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In this study, we consider a capacitated multiple allocation hub location problem with hose demand un- 

certainty. Since the routing cost is a function of demand and capacity constraints are imposed on hubs, 

demand uncertainty has an impact on both the total cost and the feasibility of the solutions. We present 

a mathematical formulation of the problem and devise two different Benders decomposition algorithms. 

We develop an algorithm to solve the dual subproblem using complementary slackness. In our compu- 

tational experiments, we test the efficiency of our approaches and we analyze the effects of uncertainty. 

The results show that we obtain robust solutions with significant cost savings by incorporating uncer- 

tainty into our problem. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Hubs are used commonly in many-to-many distribution systems

that arise in transportation and telecommunications applications.

Flows from many origins to many destinations are consolidated at

hubs and routed together to benefit from economies of scale. Many

variants of hub location problems have been studied in the last few

decades. Given a set of nodes with pairwise traffic demands, the

hub location problem decides on the locations of the hubs and the

routes of traffic demands to minimize some performance measure.

This measure can be related with the system cost or the quality

of service. The system cost includes the cost of routing the traffic

in the hub network and it may include the fixed cost of locating

hubs if the number of hubs is not fixed. In some variants, direct

shipments between nonhub nodes are allowed, in others all the

traffic is routed through at least one hub. Also, there are variants

of the problem where a nonhub node can send and receive traf-

fic through multiple hubs and others where there is a restriction

on the number of hubs that a nonhub node can use. The first set-

ting is known as the multiple allocation setting. In this paper, we

study a hub location problem with multiple allocation, fixed costs

for installing capacitated hubs and no direct shipments. 
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Most studies in the hub location literature are based on the

ssumption that the pairwise demands are known with certainty.

owever, this is very difficult to justify in practice since strategic

ecisions such as hub location decisions are often taken before ob-

erving the actual demand and the demand fluctuates over time.

n this study, we incorporate the demand uncertainty into the ca-

acitated multiple allocation hub location problem. In this setting,

emand uncertainty affects both the feasibility of a hub network

nd its associated cost. To hedge against demand uncertainty, we

se a robust optimization framework: among all hub networks that

re feasible for all possible demand realizations, we would like to

nd one that minimizes the worst case total cost (for more on ro-

ust optimization see, e.g., Atamtürk (2006) ; Ben-Tal et al. (2004) ;

en-Tal and Nemirovski (1998) ; 1999 ); 2008 ); Bertsimas and Sim

20 03) ; 20 04 ); Mudchanatongsuk et al. (2008) ; Ordóñez and Zhao

2007) ; Yaman et al. (2001) ; 2007 )). 

We represent the uncertainty with a special polyhedral uncer-

ainty model known as the hose model. The parameters of this

odel are aggregate traffic upper bounds for each node. Any non-

egative demand vector in which the sum of traffic demands that

ach node can send and receive does not exceed the traffic up-

er bound for that node is a possible demand realization. The

ose model was proposed by Duffield et al. (1999) and Fingerhut

t al. (1997) to design virtual private networks. It has several ad-

antages compared to other uncertainty models: it asks to es-

imate a parameter for each node rather than for each pair of

odes. This aggregation reduces the statistical variability and er-

ors. It has resource-sharing flexibility and is not a conservative

http://dx.doi.org/10.1016/j.cor.2017.06.011
http://www.ScienceDirect.com
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a  
odel in which each origin-destination traffic demand can take its

orst case value simultaneously. Due to these advantages, the hose

odel has been used as an uncertainty model in many studies

ollowing its introduction (some examples are Altın et al. (2007) ;

011 ); Chekuri et al. (2007) ; Italiano et al. (2006) ). 

Recently, Meraklı and Yaman (2016) study the uncapacitated

ultiple allocation p -hub median problem with polyhedral de-

and uncertainty. They present a mixed integer programming

odel and apply Benders decomposition. Their results show that

lgorithms based on decomposition are very efficient compared to

olving the model with an off-the-shelf solver. They also observe

hat it is possible to obtain significant cost savings by incorpo-

ating demand uncertainty into the problem. In the uncapacitated

roblem, the demand only affects the routing costs. In addition, it

s known that when hub locations are given, each traffic demand

s routed on a shortest path from its origin to its destination in-

ependently of the amount of demand. As a result, it is possible

o hedge against uncertainty with minor changes in the network.

hese are not true when capacity constraints are imposed for hubs.

In this paper, we present a model for the capacitated hub lo-

ation problem with multiple allocation and hose demand un-

ertainty. Our initial computational experiments showed that the

odel is much harder to solve compared to its deterministic coun-

erpart. We propose two exact algorithms based on Benders refor-

ulations and give an algorithm to solve the dual subproblem us-

ng complementary slackness. We test the efficiency of these algo-

ithms using instances from the literature. We also perform exper-

ments to investigate the changes in the hub locations and costs

s a result of demand uncertainty. We observe that ignoring de-

and uncertainty may result in high routing costs and congested

ubs. Unlike the observations for the uncapacitated problem, when

apacity constraints are imposed, one may need to make major

hanges in the hub locations to hedge against uncertainty. 

The rest of the paper is organized as follows. In Section 2 ,

e review the related literature. In Section 3 , we first present a

onlinear model and then derive a compact linear mixed inte-

er programming model. We give two Benders reformulations in

ection 4 . We report the results of computational experiments in

ection 5 and conclude the paper in Section 6 . 

. Literature review 

In the last few decades, hub location problems have received

 lot of attention both in telecommunications and transportation

iteratures. Here we limit ourselves to related studies and re-

er the reader to surveys in Campbell (1994b ), and Alumur and

ara (2008) ; Campbell et al. (2002) ; Campbell and O’Kelly (2012) ;

lincewicz (1998) ; O’Kelly and Miller (1994) and Farahani et al.

2013) for further information. 

The multiple allocation hub location problem is first formu-

ated by Campbell (1994a ). Boland et al. (2004) ; Camargo et al.

2008) ; Cánovas et al. (2007) ; Ebery et al. (2000) ; Ernst and Kr-

shnamoorthy (1998a ); Hamacher et al. (2004) ; Klincewicz (1996) ;

arín (2005b ); Mayer and Wagner (2002) and Contreras et al.

2011a ) propose methods to solve this problem. The version of the

roblem where there is no cost for opening hubs but the number

f hubs is fixed to p is first formulated by Campbell (1992) . Alter-

ative formulations are given by Campbell (1994a ); Skorin-Kapov

t al. (1996) and Ernst and Krishnamoorthy (1998a ). Campbell

1996) and Ernst and Krishnamoorthy (1998a ); 1998b ) propose ex-

ct and heuristic solution algorithms. 

Among the studies cited above, several propose Benders de-

omposition based approaches. Camargo et al. (2008) propose

hree different algorithms: the classical Benders decomposition

pproach, which adds a single cut at each iteration, a multi-

ut version in which Benders cuts are generated for each origin-
estination pair and a variant which terminates when an ε-optimal

olution is obtained. Contreras et al. (2011a ) propose a Benders de-

omposition in which they generate cuts for each candidate hub

ocation instead of each origin-destination pair. Camargo et al.

2009) propose two Benders decomposition algorithms to solve the

ariant of the problem where the cost is a piecewise-linear con-

ave function. Gelareh and Nickel (2011) study a problem with an

ncomplete hub network and solve this problem with a Benders

ecomposition algorithm. 

Capacitated variants of the hub location problems received less

ttention in the literature compared to the uncapacitated versions.

he first mixed integer linear programming formulation for the ca-

acitated multiple allocation hub location problem (CMAHLP) is

roposed by Campbell (1992) using four indexed variables. Ebery

t al. (20 0 0) provide formulations with three indices and devise a

euristic algorithm to solve large instances. In order to strengthen

hese formulations, Boland et al. (2004) propose preprocessing pro-

edures and valid inequalities, which lead to a significant reduc-

ion in the computation times. Marín (2005a ) also provides new

ormulations and resolution techniques to obtain better computa-

ional results and succeeds to solve instances with up to 75 nodes.

asaki and Fukushima (2003) consider a capacitated multiple allo-

ation hub location problem where a capacity constraint is applied

oth on hubs and arcs and a flow can go through at most one hub

n its way from origin to destination. They devise a branch and

ound algorithm and perform computational studies on the CAB

ata set. 

There are also Benders decomposition applications for the ca-

acitated multiple allocation hub location problems. Rodríguez-

artín and Salazar-González (2008) consider a capacitated hub lo-

ation problem with multiple allocation on an incomplete hub net-

ork. They provide a formulation and develop two exact solution

lgorithms. The first one utilizes classical Benders decomposition

pproach whereas the second employs a nested two level algo-

ithm based on Benders decomposition. They show that the lat-

er outperforms the classical Benders decomposition approach in

erms of computation times. Contreras et al. (2012) also study a re-

ated capacitated hub location problem in which the capacities in-

talled on each hub is not a parameter but a decision variable. They

evise a Benders decomposition algorithm in which the subprob-

em is a transportation problem. They apply Pareto-optimal Ben-

ers cuts and reduction tests to improve the convergence of the

lgorithm. 

The studies that incorporate data uncertainty into hub location

roblems is rather limited. Marianov and Serra (2003) study the

roblem in an air transportation network where hubs are M / D / c

ueues and the probability that the number of planes in the queue

xceeds a certain number is bounded above. This restriction is

hen reformulated as a capacity constraint for the hubs. The au-

hors propose a tabu search based heuristic method to solve this

roblem. Yang (2009) decides on hub locations and flight routes

nder demand uncertainty using two-stage stochastic program-

ing. The first stage involves the decision on the locations of the

ubs to open. In the second stage, routes are determined after

emand realizations are observed. Sim et al. (2009) incorporate

ervice level considerations using chance constraints when travel

imes are normally distributed. They propose several heuristic al-

orithms. Contreras et al. (2011b ) consider the uncapacitated mul-

iple allocation hub location problem under demand and trans-

ortation cost uncertainty. They show that the stochastic mod-

ls for this problem with uncertain demands or transportation

osts dependent to a single uncertain parameter are equivalent

o the deterministic problem with mean values. This is not the

ase for the problem with stochastic independent transportation

osts. This latter problem is solved using Benders decomposition

nd a sample average scheme. They use the AP data set to test the
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efficiency and effectiveness of the proposed models and algo-

rithms. Alumur et al. (2012) consider uncertainty both in fixed

costs and demands. They use a minimax regret approach and

stochastic programming to hedge against uncertainty. Shahabi and

Unnikrishnan (2014) propose mixed integer conic quadratic pro-

gramming formulations for hub location problems with ellipsoidal

demand uncertainty. Meraklı and Yaman (2016) study the unca-

pacitated multiple allocation p -hub median problem with hose de-

mand uncertainty and present Benders decomposition based algo-

rithms. 

In this study, we incorporate both demand uncertainty and ca-

pacity constraints for hubs into the multiple allocation hub loca-

tion problem. This results in a more challenging problem com-

pared to the uncapacitated case since demands have an impact

both in the cost and feasibility of a solution. The decomposition

approaches also need further analysis to be effectively used. Our

results show that it is even more critical to consider demand un-

certainty in the case of the capacitated problem since the deter-

ministic solution may not be feasible when the realized demand is

different from the estimated one. 

3. MIP formulation 

In this section we formulate the robust CMAHLP under hose

demand uncertainty. In this problem, nonhub nodes can be con-

nected to multiple hubs and a capacity constraint on the incom-

ing flow at each hub is imposed. The deterministic version of this

problem has been formulated in several ways in the literature. We

use the formulation proposed by Hamacher et al. (2004) as a start-

ing point. This formulation is devised for the uncapacitated version

of the problem, hence we adjust it by adding a set of capacity con-

straints as proposed in Ebery et al. (20 0 0) . 

We are given a set N of demand points. Let H ⊆N be the set of

possible hub locations and C be the set of commodities such that

 = { (i, j) : i, j ∈ N, i � = j} , i.e., any ordered pair of distinct nodes is

a commodity. The demand from node i to node j is assumed to

be known in the deterministic problem and is denoted by w ij . We

define the remaining problem parameters as follows: f k is the fixed

cost of opening a hub facility at node k, a k is the capacity of the

hub at node k, d ij is the unit cost of transshipment from node i

to node j and χ , α and δ are the cost multipliers of collection,

transfer between hubs and distribution, respectively. The cost of

sending one unit of flow from node i to node j through hubs k and

m in this order is expressed as c i jkm 

= χd ik + αd km 

+ δd m j . 

First we present the MIP formulation for the deterministic

CMAHLP. The decision variables of this model are y k , the binary

variable taking value of 1 if there is a hub located at node k and 0

otherwise, and x ijkm 

, the fraction of flow sent from node i to node

j through hubs k and m in that order. Then the deterministic prob-

lem is 

(CMAHLP deterministic) 

min 

∑ 

k ∈ H 
f k y k + 

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 

∑ 

m ∈ H 
c i jkm 

w i j x i jkm 

(1)

s.t. 
∑ 

k ∈ H 

∑ 

m ∈ H 
x i jkm 

= 1 ∀ (i, j) ∈ C, (2)

∑ 

m ∈ H 
x i jkm 

+ 

∑ 

m ∈ H: 
m � = k 

x i jmk ≤ y k ∀ (i, j) ∈ C, k ∈ H, (3)

∑ 

(i, j) ∈ C 

∑ 

m ∈ H 
w i j x i jkm 

≤ a k y k ∀ k ∈ H, (4)

y k ∈ { 0 , 1 } ∀ k ∈ H, (5)
 i jkm 

≥ 0 ∀ (i, j) ∈ C, ∀ k, m ∈ H. (6)

The objective is to minimize the total cost of opening hubs and

ransportation costs. Constraints (2) guarantee that pairwise de-

ands are fully satisfied. With constraints (3) , direct flow between

onhub nodes is prevented. Constraints (4) are the capacity con-

traints that limit the total incoming flow at each hub. Constraints

5) and (6) are the domain constraints. 

Different from previous studies in the literature, we assume

hat demand is not known in advance but can be modeled with

 polyhedral uncertainty set. We use the hose model introduced

y Duffield et al. (1999) and Fingerhut et al. (1997) which is com-

only used in the telecommunications literature to represent the

emand uncertainty. In this model, instead of estimating pairwise

emands, we limit the total flow associated with each demand

ode. The demand uncertainty set under hose model is 

 hose = 

{ 

w ∈ R 

n (n −1) 
+ : 

∑ 

j∈ N\{ i } 
w i j + 

∑ 

j∈ N\{ i } 
w ji ≤ b i , ∀ i ∈ N 

} 

, (7)

here b i is the aggregate traffic bound for node i ∈ N . We assume

hat these bounds are positive and finite for all nodes. 

The robust CMAHLP under hose demand uncertainty aims to

uild a hub network which is viable under any demand realization

hile minimizing the worst case total cost over all possible de-

and realizations in the set D hose . Hence the robust problem can

e represented as: 

min 

( ∑ 

k ∈ H 
f k y k + max 

w ∈ D hose 

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 

∑ 

m ∈ H 
w i j c i jkm 

x i jkm 

) 

s.t. (2) , (3) , (5) , (6) , 

max 
w ∈ D hose 

∑ 

(i, j) ∈ C 

∑ 

m ∈ H 
w i j x i jkm 

≤ a k y k ∀ k ∈ H. (8)

ere the capacity constraints (4) of the deterministic model are re-

laced with constraints (8) so that each open hub facility has suf-

cient capacity to serve under the worst case demand realization

n the set D hose . 

Observe that this formulation is nonlinear since the demand is

 variable. To linearize it, we use a dual transformation, which

s widely used in the robust optimization literature (see, e.g.,

ertsimas and Sim, 2003 and Altın et al., 2011 ). For a feasible flow

ector x , the inner maximization problem of the objective function,

max 
 ∈ D hose 

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 

∑ 

m ∈ H 
w i j c i jkm 

x i jkm 

, (9)

nd the maximization problem at the left hand side of the capacity

onstraint (8) , 

max 
 ∈ D hose 

∑ 

(i, j) ∈ C 

∑ 

m ∈ H 
w i j x i jkm 

, (10)

re both linear programming (LP) problems that are feasible and

ounded. Therefore the optimal value of these problems are equal

o the optimal value of their corresponding duals. Let λ be the

ual variable corresponding to the hose model constraint in (7) .

he dual of problem (9) can be stated as, 

in 

∑ 

i ∈ N 
λi b i (11)

.t. λi + λ j ≥
∑ 

k ∈ H 

∑ 

m ∈ H 
c i jkm 

x i jkm 

∀ (i, j) ∈ C, (12)

i ≥ 0 ∀ i ∈ N. (13)
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imilarly, the dual of problem (10) for a given k ∈ H can be written

s follows, 

in 

∑ 

i ∈ N 
βk 

i b i (14) 

.t. βk 
i + βk 

j ≥
∑ 

m ∈ H 
x i jkm 

∀ (i, j) ∈ C, ∀ k ∈ H, (15)

k 
i ≥ 0 ∀ i ∈ N, ∀ k ∈ H, (16)

here β represents the dual variable associated with the hose

odel constraint. Since these duals are minimization problems,

hey can be embedded into the original formulation in order to

ecover linearity. After incorporating these into the robust prob-

em formulation, we obtain the following linear mixed integer pro-

ramming (MIP) formulation for the robust CMAHLP under hose

emand uncertainty: 

(CMAHLP hose) 

in 

∑ 

k ∈ H 
f k y k + 

∑ 

i ∈ N 
λi b i (17) 

.t. (2) , (3) , (5) , (6) , 

i + λ j ≥
∑ 

k ∈ H 

∑ 

m ∈ H 
c i jkm 

x i jkm 

∀ (i, j) ∈ C, (18) 

 

i ∈ N 
βk 

i b i ≤ a k y k ∀ k ∈ H, (19) 

k 
i + βk 

j ≥
∑ 

m ∈ H 
x i jkm 

∀ (i, j) ∈ C, ∀ k ∈ H, (20) 

i ≥ 0 ∀ i ∈ N, (21) 

k 
i ≥ 0 ∀ i ∈ N, ∀ k ∈ H. (22) 

In the deterministic problem, we know that the sum of the ca-

acities of the hubs that are open should be sufficient to satisfy

he total demand in the network. In the robust counterpart, we

an derive a similar valid inequality by considering the worst case

emand. 

heorem 1. Inequality 

∑ 

k ∈ H 
a k y k ≥ min 

{ ( ∑ 

i ∈ N 
b i − max 

i ∈ N 
b i 

) 

, 
∑ 

i ∈ N 
b i / 2 

} 

(23) 

s a valid inequality. 

roof. It is easy to see that the inequality 
 

k ∈ H 
a k y k ≥ max 

w ∈ D hose 

∑ 

(i, j) ∈ C 
w i j 

s satisfied by all feasible solutions. The inequality asks to open

ubs with sufficient capacity to route the worst case traffic. The

ight-hand-side of this inequality is an optimization problem. Next

e prove that 

max 
 ∈ D hose 

∑ 

(i, j) ∈ C 
w i j = min 

{ ( ∑ 

i ∈ N 
b i − max 

i ∈ N 
b i 

) 

, 
∑ 

i ∈ N 
b i / 2 

} 

. 

he problem max w ∈ D hose 

∑ 

(i, j) ∈ C w i j is 

ax 
∑ 

(i, j) ∈ C 
w i j 
.t. 
∑ 

j∈ N\{ i } 
w i j + 

∑ 

j∈ N\{ i } 
w ji ≤ b i ∀ i ∈ N, 

 i j ≥ 0 ∀ (i, j) ∈ C. 

Taking the dual of this problem, we obtain the following LP: 

in 

∑ 

i ∈ N 
ϑ i b i 

.t. ϑ i + ϑ j ≥ 1 ∀ (i, j) ∈ C, 

 i ≥ 0 ∀ i ∈ N. 

Observe that the dual problem is the LP relaxation of a

eighted vertex covering problem. Nemhauser and Trotter Jr

1974) show that any extreme point ϑ of this LP satisfies ϑi ∈ {0,

/2, 1} for all i ∈ N . Since we have a covering constraint for all

istinct pair of nodes and b i > 0 for all i ∈ N , we can further char-

cterize the optimal solution. 

The vector of all ones (1, 1, .., 1) is clearly not an optimal solu-

ion as none of the constraints is tight and one can obtain a better

bjective function value by decreasing ϑ i ′ with ε > 0 for an arbi-

rary i ′ ∈ N since b i ′ is positive. In the case that we know ϑ i ′ = 1 / 2

or a node i ′ ∈ N , ϑi ≥ 1/2 for all i ∈ N �{ i ′ } for feasibility. Hence the

olution with the smallest objective value is the vector (1/2, 1/2, ..,

/2) with the objective function value equal to 	i ∈ N b i /2. Finally,

f there exists a node i ′ ∈ N such that ϑ i ′ = 0 , then we must have

 i = 1 for all i ∈ N �{ i ′ } to ensure feasibility. The objective func-

ion value of this solution is 
∑ 

i ∈ N b i − b i ′ . To minimize this value,

e set ϑ i = 0 for a node i with the largest b i value. Therefore the

inimum objective value in this case is 
∑ 

i ∈ N b i − max i ∈ N b i . Hence,

he dual optimal value is min 

{(∑ 

i ∈ N b i − max i ∈ N b i 
)
, 
∑ 

i ∈ N b i / 2 
}

. By

trong duality, this is also the optimal value of the primal. �

Even though the model CMAHLP hose is a compact linear mixed

nteger programming model, its size increases rapidly as the num-

er of demand points increases, which makes it difficult to solve

or large instances. In the next section, we devise two Benders de-

omposition algorithms as an attempt to solve large problem in-

tances. 

. Benders reformulations 

Benders decomposition is an exact solution method proposed

y Benders (1962) and it has been effectively used to solve vari-

us mixed integer programming problems in the literature. In this

ethod, the original problem is reformulated by projecting out

ome of the variables and hence obtaining a formulation with a

maller number of variables and a large number of constraints. One

terates between a master problem, which is a relaxation of the

riginal problem and a subproblem that finds a cut to add to the

aster problem if the solution of the master problem is not feasi-

le (feasibility cut) or not optimal (optimality cut). In the classical

pproach, the master is solved to optimality at each iteration. If it

s an integer problem, this means that an integer problem is solved

rom scratch at each iteration. An alternative is to start with a re-

axation of small size and solve the reformulation using a cutting

lane approach such that each time a candidate solution is found,

elated cuts are added to the relaxed formulation if the candidate

olution is not feasible or optimal. The subproblem is the separa-

ion problem solved each time a candidate solution is found. Over-

ll, the problem is solved within one branch-and-cut tree. 

The effectiveness of a Benders decomposition algorithm de-

ends on various factors; the number of times the subproblem

s solved until optimality is achieved, the computational effort re-

uired to solve the master problem and the subproblem etc. In this

tudy, we propose two Benders reformulations for the CMAHLP un-

er hose demand uncertainty by considering these factors in order

o obtain an effective decomposition scheme. 
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4.1. Decomposition by fixing variables y and β (Benders 1) 

Consider the mixed integer formulation CMAHLP hose as pre-

sented in Section 3 . Assume that the hub location decisions and

the vector β are handled in the master problem and the rest is

left to the subproblem. For fixed vectors y = ˆ y and β = 

ˆ β, we ob-

tain the following primal subproblem: 

(PS1) min 

∑ 

i ∈ N 
λi b i (24)

s.t. 
∑ 

k ∈ H 

∑ 

m ∈ H 
x i jkm 

≥ 1 ∀ (i, j) ∈ C, (25)

∑ 

m ∈ H 
x i jkm 

+ 

∑ 

m ∈ H: 
m � = k 

x i jmk ≤ ˆ y k ∀ (i, j) ∈ C, k ∈ H, (26)

λi + λ j −
∑ 

k ∈ H 

∑ 

m ∈ H 
c i jkm 

x i jkm 

≥ 0 ∀ (i, j) ∈ C, (27)

∑ 

m ∈ H 
x i jkm 

≤ ˆ βk 
i + 

ˆ βk 
j ∀ (i, j) ∈ C, ∀ k ∈ H, (28)

λi ≥ 0 ∀ i ∈ N, (29)

x i jkm 

≥ 0 ∀ (i, j) ∈ C, ∀ k, m ∈ H. (30)

Note that even though we modify constraints (25) here as inequali-

ties, there exists an optimal solution where they hold as equalities.

Taking the dual of PS1, we obtain the dual subproblem 

(DS1) max 
∑ 

(i, j) ∈ C 
ρi j −

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 
ˆ y k v i jk −

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 
( ̂  βk 

i + 

ˆ βk 
j ) u i jk 

(31)

s.t. 
∑ 

j∈ N\{ i } 
w i j + 

∑ 

j∈ N\{ i } 
ω ji ≤ b i ∀ i ∈ N, (32)

ρi j − νi jk − νi jm 

− u i jk ≤ c i jkm 

ω i j ∀ (i, j) ∈ C, ∀ k, m ∈ H : k � = m, 

(33)

ρi j − νi jk − u i jk ≤ c i jkk ω i j ∀ (i, j) ∈ C, ∀ k ∈ H, (34)

ω i j , ρi j ≥ 0 ∀ (i, j) ∈ C, (35)

u i jk , νi jk ≥ 0 ∀ (i, j) ∈ C, ∀ k ∈ H, (36)

where dual variables ρ , ν , ω and u correspond to constraints (25) -

(28) , respectively. Note that since 
∑ 

i ∈ N ˆ βk 
i 

b i ≤ a k ̂  y k for all k ∈ H

and b i > 0 for all i ∈ N , we have ˆ βk 
i 

= 0 if ˆ y k = 0 for all i ∈ N and

k ∈ H . Hence if 
∑ 

k ∈ H ( ̂  βk 
i 

+ 

ˆ βk 
j 
) ≥ 1 for all ( i, j ) ∈ C , the primal

subproblem is feasible. 

Let S be the set of extreme points ( ρ , ω, ν , u ) of the dual sub-

problem. Then the master problem can be formulated as follows: 

(MP1) min 

∑ 

k ∈ H 
f k y k + q (37)

s.t. (5) , (19) , (22) , (23) , 

q ≥
∑ 

(i, j) ∈ C 
ρi j −

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 
y k νi jk 
−
∑ 

(i, j) ∈ C 

∑ 

k ∈ H 
(βk 

i + βk 
j ) u i jk ∀ (ρ, ω, ν, u ) ∈ S, (38)

∑ 

k ∈ H 
(βk 

i + βk 
j ) ≥ 1 ∀ (i, j) ∈ C. (39)

Constraints (38) are the Benders optimality cuts and constraints

39) are added to ensure feasibility. In the next subsections we de-

cribe how to solve the subproblem efficiently. 

.1.1. Decomposing the subproblem by commodity 

In the dual subproblem, constraints (32) and (33) - (34) are inter-

ependent due to the variables ω. In order to eliminate these de-

endencies, we use the approach by Meraklı and Yaman (2016) and

et ρ̄i j = 

ρi j 

ω i j 
, ν̄i jk = 

νi jk 

ω i j 
and ū i jk = 

u i jk 

ω i j 
. Then the dual subproblem

an be decomposed as 

max 
∈ D hose 

∑ 

(i, j) ∈ C 
w i j θi j , 

here for ( i, j ) ∈ C , 

(D i j ) θi j = max ρ̄i j −
∑ 

k ∈ H 
ˆ y k ̄νi jk −

∑ 

k ∈ H 
( ̂  βk 

i + 

ˆ βk 
j ) ̄u i jk (40)

.t. ρ̄i j − ν̄i jk − ν̄i jm 

− ū i jk ≤ c i jkm 

∀ k, m ∈ H : k � = m, (41)

¯i j − ν̄i jk − ū i jk ≤ c i jkk ∀ k ∈ H, (42)

¯i j ≥ 0 , (43)

¯ i jk , ū i jk ≥ 0 ∀ k ∈ H. (44)

he dual of this problem is 

(P i j ) θi j = min 

∑ 

k ∈ H 

∑ 

m ∈ H 
c i jkm 

x i jkm 

(45)

.t. 
∑ 

k ∈ H 

∑ 

m ∈ H 
x i jkm 

≥ 1 , (46)

∑ 

m ∈ H 
x i jkm 

+ 

∑ 

m ∈ H\{ k } 
x i jmk ≤ ˆ y k ∀ k ∈ H, (47)

∑ 

m ∈ H 
x i jkm 

≤ ˆ βk 
i + 

ˆ βk 
j ∀ k ∈ H, (48)

 i jkm 

≥ 0 ∀ k, m ∈ H. (49)

ere it is easy to see that θ ij is the minimum cost of routing com-

odity ( i, j ) ∈ C for given ˆ y and 

ˆ β and max ω∈ D hose 

∑ 

(i, j) ∈ C w i j θi j is

he worst case cost. 

Note that there exists an optimal solution of P ij such that con-

traint (46) strictly holds. Next we devise an algorithm to compute

he optimal dual variables of D ij for any origin destination pair ( i,

 ). 

.1.2. Computing an optimal solution to problem D ij 

For given ˆ y and 

ˆ β vectors, the optimal solution of problem P ij 
an be computed with a simple algorithm. Notice that when all

ub capacities are large enough, each flow is routed through the

hortest path. In the case of capacitated hubs, this is not necessar-

ly true and the flow sent through a path affects the capacity of the

rst hub on that path. The flow from i to j using hub k first will
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Algorithm 2 Compute an optimal solution of D ij . 

Compute an optimal solution to P i j using Algorithm 1. 

Set ρ̄i j = max (k,m ) ∈ F i j 
c i jkm 

for k ∈ H 1 do 

Set ν̄i jk = 0 

if 
∑ 

m ∈ H x i jkm 

> 0 then 

Set ū i jk = ρ̄i j − c i jkm (k ) 

else if 
∑ 

m ∈ H x i jkm 

= 0 and ( ̂  βk 
i 

+ 

ˆ βk 
j 
) = 0 then 

Set ū i jk = max { 0 , ρ̄i j − c i jkm (k ) 
} 

else 

Set ū i jk = 0 

end if 

end for 

for k ∈ H 0 do 

Set ū i jk = 0 

Set ν̄i jk = max { 0 , max m ∈ H 1 { ̄ρi j − c i jmk − ū i jm 

} , max m ∈ H 1 { ̄ρi j −
c i jkm 

} , ρ̄i j − c i jkk } 
end for 

for k, m ∈ H 0 such that ρ̄i j − c i jkm 

> 0 do 

Define � = ( ̄ρi j − c i jkm 

) − ν̄i jk − ν̄i jm 

if � > 0 then 

Update ν̄i jk ← ν̄i jk + κ�

Update ν̄i jm 

← ν̄i jm 

+ (1 − κ)�

end if 

end for 
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1 0 
o through only a path i − k − m (k ) − j that is a shortest path from

 to j using hub k as the first hub, i.e., m (k ) = argmin m ∈ H: ̂ y m =1 c i jkm 

we pick one arbitrarily in case of multiple minimizers). Besides,

( ̂  βk 
i 

+ 

ˆ βk 
j 
) value sets a bound on the amount of flow from node i

o node j that can be sent through hub k . As the capacity of hub

 reserved for commodity ( i, j ) is known, the routing decision for

ach commodity becomes independent from each other. Hence, for

ommodity ( i, j ) ∈ C , sequencing shortest paths i − k − m (k ) − j for

ach hub k in a nondecreasing order of cost and sending flow from

 to j using these paths in a greedy manner provides an optimal so-

ution for our problem. 

Algorithm 1 describes how an optimal solution of P ij is com-

lgorithm 1 Compute an optimal solution of P ij . 

Set x i jkm 

← 0 ∀ k, m ∈ H 

Set residual ← 1 and p ← 

∑ 

k ∈ H ˆ y k 
Sequence hubs as k 1 , k 2 , . . . , k p such that c i jk 1 m (k 1 ) 

≤ c i jk 2 m (k 2 ) 
≤

. . . ≤ c i jk p m (k p ) 

for h = 1 to p do 

if residual > 0 and ( ̂  β
k h 
i 

+ 

ˆ β
k h 
j 

) > 0 then 

Set x i jk h m (k h ) 
← min { residual, ( ̂  β

k h 
i 

+ 

ˆ β
k h 
j 

) } 
Set r esidual ← r esidual − x i jk h m (k h ) 

end if 

end for 

uted for ( i, j ) ∈ C . Here residual represents the fraction of remain-

ng flow to be sent from node i to node j . Since there exists an

ptimal solution in which the total fraction of flow sent from i to

 is equal to 1, we initially set residual to 1. Afterwards, the re-

aining flow from i to j is routed through hub k with the shortest

 − k − m (k ) − j path among the hubs that have available capacity. 

With the optimal primal solution obtained above, an opti-

al solution for the dual problem D ij can be constructed using

he complementary slackness conditions. An optimal dual solution

hould satisfy both the constraints (41) - (44) and the complemen-

ary slackness conditions given below: 

¯i j 

( ∑ 

k ∈ H 

∑ 

m ∈ H 
x i jkm 

− 1 

) 

= 0 (50) 

¯ i jk 

( ∑ 

m ∈ H 
x i jkm 

+ 

∑ 

m ∈ H\{ k } 
x i jmk − ˆ y k 

) 

= 0 ∀ k ∈ H, (51)

¯
 i jk 

( 

ˆ βk 
i + 

ˆ βk 
j −

∑ 

m ∈ H 
x i jkm 

) 

= 0 ∀ k ∈ H, (52)

 i jkm 

( ̄ρi j − ν̄i jk − ν̄i jm 

− ū i jk − c i jkm 

) = 0 ∀ k, m ∈ H : k � = m, (53)

 i jkk ( ̄ρi j − ν̄i jk − ū i jk − c i jkk ) = 0 ∀ k ∈ H. (54)

We compute the dual variables in two steps. First, we fix a set

f variables to some feasible values and hence drop the constraints

elated with them. In the second step, we compute the values of

he remaining variables by solving a reduced system of inequali-

ies. At the end, we adjust the variables so that constraints of the

ual problem are satisfied. κ ∈ [0, 1] is the scaling parameter used

n this adjustment. 

The algorithm for computing an optimal solution ( ̄ρi j , ν̄i j , ū i j )

or ( i, j ) ∈ C can be seen in Algorithm 2 . 

heorem 2. The dual solution computed using Algorithm 2 is optimal

or D ij . 
roof. We first check complementary slackness and then dual fea-

ibility. 

The dual solution computed using Algorithm 2 satisfies the

omplementary slackness conditions with the primal solution

omputed using Algorithm 1 . Conditions (50) are satisfied since
 

k ∈ H 
∑ 

m ∈ H x i jkm 

= 1 for all ( i, j ) ∈ C . We know that if ˆ y k = 0 ,

hen 

∑ 

m ∈ H x i jkm 

+ 

∑ 

m ∈ H\{ k } x i jmk = 0 . If ˆ y k = 1 , i.e., k ∈ H 1 , then

¯ i jk = 0 . Hence conditions (51) hold. Conditions (52) are also satis-

ed. We know that if ū i jk > 0 then 

ˆ βk 
i 

+ 

ˆ βk 
j 

= 0 and 

∑ 

m ∈ H x i jkm 

= 0

r path i − k − m (k ) − j is used but it is shorter than the longest

ath among the ones used to send flow from i to j . In the latter

ase x i jkm (k ) 
= 

ˆ βk 
i 

+ 

ˆ βk 
j 
. Hence in both cases the capacity bound on

ub k is tight. Therefore if ū i jk > 0 then 

ˆ βk 
i 

+ 

ˆ βk 
j 

= 

∑ 

m ∈ H x i jkm 

. Fi-

ally, conditions (53) hold since if x ijkm 

> 0, then k, m ∈ H 1 and

hus ν̄i jk = ν̄i jm 

= 0 . In addition, m = m (k ) and ū i jk = ρ̄i j − c i jkm (k ) 
.

onsequently ρ̄i j − ν̄i jk − ν̄i jm 

− ū i jk − c i jkm 

= ρ̄i j − ( ̄ρi j − c i jkm (k ) 
) −

 i jkm (k ) 
= 0 . We can show that conditions (54) are satisfied in a

imilar way. 

Next we check the dual feasibility of the solution constructed

ith our algorithm. First we consider the constraints (41) . There

re four cases: 

• Case 1: k ∈ H 1 , m ∈ H 1 

Since k, m ∈ H 1 we know that ν̄i jk = ν̄i jm 

= 0 . Hence ρ̄i j −
ν̄i jk − ν̄i jm 

− ū i jk = ρ̄i j − ū i jk . We need to consider all possi-

ble values of ū i jk . If x ijkm 

> 0 then ρ̄i j − ū i jk = ρ̄i j − ( ̄ρi j −
c i jkm (k ) 

) = c i jkm (k ) 
= c i jkm 

. If x i jkm 

= 0 and 

ˆ βk 
i 

+ 

ˆ βk 
j 

= 0 , then

ū i jk = max { 0 , ρ̄i j − c i jkm (k ) 
} . Hence ū i jk ≥ ρ̄i j − c i jkm (k ) 

and ρ̄i j −
ū i jk ≤ c i jkm (k ) 

. We also have c i jkm (k ) 
≤ c i jkm 

by definition. If

x i jkm 

= 0 and 

ˆ βk 
i 

+ 

ˆ βk 
j 

> 0 , then ū i jk = 0 . In this case, we know

that c i jkm (k ) 
≥ max (k ′ ,m 

′ ) ∈ F i j 
c i jk ′ m 

′ since otherwise we would

have used the path i − k − m (k ) − j. As we also have c i jkm 

≥
c i jkm (k ) 

and ρ̄i j = max (k ′ ,m 

′ ) ∈ F i j 
c i jk ′ m 

′ , we know that (41) is sat-

isfied. 
• Case 2: k ∈ H , m ∈ H 
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In this case, ν̄i jk = 0 and ν̄i jm 

≥ ρ̄i j − c i jkm 

− ū i jk . Then

ρ̄i j − ν̄i jk − ν̄i jm 

− ū i jk = ρ̄i j − ν̄i jm 

− ū i jk ≤ ρ̄i j − ρ̄i j + c i jkm 

+ 

ū i jk − ū i jk = c i jkm 

. 
• Case 3: k ∈ H 0 , m ∈ H 1 

In this case, we know that ν̄i jm 

= ū i jk = 0 and ν̄i jk ≥ ρ̄i j − c i jkm 

.

Hence ρ̄i j − ν̄i jk − ν̄i jm 

− ū i jk ≤ ρ̄i j − ρ̄i j + c i jkm 

≤ c i jkm 

. 
• Case 4: k ∈ H 0 , m ∈ H 0 

In this case, we have ū i jk = 0 and ρ̄i j − c i jkm 

− ν̄i jk − ν̄i jm 

≤ 0 .

Hence, ρ̄i j − ν̄i jk − ν̄i jm 

− ū i jk ≤ c i jkm 

. 

Next we prove that the dual solution satisfies constraints (42) .

We consider two cases. 

• Case 1: k ∈ H 1 

For k ∈ H 1 , the value of ν̄i jk is set to zero in our algorithm.

Thus, ρ̄i j − ν̄i jk − ū i jk = ρ̄i j − ū i jk . If x ijkk > 0 then ρ̄i j − ū i jk =
ρ̄i j − ( ̄ρi j − c i jkm (k ) 

) = c i jkk since we are sending flow through

path i − k − j. When x i jkk = 0 and 

ˆ βk 
i 

+ 

ˆ βk 
j 

= 0 , the value of

ū i jk is set to max { 0 , ρ̄i j − c i jkm (k ) 
} . Then ρ̄i j − ū i jk ≤ ρ̄i j − ( ̄ρi j −

c i jkm (k ) 
) = c i jkm (k ) 

≤ c i jkk . If x i jkk = 0 and 

ˆ βk 
i 

+ 

ˆ βk 
j 

> 0 , then ū i jk

is set to zero. Hence ρ̄i j − ū i jk = ρ̄i j = max (k ′ ,m 

′ ) ∈ F i j 
c i jk ′ m 

′ ≤ c i jkk . 

• Case 2: k ∈ H 0 

In this case, ū i jk = 0 and ν̄i jk ≥ ρ̄i j − c i jkk . Then ρ̄i j − ν̄i jk −
ū i jk ≤ ρ̄i j − ( ̄ρi j − c i jkk ) = c i jkk . 

Since the solution computed using Algorithm 2 is dual feasible

and it satisfies complementary slackness conditions with solution

x , it is an optimal dual solution. �

Note that even though we could decompose the dual subprob-

lem into a series of problems, we still generate an aggregate Ben-

ders cut. 

4.2. Decomposition by projecting out the flow variables (Benders 2) 

In this section, we aim to find a decomposition scheme such

that the Benders cut can be decomposed for each commodity. For

fixed vectors ˆ y , ˆ λ and 

ˆ β, the subproblem becomes the following

feasibility problem: 

min 0 (55)

s.t. (25) , (26) , (28) , (30) , ∑ 

k ∈ H 

∑ 

m ∈ H 
c i jkm 

x i jkm 

≤ ˆ λi + ̂

 λ j ∀ (i, j) ∈ C. (56)

For this problem to be feasible, its dual needs to be bounded.

So we need ∑ 

(i, j) ∈ C 
ρi j −

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 
ˆ y k νi jk −

∑ 

(i, j) ∈ C 

∑ 

k ∈ H 
( ̂  βk 

i + 

ˆ βk 
j ) u i jk 

−
∑ 

(i, j) ∈ C 
ω i j ( ̂ λi + ̂

 λ j ) ≤ 0 (57)

for all ( ρ , ν , ω, u ) that satisfy (33) – (36) . This system decomposes

for each ( i, j ) ∈ C . Without loss of generality, we can take ω i j = 0

or ω i j = 1 for ( i, j ) ∈ C . When ω i j = 0 , we need 

ρi j −
∑ 

k ∈ H 
ˆ y k νi jk −

∑ 

k ∈ H 
( ̂  βk 

i + 

ˆ βk 
j ) u i jk ≤ 0 

for all ( ρ ij , ν ij , u ij ) such that 

ρi j − νi jk − νi jm 

− u i jk ≤ 0 ∀ k, m ∈ H : k � = m, 

ρi j − νi jk − u i jk ≤ 0 ∀ k ∈ H, 

ρi j ≥ 0 , 

u i jk , νi jk ≥ 0 ∀ k ∈ H. 
t can be seen that this system of inequalities always holds when
 

k ∈ H ˆ y k ≥ 1 and 

∑ 

k ∈ H ( ̂  βk 
i 

+ 

ˆ βk 
j 
) ≥ 1 and the former inequality is

lready implied by constraint (23) . Hence we only need to consider

he case ω i j = 1 . When we fix ω i j = 1 , we obtain 

i j −
∑ 

k ∈ H 
ˆ y k νi jk −

∑ 

k ∈ H 
( ̂  βk 

i + 

ˆ βk 
j ) u i jk ≤ ˆ λi + ̂

 λ j 

or all ( ρ ij , ν ij , u ij ) satisfying 

i j − νi jk − νi jm 

− u i jk ≤ c i jkm 

∀ (i, j) ∈ C, ∀ k, m ∈ H : k � = m, 

(58)

i j − νi jk − u i jk ≤ c i jkm 

∀ k ∈ H, (59)

i j ≥ 0 , (60)

 i jk , νi jk ≥ 0 ∀ k ∈ H. (61)

ence, after projecting out x variables, the problem can be refor-

ulated as follows 

in 

∑ 

k ∈ H 
f k y k + 

∑ 

i ∈ N 
λi b i 

.t. (5) , (19) , (21) , (22) , (23) , (39) , 

i + λ j ≥ ρi j −
∑ 

k ∈ H 
y k νi jk 

−
∑ 

k ∈ H 
(βk 

i + βk 
j ) u i jk ∀ (i, j) ∈ C, (ρi j , νi j , u i j ) ∈ S i j , (62)

here S ij is the set of extreme points of the set defined by (58) –

61) for ( i, j ) ∈ C . The variables corresponding to an extreme point

f S ij maximizing the right-hand-side of constraint (62) can be

omputed as explained in Section 4.1.2 . 

In this reformulation, we are able to add multiple cuts at each

teration of the Benders decomposition algorithm instead of a sin-

le cut since the cuts are disaggregated by commodity. 

. Computational analysis 

We test our mathematical model and solution algorithms on

ell-known Australian Post (AP) and Civil Aeronautics Board (CAB)

ata set instances with n = 25 , 40 , 50 . 

The AP data set is first introduced by Ernst and Krishnamoor-

hy (1996) and it contains postal service data of 200 cities in

ustralia (accessible from OR-Library, 2015 ). Each city corresponds

o a postal district; city coordinates and pairwise demands are

iven. The cost multipliers of collection, transfer and distribution

re not symmetric; they are taken as χ = 3 , α = 0 . 75 and δ = 2 .

he pairwise demands are also not symmetric. The demand from

 node to itself does not need to be zero. However in our con-

ext, we do not allow any demand from a node to itself. To the

xtend of our knowledge, the AP data set is the only data set with

xed costs and capacities for hubs. For both fixed costs and ca-

acities, two settings are available. Instances with tight ( T ) fixed

osts have larger costs of hub opening compared to the instances

ith loose ( L ) fixed costs. Similarly, the instances with tight ( T ) ca-

acities have smaller available capacities in comparison with the

nstances with loose ( L ) capacities. For each problem size n , we

onsider four cases: LL, LT, TL, TT where the first letter corre-

ponds to the fixed cost setting and the second to the capacity

etting. 

The CAB data set includes air transportation data for 100 cities

n the U.S. (accessible from O’Kelly (1996) ). For each city pair, Eu-

lidean distances and demand values are provided. It is assumed
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o  
hat there is no demand from a node to itself. All distances and de-

ands are symmetric. The cost multipliers of collection and distri-

ution are χ = δ = 1 , respectively. In our experiments, we take the

ost multiplier of transfer α = 0 . 6 , 0 . 8 . Demand values are scaled

o that their sum is equal to one. Unlike the AP data, the CAB data

et does not contain information related with fixed costs and ca-

acities. Hence we generated them in the following way: For fixed

osts, we considered two different settings L and T where f k = 50

n setting L and f k = 100 in setting T for all possible hub loca-

ions k ∈ H . We also randomly generated hub capacities under two

ettings, L and T , from two different intervals. The hub capacities

niformly take value from interval [0.5, 0.7] in setting L and from

nterval [0.4, 0.6] in setting T . For all CAB data set instances, we

onsider four cases LL, LT, TL, TT as for the AP data set. 

In our experiments we consider AP and CAB data set instances

ith n = 25 , 40 , 50 . In order to be able to compare our results with

enchmark instances, we generated the traffic bounds for the hose

odel as the sum of nominal demand values associated with each

ode, i.e., b i = 

∑ 

j∈ N\{ i } (w i j + w ji ) for all i ∈ N . All nodes are taken

s possible hub locations. We perform our computational experi-

ents on a 64-bit machine with Intel Xeon E5-2630 v2 processor

t 2.60 GHz and 96 GB of RAM using Java and Cplex 12.5.1. We set

 time limit of three hours. All solution times are given in seconds.

or the Benders decomposition algorithm implementations, we use

he lazy constraint callback function available in CPLEX. 

We summarize our computational analysis on the AP and CAB

ata sets in Tables 1 and 2 , respectively. We report the optimal

alues (the best upper bounds if not solved to optimality), CPU

imes (the percentage optimality gaps if not solved to optimality)

nd hub locations for both the deterministic problem and the ro-

ust problem. For the robust problem, we compare our results for

hree different solution methods: the MIP, Benders 1 with single

ut approach and Benders 2 with multiple cut approach. We also

eport the number of cuts added until optimality or time limit is

eached for the Benders algorithms. The instances for which we

re not able to find an initial solution within three hours of time

imit are indicated as time . For the instances that we are not able

o solve within the time limit but obtain a feasible solution, we

eport the optimality gaps in brackets. We also mark the instances

ith more than 100% optimality gaps as feasible . 

For completeness of analysis, we first present the results of for-

ulation CMAHLP deterministic and compare them with the hose

odel solutions to investigate the effects of demand uncertainty.

e use the solutions obtained by Benders 2 since it provides the

argest number of optimal solutions to the hose model. Comparing

he optimal total costs of the deterministic problem with those of

ts robust counterpart, we observe a significant increase for both

ata sets. The optimal values given for the deterministic and ro-

ust problems in Table 1 indicate an average increase of 17.09%

nd a maximum increase of 21.11% in the total costs for the AP

ata set instances. Similarly, optimal costs of the CAB data set in-

tances given in Table 2 are subject to an increase of 21.02% on

verage with a maximum increase of 29.71%. 

We also compare deterministic and robust problems in terms

f optimal hub locations. Considering the AP data set instances

hich can be solved to optimality for both cases, it can be seen

hat there is a change in the optimal hub locations in six instances

ut of nine. In some of them, as in 25 LL , only one hub location is

hanged whereas in some others like 25 TL all hubs of the deter-

inistic problem are replaced in the solution of the robust prob-

em. CAB data set instances are more responsive to demand uncer-

ainty. There is a change in the optimal hub locations for all in-

tances except one. For some instances, such as 25 LT with α = 0 . 6 ,

hese changes are not major. Only the hub at location 23 is moved

o location 1. However there are also instances with significant

hanges in the hub locations. For example, for the instance 25 TT
ith α = 0 . 8 , hub facilities are located at 5, 12 and 21 in the de-

erministic case, whereas hub locations are at 1 and 22 in the hose

odel. An interesting observation here is that, while the number

f hubs to be opened in the hose model is equal to the number of

ubs in the deterministic case for the AP data set instances, it is

sually smaller for the CAB data set instances. 

Next, we analyze the computational efficiency of our proposed

olution methods. In view of our results presented in Tables 1 and

 , it can be seen that even the deterministic problem requires

uch computational effort using the MIP formulation approach.

he AP instances with more than 50 nodes can not be solved

o optimality within the time limit. Comparing these results with

he ones for CMAHLP hose , we observe that the computational ef-

ort required to solve the problems to optimality significantly in-

reases with demand uncertainty. The instance 25 LL of the AP set

an be solved within approximately two hours while it takes five

econds in the deterministic case. For both data sets, only the in-

tances with 25 nodes can be solved to optimality within the time

imit. 

We also evaluate effectiveness of proposed Benders reformu-

ations. MIP formulation is clearly outperformed by both Benders

pproaches. All instances that can be solved by the MIP formu-

ation can also be solved using Benders algorithms in less CPU

ime. The only exception is the CAB data set instance 25 LL with

= 0 . 6 for which the MIP formulation performs better than Ben-

ers 1, but still Benders 2 has much smaller CPU time. Comparing

wo Benders decomposition algorithms, we observe that Benders 2

hat employs a multiple cut approach is superior to Benders 1 that

ses a single cut approach. Our computational results on the AP

ata set instances can be seen in Table 1 . Out of 12 AP data set in-

tances, Benders 1 is able to solve six of them within three hours.

mong the instances with 50 nodes, it obtains a feasible solution

nly for instance 50 LT . For the others, it cannot find a feasible so-

ution within the time limit. 

On the other hand, Benders 2 succeeds to solve nine instances

ut of 12 to optimality within the time limit and for the others it is

ble to obtain feasible solutions with lower optimality gap values

han Benders 1. The maximum CPU time for the solved instances is

pproximately nine minutes. For the CAB data set instances, Ben-

ers 2 is able to solve all instances to optimality whereas Benders

 can not solve six instances out of 24. In five of them, Benders 1

ails to find a feasible solution within the time limit. 

Effectiveness and efficiency of Benders algorithms depend

ainly on two aspects: computational effort required to solve the

ubproblems and strength of the optimality and feasibility cuts.

tronger cuts lead to tighter bounds and consequently fewer num-

er of iterations, while a faster solution algorithm for subprob-

ems may significantly reduce the time spent at each iteration. In

ur implementations, we use Algorithm 2 to find an optimal so-

ution to the dual subproblems. We compare the performance of

lgorithm 2 to solving the subproblems with a general purpose

olver in Table 3 . We solve the AP data instances with Benders 1

nd Benders 2 using Algorithm 2 and the corresponding optimiza-

ion model ( D ij ), and report the CPU times (the percentage opti-

ality gap if not solved to optimality) and the number of Benders

uts added for each setting. For Benders 1, Algorithm 2 clearly out-

erforms the optimization model in terms of solution times and

he number of instances that can be solved to optimality. This also

olds for most instances of Benders 2 except two, 40 LT and 40 TT .

enders 2 with optimization model is able to solve 40 LT to op-

imality while Algorithm 2 fails, and it takes a smaller CPU time

or 40 TT . In the light of these results, it can be concluded that

lgorithm 2 usually outperforms the optimization model by taking

dvantage of shorter subproblem solution times. 

An important advantage of the hose model is that it requires

nly the estimation of traffic bounds associated with each node
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Table 1 

Comparison of solution methods on AP data set instances. 

Ins. CMAHLP deterministic CMAHLP hose Hose Benders 1 Hose Benders 2 

Obj. cpu(gap) Hubs Obj. cpu(gap) Hubs Obj. cpu(gap) # Cuts Hubs Obj. cpu(gap) # Cuts Hubs 

25LL 222411.23 4.26 8,18 269373.49 5896.78 8,19 269373.49 929.93 10,657 8,19 269373.49 5.39 5334 8,19 

25LT 248713.51 54.56 9,16,19 299613.46 4883.77 9,12,19 299613.46 2923.96 7002 9,12,19 299613.46 121.20 10,987 9,12,19 

25TL 293850.21 26.08 9,23 330504.18 9765.26 11,14 330504.18 40.52 1284 11,14 330504.18 4.33 5058 11,14 

25TT 312743.36 227.73 6,14,24 361699.66 3372.66 9,12,14 361699.66 400.15 5180 9,12,14 361699.66 29.78 8806 9,12,14 

40LL 230495.10 46.64 14,29 feasible (100) H time - - - 271656.49 53.27 13,446 14,29 

40LT 252982.48 909.59 14,26,30 feasible (100) H time - - - 315624.51 (3.22) 63,883 14,26,30 

40TL 284821.33 518.83 14,19 feasible (100) H 314904.29 285.99 2362 14,19 314904.30 4.74 3852 14,19 

40TT 326827.27 2637.96 14,25,38 feasible (100) H time - - - 385661.54 524.30 34,195 14,19,25 

50LL 228962.63 176.41 15,35 time - - time - - - 276091.56 285.91 26,848 15,35 

50LT 258807.91 (1.04) 6,26,32,48 time - - 343860.19 (43.69) 19,164 14,32,35 315039.04 (6.57) 92,034 6,26,32,46 

50TL 311199.49 (4.31) 3,45 time - - 340552.89 914.53 3362 24,27 340552.90 109.71 21,632 24,27 

50TT 395592.49 (6.69) 6,12,26,48 time - - time - - - 452151.20 (11.5) 108,806 25,26,41,48 

Table 2 

Comparison of solution methods on CAB data set instances. 

Ins. α CMAHLP deterministic CMAHLP hose Hose Benders 1 Hose Benders 2 

Obj. cpu(gap) Hubs Obj. cpu(gap) Hubs Obj. cpu(gap) # Cuts Hubs Obj. cpu # Cuts Hubs 

25LL 0.6 637.59 4.21 5,14,21,23 776.83 405.54 5,14,21,23 776.83 777.16 10,241 5,14,21,23 776.83 4.08 4343 5,14,21,23 

25LT 0.6 637.59 3.38 5,14,21,23 783.75 1630.94 1,5,14,21 783.75 169.91 4295 1,5,14,21 783.75 3.68 4999 1,5,14,21 

25TL 0.6 808.92 3.8 4,5,21 937.03 7228.9 22,23 937.03 113.64 1889 22,23 937.03 9.49 6885 22,23 

25TT 0.6 808.92 3.84 4,5,21 950.46 74 88.4 9 1,22 950.46 88.00 2134 1,22 950.46 11.85 5844 1,22 

25LL 0.8 689.66 3.39 5,12,21 852.38 8072.71 22,23 852.38 327.90 5738 22,23 852.38 12.76 7884 22,23 

25LT 0.8 689.66 3.36 5,12,21 860.72 10800.7 1,22 860.72 141.76 3384 1,22 860.72 8.82 5312 1,22 

25TL 0.8 831.07 3.5 5,23 952.38 3242.38 22,23 952.38 106.59 2120 22,23 952.38 6.79 5803 22,23 

25TT 0.8 839.66 5.11 5,12,21 960.72 2793.97 1,22 960.72 24.93 735 1,22 960.72 4.7 5255 1,22 

40LL 0.6 746.22 24.98 5,14,21,23,28,30 2523.06 (100) H time - - - 937.44 339.49 21,067 21,22,23,28 

40LT 0.6 746.22 26.32 5,14,21,23,28,30 2523.06 (100) H time - - - 939.40 338.89 37,823 21,22,23,28 

40TL 0.6 926.88 40.69 1,21,28 4523.06 (100) H 1069.96 1095.26 5137 21,38 1069.96 213.37 30,583 21,38 

40TT 0.6 926.88 58.56 1,21,28 4523.06 (100) H 1079.50 1787.32 8976 21,29 1079.50 183.33 30,962 21,29 

40LL 0.8 789.06 24.83 5,21,23,28 2697.41 (100) H 978.70 1940.47 11,227 21,38 978.70 53.77 13,984 21,38 

40LT 0.8 789.06 24.16 5,21,23,28 2697.41 (100) H 986.81 1409.58 8543 21,29 986.81 59.63 14,878 21,29 

40TL 0.8 951.21 786.04 21,23,28 4697.41 (100) H 1078.70 623.59 4291 21,38 1078.70 41.59 14,783 21,38 

40TT 0.8 951.21 723.6 21,23,28 4697.41 (100) H 1086.81 2375.44 14,269 21,29 1086.81 55.89 15,778 21,29 

50LL 0.6 770.46 82.79 5,21,23,28,44 3060.87 (100) H time - - - 989.71 1075.26 50,987 21,28,29,44 

50LT 0.6 770.46 79.94 5,21,23,28,44 3060.87 (100) H time - - - 999.41 3339.56 78,077 21,22,23,28 

50TL 0.6 953.53 7977.19 1,21,28 5560.87 (100) H 1128.81 (7.32) 21,350 29,46 1126.55 1262.27 64,080 21,29 

50TT 0.6 953.77 503.1 1,21,28 time - - 1147.68 (8.64) 26,198 22,26 1138.50 1869.82 66,096 22,46 

50LL 0.8 805.03 72.63 5,21,23,28 time - - time - - - 1036.21 379.4 38,604 21,29 

50LT 0.8 805.03 73.16 5,21,23,28 time - - 1042.99 8744.93 19,718 22,46 1042.99 367.18 34,822 22,46 

50TL 0.8 964.34 3657.09 28,29 time - - 1136.21 1618.14 5796 21,29 1136.21 186.25 27,033 21,29 

50TT 0.8 977.63 3312.27 1,21,28 time - - 1147.23 (4.54) 26,472 21,22 1142.99 118.42 26,332 22,46 
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Table 3 

Comparison of the results of dual algorithm with the optimization model. 

Benders 1 Benders 2 

Algorithm 2 Optimization Model Algorithm 2 Optimization Model 

Instance cpu(gap) # Cuts cpu(gap) # Cuts cpu(gap) # Cuts cpu(gap) # Cuts 

25LL 929.93 10,657 (10.78) 4433 5.39 5334 50.56 4929 

25LT 2923.96 7002 (5.73) 4 4 43 121.20 10,987 405.11 19,251 

25TL 40.52 1284 3237.61 1339 4.33 5058 50.32 4892 

25TT 400.15 5180 4399.50 1860 29.78 8806 105.11 10,421 

40LL time - time - 53.27 13,446 394.87 14,656 

40LT time - time - (3.22) 63,883 10678.21 66,619 

40TL 285.99 2362 time - 4.74 3852 74.21 3996 

40TT time - time - 524.30 34,195 378.36 13,070 

50LL time - time - 285.91 26,848 1401.7 29,344 

50LT (43.69) 19,164 time - (6.57) 92,034 (10.20) 104,887 

50TL 914.53 3362 time - 109.71 21,632 839.38 24,058 

50TT time - time - (11.50) 108,806 (12.30) 114,049 

Table 4 

Analysis of changes in the traffic bounds on AP data set instances. 

Instance Deterministic Hose 

� = -0.6 � = -0.4 � = -0.2 � = 0 � = 0.2 � = 0.4 � = 0.6 

25LL 222411.23 125336.88 182522.73 224279.15 269373.49 312357.23 356856.61 393455.53 

8,18 13 12 8,18 8,19 8,19 7,14,17 7,14,17,18 

25LT 248713.51 130449.95 192254.46 246613.80 299613.46 352022.55 407825.10 feasible 

9,16,19 12 12,14 9,12,19 9,12,19 2,12,14,19 9,12,14,19 - 

25TL 293850.21 141858.38 203274.11 260801.98 330504.18 384527.70 438295.08 487776.48 

9,23 13 14 14 11,14 9,23 6,14,23 6,14,23 

25TT 312743.36 145746.23 228548.31 285842.78 361699.66 422022.01 492228.89 564756.80 

6,14,24 14 13,14 12,14 9,12,14 9,12,14 9,12,13,14 6,9,12,14 

40LL 230495.10 126956.24 179402.05 227843.65 271656.49 320491.45 363885.20 409324.18 

14,29 19 19 14,29 14,29 10,14,29 6,19,22,29 6,10,21,29 

40LT 252982.48 144235.89 199615.74 255202.66 feasible feasible feasible feasible 

14,26,30 14,30 14,30 14,19,30 - - - - 

40TL 284821.33 142719.33 195165.15 258651.43 314904.30 376250.91 434153.94 485895.62 

14,19 19 19 14,19 14,19 14,19 19,21 14,19,21 

40TT 326827.27 165275.79 227456.35 316004.66 385661.54 471898.40 547132.56 feasible 

14,25,38 14,19 14,19 14,19,35 14,19,25 6,14,19,25 10,14,19,25 - 

r  

c  

o  

a  

d  

±  

t  

fi  

s  

l  

s  

t  

b  

s  

t  

a  

t  

c  

b

 

t  

F  

w  

t  

m  

c

 

l  

p  

s  

0  

c  

d  

i  

u  

s  

s  

s  

a  

t  

v  

s  

a  

m  

O  

t  

t  

i  

C  

t  

m  

m  

c  

u  

i

ather than pairwise demand values. Hence it is worthwhile to

onsider how the traffic bounds used in the hose model affect the

ptimal solutions. In Tables 4 and 5 , we evaluate the impact of

 100 �% change in the estimated traffic bounds for AP and CAB

ata set instances with n = 25 , 40 , respectively. For each � ∈ {0,

0.2, ±0.4, ±0.6}, we report the optimal total cost and hub loca-

ions. The results of � = 0 represent our base case where all traf-

c bounds are correctly estimated. The instances which can not be

olved to optimality within the time limit but obtained feasible so-

utions are excluded from this study and marked as feasible . Con-

idering our results, we observed that an increase (decrease) in the

raffic bounds usually results in an increase (decrease) in the num-

er of hubs to be opened. However, this is not the case for some

uch as the CAB data set instances 25 LL and 25 LT with α = 0 . 8 . For

hese instances the number of hubs to be opened rather increases

s we decrease the traffic bounds by 20%. This is mainly due to

he fact that the capacity constraints become less tight with a de-

rease in the traffic bounds and more alternatives for hub selection

ecome available. 

Furthermore, it can be seen that the changes in the hub loca-

ions are usually in the form of addition and/or removal of hubs.

or example, in the optimal solution of CAB data set instance 40 LL

ith α = 0 . 6 , hubs are located at 21,22,23,28 for the base case. As

raffic bounds are decreased by 20%, the hub at 21 and 28 are re-

oved whereas after an increase of 20% additional hubs are lo-

ated at nodes 14 and 30. 

Another aspect to be evaluated is how the deterministic prob-

em solutions perform under worst case demand scenario. We
resent our findings in Tables 6 and 7 for the AP and CAB data

ets with n = 25 , 40 . For each traffic bound level � ∈ {0, 0.2, 0.4,

.6}, we reported the total costs for the case in which hubs are lo-

ated as in the deterministic problem solutions and the percentage

eviation from the optimal value of the hose model with 100 �%

ncrease in the traffic bounds. We do not consider negative � val-

es since our main concern is the feasibility of the deterministic

olutions and when � ≤ 0, deterministic solutions are always fea-

ible. The instances for which deterministic solutions are not fea-

ible are indicated as infeasible . For the instances that we are not

ble to obtain the optimal solution to the hose model, we report

he objective value of the deterministic solution but mark the de-

iation with - . We observe that AP data set instances are more

ensitive to the changes in the traffic bounds. When traffic bounds

re increased by 20% for the AP data set, the solutions of the deter-

inistic problem become infeasible for four out of eight instances.

n the other hand, even after a 60% increase in the traffic bounds,

he deterministic solution is not feasible in only one instance of

he CAB data set. The reason behind this may be that the capac-

ty constraints in the AP data set are much tighter than in the

AB data set. These results show that using deterministic formula-

ions for the CMAHLP may cause infeasibilities because of the de-

and uncertainty. Moreover, ignoring uncertainty in the demand

ay also result in a significant increase in the total costs. By in-

orporating demand uncertainty into our decisions, we may save

p to 8.84% for the AP data set and 14.50% for the CAB data set

nstances. 
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Table 5 

Analysis of changes in the traffic bounds on CAB data set instances. 

Instance α Deterministic Hose 

� = -0.6 � = -0.4 � = -0.2 � = 0 � = 0.2 � = 0.4 � = 0.6 

25LL 0.6 637.59 357.63 514.57 661.25 776.83 913.16 1050.32 1180.01 

5,14,21,23 1 23 5,14,21,23 5,14,21,23 5,14,21,23 5,14,21,22,23 5,14,21,22,23 

25LT 0.6 637.59 357.63 523.78 658.64 783.75 918.30 1052.39 1183.21 

5,14,21,23 1 1,21 1,5,14,21 1,5,14,21 1,5,14,21 1,5,14,21,22 1,5,9,14,21,22 

25TL 0.6 808.92 407.63 564.57 777.86 937.03 1102.39 1266.80 1417.51 

4,5,21 1 23 22,23 22,23 22,23 14,20,21,23 14,21,22,23 

25TT 0.6 808.92 407.63 623.78 788.02 950.46 1118.30 1275.30 1427.42 

4,5,21 1 1,21 1,21 1,22 1,5,14,21 1,2,5,21 1,14,18,21 

25LL 0.8 689.66 357.63 514.57 782.71 852.38 1015.59 1165.83 1314.90 

5,12,21 1 23 23,28,38 22,23 22,23 14,21,22,23 14,21,22,23 

25LT 0.8 689.66 357.63 542.69 786.47 860.72 1019.50 1167.22 1317.79 

5,12,21 1 1,21 21,28,29 1,22 1,18,21 1,14,21,22 1,14,18,21 

25TL 0.8 831.07 407.63 564.57 888.16 952.38 1115.59 1319.36 1473.13 

5,23 1 23 21,29 22,23 22,23 18,21,23 18,21,23 

25TT 0.8 839.66 407.63 642.69 890.91 960.72 1169.50 1322.06 1482.03 

5,12,21 1 1,21 21,29 1,22 1,18,21 1,18,21 1,18,21 

40LL 0.6 746.22 405.33 583.00 695.16 937.44 1078.75 1217.40 1355.74 

5,14,21,23,28,30 38 38 22,23 21,22,23,28 14,21,22,23,28,30 5,14,21,23,28,29,30 5,14,21,23,28,30,38 

40LT 0.6 746.22 405.33 609.47 700.69 939.40 1082.32 1225.66 1374.00 

5,14,21,23,28,30 38 21,29 1,21 21,22,23,28 14,21,22,23,28,30 5,14,21,23,28,29,30 5,14,21,28,29,30,32 

40TL 0.6 926.88 455.33 633.00 795.16 1069.96 1252.82 1452.52 1628.58 

1,21,28 38 38 22,23 21,38 21,38 22,28,38 21,22,23,28 

40TT 0.6 926.88 455.33 709.47 800.69 1079.50 1286.48 feasible 1637.10 

1,21,28 38 21,29 1,21 21,29 21,22,23 - 21,22,23,28 

40LL 0.8 789.06 405.33 583.00 796.73 978.70 1162.42 1345.95 feasible 

5,21,23,28 38 38 21,29 21,38 21,38 21,22,23 - 

40LT 0.8 789.06 405.33 620.17 798.13 986.81 1173.21 1351.77 1532.80 

5,21,23,28 38 21,29 21,29 21,29 21,22,23 21,22,23 21,22,23 

40TL 0.8 951.21 455.33 633.00 896.73 1078.70 1262.42 1495.95 1673.83 

21,23,28 38 38 21,29 21,38 21,38 21,22,23 21,22,23 

40TT 0.8 951.21 455.33 720.17 898.13 1086.81 1323.21 1501.77 1682.80 

21,23,28 38 21,29 21,29 21,29 21,22,23 21,22,23 21,22,23 

Table 6 

Cost and feasibility analysis on AP data set instances. 

Instance Deterministic Hose 

� = 0 � = 0.2 � = 0.4 � = 0.6 

25LL 8,18 273689.90 328821.59 388400.77 Infeasible 

1.60 5.27 8.84 - 

25LT 9,16,19 318566.37 Infeasible Infeasible Infeasible 

6.33 - - - 

25TL 9,23 338344.95 384527.70 439179.37 498074.00 

2.37 0.00 0.20 2.11 

25TT 6,14,24 380116.35 Infeasible Infeasible Infeasible 

5.09 - - - 

40LL 14,29 271656.49 321745.66 381296.09 Infeasible 

0.00 0.39 4.78 - 

40LT 14,26,30 315624.51 Infeasible Infeasible Infeasible 

- - - - 

40TL 14,19 314904.30 376250.91 441187.27 Infeasible 

0.00 0.00 1.62 - 

40TT 14,25,38 409077.25 Infeasible Infeasible Infeasible 

6.07 - - - 
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6. Conclusions 

In this study, we considered a capacitated multiple allocation

hub location problem where the demand can take any value from

a hose uncertainty set. We proposed a mixed integer programming

formulation and devised two different Benders decomposition

algorithms. In view of our computational results, Benders 2, which

utilizes a multicut approach outperformed the other approaches in

terms of computational efficiency. It succeeded to solve AP data

set instances with up to 50 nodes and obtained feasible solutions

with relatively lower optimality gaps for the instances that could
ot be solved within the time limit. Our computational results also

howed that ignoring uncertainty may lead to solutions in which

ongestion can occur at hubs as a result of exceeded capacities and

outing costs can be significantly higher for some demand realiza-

ions. We also observed that, unlike the uncapacitated problem,

here may be significant changes in hub locations when demand

ncertainty and hub capacities are considered simultaneously. 

The multiple allocation hub location problem is based on many

nderlying assumptions such as a complete hub network, zero

xed costs for connections and the same discount factor for all

ub to hub connections. Relaxing one or more of these assump-
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Table 7 

Cost and feasibility analysis on CAB data set instances. 

Instance α Deterministic Hose 

� = 0 � = 0.2 � = 0.4 � = 0.6 

25LL 0.6 5,14,21,23 776.83 913.16 1068.37 1231.41 

0.00 0.00 1.72 4.36 

25LT 0.6 5,14,21,23 804.26 944.93 1105.18 1269.00 

2.62 2.90 5.02 7.25 

25TL 0.6 4,5,21 10 0 0.66 1178.92 1364.74 1563.07 

6.79 6.94 7.73 10.27 

25TT 0.6 4,5,21 988.62 1163.36 1343.69 1533.70 

4.02 4.03 5.36 7.45 

25LL 0.8 5,12,21 925.62 1101.89 1284.74 1500.92 

8.59 8.50 10.20 14.15 

25LT 0.8 5,12,21 917.15 1091.15 1267.58 1459.95 

6.56 7.03 8.60 10.79 

25TL 0.8 5,23 984.60 1203.44 Infeasible Infeasible 

3.38 7.87 - - 

25TT 0.8 5,12,21 1067.15 1241.15 1417.58 1609.95 

11.08 6.13 7.23 8.63 

40LL 0.6 5,14,21,23,28,30 954.45 1108.71 1275.14 1453.83 

1.81 2.78 4.74 7.24 

40LT 0.6 5,14,21,23,28,30 957.85 1121.26 1293.44 1481.57 

1.96 3.60 5.53 7.83 

40TL 0.6 1,21,28 1119.16 1301.74 1526.82 1794.77 

4.60 3.90 5.11 10.20 

40TT 0.6 1,21,28 1122.54 1324.41 1570.80 1874.42 

3.99 2.95 - 14.50 

40LL 0.8 5,21,23,28 1041.52 1219.70 1406.76 1601.52 

6.42 4.93 4.52 - 

40LT 0.8 5,21,23,28 1042.70 1224.21 1415.51 1624.80 

5.66 4.35 4.72 6.00 

40TL 0.8 21,23,28 1174.57 1361.55 1570.35 1840.42 

8.89 7.85 4.97 9.95 

40TT 0.8 21,23,28 1176.62 1371.64 1614.60 1932.29 

8.26 3.66 7.51 14.83 
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ions results in a more realistic and challenging problem. As future

esearch, we are interested in incorporating demand uncertainty

nto these problems. 
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