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We provide an explanation of the observed anomalous corrugation of the Al(111) surface by
calculating the current between the Al(111) sample and tip. An atomically sharp tip images the
corrugation of the surface potential, which is enhanced by the tip-induced modifications of the
electronic structure. At very small separations the effective barrier due to the lateral confinement
of current-carrying states dominates the tunneling, however. This may lead to inversion of the

corrugation.

Basic theory of scanning tunneling microscopy' (STM)
considers the wave functions of the free tip and sample
which decay in a potential barrier between the electrodes.
The tunneling current was calculated within the first-
order time-dependent perturbation theory by representing
the tip apex by a single s wave and is found to be propor-
tional to the local density of states of the free sample
ps(r0,Er) evaluated at the center of the tip and at the
Fermi level.> Furthermore, it was shown? that the tunnel-
ing current decays exponentially, I e ~2*, with the dis-
tance between the electrodes d and with the inverse decay
length given by x =+/2m¢/h. Because of this exponential
factor the tunneling current happens to be extremely sen-
sitive to d. Assuming that the barrier height ¢ is indepen-
dent of the lateral position of the tip, and also the elec-
tronic states of the free sample are not disturbed by the
tip, the variation of the measured tunneling current has
been related to the variation of p,(ro,Er) of the unper-
turbed sample.

While several experimental results have been in confor-
mity with the above understanding, some data have been
found in serious conflict with it.> For example, the ob-
served STM corru§ation of the nominally flat (111) sur-
faces of the noble* and simple’® metals was much larger
than one could deduce from the charge density of the free
surfaces. Because of these observed anomalous corruga-
tions, attention has been drawn to the tip-sample interac-
tion effects.> Winterlin ef al.> argued that the STM cor-
rugation of the A1(111) surface is enhanced by the elastic
deformation of the tip, which is induced by the attractive
forces between two electrodes. However, the recent
theoretical investigation by Ciraci, Baratoff, and Batra®
has been at variance with these arguments. Based on the
self-consistent field (SCF) calculations, they showed that
the observed corrugation is reduced by the tip-induced
elastic deformation, but not enhanced. Moreover, their
calculations indicated that the anomalous corrugation has
a close bearing on the pronounced changes in the electron-
ic structure of the electrodes. The proximity of the tip in-
duces site-specific and laterally confined states.”® In par-
ticular, a site-dependent effective barrier ¢.¢ sets in owing
to the lateral confinement of states.® Clearly, the ob-
served anomalous corrugation is a critical problem of
STM, and its interpretation by identifying the images is
important for a thorough understanding of the three-
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dimensional (3D) tunneling between the tip and sample.

In this paper, we analyze the variation of the corruga-
tion of the Al(111) surface obtained from STM (Ref. 5)
by calculating the current between the tip and sample as a
function of lateral and vertical tip positions. We distin-
guish different ranges of the tip-sample distance based on
the different factors which dominate the tunneling
current. At large d 210 A (distance from ion core to ion
core) the STM operates in the independent electrodes re-
gime, thus the corrugation of p;(ro, Er) as well as the cor-
rugation of the potential of the sample surface are negligi-
bly small. However, at relatively smaller d where ¢ is re-
duced but is still finite, the corrugation of the potential at
the sample surface near Er is enhanced owing to the tip-
induced modifications in the electronic structure. Accord-
ingly, an extremely sharp tip images the width of the po-
tential barrier which is strongly site dependent. In this
range the calculated corrugation is ~0.3 A, and is in
agreement with the experimentally measured value.’> At
very small d, ¢ collapses, but the site-dependent effective
barrier [which is higher at the top (T) site than the hollow
(H) site] becomes dominant in tunneling. We predict
that in this range of d(~4 A) the corrugation is inverted.
Upon further approach of the tip a mechanical contact is
initiated and the transition from tunneling to ballistic con-
duction takes place as @ vanishes.’ !

Since the electronic states of the free electrodes are
modified by tip-sample interaction® in the experiment,
these modifications have to be taken into account in the
studies based on the first-order perturbation theory.” This
is unfortunately very tedious. In the present study we,
however, start with a realistic potential (rather than the
electronic states of free electrodes) and obtain the current
(or conductance) by evaluating the expectation value of
the current operator with respect to the current carrying
states calculated from this potential. To this end we mod-
el the tip-sample system by using two jellium electrodes
separated by a vacuum barrier which depends on the sepa-
ration of the two jellium edges / [which is smaller than d
by the interlayer distance do between two consecutive
(111) atomic planes of Al, i.e., I =d —dy]. The potential
energy between two electrodes can be represented by

V(Wiz,p) =0¢m(;z) +a(l;z)p?0(z+1,)0(+do/2—2) ,
)
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where ¢,,(/;z) is the bimetallic junction potential calcu-
lated within the jellium approximation for two jellium
edges placed at z =do/2 (tip) and z =/+dy/2 (sample).
In compliance with the SCF calculations®!? V(I;p,z) is
parabolic in the transverse plane (i.e., in the xy plane
with p?=x2+y2) in the region —I, <z <I+do/2. A
schematic description of the model potential is shown by
the inset in Fig. 1. At the tip side (—I, <z =<do/2),
a(l;z) defines the shape of the apex. In the vacuum side
(do/2 <z <I1+do/2) the confinement parameters a(/;z)
are obtained from the SCF potential. The jellium param-
eters of Al are used for both electrodes (tip and sample).
This is, in fact, consistent with the experiment, in which
atomic resolution was achieved only after a special treat-
ment*> providing material transfer from the sample to the
apex of the tip.

The current carrying states are the 3D plane waves in
the electrodes and the quantized states in the orifice.
Since ¢, and a are varying with z, we divide the orifice
into discrete segments. In each segment ¢,,(/;z) and
a(l;z) can be assumed constant, so that the wave func-
tions of the eigenstates would be the products of the 2D
isotropic harmonic oscillator solutions and 1D plane
waves. Consequently, the current carrying solution wy,
corresponding to an incident wave k; deep in the tip elec-
trode can be written as

v, (p,z) =2 [A,,ki(z)eiy”(Z)z+B,,k,.(z)e @ (2,p),
)]

where ®,(z,p) is the 2D harmonic oscillator solution for a
given a(l;z) with n=n, +n,, and the eigenenergy
é(;z) =(n+1)[2h%a(l;z)/m]"2. The propagation con-
stant is given by

1/2

Yulz) = %[E —om2) —en )] | . 3)

We determine the coefficients Ank, and By, by using mul-
tiple boundary matching.'? The total tunneling conduc-
tance is obtained by integrating the expectation value of
the current operator over the Fermi sphere

2 dk
G, () =5—
(0 h JFs k, (k)

([A{Reff} Ay — B{ Re(l}B,]
+2Im[A{ Im{}B,]) , @)

where A and B are the vectors of 4,y and By, respective-
ly, and T is the diagonal matrix with ', =y,. The z
dependencies are suppressed since the conductance does
not depend on which point the expression in Eq. (4) is
evaluated.

Two features in our formalism, namely, the variation of
om(l;z) with lateral position of the tip and the form of
a(l;z) are crucial for the tunneling current and thus
relevant for STM corrugation calculated thereof. In what
follows we explain how ¢, and a are realistically deter-
mined to obtain quantitative results.

It is known that the jellium approximation alone does
not convey any information regarding the corrugation of
the sample surface, even though it is appropriate to calcu-
late the tunneling current. That is, using only ¢,, (/;z) one
may obtain an overall behavior'' of tunneling current as a
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function of d, but not its variation with the lateral position
of the tip at a given d. In order to resolve interactions on
the atomic scale an individual atom was attached on one
of the jellium surfaces.!' Even this approach provides
limited applicability in the analysis of the STM corruga-
tion. On the other hand, by using the SCF calculations
for the periodically repeating tip-sample system the tip-
sample interactions can be resolved on the atomic scale
and the corrugation of the charge density and potential at
the sample surface can be obtained. In this case the cal-
culation of the 3D tunneling current is, however, hindered,
since the size of the supercell representing the repeating
tip-sample system is finite and thus states in the k space
are discretized. In the present study, we combine these
two methods. We implement the corrugation of ¢,,(/;z)
obtained from the SCF calculations®'? into the jellium
model and calculate the tunneling current to infer the
STM corrugation.

By using the SCF pseudopotential method the charge
density and potential energy of the combined Al tip and
Al sample are calculated for different tip positions (7" and
H sites) for d ranging from 3.7 to 7.5 A. In these calcula-
tions the tip was represented by a pyramid consisting of
four atoms, which is attached to the base electrode li.e.,
an Al(111) slabl. This pyramidal tip is periodically re-
peated resulting in a (3x3) tip array. The artificial
periodicity is used to represent the wave function by a
basis set of ~2000 plane waves. Since the lateral period
is large (~9 A), the intertip interaction has no significant
effect on the results. We note that the tip-sample system
in each periodically repeated supercell is in compliance
with our model which represents a single-tip electrode and
sample surface as described in Fig. 1. Details of these cal-
culations will be published elsewhere.'? Figure 1 illus-
trates the variation of ¢,,(/;z) obtained from SCF calcu-
lations for /=1.93 and 3.52 A (or d =4.23 and 5.82 A).
It is seen that the effective width £(E,d) of the potential
barrier defined by ¢,,(/;z) at fixed energy is consistently
larger at the H site than at the T site. Moreover, the
analysis of the calculated £(E,d) shows that the corruga-
tion, AE(E,d) =&H(E,d) —ET(E,d), decreases with in-
creasing d, and diminish for very large d as anticipated.
In the earlier STM studies it was generally assumed that
for a fixed d, £(E,d) remains constant immaterial of the
lateral position of the tip. This way the site-specific varia-
tion of the potential barrier has gone unnoticed.

The effect that enhances A¢ at small d can be sought in
the tip-sample interaction. Although the surface potential
of the free sample V,(r) is dominated by the exchange-
correlation potential (which in the local-density approxi-
mation is proportional to p}/?) A& (E,h) is still a small
quantity (<0.1 A). This corrugation, A&(E,h), is ap-
parently the measure obtained by He-scattering experi-
ments, h denoting the classical turning point. Only very
close to the surface or for energies far below the Fermi
level, due to the Coulombic potential (i.e., attractive
core and repulsive Hartree potential) the corrugation
A& (E,d) is comparatively larger. Nevertheless, these
conditions are not accessible with He scattering or with
STM operating in the independent (noninteracting) elec-
trode regime. As pointed out earlier,’ the tip and sample
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FIG. 1. Variation of ¢.(/;z) calculated from the jellium
model by implementing the corrugation of the corresponding
SCF potential. Solid (dashed) lines are jellium results for the
top (hollow) site positions of the tip for /=193 and 3.52 A.
The self-consistent results are shown by filled and open circles
for the T and H sites, respectively, for / =1.93 A. Inset shows
schematic description of the model used in the calculations of
the tunneling current (or conductance). Atomic positions are
indicated by the larger filled circles. do is the interlayer distance
of the Al(111) planes.

states are combined to yield tip induced localized states in
STM at small 4. This induces substantial local modi-
fications in the charge distribution between the two elec-
trodes. Based on the first-principle calculations® it was
shown that for d =4.2 A the saddle-point value of the
charge density of the combined tip-sample system p(rp) is
1 order of magnitude larger than twice the value calculat-
ed for the unperturbed sample system at the same point.
It is also found that the redistribution of charge is strongly
site dependent®'? for an atomically sharp tip. This site-
specific rearrangement of the charge at small d amplifies
the corrugation of the charge density Ap(d), and thus
leads to a large value for AE(E,d). This important in-
gredient of the SCF potential is incorporated in the model
potential in Eq. (1) in the following manner: First,
6m (1;2) is calculated from the jellium approximation for a
given /, which is in reasonable agreement with the corre-
sponding SCF potential at the T site. Then, ¢,,(/;z) is
elongated at the saddle point by A¢ to obtain the potential
at the H site. The values of A& used in the calculations
are listed in Table I.

The form of a(/;z) determines the lateral confinement
of the states between the tip and sample. The larger a
(i.e., the steeper the parabolic potential) the stronger the
confinement, thus the higher the energies of the subbands
[e,(1;z)]. In the adiabatic approximation, ¢ex(/)
=maxley(/;z) +¢,(;2)] — Er corresponding to a fixed /
becomes the effective barrier for an incident wave near Er
if gexr > 0. Consequently, a relatively larger a gives rise to
a higher ¢.¢ and hence to a smaller tunneling probability.
As shown earlier, '° because of the lateral confinement the
transport occurs via tunneling even if ¢ collapses, i.e., even
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TABLE I. The parameters used in the calculation of the tun-
neling current (or conductance). The potential corrugation
(A¢) is calculated from the SCF potential 2.0 eV below the Fer-
mi level. The confinement parameters for the top (ar) and hol-
low (ay) sites are fitted to SCF potential at the bisecting plane.

! (A) AE (R) ar (eV/A?) ay (eV/A?Y)
2.0 0.325 0.459 0.328
3.0 0.240 0.157 0.166
4.0 0.191 0.068 0.093
5.0 0.158 0.034 0.056
6.0 0.135 0.019 0.036

maxlg, (I;2)] < Er. As d is approaching the separation
corresponding to maximum binding (or zero force) the
effective barrier may also collapse (i.e., ¢or <0). In this
case, the character of the conductance undergoes a
change, and ballistic transport takes place. In the ballistic
regime, the conductance can be quantized '®' depending
on the lateral and longitudinal extent of the orifice. It be-
comes clear that the present formalism with realistic
om(l;z) and a(l;z) allows us to study the transport be-
tween the tip and sample in a wide range covering the tun-
neling and ballistic regimes. Earlier, thorough analyses of
the tunneling and “quantized” ballistic re§imes in STM
were also presented by a similar approach.'®!3 In Table I,
we list the values of a used in the calculations, which are
taken to be constant in the region do/2 < z <[!+dy/2.
Having implemented the corrugation A¢ and the correct
form of a(/;z) in Eq. (1), we finally calculate the tunnel-
ing conductance G, as a function of /. Our results are
presented in Fig. 2. For large / (X5 A), logoG, vs I
curve is approximately a straight line with a constant neg-
ative slope. This indicates that the transport occurs via
tunneling. In this range of /, the current at the T site is
larger than that at the H site and yields corrugation of
~0.3 A. This value is in agreement with the experimen-
tal observation,’ since the tunneling current is ~10-20
nA for /~5.5 A and for the bias voltage of 50 mV (which
are typical for the observed anomalous corrugation?).
Note that for increasing / the corrugation in Fig. 2

Gy(2e2/h)

t(A)

FIG. 2. The tunneling conductance calculated by using Eq.
(4). The solid (dash-dotted) curve is for the top (hollow) site.
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remains approximately constant. This is due to an
insufficient fit of a(/) to the SCF results. For a more real-
istic form of a, the barrier at the T and H sites should
merge into one leading to zero corrugation. In the inter-
mediate region 2 S/ <4 A, the effect of increasing lateral
confinement (i.e., higher ¢.g) at the T site becomes supe-
rior to that of increasing A¢ at the H site. Hence, the
measured corrugation has to decrease with decreasing /, in
spite of (and because of) the increasing tip-sample in-
teraction. Finally as shown in Fig. 2, for /<2 A the
current at the H site exceeds that at the 7 site. This im-
plies that the corrugation is inverted at small / before the
mechanical contact, and thus the hollow site (rather than
the atomic sites) appears as a protrusion in the STM im-
ages obtained by the topographic mode. Note, however,
that the inverted corrugation may not be easily observable

owing to the mechanical instability of the tip in this re-
gime.

In conclusion, we used a model potential to calculate
the tunneling current for an Al tip and AI(111) sample
system. We have found that the observed anomalous cor-
rugation is related to the corrugation of the potential bar-
rier, which is enhanced by the tip-sample interaction
effects. Novel effects, namely, decreasing corrugation
with increasing current and inverted corrugation, were
predicted.
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