12.010 9.995 832
4.5 12.177 10.140 833
4.6 12.340 10.283 833
4.7 12.498 10.425 834
4.8 12.652 10.565 835
4.9 12.800 10.704 836
5.0 12.944 10.840 837
6 14.106 12.051 854
7 14.820 12.928 872
8 15.212 13.490 887
9 15.409 13.815 896
10 15.500 13.988 902
11 15.540 14.072 906
12 15.555 14.110 907
13 15.561 14.125 908
14 15.563 14.131 908
15 15.564 14.133 908
16 15.564 14.134 908
17 15.564 14.134 908
18 15.564 14.134 908

Table 5.5: Numerical results, generalized Policy 1, with 6 =  0.95
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a  =  5, /9 =  2, /i =  0.25, 6 =  0.50
T ECL(T) ECC(T) C(T) (10-3)
1 7.292 7.257 995
2 8.564 7.810 912
3 10.093 8.703 862

3.1 10.254 9.966 859
3.2 10.416 10.089 856
3.3 10.578 10.212 853
3.4 10.741 10.335 851
3.5 10.903 10.458 848
3.6 11.064 10.580 847
3.7 11.225 10.702 845
3.8 11.384 10.824 844
3.9 11.542 10.944 842
4.0 11.699 9.844 841
4.1 11.854 9.966 841
4.2 12.006 10.089 840
4.3 12.156 10.212 840
4.4 12.303 10.335 840*
4.5 12.447 10.458 840
4.6 12.588 10.580 840
4.7 12.726 10.702 841
4.8 12.861 10.824 842
4.9 12.992 10.944 842
5.0 13.119 11.063 843
6 14.172 12.146 857
7 14.841 12.963 873
8 15.218 13.501 887
9 15.410 13.819 896
10 15.501 13.989 902
11 15.540 14.072 906
12 15.556 14.110 907
13 15.561 14.125 908
14 15.563 14.131 908
15 15.564 14.133 908
16 15.564 14.134 908
17 15.564 14.134 908
18 15.564 14.134 908

Table 5.6: Numerical results, generalized Policy 1, with 6 =  0.50
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IJL =  0.25n(T)
Gen Policy 1 Policy 2

T 6 =  0.95 8 =  0.90 8 =  0.80 8 =  0.50 (5 =  0.10 (5 =  0.01 all p
1 1.186 1.206 1.236 1.219 0.774 0.569 0.544
2 0.323 0.362 0.447 0.721 0.972 0.954 0.949
3 0.302 0.326 0.382 0.627 1.138 1.252 1.263
4 0.531 0.542 0.571 0.734 1.294 1.493 1.517
5 0.822 0.826 0.840 0.937 1.454 1.701 1.733
6 1.119 1.121 1.127 1.181 1.621 1.890 1.928
7 1.409 1.410 1.412 1.411 1.799 2.071 2.110
8 1.687 1.688 1.689 1.704 1.988 2.249 2.289
9 1.956 1.956 1.957 1.965 2.186 2.428 2.467
10 2.217 2.217 2.218 2.222 2.391 2.611 2.648
11 2.472 2.472 2.472 2.474 2.603 2.798 2.833
12 2.722 2.722 2.722 2.723 2.820 2.991 3.023
13 2.968 2.968 2.968 2.968 3.041 3.189 3.218
14 3.210 3.210 3.210 3.210 3.265 3.391 3.417
15 3.451 3.451 3.451 3.451 3.491 3.598 3.621
16 3.689 3.689 3.689 3.689 3.719 3.809 3.829
17 3.926 3.926 3.926 3.926 3.948 4.024 4.041
18 4.162 4.162 4.162 4.162 4.178 4.241 4.256
19 4..397 4..397 4.397 4.397 4.409 4.461 4.474
20 4.632 4.632 4.632 4.632 4.640 4.683 4.694
21 4.865 4.865 4.865 4.865 4.871 4.907 4.916
22 5.099 5.099 5.099 5.099 5.103 5.132 5.140
23 5.3.32 5.332 5.332 5.332 5.335 5..358 5.365
24 5.565 5.565 5.565 5.565 5.567 5.586 5.592
25 5.798 5.798 5.798 5.598 5.800 5.814 5.819
26 6.0.30 6.030 6.030 6.030 6.031 6.044 6.048
27 6.262 6.262 6.262 6.262 6.263 6.273 6.277
28 6.495 6.495 6.495 6.495 6.496 6.503 6.506
29 6.727 6.727 6.727 6.727 6.728 6.734 6.736
30 6.959 6.959 6.960 6.959 6.960 6.965 6.967
31 7.191 7.191 7.191 7.191 7.191 7.196 7.197
32 7.424 7.424 7.424 7.424 7.424 7.427 7.428
33 7.656 7.656 7.656 7.656 7.656 7.658 7.659
34 7.888 7.888 7.888 7.888 7.888 7.890 7.891
35 8.120 8.120 8.120 8.120 8.120 8.121 8.122

Table 5.7: Marginal Cost Values for Various Values of 6



CHAPTER 5. NUMERICAL RESULTS 94

Figure 5.4: Cost curve, C{T),  and marginal cost function, ri{T), versus 
inspection interval T, with 6 =  0.95

Figure 5.5: Cost curve, C{T),  and marginal cost function, i/(T), versus 
inspection interval T, with 6 — 0.50



Chapter 6

CONCLUSION

In this thesis, we suggested and studied two simple maintenance policies of 
a two unit cold redundant standby system. We applied the Marginal Cost 
Approach to these policies, derived the marginal cost function r]{T). We 
compared these policies. Next, we generalized the policies, and derived their 
marginal cost functions. This study is the first that applies the Marginal 
Cost Analysis to a model other than the Age Replacement and the Block 
Replacement models. Our objective was to determine the inspection interval T* 
that yields the minimal expected long run cost per unit time C{T).  The results 
we obtained for this relatively complex model are compared to those obtained 
by Berg [10,11] for the Age Replacement and the Block Replacement preventive 
maintenance policies. The optimal inspection time (interval) T occurs near the 
intersection of the two curves rj{T) and C{T).  We also witnessed how flat the 
objective function curve is about T*. Consequently, using the marginal cost 
function r]{T) to minimize C(T),  i.e. setting C{T)  =  i/(T), is more efficient 
than just looking at C[T).  As Berg himself admits, the better insight into the 

model is perhaps the most important benefit of the marginal cost analysis.

As avenues of future research, we suggest generalyzing Policy 2, as we 

did for Policy 1. We also suggest applying the marginal cost analysis to yet 
more complex maintenance models, such as the warm standby system. In 
addition, it may be investigated whether the cost objective function C{T)

95
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could be expressed in terms of the marginal cost function i7(T), as it is the case 
for the age and the block replacement policies.
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