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ABSTRACT

A WEAKLY SUPERVISED CLUSTERING METHOD
FOR CANCER SUBGROUP IDENTIFICATION

Duygu Özçelik

M.S. in Computer Engineering

Advisor: Öznur Taştan Okan

July 2016

Each cancer type is a heteregonous disease consisting of subtypes, which may

be distinguished at the molecular, histopathological, and clinical level. Iden-

tifying the patient subtypes of a cancer type is critically important as the

unique molecular characteristics of a particular patient subgroup reveal dis-

tinct disease states and opens up possibilities for targeted therapeutic reg-

imens. Traditionally, unsupervised clustering techniques are applied on the

genomic data of the tumor samples and the patient clusters are found to be

of interest if they can be associated with a clinical outcome variable such as

the survival of patients. In lieu of this unsupervised framework, we propose a

weakly supervised clustering framework, WS-RFClust, in which the clustering

partitions are guided with the clinical outcome of interest. In WS-RFClust a

random forest is trained to classify the patients based on a categorical clinical

variable of interest. We use the partitions of patients on the tree ensemble to

construct a patient similarity matrix, which is then used as input to a clus-

tering algorithm. WS-RFClust inherently uses the nonlinear subspace of the

original features that is learned in the classification step for clustering. In

this study, we demonstrate the effectiveness of WS-RFClust on hand-written

digit datasets, which captures salient structural similarities of digit pairs. Fi-

nally, we employ WS-RFClust to find breast cancer subtypes using mRNA,
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protein and microRNA expressions as features. Our results on breast cancer

subtype identification problem show that WS-RFClust could identify patients

more effectively in comparison to the commonly used unsupervised clustering

methods.

Keywords: Clustering, weakly supervised clustering, subspace clustering, can-

cer subtype identification, patient subgroup identification.



ÖZET

KANSER ALT GRUPLARININ KEŞFİ İÇİN ZAYIF
GÖZETİMLİ BİR KÜMELEME METODU

Duygu Özçelik

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Öznur Taştan Okan

Temmuz 2016

Kanser heterojen bir hastalıktır; her bir kanser tipi moleküler, histopatolojik

ve klinik olarak farklılıklar gösteren bir çok alt tipi barındırır. Bir kanser tipine

ait alt gruplarının belirlenmesi, kişiye özel ve hedefe yönelik tedavi yöntemleri

geliştirilebilmesini ve alt tiplerin moleküler karakteristiklerinin anlaşılmasıyla

hastalığın mekanizmalarına dair bilgileri açığa çıkarabilmesini mümkün kıldığı

için önemlidir. Geleneksel olarak kanser alt gruplarını keşfetmek için genomik

veriler üzerinde gözetimsiz kümeleme teknikleri uygulanır ve bu yolla belirlenen

gruplar, ancak hasta sağ kalımı gibi kritik bir parametre açısından ilişkililer ise

anlamlı olarak değerlendirilirler. Biz bu gözetimsiz öğrenme çerçevesi yerine,

WS-RFClust adını verdiğimiz, grupların ayrışmasına klinik parametrenin yön

verdiği zayıf gözetimli bir kümeleme tekniği öneriyoruz. Bu yöntemde, rast-

gele orman sınıflandırıcısı kurulup, ormandaki ağaçların ara dallarında hasta-

ların aynı gruplara düşüp düşmediği bilgisine dayalı olarak bir hasta benz-

erlik matrisi oluşturulmaktadır. Bu matris daha sonra bir kümeleme algorit-

masına girdi olarak verilmekte ve hasta grupları bulunmaktadır. WS-RFClust,

yapısı gereği sınıflandırma adımında oluşturulan, özniteliklerin doğrusal ol-

mayan kombinasyonlarından oluşan öznitelik alt uzayını kullanmaktadır. WS-

RFClust yöntemini el yazısı rakamlarında kullandığımızda, rakamların yapısal

özelliklerini yakaladığını görmekteyiz. WS-RFClust’ın mRNA, protein ve
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microRNA ifadeleme veri setlerini kullanarak meme kanserinin alt tiplerini

bulmak için uyguladığımızda genel geçer kullanılan gözetimsiz kümeleme

teknikleri ile oluşan kümelemelerden daha iyi çalıştığını göstermekteyiz.

Anahtar sözcükler : Öbekleme, zayıf gözetimli öbekleme, altuzay ile öbekleme,

kanser alt tip keşfi, hasta alt gruplarının keşfi.
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personality.

vii



Contents

1 Introduction 1

2 Background 4

2.1 Biological Background . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Molecular Data Used . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 mRNA Expression . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 miRNA Expression . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Protein Expression . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Breast Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

viii



CONTENTS ix

3 Related Literature 13

3.1 Unsupervised Clustering . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . 14

3.1.2 Non-negative Matrix Factorization . . . . . . . . . . . . 16

3.1.3 Consensus Clustering . . . . . . . . . . . . . . . . . . . . 18

3.2 Semi-Supervised Clustering . . . . . . . . . . . . . . . . . . . . 19

4 WS-RFClust: Weak Supervised Random Forest Clustering 23

4.1 WS-RFClust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Step 1: Random Forest Classification . . . . . . . . . . 25

4.1.2 Step 2: Calculating Random Forest Random Depth Pa-

tient Similarity . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Other Methods Employed . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Out-of-Bag-Error . . . . . . . . . . . . . . . . . . . . . . 33



CONTENTS x

4.3 Validating Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Kaplan-Meier Estimator . . . . . . . . . . . . . . . . . . 34

4.3.2 Silhouette Width . . . . . . . . . . . . . . . . . . . . . . 34

5 Results 36

5.1 Results on MNIST Digit Dataset . . . . . . . . . . . . . . . . . 36

5.1.1 WS-RFClust Clusters . . . . . . . . . . . . . . . . . . . . 36

5.1.2 Effect of Sampling from Interval Nodes at Different Depths 39

5.1.3 Discovering Clusters Under Uniform Label Noise . . . . . 41

5.2 Results in Cancer Dataset . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 mRNA Results in WS-RFClust . . . . . . . . . . . . . . 44

5.2.2 microRNA Results in WS-RFClust . . . . . . . . . . . . 59

5.2.3 RPPA Results in WS-RFClust . . . . . . . . . . . . . . . 70

6 Conclusion and Future Work 83



List of Figures

4.1 Bootstrapping samples in bag. . . . . . . . . . . . . . . . . . . . 26

4.2 A schematic illustrating random forest classifier. . . . . . . . . . 27

5.1 Clustering results of hand-written digit dataset with 5000 sam-

ples. Colors on the heatmap represent similarities computed for

sample pairs (reds indicate high similarity, blue indicates low).

The bars on top indicate different clustering. Each subplot that

bears the same color on the histogram displays the digit con-

tent of the clusters based on their true class labels. x-axis of a

histogram represents digits and y-axis represents the number of

observed samples in each digit. The two interesting clusters, 3

and 7, are marked with green boxes. . . . . . . . . . . . . . . . 37

xi



LIST OF FIGURES xii

5.2 The silhouette width of each cluster in 10 digit classification

where 5000 MNIST handwritten digit samples are used for train-

ing. y axis shows number of members in each cluster and its

silhouette width. x axis is a ruler showing the silhouette width

of each cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Heatmaps and histograms of digit clustering computed at dif-

ferent depth levels and with 1500 digit samples. The similarity

column of heatmap shows the similarity rate of paired samples

obtained from the distance algorithm. Reds show high similarity

rates, while blues show low similarity rates. Each colorful rect-

angle in the Clusters column represents a cluster. Histograms

show the distribution of digit amounts in each cluster. x axis of

a histogram represents digits, y axis represents the count of each

digit in that cluster. When h
3
≤ d ≤ 2h

3
, we obtain most effec-

tive clustering that cluster 2 reveals similar 3-5-8 digits, cluster

9 and 10 reveals similar 4-9 digits. . . . . . . . . . . . . . . . . . 40

5.4 Similarity matrix and corresponding histogram in noisy MNIST

handwritten digit data. noise=0.5, number of samples=1000.

Colors in clusters column are consistent with the heatmap an-

notation and histogram. Cluster 4 points out that two digits, 3

and 5 are similar. Cluster 9 points out digits 4 and 9 are similar

in their structure. Cluster 4 and Cluster 9 are marked with red

boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



LIST OF FIGURES xiii

5.5 KM survival plots of the clusters obtained on 119 test sam-

ples used. Test samples are assigned to clusters based on WS-

RFClust model with k = 2. The model is trained with mRNA

expression data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Heatmaps for different k = 2, 3, 4, 5, 6 for 1196 x 1196 patient

similarity matrix in mRNA expression dataset. Colorful bars

on top of heatmaps represent clusters, red color denotes high

similarity, blue color denotes low similarity. . . . . . . . . . . . . 49

5.7 Silhoutte width graphics for k=2,3,4,5,6 in mRNA dataset. x

axis is the ruler that shows the width of each cluster. j is cluster

id, nj is number of patients in cluster Cj and Si is silhouette

width of Cj. y axis shows j : nj|avei∈Cj
Si for each cluster.

Average silhouette width is overall average of all clusters. . . . . 50

5.8 Survival plots for different k values pertaining to the model

trained with mRNA. x axis shows the time of survival in months.

y axis shows the survival probability at a given time. k = 5

gives smallest p-value, 4.5017e−05. Survival distributions of

clusters are distinctive from each other at k = 5. There are five

subgroups that are statistically different from each other. . . . . 52



LIST OF FIGURES xiv

5.9 ANOVA comparison of age when k=5. y axis labels are patient

ages, x axis labels are cluster ids. The start edge and the end

edge of a boxplot indicates the range of ages in a cluster and line

at the middle of the box shows the mean age value of patients in

the cluster. Mean differences of clusters are significantly different. 53

5.10 Heatmaps of consensus NMF run for k=2,3,4,5,6 on mRNA

dataset. x and y axes show number of patients. Red regions

show high similarity, while blue regions show low similarity rate. 56

5.11 Survival plots of consensus NMF run for k = 2, 3, 4, 5, 6 on

mRNA data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.12 KM survival plot for 116 test samples in microRNA data. Clus-

ter 1 represents high survivor patients; cluster 2 represents low

survivor patients. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.13 Heatmaps for different k=2,3,4,5,6 on 1172 x 1172 patients sim-

ilarity matrix in microRNA expression data. Colorful bars on

top of heatmaps represent clusters. Red color denotes high sim-

ilarity, blue color denotes low similarity. . . . . . . . . . . . . . . 62

5.14 Silhouette width graphics for k = 2, 3, 4, 5, 6. x axis is the ruler

shows the width of each cluster. j is cluster id, nj is number

of patients in cluster Cj and Si is the silhouette width of Cj. y

axis shows j : nj|avei∈Cj
Si for each cluster. Average silhouette

width is the overall average computed over all clusters. . . . . . 63



LIST OF FIGURES xv

5.15 Survival plots of microRNA dataset for k=2,3,4,5,6. x axis

shows time of survival in months. y axis shows survival prob-

ability at a time. k = 6 gives smallest p-value, 2.25089e−07.

Survival distributions of clusters are distinctive from each other

at k = 6, there are five subgroups that statistically different

from each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.16 ANOVA comparison of age for k = 6, microRNA dataset. y axis

labels are patient ages, x axis labels are cluster ids. Start edge

and end edge of a boxplot shows range of ages in a cluster and

line at the middle of the box shows mean age value of patients

in the cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.17 Heatmaps of consensus NMF run on microRNA dataset for k =

2, 3, 4, 5, 6. x and y axes show the number of patients. The

similarity matrix stores 1172 patients. Red regions show high

similarity, while blue regions show low similarity rate. . . . . . . 68

5.18 Survival plots of consensus NMF run on microRNA dataset for

k=2,3,4,5,6. pvalue of ConsensusNMF when k = 5 is 100 times

larger than the p value of WS-RFClust Therefore, WS-RFClust

exhibits better performance in finding the clinically relevant sur-

vival subgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES xvi

5.19 KM survival plot for 74 test samples in RPPA data. Clus-

ter 1 represents high survivor patients, cluster 2 represents low

survivor patients. Accuracy of predicting test samples is 67%.

p-value is 0.252558 > 0.05, therefore we cannot state that this

is a good stratification of low and high survivor patients. How-

ever, accuracy of prediction is not ignorable and another point is

steep accuracy is not a requirement in the success of WS-RFClust. 71

5.20 Heatmaps for different k=2,3,4,5,6 on 744 x 744 patients simi-

larity matrix in RPPA expression data. Colorful bars on top of

heatmaps represent clusters and “Clusters” column with rect-

angles maps cluster ids to colors. “Similarity” column shows

similarity rate of patients resulted from Calc-RFrds. Red color

denotes high similarity, blue color denotes low similarity. . . . . 73

5.21 Silhoutte width graphics for k=2,3,4,5,6. x axis is the ruler

shows width of each cluster. j is cluster id, nj is number of

patients in cluster Cj and Si is silhouette width of Cj. y axis

shows j : nj|avei∈Cj
Si for each cluster. Average silhouette width

is the overall average of all clusters. . . . . . . . . . . . . . . . . 74



LIST OF FIGURES xvii

5.22 Survival plots of RPPA dataset for k=2,3,4,5,6. x axis shows

the time of survival in months. y axis shows survival proba-

bility at a time. All k values give considerably small p-values,

we select the case k = 5 to be consistent with mRNA dataset

and PAM50 subtypes. The survival distributions of clusters are

distinctive from each other at k = 5, p = 3.30084e−07, there

are five subgroups that are statistically different from each other. 76

5.23 ANOVA comparison of age when k=5, RPPA dataset. y axis

labels are patient ages, x axis labels are cluster ids. The start

edge and the end edge of a box-plot indicates the range of ages

in a cluster and the line in the middle of the box shows the mean

age value of patients in the cluster. Mean differences of clusters

are significantly different. . . . . . . . . . . . . . . . . . . . . . . 77

5.24 Heatmaps of consensus NMF run on RPPA dataset for

k=2,3,4,5,6. x and y axes show the number of patients. Simi-

larity matrix contains data for 744 patients. Red regions show

high similarity, while blue regions show low similarity rate. . . . 80

5.25 Survival plots of consensus NMF run on RPPA dataset for

k=2,3,4,5,6. For all k values, Consensus NMF results are not

confidently below α = 0.05. Correspondingly, pvalue range

of WS-RFClust is between e−06 and e−08. Therefore, WS-

RFClust performs considerably better in stratification of patients. 82



List of Tables

5.1 Accuracy with different noise values. . . . . . . . . . . . . . . . 42

5.2 Accuracy with different feature selection method and number

of features in mRNA expression data. . . . . . . . . . . . . . . . 45

5.3 Confusion matrix of class low survivor and high survivor. Ac-

curacy of overall prediction is 0.57. . . . . . . . . . . . . . . . . 46

5.4 Contingency table of tumor stages and WS-RFClust clusters.

χ2 = 38.569, df = 24, p = 0.03029 . . . . . . . . . . . . . . . . 54

5.5 Contingency table of PAM50 subtypes and WS-RFClust clus-

ters. χ2 = 439.39, df = 16, p < 2.2e− 16 . . . . . . . . . . . . . 55

5.6 Confusion matrix of class low survivor and high survivor. Ac-

curacy of overall prediction is 0.68. . . . . . . . . . . . . . . . . 59

xviii



LIST OF TABLES xix

5.7 Contingency table of tumor stages and WS-RFClust clusters.

χ2 = 51.127, df = 25, p− value = 0.001544 . . . . . . . . . . . 66

5.8 Contingency table of PAM50 subtypes and WS-RFClust clus-

ters. χ2 = 646.56, df = 20, p− value < 2.2e− 16 . . . . . . . . 67

5.9 Confusion matrix of class low survivor and high survivor. Ac-

curacy of overall prediction is 0.67. . . . . . . . . . . . . . . . . 70

5.10 Contingency table of tumor stages and WS-RFClust clusters.

χ2 = 34.76, df = 20, p− value = 0.02142 . . . . . . . . . . . . 78

5.11 Contingency table of PAM50 subtypes and WS-RFClust clus-

ters. χ2 = 299.16, df = 16, p < 2.2e− 16 . . . . . . . . . . . . . 79



Chapter 1

Introduction

Cancer is the name of a group of related diseases characterized by uncontrolled

growth of the cells [1]. All body cells in a healthy human follow a regular

path; they divide, proliferate and programmatically die. Cancer cells, on the

other hand, abnormally grow and divide. This uncontrolled cellular growth

eventually leads to a transformation of normal cells into tumor cells that may

invade the normal tissues and organs. Despite intensive efforts, cancer remains

to be among the leading causes of death across the world [2].

A major hurdle in devising more effective cancer therapies is the accurate

stratification of patients. For instance it is critical to identify at the time

of diagnosis which patients harbor aggressive tumors and which of them will

progress slowly. Aggressive treatment strategies exercised on the latter impairs
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the quality of the patient life with no additional benefit [3, 4]. Therefore, pa-

tient stratification is a critical first step in developing personalized treatments.

Cancer is heterogeneous at the molecular level; seemingly similar tumors

that are classified into the same histopathological subtype may have distinct

genotypes resulting in distinct phenotypes [5]. Identifying patient subgroups

of patients with similar genotype and phenotype may reveal the unique molec-

ular characteristics of this group that shape different cancer states and opens

up possibilities for targeted therapeutic regimens. Cancer is a disease of the

genome. The cancer cell acquires several somatic aberrations during its lifes-

pan. Recent developments in genomic sequencing technologies enabled the

characterization of somatic alterations in the cancer genomes [6]. Using this

rich source of genomic cancer data, this thesis focuses on developing a ma-

chine learning approach that allows the stratification of patients with similar

molecular profiles and similar clinical outcomes.

Traditionally, unsupervised clustering analysis is applied on the genomic

data of the tumor samples and the patient clusters are found to be of interest

if they can be associated with a clinical outcome variable such as the survival

rate of patients [7, 8, 9]. In lieu of this unsupervised framework, in this thesis,

we propose a weakly supervised clustering framework (WS-RFClust). In this

approach, the clustering partitions are weakly guided with the clinical outcome

of interest. We achieve this by using similarity of patients under subsets of

features created in a random forest ensemble that is trained with the label of

interest.

In this study we have limited our analysis to breast cancer but the approach

2



presented herein can be applied to any cancer type and any clinical variable of

interest. Breast cancer is the most commonly diagnosed malignancy and the

second leading cause of cancer-related deaths among females [10]. Early diag-

nosis underlies every therapeutic strategy against breast cancer by improving

the survival rate. Therefore, the clinical variable of interest we focus in this

study is the survival rate of patients. We show that our approach lead to

clusters of interest.

The thesis is organized as follows:

� Chapter 1 introduces the thesis and states the problem definition.

� Chapter 2 provides a brief summary of related biological concepts and

description of the data used in our experiments.

� Chapter 3 describes related work in relation to our contributions.

� Chapter 4 provides the weakly supervised approach (WS-RFClust) we

take.

� Chapter 5 elaborates on empirical results on digit dataset and the breast

cancer dataset.

� Chapter 6 states conclusions and recapitulates the key findings in this

study.
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Chapter 2

Background

This section contains a high-level description of the key biological terminology;

datasets used and relevant preliminary information on breast cancer.

2.1 Biological Background

Genetic information of humans are stored on DNA (deoxyribonucleic acid),

a macromolecule made up of building blocks called nucleotides. The genetic

information on a DNA is expressed through a process called transcription

whereby a portion of the DNA sequence is copied to a RNA (ribonucleic acid)

molecule. A major type of RNA, the messenger RNA (mRNA), encodes the

amino acid sequence of a target protein and carries this information to the

4



ribosome where protein synthesis will take place. During protein synthesis,

mRNA sequence is translated into a sequence of amino acids which will fold

into a specific three dimensional structure. Since proteins in the cells are

polymerized from the mRNA transcripts; the mRNA expression levels provide

a good approximation of the abundance of proteins [11].

Another form of RNAs is microRNA. microRNAs are small non-coding

RNAs of 21-25 nucleotides that regulate gene expression posttranscriptionally.

miRNAs exert their regulatory role by changing the mRNA levels through

degradation whereby mRNAs are completely silenced or partially inhibited

through translational repression [12]. MicroRNAs have been implicated in al-

most all cellular processes and some microRNAs are also reported to act as

oncogenes and tumor-suppressor genes [13].

2.2 Molecular Data Used

In this work datasets pertaining to mRNA, microRNA and protein expression

levels on solid primary tumors are used. This study relies on breast cancer

data made publicly available by the UCSC (University of California, Santa

Cruz) Cancer Genomics Browser [14] retrieved from TGCA project [15]. In

the following subsections, we provide details on each data type:
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2.2.1 mRNA Expression

RNA-sequencing is a next-gen sequencing technology (NGS) that quantifies

the level of RNA transcripts in a sample. Since measuring mRNA expression

level provides information about the activity of the respective gene, it enables

analyzing gene activities of a cell in different conditions [16]. The RNAseq

expression data used in this thesis were obtained from UCSC Cancer Genomics

Browser June 2016 data archive. We used RNA expression file for per patient

and downloaded data from ‘Cancer’ menu clicking the ‘Add Datasets’ button.

Then, we selected TCGA breast invasive carcinoma from list and downloaded

compressed file named ‘TCGA_BRCA_exp_HiSeqV2-2015-02-24’. mRNA data

contained 1196 patients and 20531 features.

TCGA data included two differently processed RNAseq data: RNASeq and

RNASeqV2. RNASeq data reports RPKM (Reads Per Kilobase of exon model

per Million mapped reads). RPKM uses number of sequence reads of an mRNA

and normalizes the number of reads by dividing it to the total length of the

transcript. RNASeqV2 is based on RSEM normalization technique. mRNA of

a gene can have different isoforms. Isoform is a splice variant of an mRNA such

that the transcription start site of an isoform is different from its base mRNA

[17]. Alteration in a transcription start site affects gene expression behavior.

RSEM technique accounts for mRNA splice and its isoforms. RSEM uses the

measure of estimated fraction of transcripts comprising a given isoform or a

gene [18]. We used the RSEM normalized RNAseqV2 data files.
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2.2.2 miRNA Expression

microRNA expression data were downloaded from ‘Cancer’ menu click-

ing the ‘Add Datasets’ button. Then, we selected TCGA breast

invasive carcinoma from list and downloaded compressed file named

‘TCGA_BRCA_miRNA-2015-02-24’. The miRNA data was taken from the June

2016 data archive. miRNA data comprised information from 1194 patients

and 1046 features. We use Level 3 normalized data, where the normalization

is conducted by calculating expression for all reads aligning to a particular

miRNA [19].

2.2.3 Protein Expression

Reverse Phase Protein Array(RPPA) is a high-throughput method to

obtain protein expression levels. We downloaded data from ‘Cancer’

menu clicking the ‘Add Datasets’ button. Then, we selected TCGA

breast invasive carcinoma from list and downloaded compressed file named

‘TCGA_BRCA_RPPA_RBN-2015-02-24’. Protein expression data hold informa-

tion on 747 patients and 131 proteins. The data were taken from the June

2016 data archive. Level 3 normalized data are used. Level 3 normalization

is carried out by calculating the median absolute deviation within a protein

sequence for each sample, then calculating median absolute deviation across

samples for each protein type [20].
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2.2.4 Clinical Data

The clinical data were taken from the June 2016 data archive. Clinical informa-

tion is available in compressed files of mRNA, miRNA and protein expression

datasets. The file named "clinical_data" bear the fields of clinical traits.

Clinical traits are days to last follow up, days to death, tumor stage and age

at inital diagnosis. The description of these fields is as follows:

1. Days to last followup: Numeric value in days that keeps last contact

day of a patient.

2. Days to death: Number of days between initial diagnosis date of a

patient and death day of the patient.

3. Age at initial pathologic diagnosis: Age of a patient at the time

cancer is firstly diagnosed.

4. Ajcc pathologic tumor stage: AJCC staging criteria defines the ex-

tension of a cancer and how far from its originated tissue [21]. Tumor

stages are defined according to originated tissue of tumor, its expansion

area, size and whether they spread to neighboring lymph nodes or not.

Stages are named according to TNM system. T represents size or ex-

tent of primary tumor, N is vicinity to lymph nodes, M is the flag of

metastasis [22].

Days to last follow-up and days to death are used to extract overall survival

time. If the vital status of a patient is alive, the last follow up date is used for
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the survival time. On the other hand, if a patient is deceased then the days to

death field is used. We predicate survival analysis on survival time in months,

which we calculate by dividing the overall survival time in days to 30.

2.3 Breast Cancer

Breast cancer is the leading cause of cancer death in women [23]. Every year

1.3 million new incidences arise and 450,000 deaths worldwide are due to breast

cancer [24]. Breast cancer is a group of heterogeneous diseases that in their

morphology, molecular profile and responsiveness to therapy. Accurate group-

ing of breast cancer and understanding the underlying biology behind these

subtypes is of particular importance for diagnosing patients and making ther-

apeutic decisions.

There are numerous ways for classifying breast cancer based on different

principles. Breast cancer are classified into stages based on the size of the

tumor, the spread of the tumor to the nearby lymph nodes and whether it

metastasize to other tissues or not [25]. Grade is another metric used for tumor

classification and is based on the differentiation of cancer cells. The normal

breast cells are well differentiated to conduct their specialized function; cancer

cells lack this specialization. By comparing the cancer tissue with the normal

tissue, the grade of the cancer is determined: grade 1 cancer cells have small

difference to the normal cells, grade 2 cancer cells are moderately differentiated,

while grade 3 cancer cells are completely lose their differentiation compared to

normal cells. Grade 3 cancers tend to grow and spread more quickly [26].
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Pathology-driven classification does not always provide sufficient informa-

tion to evaluate the biological characteristics of individual tumors and it is not

useful for guiding the treatment selection [27]. The status of three molecular

markers has served as the basis for breast cancer classification. Receptors are

membrane proteins that receive signals from outside of the cell by binding to

signaling molecules such as hormones [28]. There are three major receptors

that are used in classification of breast cancer: estrogen receptor (ER) [29],

progesterone receptor (PR) [30] and human epidermal growth factor receptor

2 (HER2) [31]. Breast cancer cells, which have ER require estrogen for their

growth and are denoted as ER+, while that have PR is denoted by PR+.

Breast cancer cells that overexpress HER2 or have HER2 amplified are re-

ferred to as HER2+. Based on the status of these molecular markers breast

cancer is divided into four molecular subtypes:

� Luminal A: This type of tumors tend to be ER+ and/or PR+ and

often does not show over expressed HER2 protein. Of the four subtypes,

luminal A tumors tend to have the most favorable prognosis, with fairly

high survival rates and fairly low recurrence rate [32, 33].

� Luminal B: These tumors tend to be ER+ and/or PR+. types (ER+,

PR+); unlike luminal A tumors HER2 is overexpressed in these tumors.

Ki67 protein is also highly expressed in Luminal B subtype, while it is

lowly expressed in Luminal A [34]. Luminal B subtype has the highest

percentage of lymph node involvement. [35]. Luminal B tumors grow

more quickly compared to Luminal A tumors and often lead to poorer

prognosis [36].
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� HER2+: This subtype of breast cancer is characterized by the absence

of both ER and PR receptors and over-expression of HER2.

� Triple-negative/basal-like: This type of tumors lack expression of

HER2 or amplification, they are also PR-negative and ER-negative.

These tumors are aggressive, more likely to metastases, and tumors are

often associated with poor prognosis and survival rates. This type of can-

cer bears similarities to basal-like tumors, but also represents a distinct

subtype with heterogeneous properties.

Immunochemistry (IHC) markers for ER, PR and HER2, together with

tumor size, grade and nodal involvement are used for patient prognosis and

management. These classification approaches have been successful in reducing

the breast cancer mortality during the past three decades; however, are not

sufficient to derive individualized therapy. Thus, breast cancer has been ex-

tensively studied at the genomic and transcriptomic levels with the rationale

that underlying gene expression patterns reflect the tumor characterictics at

the molecular level [37]. With the development of microarrays gene expres-

sion analysis subtypes of patients are identified using gene expression profiling.

Through unsupervised clustering analysis of gene expression Sørlie et al. (2001)

reported five intrinsic subtypes with distinct clinical outcomes, i.e., luminal A,

luminal B, HER2 over-expression, basal and normal-like tumors [38, 39]. These

largely coincided with the IHC-defined subtypes. These five intrinsic subtypes

have been validated by several other studies with different gene signatures.

Parker et al. (2009) reported a set of 50 genes (referred to as PAM50 ) with

good prognostic performance [40]. Applying unsupervised clustering on copy
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number variation and gene expression data, Curtis et al. (2012) recently sug-

gested there are 10 subtypes of breast cancer [41]; however, these subtypes are

not yet been clinically accepted.
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Chapter 3

Related Literature

Clustering analysis refers to a broad set of techniques that seeks to find sub-

groups or clusters in the data. The goal is to partition the observations such

that observations that are assigned to the same group are similar while those

in different groups are dissimilar. Clustering algorithms need a definition of

what it means for two or more observations to be similar or different. Clus-

tering approaches can be broadly categorized into two as unsupervised and

semi-supervised methods. In this chapter we will not attempt to discuss all

clustering algorithms but instead focus only on the clustering algorithms that

are commonly used for finding subgroup of patients based on their molecular

profiles and discuss the related work.
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3.1 Unsupervised Clustering

Most of the traditional clustering methods are unsupervised. In the unsuper-

vised learning setting, the learner is given only the unlabeled examples and

aims to discover the underlying structure and categories in the input space, X
[42]. Since clustering analysis is useful in a diverse set of applications a variety

of clustering techniques have been developed. We will not attempt to review

them all but instead focus on those that are commonly used in analyzing molec-

ular expression profiles for the task of finding subgroups of patients. There are

three methods that are widely adopted for this purpose. These include hierar-

chical clustering, non-negative matrix factorization and consensus-clustering.

Below we will give a brief description of these methods.

3.1.1 Hierarchical Clustering

Instead of producing a single partitioning of the input items, hierarchical clus-

tering produces a hierarchy of nested clusterings [43]. The resulting family

of clusterings can be graphically represented in a tree-based representation,

called a dendrogram. There are two main approaches to hierarchical cluster-

ing algorithms: divisive and agglomerative (bottom up). The most commonly

adapted method in patient subgroup analysis is the agglomerative approach.

In this approach, one assumes that there are n samples. In the first step, the

clustering process the algorithm seeks sample pairs that are the most similar.

Let the cluster that contains samples with lowest dissimilarity be C1. Now,
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there are n − 1 clusters. Next, it finds the sample i which is closest to C1

and puts them in together in new cluster C2. This procedure is repeated. It

repeats the same process until there is one cluster left.

Algorithm 1 Hierarchical Clustering [44]

1. Begin with n observations and a measure (such as Euclidean dis-

tance) of all the
(
n
2

)
= n(n−1)

2
pairwise dissimilarities. Treat each

observation as its own cluster.
For i = n, n− 1, ...2 :

(a) Examine all pairwise inter-cluster dissimilarities among i clusters and
identify the pair of clusters that are the least dissimilar (that is, most
similar). Fuse these two clusters. The dissimilarity between these two
clusters indicates the height in the dendrogram at which the fusion should
be placed.
(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

In addition to a distance measure to evaluate the similarity of examples,

hierarchical clustering algorithms need to define how to measure the distance

between clusters; these are referred to as linkage methods. The commonly

used linkage methods are:

Single linkage: The distance between two clusters is identified as the shortest

distance between a point from cluster 1 and a point from cluster 2. These two

points are the closest points of two clusters.

Complete linkage: Distance between two clusters is identified as the longest

distance between a point from cluster 1 and a point from cluster 2. These two

points are the farthest points of two clusters.
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Average linkage: Mean distance between two clusters is computed by aver-

aging all pairwise distances of points between clusters.

Hierarchical clustering is one of the most commonly applied algorithms to

group samples [45, 46]. Although run as an automated tool, it is sensitive

to the distance metric used and typically requires a subjective evaluation to

choose the final clustering.

3.1.2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is commonly used for clustering

analysis with high-dimensional data. Given an n × m matrix V where each

element Vi,j ≥ 0 and a desired rank k < min{m,n}, NMF decomposes into

two non-negative matrices W (n× k) and H (k ×m) such that

V ≈ WH (3.1)

This factorization has a natural interpretation and an inherent clustering

property. Each data vector v is approximated by a linear combination of

the columns of W , weighted by the components of h. In other words, each

data item can be explained by an additive linear combination of few basis

components. Since fewer basis vectors are used to represent all data vectors, a

good approximation can only be achieved if the basis vectors capture structure

in the data. If this is satisfied, NMF automatically clusters the columns of

input data.

16



The goodness of the approximation in Equation 3.2 can be measured by

Frobenius norm and the W and H can be found by solving the following opti-

mization problem:

min
W≥0,H≥0

f(W,H) =
1

2
‖A−WH‖2

F (3.2)

This problem is not solved analytically in general. There are different algo-

rithms suggest for to solve NMF [47, 48].

NMF is applied to find subtypes of cancer by several studies. Zhang et al.

find uncovered pathways, clinically relevant subtypes and relation between dif-

ferent cellular activities in multi-dimensional omics data [49]. TCGA Network

group focuses high-grade serous ovarian cancer; they process DNA copy num-

ber, microRNA and mRNA expression, promoter methylation and exons from

coding genes. They revealed four transitional subtypes related with survival

rate, role of BRCA1 and BRCA2 genes and NOTCH and FOXM1 signalling

in ovarian cancer, by applying consensus clustering [50].They map different

types of genomic data into same measurement system by using joint matrix

factorization. There are also other studies that use NMF with network data.

Hofree and Ideker (2013) [51] in their network-based stratification (NBS) tech-

nique integrate somatic tumor genomes with gene network. The mutations

are propagated on the network and the network-smoothed patient profiles are

clustered into a predefined number of subtypes via NMF.
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3.1.3 Consensus Clustering

In finding the subgroups of patients with expression profiles, relatively small

sample sizes and the high dimensionality of features render clustering meth-

ods sensitive to noise. This might lead to instabilities that would result in

different clustering assignments if the input is slightly perturbed or different

parameters are used. Bhattacharjee et al. (2001) [52] used a bootstrapping

approach to validate the resulting clusters in analyzing human lung carcinoma

gene expression dataset. They input the bootstrapped samples into a hierarchi-

cal clustering algorithm and assessed the stability of the cluster assignments.

Monti et al. (2003) [53] generalized this approach into a method named as

consensus clustering.

In consensus clustering, the perturbed versions of the original data are gen-

erated. Resampling techniques can be used for this purpose. In the ensuing

step the clustering algorithm is run with each of the perturbed data input.

The cluster assignments obtained at each run are aggregated in a N ×N con-

sensus matrix. The consensus matrix stores numerical entries that correspond

to the proportion of cluster runs in which the two items are clustered as pairs

to the total number of cluster runs. In this way the cluster assignments that

are robust to sampling variability are identified [54].

Consensus clustering is a meta-method that can be wrapped around dif-

ferent clustering algorithms and used in variety of recent papers in cancer

subgroup identification. Hayes and Verhaak (2010) [55] applied consensus

clustering with hierarchical clustering on Glioblastoma Muliformae (GBM)
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and identified four new subtypes of GBM: Classical, Proneural, Neural and

Mesenchymal. TCGA Network group analyses primary breast tumors with

consensus clustering, and they identified four intrinsic subtypes by process-

ing DNA methylation, DNA copy number, microRNA and mRNA expression

and RPPA data [56]. Another study is conducted on high grade endimetriod

and clear cell ovarian cancer. Winterhoff et al. found correlation between

transcriptional subtypes of high grade serous ovarian cancer and high grade

endimetriod in advanced stage and they apply consensus NMF [57].

3.2 Semi-Supervised Clustering

Unlike unsupervised clustering, the repertoire of methods for semi-supervised

clustering methods is fairly limited. Semi-supervised learning uses additional

knowledge together with the feature information. This additional knowledge

can be encoded in different forms. There could be a small set of labeled

examples available. Alternatively it could be stated as constraints on such as

the following; “two must be (must-link) or cannot (cannot-link) be in the same

cluster”. Or additional information about the properties that the instances of

a cluster have to hold could be available.

There exist methods for situations where the class labels are known for a

subset of the observations. For instance, Basu et al. (2008) [58] proposed

constrained k-means. In this method the k-means initial clusters are initiated

with the labeled examples and they are always kept in their initial clusters

even if they are closer to another cluster centroid. Alternative to this method,
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they have also suggested seeded k-means, which is identical to the former

with the exception that the seeded k-means always assigns examples to the

nearest cluster. Other clustering methods, also developed for the specific case

of using small set of labeled examples, exist. However, those methods are not

typically applied to the cancer subgroup identification problem because the

class labels are not generally available. Similarly, numerous semi-supervised

methods, which operate with known constraints, were also proposed [59], but

they have not been used for patient subgroup identification.

The third class of semi-supervised learning approaches seek to find clusters

by exploiting some additional information about the cluster properties. How-

ever, it may not be possible to identify clusters solely by using this additional

information. This variable acts as noisy surrogate for the clusters [60] and

this is the setting which we focus on in this thesis. Substantial amount of

additional information is readily available on cancer patients and this work

identifies clusters of potential interest if they differ in terms of clinical out-

comes such as the absence/presence of metastasis or the grouping into high

survivor or low survivor categories. In conventional unsupervised clustering,

this information is used for validating the unsupervised clustering approaches.

For example, once the clusters are found, the divergence in the survival distri-

bution of the clusters are checked and the clusters are found interesting if it

are different in terms of survival. This is the common approach that is used

in all recent cancer subgroup identification work [61, 62, 63, 64].

Very few methods have been suggested for identifying clusters associated

with an outcome variable. Bair and Tibshirani (2004) [65] was the first to

address this problem. They referred to their method as supervised clustering.
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For each feature in the data set, it tests the null hypothesis of no association

between the feature and the outcome variable and uses a test-statistic. The

algorithm proceeds as follows: let m be a feature in a dataset. For each fea-

ture in the dataset, the algorithm calculates a test statistic Tm between the

feature m and the outcome variable. Then, it chooses a threshold M and filter

features with |Tm| ≤ M . With the remaining features, it performs cluster-

ing using a conventional clustering algorithm such as k-means or hierarchical

clustering. Since clustering is performed using only a subset of the features,

this method reduces the high-dimensional data sets into lower dimensions and

perform clustering with a reduced feature set. Bair and Tibshirani [66] show

that this relatively simple method can identify biologically relevant clusters in

several data sets. Later, Bullinger et al. (2004) [67] applied this method to

discover acute myeloid leukemia subtypes associated with patient survival.

Koestler et al. (2010) [68] proposed a method called semi-supervised recur-

sively partitioned mixture models with the same rationale. It also calculates a

score for each feature and measures the association between that feature and

the outcome variable of interest in the first step. Next, clustering is carried

out using only the features with the largest scores. The difference between the

Bair et al. and Koestler et al. is that the semi-supervised method applies the

recursively partitioned mixture models algorithm of Houseman et al. (2008)

[69] instead of a standard clustering algorithm.

Gaynor and Bair (2013) also proposed an alternative method called su-

pervised sparse clustering. This method adapts the sparse clustering method

introduced in [70] which is motivated from the observation that although clus-

ters might not be visible under all features, unsupervised clustering method
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can be possible only under a subset of features. The sparse clustering algo-

rithm of Witten and Tibshirani (2010) [71] maximizes a k-means objective

function where the features are weighted. In this method, the feature weights

are uniformly initialized. At each iteration of k-means these weights are up-

dated. In Gaynor and Bair's work the tested null hypothesis is that the mean

value of the feature j does not vary across the clusters. For features that fail

the test, the weights are assigned to zero and whereas the remaining feature

weights are assigned to non-zero values.

Semi-supervised methods are not used in any of the recent cancer subgroup

identification work.
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Chapter 4

WS-RFClust: Weak Supervised

Random Forest Clustering

As discussed in chapter 3, unsupervised approaches are widely used for the

task of patient stratification. However, they do not make use the critical

variable of interest in the cluster partitioning step. In this study, we propose

a semi-supervised approach in which the clusters are guided with a surrogate

variable that accounts for the survival of the patients. We call this approach

Weakly Supervised Random Forest Clustering (WS-RFClust). This chapter

will introduce WS-RFClust.
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4.1 WS-RFClust

WS-RFClust operates with that basic principle that clusterings, which show

agreement with the variable of interest, are favored over the rest. Let D =

{x(1), x(2), . . . , x(N)} be the set of patients, where each patient feature vector

x(i) ∈ Rd and is derived from cancer genomic profiles. We are also given

y = y(1), y(2), . . . , y(N), where each y(i) ∈ {1, 2, . . . k} and k is the number of

classes.

We would like to find a partitioning C such that:

� D is grouped into a number of disjoint subsets Cj’s where, D = ∪kj=1Cj

and where Ci ∩ Cj = ∅

� the C is guided with y.

The main steps of WS-RFClust are as follows:

� Step 1: Using D learn a random forest classifier that can predict target

variable y. Call the forest of trees, RF .

� Step 2: To calculate the similarity of i and j, sort down i and j in the

forest trees for which both examples are in the bag, and check whether

i and j fall onto the same internal node at a randomly drawn depth.

Based on the fraction of occasions when they share the same internal

node, calculate patient similarity.
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� Step 3: Input this similarity matrix to a clustering algorithm to arrive

at a clustering.

Here we assume that the target variable y is discrete; however, the approach

can easily be extended to the cases where y is a continuous variable. Alterna-

tively, the target variable can be cast as a survival variable by replacing the

random forest classifier with a random forest regressor or a random survival

forest.

The algorithmic details are provided in Algorithm 2.

Algorithm 2 WS-RFClust: Weakly Supervised Random Forest Clustering

Input: DDD data matrix with n observations, XXX, n × p feature matrix, yyy
associated class labels, R, random forest classifier, dl fraction determine the
lower bound of the range where the depth will be sampled, du : will be used
to determine the upper bound of the depth range, B number of trees in
random forest, r random forest parameters, c clustering parameters.
Output:
D is grouped into a number of disjoint subsets Cj’s where, D = ∪kj=1Cj and
where Ci ∩ Cj = ∅
1. F ← RFClassifier(XXX, y, B, r )
2. S ← Calc-RFrds(F, dl, du)
3. C ← Cluster(S, c) // input other parameters for the clustering algorithm
4. return C

4.1.1 Step 1: Random Forest Classification

Random forest is an ensemble method that learns many decision trees and

aggregates their results [72]. Each decision tree is independently trained using
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Figure 4.1: Bootstrapping samples in bag.

a bootstrap sample of the training examples. In the prediction step the sample

is put down for class label prediction by each tree and the predicted labels from

all trees are collected. The final class label is decided based on the majority

vote of the trees.

In addition to constructing each tree using a different bootstrap sample of

the data, random forest adds another layer of randomness in the tree construc-

tion step. In standard decision tree learning process, each node is split using

the best split among all variables. In a random forest, each node is split using

a subset of features randomly chosen at that node. If p is the total number of

features and m is subset of features, then m� p or m ∼= √p. In this way the

decision trees that are learned are decorrelated from each other [73] and the

variance of the model is reduced. In a random forest model the impurity mea-

sure which is generally used as the split criterion is the gini index. An outline

of the random forest algorithm is provided in Algorithm 3 and illustrated in

figure 4.2.
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Figure 4.2: A schematic illustrating random forest classifier.

4.1.2 Step 2: Calculating Random Forest Random

Depth Patient Similarity

This step is the critical step of our proposed WS-RFClust algorithm. Using

the random forest ensemble of trees, we calculate a similarity metric, which we

call random forest random depth similarity. Consider Tb, the b-th tree in the

ensemble. Tb is trained with the bootstrap sample Zb. For all pairs that are

both in Zb, we check whether they fall on the same internal node at a random

depth. Given an interval range, we draw a depth, db uniformly at random.

This depth is typically chosen from the mid level of the tree (in section 5.1.2

we discuss the effect of sampling from different depths). For a particular pair,

we run down the examples on the tree and check if the examples land on the
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Algorithm 3 Random Forest Algorithm [74]

1. For b = 1 to B
(a) Draw a bootstrap sample Zb of size N from the original training
data D.
(b) Grow a decision tree Tb with the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size nmin is reached.
i. Select m features at random from the p variables.
ii. Pick the best variable/split-point among the m features.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees R = {Tb}B1
To make a prediction at for a new example x:
Let Ĉb(x) be the class prediction of the bth random forest tree. Then
ĈB
rf (x) = majority vote{Ĉb(x)}B1

same internal nodes at this given depth. For the pairs that end up at the same

node, the similarity between them is incremented by 1. This is repeated for all

trees and the similarities are finally normalized with the number of bootstrap

samples where both examples were in the bag. We call this similarity metric

random forest random depth similarity (RFrds). The steps of this calculation

are of RFrds Algorithm 4.

RFrds similarity metric is similar to random forest proximity [75] suggested

earlier. Random forest proximity is calculated based on how often the example

pairs fall onto the same leaf node where as RFrds calculates the similarity based

on internal nodes. The resulting proximities are different in that sense. By

looking at the higher level internal nodes, we aim at finding the latent structure

of the data based on features that are selected to have good prediction accuracy

of y. The different depths provide different views of the samples. Checking
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Algorithm 4 Calc-RFrds: Calculation of random forest random depth sim-
ilarity.

Input: NNN size of observations, DDD set of NNN examples, BBB number of trees in
the random forest, {Tb}B1 trees in the random forest, ci,j number of boostrap
samples where i and j are in
Output: SSS : m×m similarity matrix
1. For each i, j pair in D

i. For all bootstrap samples b where i, j are both in the Tb
(a) Get tree Tb of B
(b) Get height hb of Tb
(c) Sample d from [hb × ds, hb × de] uniformly at random
(d) Traverse i on Tb until depth d is reached and find the internal

node pi on which i falls
(e) Traverse j on Tb until depth d is reached and find the
internal node pj on which j falls
(f) if pi == pj then

S(i, j)← S(i, j) + 1

ii. S(i, j)← S(i,j)
ci,j

2. return S
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whether a pair of observation would fall on the same internal node translates

into a special partitioning of the data based on a nonlinear combination of

features (nodes up to that point) and checking if they are in the same cluster

based on that subspace of features. In that sense this calculation of RFrds

is related to subspace and multi-view clustering methods [76]. On the other

hand, since we are checking whether examples are similar or not on all the

trees in the ensemble it is a consensus clustering approach wherein the trees

are constructed by the bootstrap samples of the data.

4.1.3 Clustering

The last step of the algorithm uses the similarity matrix generated in the pre-

vious step to produce the desired clusterings. We convert the similarity matrix

to a distance matrix by subtracting the values from 1 and we input it to the

clustering algorithm. In this work we use the hierarchical clustering algorithm

(explained in 3.1.1) with average linkage. We experiment with different k

values.
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4.2 Other Methods Employed

4.2.1 Feature Selection

In our experiments we used different feature selection methods to reduce the

number of features employed in the random forest classifier.

4.2.1.1 Students t-test

The two-sample t-test checks if two population means are equal [77]. In the

context of feature selection it is used to determine if the feature value distri-

bution means for different classes differ. Let A and B are two feature value

distributions to compare, nA is number of samples in group A and nB is num-

ber of samples in group B. µA is mean and σ2
A is variance of group A, µB is

mean and σ2
B is variance of group B. T value is calculated as

t =
µA − µB√
σ2
A

nA
+

σ2
B

nB

(4.1)

4.2.1.2 ROC

ROC curves are typically used to compare performances of different classifica-

tion models and displays the relation between true positive and true negative

rates. In the case of feature selection, ROC curves are used as follows: consider
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classifying examples based on a single feature, if the feature value is above a

certain threshold it is classified in class 1 and if it is in the second class it

is classified as class 2. By moving the threshold over all possible threshold

values, one can obtain a ROC curve. The area between the ROC curve and

the random line - in the case of binary classifier gives an assessment of how

valuable this feature is by itself in predicting the class labels.

4.2.1.3 Relative entropy

Relative entropy as implemented in Matlabs rankfeatures method and is

defined in Theodoridis et al. [78] is employed. The relative entropy can be

used to measure purity of class labels.

4.2.1.4 Bhattacharyya distance

Bhattacharyya distance is used as a class separability measure. Assuming the

feature values follow Gaussian distributions and class priors are equal, the

Bhattacharyya Distance is calculated as follows:

Pe =

∫
R2

p(x|c1) dx+

∫
R1

p(x|c2) dx (4.2)
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4.2.1.5 Wilcoxon Signed Rank-Sum Test

Wilcoxon signed rank sum test hypothesis that two samples come from the

same population against an alternative hypothesis. The test assumes it does

not require the assumption of normal distributions.

4.2.2 Out-of-Bag-Error

In random forest classifier, an estimate of the error rate can be obtained using

the out-of-bag samples. While constructing each tree, bootstrap samples are

selected with replacement. In this process, approximately two-third of data

is chosen as training set and the samples that are left out of the sample are

referred to as out-of-bag (OOB) samples. For each of the example that is not in

the bootstrap sample, the classifier makes a prediction with the tree grown on

this sample. OOB error is obtained by averaging errors over the trees and the

examples. Generally the OOB estimates are quite accurate given that enough

number of trees are grown [73].
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4.3 Validating Clusters

4.3.1 Kaplan-Meier Estimator

Kaplan-Meier method estimates survival function from survival time data of

individuals [79]. Survival rate is at time t, proportion of patients survived from

beginning of follow-up time. Probability of an event happening in short time

interval is calculated by multiplying length of time and hazard rate of overall

survival. Hazard rate is event rate at time t conditional on survival until time t

or later. In order to interpret differences between survival groups statistically,

we calculate hazard ratio, which is proportion of hazard in one group to hazard

of another group. It uses log-rank test that is a statistical method to compare

survival distribution of two cohorts. Null hypothesis is there are no difference

between cohorts in terms of probability of an event occurring at any time point.

Log rank method tests whether these populations are significantly different or

not [80].

4.3.2 Silhouette Width

In order to validate clusters we use different metrics. One of them is the

silhouette width. Silhouette width is a measure which shows relative quality

of clusters [81]. It compares distance within a cluster with distance between

clusters. Let a(i) is the average dissimilarity within a cluster, b(i) is average

similarity between clusters. i is number of the cluster and s(i) is average
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silhouette with of all clusters. Then, silhouette width is:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4.3)

Ideal case occurs when a(i) = 0 and b(i) = 1. In this condition, average

silhouette with becomes 1. In worst case, b(i) = 0 and a(i) = 1, silhouette

width becomes 0. These conditions show that 0 < s(i) < 1. If average

silhouette width is closer to 1, this means we obtained a good clustering.
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Chapter 5

Results

5.1 Results on MNIST Digit Dataset

5.1.1 WS-RFClust Clusters

We applied WS-RFClust on MNIST handwritten digit dataset [82]. The

dataset contains 60,000 images of 28×28 pixel handwritten digits. We used

5000 training digit samples, 500 from each class. The random forest classi-

fier is generated with 200 trees, and trained with digit labels as class labels.

In constructing the similarity matrix, we sample from [(h ∗ 1/3) − (h ∗ 2/3)]

interval depth. The digits are then clustered by inputting the corresponding

similarity matrix to the hierarchical clustering algorithm.
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Figure 5.1 shows a heatmap of clusters after applying hierarchical clustering

with k = 10. The histogram shows the digit label distribution in each cluster.

Our method reveals similar digits in the dataset and places them into the same

cluster. Cluster 7 contains mostly digits 4 and 9. Both of these digits have

very similar structures. Similarly, cluster 3 reveals that 3 and 5 are similar

to each other and additionally 8 exhibits similarities to this digit pair. These

results indicate that although the classifier is trained with the 10 digit labels,

WS-RFClust is able to uncover similarity of digits other than the training

class.

Figure 5.1: Clustering results of hand-written digit dataset with 5000 samples. Colors on

the heatmap represent similarities computed for sample pairs (reds indicate high similarity,

blue indicates low). The bars on top indicate different clustering. Each subplot that bears

the same color on the histogram displays the digit content of the clusters based on their

true class labels. x-axis of a histogram represents digits and y-axis represents the number

of observed samples in each digit. The two interesting clusters, 3 and 7, are marked with

green boxes.
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To validate 10 digit class clustering, we calculated the silhouette width of

resulting hierarchical clustering. Figure 5.2 shows the silhouette width of each

cluster. The width of many clusters are positive, and assuming the average

silhouette width is closer to 1, this means we obtain good clustering.

Silhouette width si

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette Width of Digit Dataset

Average silhouette width :  0.24

n = 5000 10  clusters  Cj

j :  nj | avei∈Cj  si

1 :   454  |  0.39

2 :   928  |  0.05

3 :   817  |  0.13

4 :   304  |  0.18

5 :   424  |  0.43

6 :   124  |  0.15

7 :   807  |  0.24

8 :   403  |  0.27

9 :   397  |  0.47

10 :   342  |  0.34

Figure 5.2: The silhouette width of each cluster in 10 digit classification where 5000 MNIST

handwritten digit samples are used for training. y axis shows number of members in each

cluster and its silhouette width. x axis is a ruler showing the silhouette width of each cluster.
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5.1.2 Effect of Sampling from Interval Nodes at Differ-

ent Depths

In applying WS-RFClust, the depth levels in each tree are chosen randomly

but within a predefined depth range. To understand the effect of the sampling

depth we experiment with different ranges: let h be the height of a tree in the

forest. We experiment with selecting d from the interval lower part of the tree

that is from (0-(h ∗ 1/3)] , the middle part from [(h ∗ 1/3)-(h ∗ 2/3)] and third

interval is from [(h ∗ 2/3), h]. To speed up calculations, for training random

forest classifiers, we sample 1500 examples in these experiments.

Figure 5.3a displays the results where the intervals are selected from the

interval nodes closer to the root. In cluster 8, we observe that the digits 4 and

9 are in the same cluster, these are digit pairs with very similar shapes. In

cluster 2, in figure 5.3b, where the intervals are sampled in the medium part

of the trees, the grouping of digit 4 and 9 is more clear (cluster 9). Similarly,

cluster 2 reveals not only that 3 and 5 are similar but also digit 8 is similar to

these digits. Figure 5.3c shows that clustering is not possible when we sample

depths from nodes closer to the leaves. Classification accuracy of 1500 samples

is 90%, so we can obtain reliable results.



a. 0 < d ≤ h
3

b. h
3 ≤ d ≤

2h
3

Similarity 
.0.6 

0.4 
0.2 •o 

c. 2h
3 ≤ d ≤ h

Figure 5.3: Heatmaps and histograms of digit clustering computed at different depth levels and with 1500
digit samples. The similarity column of heatmap shows the similarity rate of paired samples obtained from
the distance algorithm. Reds show high similarity rates, while blues show low similarity rates. Each colorful
rectangle in the Clusters column represents a cluster. Histograms show the distribution of digit amounts in
each cluster. x axis of a histogram represents digits, y axis represents the count of each digit in that cluster.
When h

3
≤ d ≤ 2h

3
, we obtain most effective clustering that cluster 2 reveals similar 3-5-8 digits, cluster 9

and 10 reveals similar 4-9 digits.
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After comparing different interval ranges, we observe that sampling d close

to the leaves of the trees (the third interval range) results in clusters that

are consistent with class labels. On the other hand, running WS-RFClust

with depths that are closer to the root results with too impure clusters. We

think this is because the depths chosen close to the roots leads to feature

combinations that are too general, thus revealing the similarities of the samples

is not possible. Therefore, the sampling in the medium part of the tree is more

likely to reveal different clusterings.

5.1.3 Discovering Clusters Under Uniform Label Noise

Biological and clinical data are often noisy. Therefore we wanted to test how

WS-RFClust will perform when the labels that guide the clusters are noisy. We

corrupt the label information of digit dataset by adding uniform random noise.

Let p be the predefined noise level and ȳi be the corrupted label for the instance

i. We sample a new class label P {ȳi = c̄ yi = c} = p where c̄ ∈ {0, 1, . . . , 9} c.
Inserting noise is not enough to reduce the accuracy; therefore, we also reduce

the training set size to 1000. We take equal amount (100) samples from each

digit class. The test set size remains as 1000. Table 5.1 includes the range

of noise values and the corresponding test accuracy of the different models

trained with the noisy label set.
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Noise Probability Accuracy

0.05 0.87

0.10 0.87

0.20 0.86

0.25 0.86

0.30 0.86

0.35 0.85

0.40 0.82

0.45 0.80

0.50 0.77

Table 5.1: Accuracy with different noise values.

We apply WS-Clust on the label set where the noise level is 0.5. The

corresponding Heatmap and histogram of clusters are shown in Figure 5.4.

The results display that although the guiding labels are noisy, the feature

representations reveal the structure of the digits. For example, the cluster 3

points out that two digits, 3 and 5 are similar. Cluster 7 points out that digits

4 and 9 are similar in their structure. We conclude although the classifier that

is learned is not a very good one, the feature representations are able to decode

the structure.
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Figure 5.4: Similarity matrix and corresponding histogram in noisy MNIST handwritten

digit data. noise=0.5, number of samples=1000. Colors in clusters column are consistent

with the heatmap annotation and histogram. Cluster 4 points out that two digits, 3 and 5

are similar. Cluster 9 points out digits 4 and 9 are similar in their structure. Cluster 4 and

Cluster 9 are marked with red boxes.
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5.2 Results in Cancer Dataset

In this section we apply WS-RFClust in breast cancer expression datasets.

We also run the widely adapted method NMF-Consensus clustering on each

of these datasets. Results from these runs are elaborated in the ensuing sub-

sections.

5.2.1 mRNA Results in WS-RFClust

mRNA expression data contain 20531 genes’ expression values on 1196 patients

samples. We first dichotomize the survival time of patients into two classes.

To this end, we calculate the 25% lower and 75% upper quantiles; patients

with survival time shorter than the 25% quartile are labeled as low survivors,

whereas patients with survival times longer than the 75% quartile are labeled

as high survivors. These labels constitute the true class labels for random

forest classification. 1196 patients are reduced to 599 after selective filtering

for high and low survivor patients. Number of long survivors are 299 and

number of short survivors are 300.

We apply different feature selection criteria including ttest, ROC, Entropy,

Chernoff and Wilcoxon statistical tests to reduce the number of features. Let n

be number of top-ranked features in our dataset. We experiment with different

n values and select the top n feature sets that produce the best 5-fold cross-

validation accuracy. We apply 5-fold cross validation to the training data 10

times and form decisions based on the average accuracy over 10 runs. Results
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of different rank tests are listed in Table 5.2.

# of selected features ttest roc bhattacharyya entropy wilcoxon

25 0,69 0,61 0,50 0,51 0,67

50 0,70 0,62 0,50 0,51 0,69

100 0,72 0,63 0,59 0,59 0,69

200 0,72 0,64 0,63 0,57 0,69

500 0,71 0,64 0,65 0,60 0,70

750 0,70 0,62 0,64 0,61 0,69

Table 5.2: Accuracy with different feature selection method and number of features in mRNA

expression data.

We first want to check if the clustering based on this methodology can put

the low and high survivors into the right classes. We divide the expression

data into two parts as training and test matrices. Test samples are generated

by getting 1/5 of all low-survivor and high-survivor patients. Accordingly, we

operate with 480 training samples and 119 test samples. We train the random

forests with 200 trees and apply RF-WSClust by sampling from depths from

the interval [1/3 2/3] x height of the trees uniformly at random. We cluster

samples using hierarchical clustering with cluster number 2.

The confusion matrix of test sample classification is provided in table 5.3

and KM survival plot is shown in Figure 5.5. Cluster 1 represents the low

survivor patients; cluster 2 represents the high survivor patients. The accuracy

of predicting test samples is 0.57. We also plot the survival distributions of

these test samples and check their clusterings; survival distributions of two

clusters are not well separated from each other. Using the log-rank test at a
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significance level of 0.05, we also test the null hypothesis that the two clusters

are not different from each other in terms of survival distribution. p-value is

not lower than 0.05, therefore we cannot reject the null hypothesis. This is

somewhat expected as patients are not perfectly stratified into two groups even

with the random forest classifier (whose accuracy is at most 70%), therefore

the clustering which does not focus on the prediction of the two classes cannot

achieve better accuracy. This might also point that there are more than two

subgroups that are different at the molecular level. microRNA and protein

expression data give similar results.

Predicted

Cluster 1 Cluster 2

True
Cluster 1 38 22

Cluster 2 28 31

Table 5.3: Confusion matrix of class low survivor and high survivor. Accuracy of overall

prediction is 0.57.

46



0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Cluster 1 (88)
Cluster 2 (31)

p = 0.0963337

k=2

Figure 5.5: KM survival plots of the clusters obtained on 119 test samples used. Test samples

are assigned to clusters based on WS-RFClust model with k = 2. The model is trained with

mRNA expression data.

Finally, we apply WS-RFClust on all 1196 samples. Here we use the RF

model that is trained with the Random Forest classifier trained on the low and

high survival patients. Using the random forest we calculate their similarity

matrix. With the output similarity matrix, we apply hierarchical clustering

with different numbers. Let k denote the number of clusters, we try clustering

with k = 2, 3, 4, 5, 6. We use our training model to cluster all the samples.

Table 5.6 shows the heatmaps of different k values.
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Figure 5.6: Heatmaps for different k = 2, 3, 4, 5, 6 for 1196 x 1196 patient similarity matrix

in mRNA expression dataset. Colorful bars on top of heatmaps represent clusters, red color

denotes high similarity, blue color denotes low similarity.

The silhouette width of the clustered data shows a degree of purity within

a cluster and the quality of separation between clusters. Figure 5.7 indicates

the silhouette width graph of clustered patients.
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Figure 5.7: Silhoutte width graphics for k=2,3,4,5,6 in mRNA dataset. x axis is the ruler

that shows the width of each cluster. j is cluster id, nj is number of patients in cluster Cj

and Si is silhouette width of Cj . y axis shows j : nj |avei∈Cj
Si for each cluster. Average

silhouette width is overall average of all clusters.

5.2.1.1 Comparison of survival distributions

The survival plot of a clustered dataset demonstrates the survival distribution

of each subgroup. Using the log-rank test we test the clusters that do not differ

in terms of cluster validity. Figure 5.8 shows the Kaplan-Meier survival plots
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for k = 2, 3, 4, 5, 6. We achieve the best separation at k = 5 (4.5017e−05).
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Figure 5.8: Survival plots for different k values pertaining to the model trained with mRNA.

x axis shows the time of survival in months. y axis shows the survival probability at a given

time. k = 5 gives smallest p-value, 4.5017e−05. Survival distributions of clusters are

distinctive from each other at k = 5. There are five subgroups that are statistically different

from each other.

52



5.2.1.2 Comparing clusters in terms of age

We applied one-way ANOVA test to compare the difference of mean ages be-

tween clusters. We reject the null hypothesis that their ages do not differ with

p = 6.5e−04. Based on this test, these clusters are found to be significantly

different from each other in terms of age. Figure 5.9 bears the box-plot of age

distributions of clusters when k = 5. The variance is high in these box-plots.

Although the statistical test rejects the null hypothesis, this difference could

be attributed to different times when people are diagnosed at the clinic.

●

40

60

80

1 2 3 4 5
Clusters

A
ge

 a
t i

ni
tia

l d
ia

gn
os

is

p =  6.461398e−04

Figure 5.9: ANOVA comparison of age when k=5. y axis labels are patient ages, x axis

labels are cluster ids. The start edge and the end edge of a boxplot indicates the range of

ages in a cluster and line at the middle of the box shows the mean age value of patients in

the cluster. Mean differences of clusters are significantly different.
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5.2.1.3 Comparison with tumor stages

We also check if the clusters are significantly associated with the tumor stage.

We tabulate the data into clusters and stages, and apply χ2 test of indepen-

dence. Null hypothesis is that WS-RFClust subgroups are independent of

tumor stages. We deleted stages Stage IB, Stage II, Stage III, Stage Tis, Stage

X, Stage IV; because only a few patients belong to this stages. Table 5.4

shows the relation between the tumor stage and the resulting cluster in k=5,

p = 0.03 < 0.05.

WS-RFClust Clusters

Tumor Stages 1 2 3 4 5

Stage I 9 18 25 23 28

Stage IA 22 15 16 28 7

Stage IIA 75 63 83 119 50

Stage IIB 61 46 48 86 35

Stage IIIA 31 30 31 50 22

Stage IIIB 8 5 6 10 4

Stage IIIC 16 4 17 25 6

Table 5.4: Contingency table of tumor stages and WS-RFClust clusters. χ2 = 38.569, df =

24, p = 0.03029
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5.2.1.4 Comparison with PAM50 subtypes

Pam50 subtypes are known as clusters of breast cancer. We apply χ2 test of

independence. p < 2.2e−16 of test is considerably smaller than 0.05, there-

fore WS-RFClust clusters have strong correlation with the intrinsic molecular

subtypes. Table 5.5 shows the contingency table of WS-RFClust clusters and

PAM50 subtypes.

WS-RFClust Clusters

PAM50 subtypes 1 2 3 4 5

Basal 2 42 47 29 22

Her2 10 8 14 34 1

LumA 25 90 121 155 43

LumB 41 24 25 99 5

Normal 1 20 12 1 85

Table 5.5: Contingency table of PAM50 subtypes and WS-RFClust clusters. χ2 =

439.39, df = 16, p < 2.2e− 16

5.2.1.5 mRNA results in consensus NMF

We apply Consensus NMF [83] with the same mRNA dataset. We run the

consensus NMF algorithm dataset with 1196 samples containing all the pa-

tients. We select 200 features by implementing ttest. Figure 5.10 demon-

strates heatmaps derived from consensus NMF for k=2,3,4,5,6.
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Figure 5.10: Heatmaps of consensus NMF run for k=2,3,4,5,6 on mRNA dataset. x and y

axes show number of patients. Red regions show high similarity, while blue regions show

low similarity rate.

We show that there is a correlation between the clusters found in WS-

RFClust method and the survival rates of patients. Figure 5.11 demonstrates

KM survival plots for each k value when consensus NMF is applied. Smallest

p-value is achieved when k=6. p = 0.000353525 ∼= 3e− 04 value is larger than
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p-value we obtained in WS-RFClust which is 4.50174e−05 in k=5. In k = 5, it

is even 100 magnititude larger, clusters with p = 4e−03, which is 100 times less

than WS-RFClust sensitivity. The smaller the p-value is, the more significantly

the different clusters are obtained. WS-RFClust outperforms Consensus NMF

in terms of survival rate differentiation between subgroups.
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Figure 5.11: Survival plots of consensus NMF run for k = 2, 3, 4, 5, 6 on mRNA data.
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5.2.2 microRNA Results in WS-RFClust

microRNA expression matrix contains entries for 1172 available patients and

1046 features. We apply our method to the miRNA dataset to measure the

data dependency of WS-RFClust. We aim to verify that WS-RFClust detects

intrinsic molecular subtypes that are independent of data type. We follow

the same steps in training the mRNA expression data. We select only the

low and high survivor 587 patients from miRNA expression data and select

200 features with t-test. We divide these patients into 476 training and 116

test examples. Test examples are classified with WS-RFClust. The accuracy of

predicting test examples is 68%. The confusion matrix of test prediction results

is given in Table 5.6. The survival plot of two classes is given in Figure 5.12.

The accuracy of predicting test samples is 68%. p-value is 0.15505 > 0.05,

therefore we cannot state that this is a good stratification of low and high

survivor patients.

Predicted

Low Survivor High Survivor

True
Low Survivor 44 14

High Survivor 23 35

Table 5.6: Confusion matrix of class low survivor and high survivor. Accuracy of overall

prediction is 0.68.
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Figure 5.12: KM survival plot for 116 test samples in microRNA data. Cluster 1 represents

high survivor patients; cluster 2 represents low survivor patients.

After random forest classification, we have a bag containing 200 trees. Then,

all the patients (1172) that are available in the dataset are input to train

model and WS-RFClust constructs a similarity matrix of patients. We apply

hierarchical clustering for k = 2, 3, 4, 5, 6 as shown in Figure 5.13. Resulting

clusters are compared with respect to survival rate, age, tumor stage and

PAM50 subtypes.
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Figure 5.13: Heatmaps for different k=2,3,4,5,6 on 1172 x 1172 patients similarity matrix in

microRNA expression data. Colorful bars on top of heatmaps represent clusters. Red color

denotes high similarity, blue color denotes low similarity.



Figure 5.14 indicates silhouette width graph of clustered patients in mi-

croRNA expression dataset.
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Figure 5.14: Silhouette width graphics for k = 2, 3, 4, 5, 6. x axis is the ruler shows the width

of each cluster. j is cluster id, nj is number of patients in cluster Cj and Si is the silhouette

width of Cj . y axis shows j : nj |avei∈CjSi for each cluster. Average silhouette width is the

overall average computed over all clusters.

5.2.2.1 Comparison of survival distributions

Survival plots for all k values in Figure 5.15 point out that resulting subtypes

have better separation in terms of survival when k = 6. Age, tumor stage and

PAM50 subtype comparison is done between found clusters when k=6.
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Figure 5.15: Survival plots of microRNA dataset for k=2,3,4,5,6. x axis shows time of

survival in months. y axis shows survival probability at a time. k = 6 gives smallest p-

value, 2.25089e−07. Survival distributions of clusters are distinctive from each other at

k = 6, there are five subgroups that statistically different from each other.
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5.2.2.2 Comparison of age distributions

We applied one-way ANOVA test to compare difference of mean ages between

clusters. One tailed test is preferred to increase detection power. Figure 5.16

denotes boxplot of age distributions of clusters when k=6. p = 2.55e−02 <

0.05, we can conclude in 95% confidence interval that subgroups are signifi-

cantly different in terms of age.
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Figure 5.16: ANOVA comparison of age for k = 6, microRNA dataset. y axis labels are

patient ages, x axis labels are cluster ids. Start edge and end edge of a boxplot shows range

of ages in a cluster and line at the middle of the box shows mean age value of patients in

the cluster.
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5.2.2.3 Comparison with tumor stages

We tabulate the data into clusters and stages, and apply χ2 test of indepen-

dence for k=6. The null hypothesis is that the WS-RFClust subgroups are

independent of tumor stages. We delete stages Stage IB, Stage II, Stage III,

Stage IIIB, Stage Tis, Stage X, Stage IV; because there are only small numbers

of patients belonging to those stages. Table 5.7 shows the relation between tu-

mor stage and the resulting cluster in k=6. p = 0.002 < 0.05, therefore we

reject the null hypothesis and we can conclude that tumor stages are correlated

with WS-RFClust subtypes in miRNA dataset.

WS-RFClust Clusters

Tumor Stages 1 2 3 4 5 6

Stage I 33 10 29 10 18 0

Stage IA 24 23 25 9 5 1

Stage IIA 157 70 70 46 38 3

Stage IIB 90 52 65 28 30 2

Stage IIIA 60 22 40 17 22 1

Stage IIIC 21 24 10 5 3 2

Table 5.7: Contingency table of tumor stages and WS-RFClust clusters. χ2 = 51.127, df =

25, p− value = 0.001544
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5.2.2.4 Comparison with PAM50 subtypes

We tabulate the data into clusters and subtypes, and apply χ2 test of inde-

pendence for the clustering results with k = 6. The resulting p < 2.2e− 16 of

test is considerably smaller than 0.05. Therefore, WS-RFClust clusters show

strong correlations with the intrinsic molecular subtypes. Table 5.8 shows the

contingency table of WS-RFClust clusters and PAM50 subtypes.

WS-RFClust Clusters

PAM50 subtypes 1 2 3 4 5 6

Basal 95 5 11 24 1 0

Her2 41 8 7 10 0 0

Luma 91 61 174 72 27 5

LumB 104 23 27 26 5 2

Normal 9 7 5 3 83 4

Table 5.8: Contingency table of PAM50 subtypes and WS-RFClust clusters. χ2 =

646.56, df = 20, p− value < 2.2e− 16

5.2.2.5 microRNA results in consensus NMF

We apply Consensus NMF to the microRNA dataset to compare clustering per-

formance of WS-RFClust with Consensus NMF. We run the consensus NMF

algorithm dataset with 1172 samples containing all patients. We select 200

features by implementing t-test in order to make a fair comparison. Figure

5.17 demonstrates heatmaps derived from Consensus NMF for k = 2, 3, 4, 5, 6.
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Figure 5.17: Heatmaps of consensus NMF run on microRNA dataset for k = 2, 3, 4, 5, 6. x

and y axes show the number of patients. The similarity matrix stores 1172 patients. Red

regions show high similarity, while blue regions show low similarity rate.

Figure 5.18 demonstrates kaplan-meier survival plots for each k value when

consensus NMF is applied. Smallest p-value(p = 6.17428ee−05) is achieved

when k=5. This value is larger than p-value we obtained in WS-RFClust which

is p = 2.25089e−07 in k=5. WS-RFClust provides more sensitive seperation
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Figure 5.18: Survival plots of consensus NMF run on microRNA dataset for k=2,3,4,5,6.

pvalue of ConsensusNMF when k = 5 is 100 times larger than the p value of WS-RFClust

Therefore, WS-RFClust exhibits better performance in finding the clinically relevant survival

subgroups.
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5.2.3 RPPA Results in WS-RFClust

Protein expression matrix comprises information on 744 available patients and

131 features. The protein expression data contains 373 low and high survivor

patients. We divide 299 of them as the training set and 74 of them as the

test set. There are only 131 features in the RPPA dataset; therefore, we select

all the features without any feature selection. The training set is input to

WS-RFClust and the model accuracy is calculated from the test examples,

and accordingly they are classified into low and high survivor labels. The

accuracy of test example classification is 67%. The confusion matrix of actual

and expected low and high survivor patients are listed in Table 5.9. Figure

5.19 demonstrates the survival distribution of low and high survivors among

test examples.

Predicted

Low Survivor High Survivor

Actual
Low Survivor 27 10

High Survivor 14 23

Table 5.9: Confusion matrix of class low survivor and high survivor. Accuracy of overall

prediction is 0.67.
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Figure 5.19: KM survival plot for 74 test samples in RPPA data. Cluster 1 represents

high survivor patients, cluster 2 represents low survivor patients. Accuracy of predicting

test samples is 67%. p-value is 0.252558 > 0.05, therefore we cannot state that this is a

good stratification of low and high survivor patients. However, accuracy of prediction is

not ignorable and another point is steep accuracy is not a requirement in the success of

WS-RFClust.

After random forest classification, we end up with a bag containing 200

trees. Then, all patients (744) available in dataset are input to train model and

WS-RFClust constructs similarity matrix of patients. We apply hierarchical

clustering for k = 2, 3, 4, 5, 6. The resulting clusters are compared with respect

to survival rate, age, tumor stage and PAM50 subtypes.
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Figure 5.20: Heatmaps for different k=2,3,4,5,6 on 744 x 744 patients similarity matrix in

RPPA expression data. Colorful bars on top of heatmaps represent clusters and “Clusters”

column with rectangles maps cluster ids to colors. “Similarity” column shows similarity rate

of patients resulted from Calc-RFrds. Red color denotes high similarity, blue color denotes

low similarity.



Figure 5.21 indicates silhouette width graph of clustered patients in protein

expression dataset.
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Figure 5.21: Silhoutte width graphics for k=2,3,4,5,6. x axis is the ruler shows width of

each cluster. j is cluster id, nj is number of patients in cluster Cj and Si is silhouette width

of Cj . y axis shows j : nj |avei∈Cj
Si for each cluster. Average silhouette width is the overall

average of all clusters.
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5.2.3.1 Comparison of survival distributions

Survival plots for k=2,3,4,5,6 are demonstrated in Figure 5.22. p-value is

considerably small for each k-value, we select k=5 to correlate subtypes with

mRNA results and PAM50 subtypes. Age, tumor stage and PAM50 subtype

comparison is done to compare the clusters that are computed when k=5.
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Figure 5.22: Survival plots of RPPA dataset for k=2,3,4,5,6. x axis shows the time of

survival in months. y axis shows survival probability at a time. All k values give considerably

small p-values, we select the case k = 5 to be consistent with mRNA dataset and PAM50

subtypes. The survival distributions of clusters are distinctive from each other at k = 5, p =

3.30084e−07, there are five subgroups that are statistically different from each other.
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5.2.3.2 Comparison of age distributions

We apply one-way ANOVA test to compare the difference of mean ages between

clusters. Figure 5.23 shows the box-plot of age distributions of clusters when

k=5. p = 1.327781e−03 < 0.05, we can conclude in 95% confidence interval

that subgroups are significantly different in terms of age.
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Figure 5.23: ANOVA comparison of age when k=5, RPPA dataset. y axis labels are patient

ages, x axis labels are cluster ids. The start edge and the end edge of a box-plot indicates

the range of ages in a cluster and the line in the middle of the box shows the mean age value

of patients in the cluster. Mean differences of clusters are significantly different.
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5.2.3.3 Comparison with tumor stages

We tabulate data into clusters and stages, and apply χ2 test of independence

for k=5. Null hypothesis is that WS-RFClust subgroups are independent of

tumor stages. We delete stages Stage IB, Stage II, Stage III, Stage IIIB, Stage

Tis, Stage X, Stage IV; because there are only a few patients belonging that

stages. Table 5.10 shows relation between tumor stage and resulting cluster in

k=5. p = 0.02 < 0.05, therefore we can safely reject the null hypothesis and

we can conclude that tumor stages are correlated with WS-RFClust subtypes.

WS-RFClust Clusters

Tumor Stages 1 2 3 4 5

Stage I 12 12 17 8 8

Stage IA 24 8 9 3 8

Stage IIA 84 73 52 23 16

Stage IIB 58 42 47 16 12

Stage IIIA 43 28 35 4 6

Stage IIIC 9 15 8 2 2

Table 5.10: Contingency table of tumor stages and WS-RFClust clusters. χ2 = 34.76, df =

20, p− value = 0.02142

5.2.3.4 Comparison with PAM50 subtypes

We tabulate the data into clusters and subtypes, and applied χ2 test of in-

dependence for k=5. p < 2.2e − 16 of test is considerably smaller than 0.05,
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therefore WS-RClust clusters have strong correlation with intrinsic molecular

subtypes. Table 5.11 shows the contingency table of WS-RFClust clusters and

PAM50 subtypes.

WS-RFClust Clusters

PAM50 subtypes 1 2 3 4 5

Basal 8 44 19 43 6

Her2 16 29 7 5 4

LumA 130 54 111 0 35

LumB 87 51 18 3 5

Normal 1 1 13 2 1

Table 5.11: Contingency table of PAM50 subtypes and WS-RFClust clusters. χ2 =

299.16, df = 16, p < 2.2e− 16

5.2.3.5 RPPA results in consensusNMF

We apply Consensus NMF to the protein expression dataset to compare the

clustering performance of WS-RFClust with ConsensusNMF. We run the con-

sensus NMF algorithm dataset with 744 samples containing all the patients.

We select 200 features by implementing ttest in order to make a fair compar-

ison. Figure 5.24 demonstrates the heatmaps derived from consensus NMF

for k=2,3,4,5,6.

79



k=2

200 400 600

200

400

600

k=3

200 400 600

200

400

600

k=4

200 400 600

200

400

600

k=5

200 400 600

200

400

600

k=6

200 400 600

200

400

0 0.5 1

Low High

Similarity

600

Figure 5.24: Heatmaps of consensus NMF run on RPPA dataset for k=2,3,4,5,6. x and y

axes show the number of patients. Similarity matrix contains data for 744 patients. Red

regions show high similarity, while blue regions show low similarity rate.

Figure 5.25 demonstrates kaplan-meier survival plots for each k value when

consensus NMF is applied. p-value is p = 0.0550391 when k=5, overall p-value

range is between 0.01− 0.2. Consensus NMF results are not confidently below
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α = 0.05, therefore we conclude that Consensus NMF clusters are not signifi-

cantly different in terms of survival rate. WS-RFclust outperforms Consensus

NMF in terms of survival rate differentiation between subgroups.
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Figure 5.25: Survival plots of consensus NMF run on RPPA dataset for k=2,3,4,5,6. For

all k values, Consensus NMF results are not confidently below α = 0.05. Correspondingly,

pvalue range of WS-RFClust is between e−06 and e−08. Therefore, WS-RFClust performs

considerably better in stratification of patients.
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Chapter 6

Conclusion and Future Work

Cancer is a complex disease that includes multiple genomic alterations or dys-

function in molecular systems. Cancer is a heterogeneous disease with multiple

subtypes and lack of knowledge on subtypes hinders developing effective tar-

geted therapies and realizing the personalized medicine objective. With the

advent of next-gen sequencing technologies, now it is possible analyze a large

cohort of patients and record patient genomic alterations and expression dys-

regulations. This opens up opportunities to redefine the subtypes of cancers.

The widely adapted approach for finding such subtypes is to apply unsu-

pervised clustering techniques on genomic data of patients. The clusters are

deemed interesting if they are found to be associated with a clinical variable

of interest. These clinical variable of interest; therefore, do not participate

in clustering decisions. We propose a new approach, WS-RFClust, where the
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clustering process is supervised with the clinical variable of interest. The su-

pervision is achieved by learning a similarity metric with features that are

selected to predict the clinical variable of interest. Specifically, WS-RFClust

involves a random forest classifier training step to predict the clinical variable

of interest. Then the internal nodes are used to derive a similarity metric

among pairs of samples. This similarity metric is based on the subsets of fea-

ture representations within the random forest classifier. By sorting down the

examples on to random depths in the tree and checking how often they appear

in the same partition in the tree, we can we construct a similarity matrix. This

similarity matrix can be input to any traditional clustering algorithm.

We applied WS-RFClust to handwritten digit datasets to understand the

effect of several parameters. WS-RFClust reveals clusters that have structural

similarities, for example 4 and 9 are often found in the same cluster. To under-

stand, how the sampling from different levels of the tree would affect clustering,

we vary the interval range from which we sample the random depths. We ob-

serve that if the depths are close to the tree height, the resulting partitions

are found to be close to the leaves and therefore these clusters correspond to

the 10 classes. If we choose depths that are near the root, then the structure

information is lost. Thus, we conclude that the sampling from the interval

range is critically important. As a second experiment, we investigate how the

classifier performance affects the cluster identification step. Digit classification

has accuracy around 90%, and by adding uniform label noise we degrade the

class label quality. We repeat the same experiments with WS-RFClust algo-

rithm using a classifier of 50% test accuracy. The results show that we are

still able to capture clusters with similar shapes although the learned classifier

accuracy degrades significantly.
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Finally to identify breast cancer subtypes, we apply WS-RFClust to TCGA

breast cancer miRNA, mRNA and protein expression datasets separately. A

widely adapted technique in TCGA cancer papers is the NMF-Consensus clus-

tering approach. We also run NMF-Consensus on the same datasets to see if

we are able to capture better subgroupings of patients. We vary the number of

clusters and analyze these clusters in terms of internal cluster validity metrics,

such as silhouette width and external clinical data such as tumor stage, PAM50

classification and age of the patients. Experiments with mRNA, miRNA and

RPPA data shows the separation quality of clusters in terms of survival rate,

age, tumor stages and PAM50 subtypes. The relations of clusters to other

clinical variables such as tumor stages are found to be statistically significant.

When the data are clustered to 5 or 6 subgroups, the resulting survival rates

of subgroups are shown to significantly differ from each other.

There are several routes to follow as part of future work:

� The similarity matrices that are found from each different data type can

be combined in a single similarity matrix and clusters can be found using

this combined similarity matrix.

� WS-RFClust can be applied to other cancer datasets.

� Current study investigates how the WS-RFClust classifier accuracy af-

fects the predicted clusters. Other experiments could be designed to

thoroughly investigate the relationship of the classifier accuracy to clus-

ter validity.
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