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AbstractÐThe assembly line balancing problem has been a focus of interest to the academicians of pro-
duction/operations management for the last 40 years. Although there are numerous studies published
on the various aspects of the problem, the number of studies on mixed-model assembly lines are rela-
tively small. In this paper, a binary integer programming model for the mixed-model assembly line bal-
ancing problem is developed and some computational properties of the model are given. # 1998
Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The assembly line balancing problem has been a focus of interest to the academicians of pro-

duction/operations management for the last 40 years. Although there are numerous studies pub-
lished on the various aspects of the problem, the number of studies on mixed-model assembly
lines is relatively small. The problem is NP-hard, since with a single model and tasks with no
precedence relations, it is easy to reduce the problem to a bin packing problem which is NP-

hard in the strong sense. Hence, the combinatorial nature of the mixed-model line balancing
problem makes it di�cult to obtain optimal solutions, though the mixed-model line is the most
frequently encountered type in industry due to the pressure of producing several models to
attain higher customer satisfaction.

A mixed-model assembly line balancing problem can be stated as follows: Given P models,
the set of tasks and a cycle time associated with each model, the performance times of the tasks,
and the set of precedence relations which specify the permissible orderings of the tasks for each

model, the problem is to assign the tasks to an ordered sequence of stations such that the pre-
cedence relations are satis®ed and some performance measure is optimized.

The ®rst researcher who constructed a mathematical model of the single-model assembly line

balancing problem and suggested a solution procedure was, to the best knowledge of the
authors, Salveson [1]. During the 1960's and 70's, numerous papers concerning the problem
have been published: the majority suggested heuristic procedures to solve the single-model ver-
sion of the problem. Interested readers should see the review papers by Baybars [2] and Ghosh

and Gagnon [3]. Relatively fewer researchers attempted to solve the single-model version with
optimum-seeking algorithms: Bowman [4], White [5], Thangavelu and Shetty [6], Patterson and
Albracht [7], and Talbot and Patterson [8] constructed integer programming models, Gutjahr
and Nemhauser [9] formulated the problem as a shortest-route network, and Jackson [10] devel-

oped a dynamic programming (DP) formulation for the problem. The computation and storage
requirements of all these optimum-seeking algorithms were excessive even for problems of mod-
est sizes. It is noteworthy, however, that the formulation of Patterson and Albracht [7] utilized
properties that prevent the rapid increase of variables. The integer programming model and the
solution procedure of Talbot and Patterson [8] is also reported to obtain optimal solutions in a

reasonable amount of time for problems with up to 50 tasks. On the other hand, the number of
studies conducted on the mixed-model version of the problem is considerably less. Roberts and
Villa [11] were one of the few researchers attempting to solve the mixed-model assembly line bal-
ancing problem with an optimum-seeking procedure. They constructed a binary integer pro-
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gramming model of the problem; however, the excessive number of variables and constraints
prohibited the applicability of the model to problems of even small sizes. They also extended
the shortest-route formulation of Gutjahr and Nemhauser [9] to handle a mixed-model version
of the problem. Similar to the integer programming model, the number of nodes in the network
also grows at a fast rate as the problem size increases. Recently, Berger et al. [12] presented a
branch-and-bound algorithm with a truncated search for a special case of the mixed-model ver-
sion of the problem; the models start diverging after all the common tasks are performed. In
other words, production processes of the models start diverging after the common tasks are per-
formed. Some researchers addressed the issue of developing sequencing algorithms for the
mixed-model lines [13, 14].

In this paper, we develop an integer programming model for the mixed-model version of the
problem in which we utilize some properties that prevent the fast increase in the number of vari-
ables. Due to the NP-hard nature of the problem, the size of our model would be too large to
obtain optimal solutions for problems of realistic sizes. However, the model suggested in this
paper presents a signi®cant improvement relative to the models in the literature. It can also be
used as a validation tool for heuristic procedures developed for the mixed-model version.

The paper is organized as follows: in Section 2, the binary integer programming model is con-
structed for the problem. The model is further clari®ed by an illustrative example in Section 3.
In Section 4, some computational properties of the model are discussed and in Section 5, con-
cluding remarks are given.

BINARY INTEGER PROGRAMMING FORMULATION

Notation

The notation used in the formulation is as follows:
N =total number of tasks in the problem;
K =number of stations;
P =number of models (products);
PRi =subset of all tasks that precede task i, i= 1, . . . ,N;
Si =subset of all tasks that follow task i, i = 1, . . . ,N;
tim =performance time of task i of model m, i= 1, . . . ,N; m= 1, . . . ,P;
Cm =cycle time of model m, m = 1, . . . ,P;
Eim =earliest station task i of model m can be assigned to, given the precedence relations, i= 1, . . . ,N; m = 1, . . . ,P;
Lim =latest station task i of model m can be assigned to, given the precedence relations, i= 1, . . . ,N; m = 1, . . . ,P;
Vik =1 if task i is assigned to station k; 0 otherwise;
Xkm =1 if station k is utilized for model m; 0 otherwise;
Ak =1 if station k is utilized by all models; 0 otherwise;
Wkm =subset of all tasks that can be assigned to station k of model m;
6Wkm6 =number of tasks in set Wkm.

Note that Wkm is obtained from Eim and Lim values. Note also that if Xkm is equal to 1 for
station k, for m = 1, . . . ,P, then Ak equals 1; 0 otherwise.

Assumptions

The assumptions of the model are listed below:

1. Task performance times associated with each model are known constants; common tasks
among the models do not need to have the same performance times.

2. Precedence relations between the tasks of each model are known.
3. No WIP inventory bu�er is allowed between stations.
4. Common tasks of di�erent models must be assigned to the same stations.
5. The number of stations is the same for all models.
6. Parallel stations are not allowed.

Typically there are several tasks common to the various models manufactured on a mixed-
model assembly line with similar precedence relations among these common tasks. Thus, we will
utilize the similarity between the precedence relations of di�erent models in our model.
Thomopoulos [15] used the concept of a combined precedence diagram to joint the precedence
relations of di�erent models on a single diagram. The construction of the combined precedence
diagram is straightforward with precedence matrices. A precedence matrix is an upper-triangular
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matrix with an abth entry of 1 if the processing of task b requires the completion of task a.

Otherwise, the entry is zero. The precedence matrix of the combined precedence diagram is con-

structed as follows: the abth entry of the matrix is 1 if the abth entry of any of precedence

matrices of the models is 1. Furthermore, if there are any implied precedence relations, then the

related entries in the combined precedence matrix should also be 1. Note that there should be

no con¯ict in the precedence relations across the models; for example, if a model requires the

completion of task a before task b, then no other model should require the completion of task b

before task a. The combined diagram reduces the number of variables and constraints of the

model signi®cantly. Thus, N is typically much smaller than the sum of the number of tasks of

the models. A simple example is given in Fig. 1 to illustrate the process of constructing a com-

Fig. 1. Precedence diagrams of (a) model 1, (b) model 2 and (c) combined.
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bined precedence diagram. The numbers within the nodes represent tasks and the arrows con-
necting the nodes specify the precedence relations. Figure 2 depicts the precedence matrices of
the models in Fig. 1 and the precedence matrix of the combined precedence diagram. Note that
the 48th entry in the combined precedence matrix is 1 due to the implied precedence relation
between tasks 4 and 8. The interested reader is referred to [15], [16] and [17] for a detailed dis-
cussion of combined precedence diagrams.

The earliest and latest stations task i can be assigned to, given the precedence relations, is a
problem ®rst developed by Patterson and Albracht [7] for the single-model assembly line balan-
cing problem. The earliest station task i can be assigned to is based on the fact that a su�cient
number of stations should be spared for the tasks preceding task i. A lower bound on the ear-
liest station is the ratio of the sum of the performance times of the tasks in PRi and C.
Similarly, the latest station is associated with the tasks following task i on the precedence dia-
gram. Utilizing these concepts greatly reduces the number of variables in the model; in fact, the
formulation of Patterson and Albracht [7] required signi®cantly less variables than the earlier

Fig. 2. Precedence matrices of (a) model 1, (b) model 2, and (c) combined.
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integer programming models published in the literature. We have modi®ed these expressions for
the mixed-model assembly line balancing problem as follows:

Eim �
tim �

X
j2PRi

tjm

Cm

2664
3775
�

for i � 1; . . . ;N; m � 1; . . . ;P

Lim � K � 1ÿ
tim �

X
j2Si

tjm

Cm

2664
3775
�

for i � 1; . . . ;N; m � 1; . . . ;P

where dxe+ denotes the smallest integer greater than or equal to x. The earliest and latest
stations task i on the combined precedence diagram can be assigned to are maxm = 1, . . .P{Eim}
and minm = 1, . . . ,P{Lim} respectively. The number of stations, K, can be estimated from the oper-
ational setting or by utilizing heuristic procedures shown to perform well; note that a loose
upper bound on K is N.

Constraints

The constraints of the model can be grouped into four sets and are explained below.
Assignment constraints. This set of constraints assures that tasks of each model are assigned to

at most one station and can be written as follows:XLi

k�Ei

Vik � 1 for i � 1; . . . ;N

Precedence constraints. In the combined precedence diagram, the precedence relation between
task a and task b, where b is an immediate follower of a, can be expressed as follows:XLa

k�Ea

k � Vak ÿ
XLb

k�Eb

k � Vbk � 0

where LarEb and EaEEb. Note that the above assignment and precedence constraints are also
utilized by Patterson and Albracht [7].
Cycle time constraints. The sum of the task performance times for each model within a station

must be less than or equal to the cycle time of the model, and this can be expressed as follows:X
i2Wkm

tim � Vik � Cm; k � 1; . . . ;K; m � 1; . . . ;P

Stations constraints. The number of stations is the same for all models; i.e., if the work con-
tent of station k for a model is zero, then the work content of this station for all the other
models must also be zero. This can be accomplished by introducing the following constraints:X

i2Wkm

Vik ÿ kWkmkXkm � 0 for k � 1; . . . ;K; m � 1; . . . ;P

XP
m�1

Xkm ÿ P � Ak � 0 for k � 1; . . . ;K
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Objective function

The objective is to minimize the number of stations utilized:

Min
XK
k�1

Ak

ILLUSTRATIVE EXAMPLE

We apply the above model to a mixed-model assembly line balancing problem with two simi-
lar models taken from Bedworth and Bailey [18]. The precedence diagrams of the models and
the combined diagram are depicted in Fig. 3 and Fig. 4, respectively. In Fig. 3, the numbers
next to the nodes represent task performance times. Note that the combined diagram has 11
tasks, whereas the ®rst and the second models have 7 and 9 tasks, respectively. Cycle time is
taken as 10 minutes for each model and the number of stations is limited to 4.

The earliest and latest stations to which the tasks can be assigned to are given in Table 1.
The assignment constraints of the formulation are as follows:

V11 � V12 � 1

V21 � V22 � V23 � V24 � 1

V31 � V32 � V33 � V34 � 1

V41 � V42 � V43 � 1

V51 � V52 � V53 � 1

V62 � V63 � 1

Fig. 3. Precedence diagrams of (a) model 1, (b) model 2, of the illustrative example.
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V72 � V73 � V74 � 1

V81 � V82 � V83 � V84 � 1

V91 � V92 � V93 � 1

V101 � V102 � V103 � V104 � 1

V113 � V114 � 1

Note that the Ei and Li values restrict the number of variables in the above constraints to 34.

The precedence constraints of the formulation are as follows:

V11 � 2V12 ÿ V31 ÿ 2V32 ÿ 3V33 ÿ 4V34 � 0

V11 � 2V12 ÿ V41 ÿ 2V42 ÿ 3V43 � 0

V11 � 2V12 ÿ V21 ÿ 2V22 ÿ 3V23 ÿ 4V24 � 0

V11 � 2V12 ÿ V81 ÿ 2V82 ÿ 3V83 ÿ 4V84 � 0

Fig. 4. Combined precedence diagram of the illustrative example.

Table 1. The earliest and latest stations to which the tasks of the illustrative example can be assigned

Task (i) Ei Li

1 1 2
2 1 4
3 1 4
4 1 3
5 1 3
6 2 3
7 2 4
8 1 4
9 1 3
10 1 4
11 3 4
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V41 � 2V42 � 3V43 ÿ V51 ÿ 2V52 ÿ 3V53 � 0

V51 � 2V52 � 3V53 ÿ 2V62 ÿ 3V63 � 0

V31 � 2V32 � 3V33 � 4V34 ÿ 2V72 ÿ 3V73 ÿ 4V74 � 0

2V62 � 3V63 ÿ 2V72 ÿ 3V73 ÿ 4V74 � 0

V21 � 2V22 � 3V23 � 4V24 ÿ 2V72 ÿ 3V73 ÿ 4V74 � 0

V81 � 2V82 � 3V83 � 4V84 ÿ V91 ÿ 2V92 ÿ 3V93 � 0

V91 � 2V92 � 3V93 ÿ V101 ÿ 2V102 ÿ 3V103 ÿ 4V104 � 0

2V72 � 3V73 � 4V74 ÿ 3V113 ÿ 4V114 � 0

V101 � 2V102 � 3V103 � 4V104 ÿ 3V113 ÿ 4V114 � 0

Each constraint above corresponds to a precedence relation in the combined precedence dia-
gram. The cycle time constraints for the models are as follows:

Cycle time constraints (for model 1):

V11 � 5V21 � 4V31 � 4V81 � 3V91 � 10

V12 � 5V22 � 4V32 � 2V72 � 4V82 � 3V92 � 10

5V23 � 4V33 � 2V73 � 4V83 � 3V93 � 3V113 � 10

5V24 � 4V34 � 2V74 � 4V84 � 3V114 � 10

Cycle time constraints (for model 2):

V11 � 4V31 � V41 � 5V51 � 3V91 � 5V101 � 10

V12 � 4V32 � V42 � 5V52 � 6V62 � 2V72 � 3V92 � 5V102 � 10

4V33 � V43 � 5V53 � 6V63 � 2V73 � 3V93 � 5V103 � 3V113 � 10

4V34 � 2V74 � 5V104 � 3V114 � 10

The ®rst and the last four constraints above are associated with the ®rst and the second
models, respectively. The station constraints of the formulation are as follows:

V11 � V21 � V31 � V81 � V91 ÿ 5X11 � 0

V12 � V22 � V32 � V72 � V82 � V92 ÿ 6X21 � 0

V23 � V33 � V73 � V83 � V93 � V113 ÿ 6X31 � 0

V24 � V34 � V74 � V84 � V114 ÿ 5X41 � 0

V11 � V31 � V41 � V51 � V91 � V101 ÿ 6X12 � 0

V12 � V32 � V42 � V52 � V62 � V72 � V92 � V102 ÿ 8X22 � 0
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V33 � V43 � V53 � V63 � V73 � V93 � V103 � V113 ÿ 8X32 � 0

V34 � V74 � V104 � V114 ÿ 4X42 � 0

X11 � X12 ÿ 2A1 � 0

X21 � X22 ÿ 2A2 � 0

X31 � X32 ÿ 2A3 � 0

X41 � X42 ÿ 2A4 � 0

Finally, the objective function of the formulation is as follows:

Min A1 � A2 � A3 � A4

The above formulation has 46 binary integer variables and 44 constraints. The optimal sol-
ution is shown in Table 2. Only three stations are utilized in the optimal solution; the total idle
time associated with Model 1 and Model 2 are 8 and 0, respectively. Note that tasks 1 and 9 for
station 1, task 3 for station 2, and tasks 7 and 11 for station 3 are common to both models.

PERFORMANCE OF THE MODEL

We have attempted to solve problems of various sizes using the General Algebraic Modeling
System (GAMS) Release 2.25 on a 486 66 MHz personal computer. Table 3 depicts the sizes of
the problems, the average CPU times and the number of iterations. The di�culty level of a pro-
blem is a function of the number of tasks on the combined precedence diagram and the number
of precedence relations among the tasks. The precedence relations play a dominant role in speci-
fying the computational and storage requirements of problems; for example, the requirements of

Table 2. Optimal station assignment of the illustrative example

Model 1 Model 2

Station Tasks Tasks Station time Tasks Station time

1 1,4,5,8,9 1,8,9 8 1,4,5,9 10
2 3,6 3 4 3,6 10
3 2,7,10,11 2,7,11 10 7,10,11 10

Table 3. Experimentation results

Number of tasks F-ratio Number of problems solved Average CPU time (min)
Average number of

iterations

10 0.644 4 5.83 22 980
10 0.444 4 3.51 19 639
10 0.113 4 1.70 7 610

20 0.710 6 31.50 81 993
20 0.536 6 12.90 51 846
20 0.147 6 7.80 28 317

30 0.751 6 43.37 144 365
30 0.441 6 37.63 134 793
30 0.112 6 15.07 62 669

40 0.801 3 77.35 250 000
40 0.510 3 53.01 202 841
40 0.173 3 42.17 137 000

60 0.828 3 180.75 450 000*

60 0.509 3 155.19 450 000*

60 0.070 3 153.33 450 000*

* Optimal solution was not obtained.
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a problem that has several tasks with no precedence relations will be larger than the require-
ments of a problem that has a serial precedence diagram. The Flexibility ratio (F-ratio), devel-
oped by Dar-El [19], is a measure of the number of feasible sequences that could be generated
from the precedence diagram. Thus, it can be used as a measure of computational and storage
requirements of problems. If H is the number of zeros in this matrix, then the F-ratio is de®ned
as

Fÿ ratio � 2H

N�N ÿ 1�
where N is the number of tasks in the problem. It ranges from one for precedence diagrams
with tasks having no precedence relations to zero for precedence diagrams with tasks ordered
serially. As depicted in Table 3, a wide range of F-ratio values is included in the experimen-
tation. The number of stations utilized to specify the earliest and latest stations to which tasks
can be assigned is determined by the well-known heuristic procedure ``Ranked Positional
Weight Technique'' of Helgeson and Birnie [20]. The program terminates if the upper bound of
450 000 iterations is reached.

Examining Table 3 reveals the expected results that as the number of tasks and F-ratios
increase, the computational requirements increase. Optimal solutions of the problems with up to
40 tasks have been obtained in less than 450 000 iterations. However, all the 60-task problems
required more than 450 000 iterations to obtain the optimal solutions.

We have also compared the size of our model with that of the model of Roberts and Villa
[11] on several problems. To the best knowledge of the authors, the model of Roberts and Villa
[11] is the only integer programming model to solve the mixed-model version of the problem in
the literature. In the model of Roberts and Villa, the concept of the earliest and latest stations
to which the tasks can be assigned has not been utilized. The combined precedence diagram has
also not been considered. Furthermore, the upper bound on the number of stations has been
taken to be equal to the number of tasks. In our model, the above concepts are taken into
account; thus, the size of our model is signi®cantly smaller than that of the model of Roberts
and Villa [11]. Table 4 depicts the number of constraints and variables of the models in various
problems with up to four models. The di�erence in the total number of tasks and the number of
tasks in the combined diagram is due to the common tasks among the models.

CONCLUDING REMARKS

We have developed a binary integer programming model for the mixed-model assembly line
balancing problem in which some tasks are common to di�erent models. We have attempted to
decrease the size of the model by utilizing a combined precedence diagram and some variables
that limit the increase in the number of decision variables and constraints. The resulting model
is signi®cantly superior to the one reported in the literature with respect to the number of de-
cision variables and constraints. The experimentation revealed that the model is capable of sol-
ving problems with up to 40 tasks in the combined precedence diagram. On the other hand, due
to the NP-hardness of the problem, the model size would be too large to obtain the optimal sol-

Table 4. Results of comparison between our model and the model of Roberts and Villa

Integer model Roberts and Villa's model [11]

Number
of models

Total
number
of tasks

Number of tasks
in combined
diagram

F-ratio of
combined
diagram

Number of
constraints

Number of
variables

Number of
constraints

Number of
variables

2 9 5 0.0 26 18 32 45
2 16 11 0.45 39 32 61 144
3 51 30 0.24 122 132 208 1020
3 61 28 0.28 125 154 248 1403
4 39 16 0.49 91 89 169 468
4 56 23 0.29 126 136 242 952
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utions of larger problems. The model serves as a starting point for researchers in the ®eld, and
may be used as a validation tool for heuristic procedures.
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