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Abstract

We address the problem of designing two-level networks protected against single
edge failures. A set of nodes must be partitioned into terminals and hubs, hubs
must be connected through a backbone network, and terminals must be assigned
to hubs and connected to them through access networks, being the objective to
minimize the total cost. We consider two survivable structures, two-edge connected
(2EC) networks and rings, in both levels of the network. We present an integer
programming formulation for these problems, solve them using a branch-and-cut
algorithm, and show some computational results.
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1 Introduction

We study several two level network design problems with survivability require-
ments in both levels. In a typical two level network, the upper level is called
the backbone network and connects the hubs (concentrators, switches, mul-
tiplexers) among themselves, and the lower level networks are called access
networks and they connect the users to hubs. Klincewicz [12] uses the nota-
tion “backbone structure/access structure” to specify the structure of a two
level network. We are interested in designing two level networks that have
protection against a single edge failure, i.e., we assume that at most one edge
can fail at a time. We consider two survivable network structures, namely,
2-edge connected (2EC) networks and rings, in both levels of the network. As
a result, we study the design problems associated with four different networks:
2EC/2EC, 2EC/ring, ring/2EC and ring/ring networks.

The literature on the design of survivable networks has grown over the last
years. However, most studies on survivable network design problems consider a
single layer of the network (see the reviews by Grötschel et al. [9] and Kerivin
and Mahjoub [11]). There are few studies that consider the design of two
level networks with survivability requirements in both levels. The majority
of such studies are on designing ring/ring networks (Thomadsen and Stidsen
[19], Carroll and Mc Garraghy [3]), and most of the approaches proposed
are heuristic approaches (Shi and Fonseca [17], Balakrishnan et al. [1]). The
contribution of the present paper is to propose formulations and exact solution
methods for the two level survivable network design problem where both rings
and 2-edge connected networks are used to ensure survivability.

We can find many related problems in the field of network design. Fortz
and Labbé [5] and Fortz et al. [6,7,8] study the design of networks with
bounded rings. Magnanti and Raghavan [14] and Balakrishnan et al. [2] con-
sider different variants of two-edge connected networks. Soriano et al. [18] and
Caserta et al. [4] treat the design of survivable telecommunications networks
based on ring structures. Finally, as examples of other types of two-level net-
work design problems, we mention the ring/chain problem studied by Lee and
Kon [13] and the capacitated ring/tree problem studied by Hill and Voß [10].
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2 Integer Linear Programming Models

Let V = {0, 1, . . . , n} be the set of nodes where node 0 stands for the root. We
denote by fj the cost of installing a hub at node j ∈ V . Let E = {{i, j} : i, j ∈
V, i < j}. We denote the costs of installing a backbone link and an access
link on edge e ∈ E with be and ae, respectively. The aim of the problem is to
partition the set of nodes V into disjoint subsets, each with at most q nodes,
choose one node from each subset to locate a hub and connect the hubs and
the subsets with survivable networks at minimum cost.

Let G = (V,E). For S ⊆ V , let δ(S) be the set of edges with one endpoint
in S and E(S) be the set of edges with both endpoints in set S. When S is a
singleton, i.e., S = {i}, we use δ(i) for δ({i}).

We define zij to be 1 if node i ∈ V is assigned to hub j ∈ V and to be 0
otherwise. Node j is a hub if zjj is 1. In addition, we define xe to be 1 if edge
e ∈ E is used in an access network and 0 otherwise and ye to be 1 if edge e is
used in the backbone network and 0 otherwise. For E ′ ⊆ E, x(E ′) =

∑
e∈E′ xe

and y(E ′) =
∑

e∈E′ ye.

The 2EC/2EC design problem can be modeled as follows:

min
∑
j∈V

fjzjj +
∑
e∈E

aexe +
∑
e∈E

beye (1)

s.t.
∑
j∈V

zij = 1 ∀i ∈ V, (2)

∑
i∈V

zij ≤ qzjj ∀j ∈ V, (3)

z00 = 1, (4)

zij + ye ≤ zjj ∀i, j ∈ V : e = {i, j} ∈ E, (5)

y(δ(S)) ≥ 2
∑
j∈S

zij ∀S ⊆ V \ {0}, i ∈ S, (6)

x(δ(S)) ≥ 2
∑

j∈V \S
zij ∀S ⊂ V, i ∈ S, (7)

xii′ + zij + zi′j′ ≤ 2 ∀{i, i′} ∈ E, j, j ′ ∈ V, j �= j′, (8)

xe, ye ∈ {0, 1} ∀e ∈ E, (9)

zij ∈ {0, 1} ∀i, j ∈ V. (10)

The objective function is the sum of the cost of locating hubs and the cost
of installing access and backbone links. Constraints (2) ensure that each node
is either a hub or it is assigned to another hub. Constraints (3) are capacity
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constraints that limit the number of nodes assigned to a hub by q. They also
ensure that no node is assigned to a nonhub node. Constraint (4) forces the
root node to be a hub. If an edge is used in the backbone network, then due
to constraints (5), both endpoints should be hubs. Constraints (6) impose
2-edge connectedness of the backbone network. If node i is a hub or if it is
assigned to a hub node in set S, then there exists at least one hub in set S
and the constraint asks for at least two backbone edges on the cut δ(S) since
the root is in V \ S. Similarly, constraints (7) ensure 2-edge connectedness of
the access networks. If node i ∈ S is allocated to a hub node in V \ S then
there should be at least two access links between S and V \ S. Constraints
(8) make sure that if the access link {i, i′} is used then i and i′ are allocated
to the same hub. Finally, constraints (9) and (10) are variable restrictions.

To model 2EC/ring and ring/ring design problems, we add the degree
constraints

x(δ(i)) ≤ 2 ∀i ∈ V. (11)

We can not impose (11) to be an equation because not all nodes have to
be in an access network. Similarly, to model ring/2EC and ring/ring design
problems, we add the constraints

y(δ(j)) = 2zjj ∀j ∈ V, (12)

to make sure that each hub node has degree two in the backbone network.

3 Valid Inequalities

Rodŕıguez-Mart́ın et al. [16] propose a family of valid inequalities that domi-
nate constraints (8). Let {i, i′} ∈ E, S ⊂ V such that i ∈ S and i′ ∈ V \ S.
The inequality

xii′ ≤
∑

j∈V \S
zij +

∑
j′∈S

zi′j′ (13)

is valid for 2EC/2EC, 2EC/ring, ring/2EC and ring/ring problems.

Let S ⊂ V . The following inequalities used in [16] are also valid for our
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problems:

x(δ(S)) ≥ 2

(⌈ |S|
q

⌉
−
∑
i∈S

zii

)
, (14)

x(δ(S)) ≥ 2

(∑
i∈S

∑
j∈V zij + x(δ(S))/2

q
−
∑
i∈S

zii

)
, (15)

x(δ(S)) ≥ 2

⎛
⎝ ∑

j∈V \S
zij +

∑
j∈S

zi′j

⎞
⎠ i ∈ S, i′ ∈ V \ S. (16)

4 Computational Results

We devised a branch-and-cut algorithm using the model and the results pre-
sented above. We coded it in C++ using the CPLEX 12.5 mixed integer linear
programming solver. All the experiments were done on a personal computer
with a processor Intel Core i7 CPU at 3.4 GHz and 16 GB of RAM.

The behavior of the algorithm was tested on randomly generated instances
and also on instances from the SNDlib [15], though the latter are not complete
graphs and this implies code modifications. For the sake of brevity, we only
report here results for one instance of each of those sets. In particular, Table
1 shows the results obtained for an instance with 20 nodes. For each edge
e ∈ E we generate a random figure ce ∈ [1, 100], then the access and backbone
costs for that edge are defined as ae = ce and be = 4ce respectively. Table
2 shows the results for instance france from the SNDlib. This is an instance
with 25 nodes and 45 undirected links with fixed charge costs. For each edge,
the access cost is set equal to the fixed cost of that edge, and the backbone
cost is set to four times that value. For both the random and the SNDlib
instances, the hub costs fj are randomly generated in [500, 1000].

For each instance we solved the four problems given by the different pos-
sible combinations of network topologies, and for each combination we tried
three capacity values (q := {	n/3
, 	n/4
, 	n/5
}). The column headings in
Tables 1 and 2 stand for the backbone/access networks’ configurations, the
capacity of the hubs, the optimal solution cost, the number of hubs in the
optimal solution, the relative error, in percentage, between the lower bound
at the end of the root node and the optimal cost, the number of nodes in the
branch-and-cut search tree, and the total cpu time.

We observe that all problems are solved to optimality except the ring/ring
and ring/2EC versions of the france instance, which turn out to be infeasi-
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q opt nHubs r-gap nodes cpu

ring/ring 	n/3
 2858 3 99.77 242 3.14

	n/4
 3518 4 98.46 159 5.18

	n/5
 4272 5 97.35 402 21.54

ring/2EC 	n/3
 2855 3 99.27 171 1.08

	n/4
 3518 4 98.17 347 8.56

	n/5
 4272 5 97.25 779 59.16

2EC/ring 	n/3
 2858 3 95.20 277 24.15

	n/4
 3518 4 97.44 487 28.55

	n/5
 4272 5 96.84 1660 189.73

2EC/2EC 	n/3
 2855 3 94.72 122 9.52

	n/4
 3518 4 97.10 494 15.37

	n/5
 4272 5 96.69 961 86.80

Table 1
Results for a random instance with n = 20

ble. The tables also show the influence of the capacity on the computational
performance.

5 Conclusions and Outlook

We have presented a MIP formulation and valid inequalities for a complex two-
level survivable network design problem. This formulation models with minor
modifications the four possible combinations of the two topologies considered
(rings and two-edge connected networks). We have designed a branch-and-cut
algorithm and we show some preliminary computational results. For future
studies, we hope to find new families of valid inequalities that serve to improve
the performance of the branch-and-cut, so that we can tackle larger instances.
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q opt nHubs r-gap nodes cpu

ring/ring 	n/3
 infeas.

	n/4
 infeas.

	n/5
 infeas.

ring/2EC 	n/3
 infeas.

	n/4
 infeas.

	n/5
 infeas.

2EC/ring 	n/3
 127879 10 86.10 7 7.50

	n/4
 127879 10 87.91 4 6.63

	n/5
 149968 16 73.54 57 37.86

2EC/2EC 	n/3
 119950 9 54.83 68 17.55

	n/4
 127542 10 58.66 86 28.70

	n/5
 149968 16 56.36 99 23.49

Table 2
Results for SNDlib france instance (n = 25)
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