Computers and Operations Research 88 (2017) 58-70

journal homepage: www.elsevier.com/locate/cor

Contents lists available at ScienceDirect

Computers and Operations Research

mputers &
Operations Research

A capacitated hub location problem under hose demand uncertainty

Merve Merakli*"* Hande Yaman®

aDepartment of Industrial Engineering, Bilkent University, Ankara, Turkey

@ CrossMark

b Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA

ARTICLE INFO ABSTRACT

Article history:

Received 8 December 2016
Revised 10 May 2017
Accepted 14 June 2017
Available online 20 June 2017

Keywords:

Hub location

Multiple allocation
Capacitated hubs
Demand uncertainty
Robustness

Hose model

Benders decomposition

tainty into our problem.

In this study, we consider a capacitated multiple allocation hub location problem with hose demand un-
certainty. Since the routing cost is a function of demand and capacity constraints are imposed on hubs,
demand uncertainty has an impact on both the total cost and the feasibility of the solutions. We present
a mathematical formulation of the problem and devise two different Benders decomposition algorithms.
We develop an algorithm to solve the dual subproblem using complementary slackness. In our compu-
tational experiments, we test the efficiency of our approaches and we analyze the effects of uncertainty.
The results show that we obtain robust solutions with significant cost savings by incorporating uncer-

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Hubs are used commonly in many-to-many distribution systems
that arise in transportation and telecommunications applications.
Flows from many origins to many destinations are consolidated at
hubs and routed together to benefit from economies of scale. Many
variants of hub location problems have been studied in the last few
decades. Given a set of nodes with pairwise traffic demands, the
hub location problem decides on the locations of the hubs and the
routes of traffic demands to minimize some performance measure.
This measure can be related with the system cost or the quality
of service. The system cost includes the cost of routing the traffic
in the hub network and it may include the fixed cost of locating
hubs if the number of hubs is not fixed. In some variants, direct
shipments between nonhub nodes are allowed, in others all the
traffic is routed through at least one hub. Also, there are variants
of the problem where a nonhub node can send and receive traf-
fic through multiple hubs and others where there is a restriction
on the number of hubs that a nonhub node can use. The first set-
ting is known as the multiple allocation setting. In this paper, we
study a hub location problem with multiple allocation, fixed costs
for installing capacitated hubs and no direct shipments.
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Most studies in the hub location literature are based on the
assumption that the pairwise demands are known with certainty.
However, this is very difficult to justify in practice since strategic
decisions such as hub location decisions are often taken before ob-
serving the actual demand and the demand fluctuates over time.
In this study, we incorporate the demand uncertainty into the ca-
pacitated multiple allocation hub location problem. In this setting,
demand uncertainty affects both the feasibility of a hub network
and its associated cost. To hedge against demand uncertainty, we
use a robust optimization framework: among all hub networks that
are feasible for all possible demand realizations, we would like to
find one that minimizes the worst case total cost (for more on ro-
bust optimization see, e.g., Atamtiirk (2006); Ben-Tal et al. (2004);
Ben-Tal and Nemirovski (1998); 1999); 2008); Bertsimas and Sim
(2003); 2004); Mudchanatongsuk et al. (2008); Ordéfiez and Zhao
(2007); Yaman et al. (2001); 2007)).

We represent the uncertainty with a special polyhedral uncer-
tainty model known as the hose model. The parameters of this
model are aggregate traffic upper bounds for each node. Any non-
negative demand vector in which the sum of traffic demands that
each node can send and receive does not exceed the traffic up-
per bound for that node is a possible demand realization. The
hose model was proposed by Duffield et al. (1999) and Fingerhut
et al. (1997) to design virtual private networks. It has several ad-
vantages compared to other uncertainty models: it asks to es-
timate a parameter for each node rather than for each pair of
nodes. This aggregation reduces the statistical variability and er-
rors. It has resource-sharing flexibility and is not a conservative
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model in which each origin-destination traffic demand can take its
worst case value simultaneously. Due to these advantages, the hose
model has been used as an uncertainty model in many studies
following its introduction (some examples are Altin et al. (2007);
2011); Chekuri et al. (2007); Italiano et al. (2006)).

Recently, Merakli and Yaman (2016) study the uncapacitated
multiple allocation p-hub median problem with polyhedral de-
mand uncertainty. They present a mixed integer programming
model and apply Benders decomposition. Their results show that
algorithms based on decomposition are very efficient compared to
solving the model with an off-the-shelf solver. They also observe
that it is possible to obtain significant cost savings by incorpo-
rating demand uncertainty into the problem. In the uncapacitated
problem, the demand only affects the routing costs. In addition, it
is known that when hub locations are given, each traffic demand
is routed on a shortest path from its origin to its destination in-
dependently of the amount of demand. As a result, it is possible
to hedge against uncertainty with minor changes in the network.
These are not true when capacity constraints are imposed for hubs.

In this paper, we present a model for the capacitated hub lo-
cation problem with multiple allocation and hose demand un-
certainty. Our initial computational experiments showed that the
model is much harder to solve compared to its deterministic coun-
terpart. We propose two exact algorithms based on Benders refor-
mulations and give an algorithm to solve the dual subproblem us-
ing complementary slackness. We test the efficiency of these algo-
rithms using instances from the literature. We also perform exper-
iments to investigate the changes in the hub locations and costs
as a result of demand uncertainty. We observe that ignoring de-
mand uncertainty may result in high routing costs and congested
hubs. Unlike the observations for the uncapacitated problem, when
capacity constraints are imposed, one may need to make major
changes in the hub locations to hedge against uncertainty.

The rest of the paper is organized as follows. In Section 2,
we review the related literature. In Section 3, we first present a
nonlinear model and then derive a compact linear mixed inte-
ger programming model. We give two Benders reformulations in
Section 4. We report the results of computational experiments in
Section 5 and conclude the paper in Section 6.

2. Literature review

In the last few decades, hub location problems have received
a lot of attention both in telecommunications and transportation
literatures. Here we limit ourselves to related studies and re-
fer the reader to surveys in Campbell (1994b), and Alumur and
Kara (2008); Campbell et al. (2002); Campbell and O’Kelly (2012);
Klincewicz (1998); O’Kelly and Miller (1994) and Farahani et al.
(2013) for further information.

The multiple allocation hub location problem is first formu-
lated by Campbell (1994a). Boland et al. (2004); Camargo et al.
(2008); Canovas et al. (2007); Ebery et al. (2000); Ernst and Kr-
ishnamoorthy (1998a); Hamacher et al. (2004); Klincewicz (1996);
Marin (2005b); Mayer and Wagner (2002) and Contreras et al.
(2011a) propose methods to solve this problem. The version of the
problem where there is no cost for opening hubs but the number
of hubs is fixed to p is first formulated by Campbell (1992). Alter-
native formulations are given by Campbell (1994a); Skorin-Kapov
et al. (1996) and Ernst and Krishnamoorthy (1998a). Campbell
(1996) and Ernst and Krishnamoorthy (1998a); 1998b) propose ex-
act and heuristic solution algorithms.

Among the studies cited above, several propose Benders de-
composition based approaches. Camargo et al. (2008) propose
three different algorithms: the classical Benders decomposition
approach, which adds a single cut at each iteration, a multi-
cut version in which Benders cuts are generated for each origin-

destination pair and a variant which terminates when an e-optimal
solution is obtained. Contreras et al. (2011a) propose a Benders de-
composition in which they generate cuts for each candidate hub
location instead of each origin-destination pair. Camargo et al.
(2009) propose two Benders decomposition algorithms to solve the
variant of the problem where the cost is a piecewise-linear con-
cave function. Gelareh and Nickel (2011) study a problem with an
incomplete hub network and solve this problem with a Benders
decomposition algorithm.

Capacitated variants of the hub location problems received less
attention in the literature compared to the uncapacitated versions.
The first mixed integer linear programming formulation for the ca-
pacitated multiple allocation hub location problem (CMAHLP) is
proposed by Campbell (1992) using four indexed variables. Ebery
et al. (2000) provide formulations with three indices and devise a
heuristic algorithm to solve large instances. In order to strengthen
these formulations, Boland et al. (2004) propose preprocessing pro-
cedures and valid inequalities, which lead to a significant reduc-
tion in the computation times. Marin (2005a) also provides new
formulations and resolution techniques to obtain better computa-
tional results and succeeds to solve instances with up to 75 nodes.
Sasaki and Fukushima (2003) consider a capacitated multiple allo-
cation hub location problem where a capacity constraint is applied
both on hubs and arcs and a flow can go through at most one hub
on its way from origin to destination. They devise a branch and
bound algorithm and perform computational studies on the CAB
data set.

There are also Benders decomposition applications for the ca-
pacitated multiple allocation hub location problems. Rodriguez-
Martin and Salazar-Gonzalez (2008) consider a capacitated hub lo-
cation problem with multiple allocation on an incomplete hub net-
work. They provide a formulation and develop two exact solution
algorithms. The first one utilizes classical Benders decomposition
approach whereas the second employs a nested two level algo-
rithm based on Benders decomposition. They show that the lat-
ter outperforms the classical Benders decomposition approach in
terms of computation times. Contreras et al. (2012) also study a re-
lated capacitated hub location problem in which the capacities in-
stalled on each hub is not a parameter but a decision variable. They
devise a Benders decomposition algorithm in which the subprob-
lem is a transportation problem. They apply Pareto-optimal Ben-
ders cuts and reduction tests to improve the convergence of the
algorithm.

The studies that incorporate data uncertainty into hub location
problems is rather limited. Marianov and Serra (2003) study the
problem in an air transportation network where hubs are M/D/c
queues and the probability that the number of planes in the queue
exceeds a certain number is bounded above. This restriction is
then reformulated as a capacity constraint for the hubs. The au-
thors propose a tabu search based heuristic method to solve this
problem. Yang (2009) decides on hub locations and flight routes
under demand uncertainty using two-stage stochastic program-
ming. The first stage involves the decision on the locations of the
hubs to open. In the second stage, routes are determined after
demand realizations are observed. Sim et al. (2009) incorporate
service level considerations using chance constraints when travel
times are normally distributed. They propose several heuristic al-
gorithms. Contreras et al. (2011b) consider the uncapacitated mul-
tiple allocation hub location problem under demand and trans-
portation cost uncertainty. They show that the stochastic mod-
els for this problem with uncertain demands or transportation
costs dependent to a single uncertain parameter are equivalent
to the deterministic problem with mean values. This is not the
case for the problem with stochastic independent transportation
costs. This latter problem is solved using Benders decomposition
and a sample average scheme. They use the AP data set to test the
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efficiency and effectiveness of the proposed models and algo-
rithms. Alumur et al. (2012) consider uncertainty both in fixed
costs and demands. They use a minimax regret approach and
stochastic programming to hedge against uncertainty. Shahabi and
Unnikrishnan (2014) propose mixed integer conic quadratic pro-
gramming formulations for hub location problems with ellipsoidal
demand uncertainty. Merakli and Yaman (2016) study the unca-
pacitated multiple allocation p-hub median problem with hose de-
mand uncertainty and present Benders decomposition based algo-
rithms.

In this study, we incorporate both demand uncertainty and ca-
pacity constraints for hubs into the multiple allocation hub loca-
tion problem. This results in a more challenging problem com-
pared to the uncapacitated case since demands have an impact
both in the cost and feasibility of a solution. The decomposition
approaches also need further analysis to be effectively used. Our
results show that it is even more critical to consider demand un-
certainty in the case of the capacitated problem since the deter-
ministic solution may not be feasible when the realized demand is
different from the estimated one.

3. MIP formulation

In this section we formulate the robust CMAHLP under hose
demand uncertainty. In this problem, nonhub nodes can be con-
nected to multiple hubs and a capacity constraint on the incom-
ing flow at each hub is imposed. The deterministic version of this
problem has been formulated in several ways in the literature. We
use the formulation proposed by Hamacher et al. (2004) as a start-
ing point. This formulation is devised for the uncapacitated version
of the problem, hence we adjust it by adding a set of capacity con-
straints as proposed in Ebery et al. (2000).

We are given a set N of demand points. Let HCN be the set of
possible hub locations and C be the set of commodities such that
C={(.j):i.jeN,i# j}., ie, any ordered pair of distinct nodes is
a commodity. The demand from node i to node j is assumed to
be known in the deterministic problem and is denoted by w;;. We
define the remaining problem parameters as follows: f is the fixed
cost of opening a hub facility at node k, a; is the capacity of the
hub at node k, dj; is the unit cost of transshipment from node i
to node j and x, o and § are the cost multipliers of collection,
transfer between hubs and distribution, respectively. The cost of
sending one unit of flow from node i to node j through hubs k and
m in this order is expressed as Cjjxy = X ik + Ay + 0dpy .

First we present the MIP formulation for the deterministic
CMAHLP. The decision variables of this model are y,, the binary
variable taking value of 1 if there is a hub located at node k and 0
otherwise, and Xijkm» the fraction of flow sent from node i to node
j through hubs k and m in that order. Then the deterministic prob-
lem is

(CMAHLP deterministic)

min) " fiye+ Y DD CijkmWiiXijem (1)

keH (i,j)eC keH meH
S.t. Z Z Xijkm = 1 V(@,j)eC (2)
keH meH
D Xijem + Y, Xijmi < Vi V(0. §) €C keH, (3)
meH meH:
ms#k
> wikijem < @k Yk € H, (4)
(i,j)eC meH
v e{0.1} VkeH, (5)

Xijom =0 Y(i, j) €C, Vk,m e H. (6)

The objective is to minimize the total cost of opening hubs and
transportation costs. Constraints (2) guarantee that pairwise de-
mands are fully satisfied. With constraints (3), direct flow between
nonhub nodes is prevented. Constraints (4) are the capacity con-
straints that limit the total incoming flow at each hub. Constraints
(5) and (6) are the domain constraints.

Different from previous studies in the literature, we assume
that demand is not known in advance but can be modeled with
a polyhedral uncertainty set. We use the hose model introduced
by Duffield et al. (1999) and Fingerhut et al. (1997) which is com-
monly used in the telecommunications literature to represent the
demand uncertainty. In this model, instead of estimating pairwise
demands, we limit the total flow associated with each demand
node. The demand uncertainty set under hose model is

Dpose = [W € RZ(H—U : Z Wi + Z Wji < b;, Vie N], (7)
JjeN\{i} JjeN\{i}

where b; is the aggregate traffic bound for node i € N. We assume
that these bounds are positive and finite for all nodes.

The robust CMAHLP under hose demand uncertainty aims to
build a hub network which is viable under any demand realization
while minimizing the worst case total cost over all possible de-
mand realizations in the set Dy,,. Hence the robust problem can
be represented as:

min [ Y fiye+ max > "> wiiCijmXijim

weD,
keH hose (j j)eC keH meH

s.t. (2), (3). (5). (6),
max Z Z WijXijim < @Yk Yk € H. (8)

weD
SPhose (i HeC meH

Here the capacity constraints (4) of the deterministic model are re-
placed with constraints (8) so that each open hub facility has suf-
ficient capacity to serve under the worst case demand realization
in the set Dpge-

Observe that this formulation is nonlinear since the demand is
a variable. To linearize it, we use a dual transformation, which
is widely used in the robust optimization literature (see, e.g.,
Bertsimas and Sim, 2003 and Altin et al., 2011). For a feasible flow
vector x, the inner maximization problem of the objective function,

max )y WiiCjkmXijim, 9)

weD,
hose (. 7)eC keH meH

and the maximization problem at the left hand side of the capacity
constraint (8),

max Z ZijX,'jkm, (10)

weD
€Those (i jyeC meH

are both linear programming (LP) problems that are feasible and
bounded. Therefore the optimal value of these problems are equal
to the optimal value of their corresponding duals. Let A be the
dual variable corresponding to the hose model constraint in (7).
The dual of problem (9) can be stated as,

min ) A;b; (11)
ieN
S.t. )"i + )\.] > Z Z CijkmXijkm V(l, ]) eC, (12)
keH meH

2i>0 VieN. (13)
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Similarly, the dual of problem (10) for a given k € H can be written
as follows,

min ) " Bib; (14)
ieN
St B+ BY =Y Xjm V(i j)eC VkeH, (15)
meH
BK>0 VieN.VkeH, (16)

where S represents the dual variable associated with the hose
model constraint. Since these duals are minimization problems,
they can be embedded into the original formulation in order to
recover linearity. After incorporating these into the robust prob-
lem formulation, we obtain the following linear mixed integer pro-
gramming (MIP) formulation for the robust CMAHLP under hose
demand uncertainty:
(CMAHLP hose)

min kayk + Z)‘ibi (17)

keH ieN

s.t. (2), (3), (5), (6),

Ai+ )‘j z Z Z CijkmXijkm V(i j)eC, (18)
keH meH

Y Bibi=aw, VkeH, (19)

ieN

BE+BY= Y Xijm V(i J)eC VkeH, (20)
meH

>0 VieN, 21)

BF>0 VieN,VkeH. (22)

In the deterministic problem, we know that the sum of the ca-
pacities of the hubs that are open should be sufficient to satisfy
the total demand in the network. In the robust counterpart, we
can derive a similar valid inequality by considering the worst case
demand.

Theorem 1. Inequality

> @y = min (Z b; - Hilijbi Y bi/2 (23)

keH ieN ieN
is a valid inequality.

Proof. It is easy to see that the inequality

is satisfied by all feasible solutions. The inequality asks to open
hubs with sufficient capacity to route the worst case traffic. The
right-hand-side of this inequality is an optimization problem. Next
we prove that

max Ww;; = min
WeDpose Z /

Zbi - ni‘le?\IXbi ,Zb,/z

(i.j)eC ieN ieN
The problem maXyep, , 3 j)ec Wij IS

max " wj;

(i.j)eC

s.t. Z Wi + Z Wiji < b; VieN,
JjeN\{i} JjeN\{i}

Taking the dual of this problem, we obtain the following LP:
min Z l?ib,‘

ieN
s.t. ¥ + 191' >1 V(,j) eC,
19,' >0 VieN.

Observe that the dual problem is the LP relaxation of a
weighted vertex covering problem. Nemhauser and Trotter Jr
(1974) show that any extreme point $ of this LP satisfies §; € {0,
1/2, 1} for all i € N. Since we have a covering constraint for all
distinct pair of nodes and b; > O for all i € N, we can further char-
acterize the optimal solution.

The vector of all ones (1, 1, .., 1) is clearly not an optimal solu-
tion as none of the constraints is tight and one can obtain a better
objective function value by decreasing ©; with € > 0 for an arbi-
trary i’ € N since by is positive. In the case that we know 9, = 1/2
for a node i’ € N, 9; > 1/2 for all i ¢ N\{i’} for feasibility. Hence the
solution with the smallest objective value is the vector (1/2, 1/2, ..,
1/2) with the objective function value equal to X; . yb;/2. Finally,
if there exists a node i’ € N such that ¢#; = 0, then we must have
¥; =1 for all i € N\{i’} to ensure feasibility. The objective func-
tion value of this solution is Y ;. b; — by. To minimize this value,
we set ©%; = 0 for a node i with the largest b; value. Therefore the
minimum objective value in this case is >;.y b; — max;.y b;. Hence,
the dual optimal value is min { (X bj — maxiey b;), Yy bi/2}. By
strong duality, this is also the optimal value of the primal. O

Even though the model CMAHLP hose is a compact linear mixed
integer programming model, its size increases rapidly as the num-
ber of demand points increases, which makes it difficult to solve
for large instances. In the next section, we devise two Benders de-
composition algorithms as an attempt to solve large problem in-
stances.

4. Benders reformulations

Benders decomposition is an exact solution method proposed
by Benders (1962) and it has been effectively used to solve vari-
ous mixed integer programming problems in the literature. In this
method, the original problem is reformulated by projecting out
some of the variables and hence obtaining a formulation with a
smaller number of variables and a large number of constraints. One
iterates between a master problem, which is a relaxation of the
original problem and a subproblem that finds a cut to add to the
master problem if the solution of the master problem is not feasi-
ble (feasibility cut) or not optimal (optimality cut). In the classical
approach, the master is solved to optimality at each iteration. If it
is an integer problem, this means that an integer problem is solved
from scratch at each iteration. An alternative is to start with a re-
laxation of small size and solve the reformulation using a cutting
plane approach such that each time a candidate solution is found,
related cuts are added to the relaxed formulation if the candidate
solution is not feasible or optimal. The subproblem is the separa-
tion problem solved each time a candidate solution is found. Over-
all, the problem is solved within one branch-and-cut tree.

The effectiveness of a Benders decomposition algorithm de-
pends on various factors; the number of times the subproblem
is solved until optimality is achieved, the computational effort re-
quired to solve the master problem and the subproblem etc. In this
study, we propose two Benders reformulations for the CMAHLP un-
der hose demand uncertainty by considering these factors in order
to obtain an effective decomposition scheme.
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4.1. Decomposition by fixing variables y and 8 (Benders 1)

Consider the mixed integer formulation CMAHLP hose as pre-
sented in Section 3. Assume that the hub location decisions and
the vector B8 are handled in the master problem and the rest is
left to the subproblem. For fixed vectors y =3 and 8 = 5 we ob-
tain the following primal subproblem:

(PS1)  miny_ Ab; (24)
ieN
st 3 Y Xgm=1 Y(i.j)eC, (25)
keH meH
3 Xijem + Y Xijmk <Pk V(i j) €C. ke H. (26)
meH meH:
ms#k
A+ Aj— Z Z CijkmXijkm = 0 V(i j) €C, (27)
keH meH
> Xijm < BE+ BY V(. j) eC VkeH, (28)
meH
A>0 VieN, (29)
Xijom = 0 V(i, j) € C, Vk,m € H. (30)

Note that even though we modify constraints (25) here as inequali-
ties, there exists an optimal solution where they hold as equalities.
Taking the dual of PS1, we obtain the dual subproblem

(DS1) max > py— 3 > P — 3. O (BF+ By

(i,j)eC (i,j)eC keH (i,j)eC keH
(31)
s.t. Z Wi + Z wiji < b; VieN, (32)
JjeN\{i} JjeN\{i}

Pij — Vijk — Vijm — Ujjk < Gijkm@;j V(. j) €C Vk,meH:k#m,

(33)
Pij — Vijk — Uik < Cijewsj V(0. j) €C, VkeH, (34)
wij, pij= 0 V(. j)eC (35)
Ujjk. Vi =0 V(0. j) eC, VkeH, (36)

where dual variables p, v, @ and u correspond to constraints (25) -
(28), respectively. Note that since ) ;_y ,Bikbi <aqyy for all k e H
and b; > O for all i € N, we have B[‘:Oiffk:OforallieNand
k € H. Hence if 3 (B¥ + B;f) >1 for all (i, j) e C, the primal
subproblem is feasible.

Let S be the set of extreme points (p, w, v, u) of the dual sub-
problem. Then the master problem can be formulated as follows:

(MP1)min )" fiyi+9 (37)
keH

s.t. (5), (19), (22), (23),

qz Z Pij — Z Z.Vkvijk

(i,j)eC (i,j)eC keH

- > Y BB V(o o vu) €S, (38)
(i.J)C keH

Y BB =1 V(i j)eC (39)

keH

Constraints (38) are the Benders optimality cuts and constraints
(39) are added to ensure feasibility. In the next subsections we de-
scribe how to solve the subproblem efficiently.

4.1.1. Decomposing the subproblem by commodity

In the dual subproblem, constraints (32) and (33)-(34) are inter-
dependent due to the variables w. In order to eliminate these de-
pendencies, we use the approach by Merakli and Yaman (2016) and

- Pij = Vij - ujj
let p;j = w—lfj Djjie = w—f: and i = w—f: Then the dual subproblem
can be decomposed as
S 2 i
(i.j)eC
where for (i, j) € C,
(Dij) 0 =max pij— Y Jibijk — Z(Blk + B]’F)aijk (40)
keH keH
s.t. /31‘]' - Dijk - Dijm - aijk = Cijkm Vk.,meH:k #m, (4])
Pij — Vijk — Uik < Cijik Yk € H, (42)
bij = 0, (43)
1_11‘]']{, ﬂijk >0 VkeH. (44)
The dual of this problem is
(Pj) G=min Y > CijmXijem (45)
keH meH
SEY D Xijm = 1, (46)
keH meH
Z Xijkm + Z Xijmk <Jx  VkeH, (47)
meH meH\{k}
> Xijem < B+ BY VkeH, (48)
meH
Xijkm = 0 Vk,m e H. (49)

Here it is easy to see that 6; is the minimum cost of routing com-
modity (i, j) € C for given j and B and MaXyep, ., (i jjec Wijbij 1S
the worst case cost.

Note that there exists an optimal solution of P; such that con-
straint (46) strictly holds. Next we devise an algorithm to compute
the optimal dual variables of D; for any origin destination pair (i,
J)-

4.1.2. Computing an optimal solution to problem Dj;

For given y and ,3 vectors, the optimal solution of problem P;
can be computed with a simple algorithm. Notice that when all
hub capacities are large enough, each flow is routed through the
shortest path. In the case of capacitated hubs, this is not necessar-
ily true and the flow sent through a path affects the capacity of the
first hub on that path. The flow from i to j using hub k first will
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go through only a path i — k —m, — j that is a shortest path from
i to j using hub k as the first hub, ie., mgy = argmingcy.p,.—1Cijkm
(we pick one arbitrarily in case of multiple minimizers). Besides,
(B," +ij) value sets a bound on the amount of flow from node i
to node j that can be sent through hub k. As the capacity of hub
k reserved for commodity (i, j) is known, the routing decision for
each commodity becomes independent from each other. Hence, for
commodity (i, j) € C, sequencing shortest paths i — k —m, — j for
each hub k in a nondecreasing order of cost and sending flow from
i to j using these paths in a greedy manner provides an optimal so-
lution for our problem.

Algorithm 1 describes how an optimal solution of P; is com-

Algorithm 1 Compute an optimal solution of P;.

Set Xijkm ~0 Vk, meH
Set residual < 1 and p < >,y Vk
Sequence hubs as ky, k. ..., kp such that ¢ mu,) < Cijkym(ky) <
=< Cijkpm(kp)
for h=1to p do
if residual > 0 and (Bik" + Bf") > 0 then
Set Xijk,m(k,) < min{residual, (ﬁik“ + 3}’."1)}
Set residual < residual — Xjx, m(k,)

end if
end for

puted for (i, j) € C. Here residual represents the fraction of remain-
ing flow to be sent from node i to node j. Since there exists an
optimal solution in which the total fraction of flow sent from i to
j is equal to 1, we initially set residual to 1. Afterwards, the re-
maining flow from i to j is routed through hub k with the shortest
i—k—mg, — j path among the hubs that have available capacity.

With the optimal primal solution obtained above, an opti-
mal solution for the dual problem Dy can be constructed using
the complementary slackness conditions. An optimal dual solution
should satisfy both the constraints (41)-(44) and the complemen-
tary slackness conditions given below:

B\ DD Xijgm— 1) =0 (50)

keH meH

f)ijk injkm+ Z xijmk_yk =0 VkGH, (51)
meH meH\{k}

dyge| BF+BE = Xijum | =0 Vk e H, (52)

meH

Xijkm (Oij — Vijk — Vijm — Uijk — Cijkm) =0 Vk,me H :k#m, (53)

Xijkk (Oij — Vijk — Uijk — Cijie) =0 Vk € H. (54)

We compute the dual variables in two steps. First, we fix a set
of variables to some feasible values and hence drop the constraints
related with them. In the second step, we compute the values of
the remaining variables by solving a reduced system of inequali-
ties. At the end, we adjust the variables so that constraints of the
dual problem are satisfied. k € [0, 1] is the scaling parameter used
in this adjustment.

The algorithm for computing an optimal solution (0;;, Uy, Uj;)
for (i, j) € C can be seen in Algorithm 2.

Theorem 2. The dual solution computed using Algorithm 2 is optimal
for Dy.

Algorithm 2 Compute an optimal solution of Dy.

Compute an optimal solution to P;; using Algorithm 1.
Set pjj = MaxX ., mye; Cijkm
for k ¢ H; do
Set ﬁl‘jk =0
if " Xijkm > O then
Set Uijk = Pij = Cijkmy,
else if Y,y Xijim =0 and (Bf + B¥) =0 then
Set i = max{0, fij — Cijian,,, }
else
Set aijk =0
end if
end for
for k € Hy do
Set l'-lijk =0
Set  vyj = max{0, maxpep, {0ij — Cijmk — ijm}> MAxXmen, {0ij —
Cijkm}» Pij — Cijkk}
end for
for k, m € Hy such that p;; — ¢jjxm > 0 do
Define A = (pj — Cijkm) — Vijk — Vijm
if A > 0 then
Update ‘jijk <« Dijk +KkA
Update ‘jijm <~ ﬁijm + (1 — I()A
end if
end for

Proof. We first check complementary slackness and then dual fea-
sibility.

The dual solution computed using Algorithm 2 satisfies the
complementary slackness conditions with the primal solution
computed using Algorithm 1. Conditions (50) are satisfied since
Y keH 2men Xijkm = 1 for all (i, j) € C. We know that if y; =0,
then ZmeH Xijkm + ZmeH\{k} Xijmk =0.If ﬁk = 1, i.e., k e H], then
Viji = 0. Hence conditions (51) hold. Conditions (52) are also satis-
fied. We know that if il;j; > 0 then B¥ + ,3]" =0and Y Xijem = 0
or path i —k—m, — j is used but it is shorter than the longest
path among the ones used to send flow from i to j. In the latter
case Xijkm, = ﬂi" + ﬁ}‘. Hence in both cases the capacity bound on
hub k is tight. Therefore if Gy > O then ¥+ B¥ = ¥y Xijim- Fi-
nally, conditions (53) hold since if X, > O, then k, m € H; and
thus ﬁijk = ﬁljﬂ‘l =0. In addition, m= m(k) and ﬁijk = ,511 - Cijkm(k)-
Consequently pij — Vijx — Dijm — Uijk — Cijkm = Pij — (Pij = Cijkm, ) —
Cijkmy, = 0. We can show that conditions (54) are satisfied in a
similar way.

Next we check the dual feasibility of the solution constructed

with our algorithm. First we consider the constraints (41). There
are four cases:

e Case 1: k € H;, m € Hy
Since k, m € H; we know that ;j = ;j, = 0. Hence p;; —
Vijk — Vijm — Ujjk = Pij — Ujjx- We need to consider all possi-
ble values of . If X, > 0 then p; — i = 0ij — (O —
Cijkm(k)) = CijkTH(k) = Cijkm' If xijkm =0 and Blk +Blk = 0, then
Ujjic = max{0, pij — Cijim,, }- Hence iz > pij — Cijem,, and pij —
Ujjg < Cijkm g, We also have Cijkmg, < Cijkm by definition. If

Xijkm = 0 and Bl" + B]" > 0, then i;j = 0. In this case, we know
that Cijiem g Z MAX(k, )<k Cijk/'m’ since otherwise we would
have used the path i—k—m(k) —j. As we also have Cijlkm >
Cijkm and p;; = MaxX ¢, m yeF; Cijk'm’s W know that (41) is sat-
isfied.

e Case 2: k € Hy, m € Hy
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In tl}is case, uk =0 and v,jm > pl] — Cijkm — Ujjx.  Then
/_)ij - 1"l'jk — Vijm — ul]k = pu - Vz]m ul]k = pu pu + Cijkm +
Uijke — Uijke = Cijlem-
e Case 3: k € Hy, m € Hy
In this case, we know that vum = u,jk =0 and Yy > fij — Cijkm-

Hence :Ou - Vuk - Vum - uuk = IOU
e Case 4: k € Hy, m € Hy

In this case, we have i, =0 and p;j — Cjjkm — Vijk — Vijm < 0.

Hence, p;j — Dyjx — Vijm — Ujjk < Cijkm-

pz] + Cukm = 1]km~

Next we prove that the dual solution satisfies constraints (42).
We consider two cases.

e Case 1: k € Hy
For k € Hy, the value of ;j is set to zero in our algorithm.
Thus, pij — Viji — Ujji = Pij — Uijk- IF Xy > O then fy; — Uy =
pij — (bij — cl-jkm(k)) = Cjjuc since we are sending flow through
path i—k—j. When x;j, =0 and BF +B}’f =0, the value of
Ujjic is set to max{0, pij — Cijim,,, }- Then py; — tij < pij — (Pij —
Cijkam gy ) = Cijkmgy < Cijk- If Xijroe = 0 and Bf + Bf > 0, then il
is set to zero. Hence f;; — ijji
e Case 2: k € Hy
I-Il this_ case,_ L_lijk =0 and Dijk > '51] — Cijkk' Then ’51] — Dijk —
Uijk < Pij — (Dij — Cijkk) = Cijkk-
Since the solution computed using Algorithm 2 is dual feasible

and it satisfies complementary slackness conditions with solution
x, it is an optimal dual solution. O

= Pij = MAX mv)ek,; Cijk'm’ = Cijkk-

Note that even though we could decompose the dual subprob-
lem into a series of problems, we still generate an aggregate Ben-
ders cut.

4.2. Decomposition by projecting out the flow variables (Benders 2)

In this section, we aim to find a decomposition scheme such
that the Benders cut can be decomposed for each commodity. For
fixed vectors y, * and B the subproblem becomes the following
feasibility problem:

min0 (55)

s.t. (25), (26), (28), (30),
Z Z CijkmXijkm = 5‘-1’ + ij v, DeC (56)

keH meH

For this problem to be feasible, its dual needs to be bounded.

So we need
Z Pij — Z kavijk— Z Z(ﬂf*‘ﬂf)uijk
(i.j)eC (i.j)eC keH (i.j)eC keH
- > w;Gi+h) <0 (57)
(i,j)eC

for all (p, v, w, u) that satisfy (33) - (36). This system decomposes
for each (i, j) € C. Without loss of generality, we can take w;; =0
or w;j =1 for (i, j) € C. When w;; = 0, we need

Zykvl]k Z(,Bk'i'ﬁk)uuk =
keH keH

for all (py, vy, ;) such that

Oij — Vijk — Vijm — Ui <0 Vk,meH:k#m,
Pij — Vijk — Ujjk = 0 VkeH,
pij =0,

Ujjk, Vijk = 0 VkeH.

It can be seen that this system of inequalities always holds when
YkenVx =1 and ZkEH(,B +,3k) >1 and the former inequality is
already implied by constraint (23) Hence we only need to consider
the case w;j = 1. When we fix w;; = 1, we obtain

=3 Pevije — Y BE+ B < hi+ 4,
keH keH

for all (py, vy, uy) satisfying

Pij = Vijk — Vijm — Ujjk < Cijkm V(1. j) €C, Vk,m e H 1k #m,
(58)
Pij — Vijk — Uijk = Cijkm Vk e H, (59)
pij =0, (60)
Ujjk. Vi =0 Vk e H. (61)

Hence, after projecting out x variables, the problem can be refor-
mulated as follows

min ) " fiyi+ Y _ Ab;

keH ieN

s.t. (5), (19), (21), (22), (23), (39),
Ait+ A= pij— Zykvijk
keH
=Y (Bf+ IBJI‘()uijk Vi, j) € C (o, vij, Wij) € Sij, (62)
keH

where S;; is the set of extreme points of the set defined by (58)-
(61) for (i, j) e C. The variables corresponding to an extreme point
of S; maximizing the right-hand-side of constraint (62) can be
computed as explained in Section 4.1.2.

In this reformulation, we are able to add multiple cuts at each
iteration of the Benders decomposition algorithm instead of a sin-
gle cut since the cuts are disaggregated by commodity.

5. Computational analysis

We test our mathematical model and solution algorithms on
well-known Australian Post (AP) and Civil Aeronautics Board (CAB)
data set instances with n = 25, 40, 50.

The AP data set is first introduced by Ernst and Krishnamoor-
thy (1996) and it contains postal service data of 200 cities in
Australia (accessible from OR-Library, 2015). Each city corresponds
to a postal district; city coordinates and pairwise demands are
given. The cost multipliers of collection, transfer and distribution
are not symmetric; they are taken as x =3, o =0.75 and § = 2.
The pairwise demands are also not symmetric. The demand from
a node to itself does not need to be zero. However in our con-
text, we do not allow any demand from a node to itself. To the
extend of our knowledge, the AP data set is the only data set with
fixed costs and capacities for hubs. For both fixed costs and ca-
pacities, two settings are available. Instances with tight (T) fixed
costs have larger costs of hub opening compared to the instances
with loose (L) fixed costs. Similarly, the instances with tight (T) ca-
pacities have smaller available capacities in comparison with the
instances with loose (L) capacities. For each problem size n, we
consider four cases: LL, LT, TL, TT where the first letter corre-
sponds to the fixed cost setting and the second to the capacity
setting.

The CAB data set includes air transportation data for 100 cities
in the U.S. (accessible from O’Kelly (1996)). For each city pair, Eu-
clidean distances and demand values are provided. It is assumed
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that there is no demand from a node to itself. All distances and de-
mands are symmetric. The cost multipliers of collection and distri-
bution are y = § = 1, respectively. In our experiments, we take the
cost multiplier of transfer o = 0.6, 0.8. Demand values are scaled
so that their sum is equal to one. Unlike the AP data, the CAB data
set does not contain information related with fixed costs and ca-
pacities. Hence we generated them in the following way: For fixed
costs, we considered two different settings L and T where f, =50
in setting L and f, =100 in setting T for all possible hub loca-
tions k € H. We also randomly generated hub capacities under two
settings, L and T, from two different intervals. The hub capacities
uniformly take value from interval [0.5, 0.7] in setting L and from
interval [0.4, 0.6] in setting T. For all CAB data set instances, we
consider four cases LL, LT, TL, TT as for the AP data set.

In our experiments we consider AP and CAB data set instances
with n = 25, 40, 50. In order to be able to compare our results with
benchmark instances, we generated the traffic bounds for the hose
model as the sum of nominal demand values associated with each
node, i.e., bj = 3= ;cn ;) (Wij +wy;) for all i € N. All nodes are taken
as possible hub locations. We perform our computational experi-
ments on a 64-bit machine with Intel Xeon E5-2630 v2 processor
at 2.60 GHz and 96 GB of RAM using Java and Cplex 12.5.1. We set
a time limit of three hours. All solution times are given in seconds.
For the Benders decomposition algorithm implementations, we use
the lazy constraint callback function available in CPLEX.

We summarize our computational analysis on the AP and CAB
data sets in Tables 1 and 2, respectively. We report the optimal
values (the best upper bounds if not solved to optimality), CPU
times (the percentage optimality gaps if not solved to optimality)
and hub locations for both the deterministic problem and the ro-
bust problem. For the robust problem, we compare our results for
three different solution methods: the MIP, Benders 1 with single
cut approach and Benders 2 with multiple cut approach. We also
report the number of cuts added until optimality or time limit is
reached for the Benders algorithms. The instances for which we
are not able to find an initial solution within three hours of time
limit are indicated as time. For the instances that we are not able
to solve within the time limit but obtain a feasible solution, we
report the optimality gaps in brackets. We also mark the instances
with more than 100% optimality gaps as feasible.

For completeness of analysis, we first present the results of for-
mulation CMAHLP deterministic and compare them with the hose
model solutions to investigate the effects of demand uncertainty.
We use the solutions obtained by Benders 2 since it provides the
largest number of optimal solutions to the hose model. Comparing
the optimal total costs of the deterministic problem with those of
its robust counterpart, we observe a significant increase for both
data sets. The optimal values given for the deterministic and ro-
bust problems in Table 1 indicate an average increase of 17.09%
and a maximum increase of 21.11% in the total costs for the AP
data set instances. Similarly, optimal costs of the CAB data set in-
stances given in Table 2 are subject to an increase of 21.02% on
average with a maximum increase of 29.71%.

We also compare deterministic and robust problems in terms
of optimal hub locations. Considering the AP data set instances
which can be solved to optimality for both cases, it can be seen
that there is a change in the optimal hub locations in six instances
out of nine. In some of them, as in 25LL, only one hub location is
changed whereas in some others like 25TL all hubs of the deter-
ministic problem are replaced in the solution of the robust prob-
lem. CAB data set instances are more responsive to demand uncer-
tainty. There is a change in the optimal hub locations for all in-
stances except one. For some instances, such as 25LT with & = 0.6,
these changes are not major. Only the hub at location 23 is moved
to location 1. However there are also instances with significant
changes in the hub locations. For example, for the instance 25TT

with o = 0.8, hub facilities are located at 5, 12 and 21 in the de-
terministic case, whereas hub locations are at 1 and 22 in the hose
model. An interesting observation here is that, while the number
of hubs to be opened in the hose model is equal to the number of
hubs in the deterministic case for the AP data set instances, it is
usually smaller for the CAB data set instances.

Next, we analyze the computational efficiency of our proposed
solution methods. In view of our results presented in Tables 1 and
2, it can be seen that even the deterministic problem requires
much computational effort using the MIP formulation approach.
The AP instances with more than 50 nodes can not be solved
to optimality within the time limit. Comparing these results with
the ones for CMAHLP hose, we observe that the computational ef-
fort required to solve the problems to optimality significantly in-
creases with demand uncertainty. The instance 25LL of the AP set
can be solved within approximately two hours while it takes five
seconds in the deterministic case. For both data sets, only the in-
stances with 25 nodes can be solved to optimality within the time
limit.

We also evaluate effectiveness of proposed Benders reformu-
lations. MIP formulation is clearly outperformed by both Benders
approaches. All instances that can be solved by the MIP formu-
lation can also be solved using Benders algorithms in less CPU
time. The only exception is the CAB data set instance 25LL with
o = 0.6 for which the MIP formulation performs better than Ben-
ders 1, but still Benders 2 has much smaller CPU time. Comparing
two Benders decomposition algorithms, we observe that Benders 2
that employs a multiple cut approach is superior to Benders 1 that
uses a single cut approach. Our computational results on the AP
data set instances can be seen in Table 1. Out of 12 AP data set in-
stances, Benders 1 is able to solve six of them within three hours.
Among the instances with 50 nodes, it obtains a feasible solution
only for instance 50LT. For the others, it cannot find a feasible so-
lution within the time limit.

On the other hand, Benders 2 succeeds to solve nine instances
out of 12 to optimality within the time limit and for the others it is
able to obtain feasible solutions with lower optimality gap values
than Benders 1. The maximum CPU time for the solved instances is
approximately nine minutes. For the CAB data set instances, Ben-
ders 2 is able to solve all instances to optimality whereas Benders
1 can not solve six instances out of 24. In five of them, Benders 1
fails to find a feasible solution within the time limit.

Effectiveness and efficiency of Benders algorithms depend
mainly on two aspects: computational effort required to solve the
subproblems and strength of the optimality and feasibility cuts.
Stronger cuts lead to tighter bounds and consequently fewer num-
ber of iterations, while a faster solution algorithm for subprob-
lems may significantly reduce the time spent at each iteration. In
our implementations, we use Algorithm 2 to find an optimal so-
lution to the dual subproblems. We compare the performance of
Algorithm 2 to solving the subproblems with a general purpose
solver in Table 3. We solve the AP data instances with Benders 1
and Benders 2 using Algorithm 2 and the corresponding optimiza-
tion model (Dj), and report the CPU times (the percentage opti-
mality gap if not solved to optimality) and the number of Benders
cuts added for each setting. For Benders 1, Algorithm 2 clearly out-
performs the optimization model in terms of solution times and
the number of instances that can be solved to optimality. This also
holds for most instances of Benders 2 except two, 40LT and 40TT.
Benders 2 with optimization model is able to solve 40LT to op-
timality while Algorithm 2 fails, and it takes a smaller CPU time
for 40TT. In the light of these results, it can be concluded that
Algorithm 2 usually outperforms the optimization model by taking
advantage of shorter subproblem solution times.

An important advantage of the hose model is that it requires
only the estimation of traffic bounds associated with each node



Table 1

Comparison of solution methods on AP data set instances.

Ins.

CMAHLP deterministic

CMAHLP hose

Hose Benders 1

Hose Benders 2

Obj. cpu(gap) Hubs Obj. cpu(gap) Hubs Obj. cpu(gap) # Cuts Hubs Obj. cpu(gap) # Cuts Hubs
25LL 222411.23 426 8,18 269373.49 5896.78 8,19 269373.49 929.93 10,657 8,19 269373.49 539 5334 8,19
25LT 248713.51 54.56 9,16,19 299613.46 4883.77 9,12,19 299613.46 2923.96 7002 912,19 299613.46 121.20 10,987 912,19
25TL 293850.21 26.08 9,23 330504.18 9765.26 11,14 330504.18 40.52 1284 11,14 330504.18 433 5058 11,14
25TT 312743.36 22773 6,14,24 361699.66 3372.66 912,14 361699.66 400.15 5180 912,14 361699.66 29.78 8806 912,14
40LL 230495.10 46.64 14,29 feasible (100) H time - - - 271656.49 53.27 13,446 14,29
40LT 252982.48 909.59 14,26,30 feasible (100) H time - - - 315624.51 (3.22) 63,883 14,26,30
40TL 284821.33 518.83 14,19 feasible (100) H 314904.29 285.99 2362 14,19 314904.30 4.74 3852 14,19
40TT 326827.27 2637.96 14,25,38 feasible (100) H time - - - 385661.54 524.30 34,195 14,19,25
50LL 228962.63 176.41 15,35 time - - time - - - 276091.56 285.91 26,848 15,35
50LT 258807.91 (1.04) 6,26,32,48 time - - 343860.19 (43.69) 19,164 14,32,35 315039.04 (6.57) 92,034 6,26,32,46
50TL 311199.49 (4.31) 3,45 time - 340552.89 914.53 3362 24,27 340552.90 109.71 21,632 24,27
50TT 395592.49 (6.69) 6,12,26,48 time - - time - - - 452151.20 (11.5) 108,806 25,26,41,48

Table 2
Comparison of solution methods on CAB data set instances.
Ins. o CMAHLP deterministic CMAHLP hose Hose Benders 1 Hose Benders 2
Obj. cpu(gap) Hubs Obj. cpu(gap) Hubs Obj. cpu(gap) # Cuts Hubs Obj. cpu # Cuts Hubs

25LL 0.6 637.59 421 5,14,21,23 776.83 405.54 5,14,21,23 776.83 77716 10,241 5,14,21,23 776.83 4.08 4343 5,14,21,23
25LT 0.6 637.59 3.38 5,14,21,23 783.75 1630.94 1,5,14,21 783.75 169.91 4295 1,5,14,21 783.75 3.68 4999 1,5,14,21
25TL 0.6 808.92 38 4,521 937.03 72289 22,23 937.03 113.64 1889 22,23 937.03 9.49 6885 22,23
25TT 0.6 808.92 3.84 4,521 950.46 7488.49 1,22 950.46 88.00 2134 1,22 950.46 11.85 5844 1,22
25LL 0.8 689.66 3.39 512,21 852.38 8072.71 22,23 852.38 327.90 5738 22,23 852.38 12.76 7884 22,23
25LT 0.8 689.66 3.36 512,21 860.72 10800.7 1,22 860.72 141.76 3384 1,22 860.72 8.82 5312 1,22
25TL 0.8 831.07 35 5,23 952.38 3242.38 22,23 952.38 106.59 2120 22,23 952.38 6.79 5803 22,23
25TT 0.8 839.66 511 512,21 960.72 2793.97 1,22 960.72 2493 735 1,22 960.72 4.7 5255 1,22
40LL 0.6 746.22 24.98 5,14,21,23,28,30 2523.06 (100) H time - - - 937.44 339.49 21,067 21,22,23,28
40LT 0.6 746.22 26.32 5,14,21,23,28,30 2523.06 (100) H time - - - 939.40 338.89 37,823 21,22,23,28
40TL 0.6 926.88 40.69 1,21,28 4523.06 (100) H 1069.96 1095.26 5137 21,38 1069.96 213.37 30,583 21,38
40TT 0.6 926.88 58.56 1,21,28 4523.06 (100) H 1079.50 1787.32 8976 21,29 1079.50 183.33 30,962 21,29
40LL 0.8 789.06 24.83 5,21,23,28 2697.41 (100) H 978.70 1940.47 11,227 21,38 978.70 53.77 13,984 21,38
40LT 0.8 789.06 24.16 5,21,23,28 2697.41 (100) H 986.81 1409.58 8543 21,29 986.81 59.63 14,878 21,29
40TL 0.8 951.21 786.04 21,23,28 4697.41 (100) H 1078.70 623.59 4291 21,38 1078.70 41.59 14,783 21,38
40TT 0.8 951.21 723.6 21,23,28 4697.41 (100) H 1086.81 2375.44 14,269 21,29 1086.81 55.89 15,778 21,29
50LL 0.6 770.46 82.79 5,21,23,28,44 3060.87 (100) H time - - - 989.71 1075.26 50,987 21,28,29,44
50LT 0.6 770.46 79.94 5,21,23,28,44 3060.87 (100) H time - - - 999.41 3339.56 78,077 21,22,23,28
50TL 0.6 953.53 797719 1,21,28 5560.87 (100) H 1128.81 (7.32) 21,350 29,46 1126.55 1262.27 64,080 21,29
50TT 0.6 953.77 503.1 1,21,28 time - - 1147.68 (8.64) 26,198 22,26 1138.50 1869.82 66,096 22,46
50LL 0.8 805.03 72.63 5,21,23,28 time - - time - - - 1036.21 379.4 38,604 21,29
50LT 0.8 805.03 73.16 5,21,23,28 time - - 1042.99 8744.93 19,718 22,46 1042.99 367.18 34,822 22,46
50TL 0.8 964.34 3657.09 28,29 time - - 1136.21 1618.14 5796 21,29 1136.21 186.25 27,033 21,29
50TT 0.8 977.63 3312.27 1,21,28 time - - 1147.23 (4.54) 26,472 21,22 1142.99 118.42 26,332 22,46
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Table 3
Comparison of the results of dual algorithm with the optimization model.
Benders 1 Benders 2
Algorithm 2 Optimization Model Algorithm 2 Optimization Model
Instance  cpu(gap) # Cuts cpu(gap)  # Cuts cpu(gap)  # Cuts cpu(gap) # Cuts
25LL 929.93 10,657 (10.78) 4433 539 5334 50.56 4929
25LT 2923.96 7002 (5.73) 4443 121.20 10,987 405.11 19,251
25TL 40.52 1284 323761 1339 433 5058 50.32 4892
25TT 400.15 5180 4399.50 1860 29.78 8806 105.11 10,421
40LL time - time - 53.27 13,446 394.87 14,656
40LT time - time - (3.22) 63,883 10678.21 66,619
40TL 285.99 2362 time - 4.74 3852 74.21 3996
40TT time - time - 524.30 34,195 378.36 13,070
50LL time - time - 285.91 26,848 1401.7 29,344
50LT (43.69) 19,164 time - (6.57) 92,034 (10.20) 104,887
50TL 914.53 3362 time - 109.71 21,632 839.38 24,058
50TT time - time - (11.50) 108,806 (12.30) 114,049
Table 4
Analysis of changes in the traffic bounds on AP data set instances.
Instance  Deterministic =~ Hose
A =-06 A =-04 A =-02 A=0 A =02 A =04 A =06
25LL 222411.23 125336.88 182522.73  224279.15 269373.49  312357.23 356856.61 393455.53
8,18 13 12 8,18 8,19 8,19 714,17 7,14,17,18
25LT 248713.51 130449.95 19225446  246613.80  299613.46  352022.55 40782510  feasible
9,16,19 12 12,14 9,12,19 9,12,19 2,12,14,19 9,12,14,19 -
25TL 293850.21 141858.38 203274.11 260801.98 330504.18 384527.70  438295.08  487776.48
9,23 13 14 14 11,14 9,23 6,14,23 6,14,23
25TT 312743.36 145746.23 228548.31  285842.78  361699.66  422022.01  492228.89  564756.80
6,14,24 14 13,14 12,14 9,12,14 9,12,14 9,12,13,14 6,9,12,14
40LL 230495.10 126956.24  179402.05  227843.65 27165649 32049145 36388520  409324.18
14,29 19 19 14,29 14,29 10,14,29 6,19,22,29 6,10,21,29
40LT 252982.48 144235.89 199615.74 255202.66  feasible feasible feasible feasible
14,26,30 14,30 14,30 14,19,30 - - - -
40TL 284821.33 142719.33 195165.15 258651.43 314904.30  376250.91 434153.94 485895.62
14,19 19 19 14,19 14,19 14,19 19,21 14,19,21
40TT 326827.27 165275.79 22745635  316004.66 38566154  471898.40 547132.56  feasible
14,25,38 14,19 14,19 14,19,35 14,19,25 6,14,19,25 10,14,19,25 -

rather than pairwise demand values. Hence it is worthwhile to
consider how the traffic bounds used in the hose model affect the
optimal solutions. In Tables 4 and 5, we evaluate the impact of
a 100A% change in the estimated traffic bounds for AP and CAB
data set instances with n = 25, 40, respectively. For each A ¢ {0,
+0.2, £0.4, +0.6}, we report the optimal total cost and hub loca-
tions. The results of A = 0 represent our base case where all traf-
fic bounds are correctly estimated. The instances which can not be
solved to optimality within the time limit but obtained feasible so-
lutions are excluded from this study and marked as feasible. Con-
sidering our results, we observed that an increase (decrease) in the
traffic bounds usually results in an increase (decrease) in the num-
ber of hubs to be opened. However, this is not the case for some
such as the CAB data set instances 25LL and 25LT with o = 0.8. For
these instances the number of hubs to be opened rather increases
as we decrease the traffic bounds by 20%. This is mainly due to
the fact that the capacity constraints become less tight with a de-
crease in the traffic bounds and more alternatives for hub selection
become available.

Furthermore, it can be seen that the changes in the hub loca-
tions are usually in the form of addition and/or removal of hubs.
For example, in the optimal solution of CAB data set instance 40LL
with o = 0.6, hubs are located at 21,22,23,28 for the base case. As
traffic bounds are decreased by 20%, the hub at 21 and 28 are re-
moved whereas after an increase of 20% additional hubs are lo-
cated at nodes 14 and 30.

Another aspect to be evaluated is how the deterministic prob-
lem solutions perform under worst case demand scenario. We

present our findings in Tables 6 and 7 for the AP and CAB data
sets with n = 25, 40. For each traffic bound level A < {0, 0.2, 0.4,
0.6}, we reported the total costs for the case in which hubs are lo-
cated as in the deterministic problem solutions and the percentage
deviation from the optimal value of the hose model with 100A%
increase in the traffic bounds. We do not consider negative A val-
ues since our main concern is the feasibility of the deterministic
solutions and when A < 0, deterministic solutions are always fea-
sible. The instances for which deterministic solutions are not fea-
sible are indicated as infeasible. For the instances that we are not
able to obtain the optimal solution to the hose model, we report
the objective value of the deterministic solution but mark the de-
viation with - . We observe that AP data set instances are more
sensitive to the changes in the traffic bounds. When traffic bounds
are increased by 20% for the AP data set, the solutions of the deter-
ministic problem become infeasible for four out of eight instances.
On the other hand, even after a 60% increase in the traffic bounds,
the deterministic solution is not feasible in only one instance of
the CAB data set. The reason behind this may be that the capac-
ity constraints in the AP data set are much tighter than in the
CAB data set. These results show that using deterministic formula-
tions for the CMAHLP may cause infeasibilities because of the de-
mand uncertainty. Moreover, ignoring uncertainty in the demand
may also result in a significant increase in the total costs. By in-
corporating demand uncertainty into our decisions, we may save
up to 8.84% for the AP data set and 14.50% for the CAB data set
instances.
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Table 5
Analysis of changes in the traffic bounds on CAB data set instances.
Instance « Deterministic Hose
A=-06 A=-04 A=-02 A=0 A =02 A =04 A =06
25LL 0.6 637.59 357.63 514.57 661.25 776.83 913.16 1050.32 1180.01
5,14,21,23 1 23 514,21,23  5,14,21,23 5,14,21,23 5,14,21,22,23 5,14,21,22,23
25LT 0.6 637.59 357.63 523.78 658.64 783.75 918.30 1052.39 1183.21
514,21,23 1 1,21 1,5,14,21 1,5,14,21 1,5,14,21 1,5,14,21,22 1,5,9,14,21,22
25TL 0.6 808.92 407.63 564.57 777.86 937.03 1102.39 1266.80 1417.51
4,521 1 23 22,23 22,23 22,23 14,20,21,23 14,21,22,23
25TT 0.6 808.92 407.63 623.78 788.02 950.46 1118.30 1275.30 1427.42
4,521 1 1,21 1,21 1,22 1,5,14,21 1,2,5,21 1,14,18,21
25LL 0.8 689.66 357.63 514.57 782.71 852.38 1015.59 1165.83 1314.90
512,21 1 23 23,28,38 22,23 22,23 14,21,22,23 14,21,22,23
25LT 0.8 689.66 357.63 542.69 786.47 860.72 1019.50 1167.22 1317.79
512,21 1 1,21 21,28,29 1,22 1,18,21 1,14,21,22 1,14,18,21
25TL 0.8 831.07 407.63 564.57 888.16 952.38 1115.59 1319.36 147313
523 1 23 21,29 22,23 22,23 18,21,23 18,21,23
25TT 0.8 839.66 407.63 642.69 890.91 960.72 1169.50 1322.06 1482.03
512,21 1 1,21 21,29 1,22 1,18,21 1,18,21 1,18,21
40LL 0.6 746.22 405.33 583.00 695.16 937.44 1078.75 1217.40 1355.74
5,14,21,23,28,30 38 38 22,23 21,22,23,28  14,21,22,23,28,30  5,14,21,23,28,29,30  5,14,21,23,28,30,38
40LT 0.6 746.22 405.33 609.47 700.69 939.40 1082.32 1225.66 1374.00
5,14,21,23,28,30 38 21,29 1,21 21,22,23,28  14,21,22,232830  5,14,21,23,28,29,30  5,14,21,28,29,30,32
40TL 0.6 926.88 455.33 633.00 795.16 1069.96 1252.82 1452.52 1628.58
1,21,28 38 38 22,23 21,38 21,38 22,28,38 21,22,23,28
40TT 0.6 926.88 455.33 709.47 800.69 1079.50 1286.48 feasible 1637.10
1,21,28 38 21,29 1,21 21,29 21,22,23 - 21,22,23,28
40LL 0.8 789.06 405.33 583.00 796.73 978.70 1162.42 1345.95 feasible
5,21,23,28 38 38 21,29 21,38 21,38 21,22,23 -
40LT 0.8 789.06 405.33 620.17 798.13 986.81 1173.21 1351.77 1532.80
5,21,23,28 38 21,29 21,29 21,29 21,22,23 21,22,23 21,22,23
40TL 0.8 951.21 455.33 633.00 896.73 1078.70 1262.42 1495.95 1673.83
21,23,28 38 38 21,29 21,38 21,38 21,22,23 21,22,23
40TT 0.8 951.21 455.33 72017 898.13 1086.81 1323.21 1501.77 1682.80
21,23,28 38 21,29 21,29 21,29 21,22,23 21,22,23 21,22,23
Table 6
Cost and feasibility analysis on AP data set instances.
Instance  Deterministic =~ Hose
A=0 A =02 A =04 A =06
25LL 8,18 273689.90 32882159  388400.77  Infeasible
1.60 527 8.84 -
25LT 9,16,19 318566.37 Infeasible Infeasible Infeasible
6.33 - - -
25TL 9,23 338344.95  384527.70  439179.37 498074.00
2.37 0.00 0.20 211
25TT 6,14,24 380116.35 Infeasible Infeasible Infeasible
5.09 - - -
40LL 14,29 271656.49 321745.66  381296.09  Infeasible
0.00 0.39 478 -
40LT 14,26,30 315624.51 Infeasible Infeasible Infeasible
40TL 14,19 31490430 37625091  441187.27 Infeasible
0.00 0.00 1.62 -
40TT 14,25,38 409077.25 Infeasible Infeasible Infeasible
6.07 - - -

6. Conclusions

In this study, we considered a capacitated multiple allocation
hub location problem where the demand can take any value from
a hose uncertainty set. We proposed a mixed integer programming
formulation and devised two different Benders decomposition
algorithms. In view of our computational results, Benders 2, which
utilizes a multicut approach outperformed the other approaches in
terms of computational efficiency. It succeeded to solve AP data
set instances with up to 50 nodes and obtained feasible solutions
with relatively lower optimality gaps for the instances that could

not be solved within the time limit. Our computational results also
showed that ignoring uncertainty may lead to solutions in which
congestion can occur at hubs as a result of exceeded capacities and
routing costs can be significantly higher for some demand realiza-
tions. We also observed that, unlike the uncapacitated problem,
there may be significant changes in hub locations when demand
uncertainty and hub capacities are considered simultaneously.

The multiple allocation hub location problem is based on many
underlying assumptions such as a complete hub network, zero
fixed costs for connections and the same discount factor for all
hub to hub connections. Relaxing one or more of these assump-
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Table 7
Cost and feasibility analysis on CAB data set instances.
Instance o Deterministic Hose
A=0 A=02 A=04 A =06
25LL 0.6 5,14,21,23 776.83 913.16 1068.37 1231.41
0.00 0.00 172 4.36
25LT 06 5142123 804.26 944.93 1105.18 1269.00
2.62 2.90 5.02 7.25
25TL 0.6 4,521 1000.66 1178.92 1364.74 1563.07
6.79 6.94 7.73 10.27
25TT 06 4521 988.62 1163.36 1343.69 1533.70
4.02 4.03 5.36 745
25LL 0.8 512,21 925.62 1101.89 1284.74 1500.92
8.59 8.50 10.20 14.15
251T 0.8 512,21 917.15 1091.15 1267.58 1459.95
6.56 7.03 8.60 10.79
25TL 08 523 984.60 1203.44 Infeasible  Infeasible
3.38 7.87 - -
25TT 0.8 512,21 1067.15 1241.15 1417.58 1609.95
11.08 6.13 7.23 8.63
40LL 0.6 5,14,21,23,28,30 954.45 1108.71 1275.14 1453.83
181 2.78 4,74 724
40LT 0.6 5,14,21,23,28,30 957.85 1121.26 1293.44 1481.57
1.96 3.60 5.53 7.83
40TL 0.6 1,21,28 1119.16 1301.74 1526.82 1794.77
4.60 3.90 511 10.20
40TT 06 12128 1122.54 1324.41 1570.80 1874.42
3.99 295 - 14.50
40LL 0.8 5,21,23,28 1041.52 1219.70 1406.76 1601.52
6.42 493 4.52 -
40LT 0.8 5,21,23,28 1042.70 1224.21 1415.51 1624.80
5.66 4.35 4,72 6.00
40TL 0.8 21,23,28 1174.57 1361.55 1570.35 1840.42
8.89 7.85 4.97 9.95
40TT 0.8 21,23,28 1176.62 1371.64 1614.60 1932.29
8.26 3.66 7.51 14.83

tions results in a more realistic and challenging problem. As future
research, we are interested in incorporating demand uncertainty
into these problems.
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