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Highlights
Smart materials (SMs) can respond to
stress, temperature, pressure, light,
magnetic or electric stimuli, and their
responsive properties make them
excellent candidates for use in a myriad
of applications.

The scientific and technical evolution of
biotechnology will involve increasing use
of SMs.

Novel smart biomaterials for use in diag-
nostic devices, bone regeneration,
wound healing, and drug delivery are
Industry 4.0 encompasses a new industrial revolution in which advanced
manufacturing systems are interconnected with information technologies.
These sophisticated data-gathering technologies have led to a shift toward
smarter manufacturing processes involving the use of smart materials (SMs).
The properties of SMs make them highly attractive for numerous biomedical
applications. The integration of artificial intelligence (AI) enables them to be effec-
tively used in the design of novel biomedical platforms to overcome
shortcomings in the current biotechnology industry. This review summarizes
recent advances in AI-assisted SMs for different healthcare products. The current
challenges and future perspectives of AI-supported smart biosystems are also
discussed, particularly with the regard to their applications in drug design, bio-
sensors, theranostics, and electronic skins.
rapidly advancing.

Artificial intelligence (AI) and machine-
learning algorithm-driven technologies
play a vital role in the design and fabrica-
tion of SM-integrated technologies con-
nected to the Internet of Things.

AI-assisted systems are mainstays in
enabling rapid, simple, and autonomous
production because of their ability to
learn from training datasets without
being specifically programmed.
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The pathway to material intelligence
Humankind has sought advances in materials science and engineering for centuries, and the dis-
covery of new materials has sustained civilization and shaped the future. The world has now
begun to evolve from traditional materials to the era of smart materials (SMs) with the advent of
the Fourth Industrial Revolution (4IR or Industry 4.0). Emerging technological platforms require
more sophisticated solutions that involve the use of multifunctional, controllable, sustainable,
and reliable substances and material intelligence [1]. To fulfill this demand, SMs have emerged
as innovative and self-healing products that promote changes in their physical properties by alter-
ing the environmental conditions in which they usually operate [2,3]. Commercialization of these
products has been surging, but existing SMs are still far from fulfilling the widespread require-
ments for compatibility, reversibility, and responsiveness to stimuli. To thoroughly exploit the
potential of SMs, a transition from traditional techniques to powerful virtual testing tools is required.
State-of-the-art tools such as AI and machine learning (ML) algorithm-driven technologies are
playing an increasingly pivotal role in the design and fabrication of more advanced and energy-
efficient smart technologies. AI was first devised as a means to design intelligent computer pro-
grams and machines as a world-class engineering and science tool [4]. The intriguing aspects
of the human mind and function can be embedded in the networks and intelligently simulated
via the Internet of Things (IoT, see Glossary) to generate an artificial neural network
(ANN) – a type of AI that can simulate a human brain [5]. Depending on the amount and type
of data, massive training of ANNs can be achieved through 'supervised', 'semi-supervised', or
the less widely used 'unsupervised' methods [6]. With stepwise algorithms and training data,
ML can determine a model by making predictions. The form of input data is also essential for
learning because it may be more functional in one format than in others; hence a converting
operation – a featurization algorithm – is necessary for standardization.

SMs are key components of manufacturing, healthcare products, transportation units, logistics,
robotics, and global economies [7]. Industry needs practical ways to improve their production
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Glossary
Artificial neural network (ANN): a
computing system that mimics animal
brains by using a set of artificial neurons.
The neuronal system detects a signal,
then processes it, and the final output is
computed by a myriad of nonlinear
functions.
Biovitals™ analytics engine: an
engine that computes a time series of
the BiovitalTM Index, alerting providers to
changes in the vital signs of a patient
such that the clinician can take the
necessary steps to change the trajectory
of a disease.
Convolutional neural network
(CNN): a type of ANN that contains
convolutional filters and kernels to
analyze and process images, videos,
and recommender systems.
Cyber-physical system: a computer
system in which a system is monitored
or controlled by a set of algorithms
operating at different temporal and
spatial scales.
Deep neural network (DNN): an ANN
that containsmultiple layers between the
input and output layers. It represents the
type of machine learning (ML) in which
the system utilizes several layers of
nodes to derive high-level functions
using input information.
Density functional theory (DFT): a
computational system for quantum
mechanical modeling of electronic
structures by utilizing functionals
that are dependent on electron
density.
Ensemble of regression trees: an
ensemble method that combines
several regression trees one by one
and sums the individual trees
sequentially.
Fuzzy inference system (FIS): a
method of mapping inputs to output
space by using fuzzy set theory.
Information and communication
technologies (ICTs): the convergence
of unified communications and
telephone networks with computer
networks through a single link or cabling
system.
Internet of things (IoT): physical
objects that are embedded with
software, processing ability, sensors,
and other technologies in a network that
connects and exchanges data with
other systems.
Least-squares support vector
machine (LS-SVM): a group of
associated supervised learning systems
that analyze data and identify patterns by
efficiency; hence, ideal manufacturing methods must be intelligently optimized to predict the
desired features of materials. In particular, adopting new strategies, enhancing data collection,
designing and studying predictive models, and connecting control processes and factories will be
necessary, and policies in terms of smart manufacturing need to be managed strategically [8].
Now that AI 2.0 [9] has emerged, new phases of technologies such as cyberspace, universal
sensors, and intensive deep-learning systems have become possible [7]. The creation of new
forms, methods, models, and materials can contribute to a more sustainable, autonomous, intelli-
gent, and robotic ecosystem. ANNs have played a vital role in the modeling, manufacturing, and
characterization of countlessmaterials since the end of the 20th century [10]. In particular, emerging
biophysical and chemical sciences are mainly fed by improvements in mathematical modeling,
fabrication technologies, and SMs [11]. The non-linear behaviors of SMs can be exploited to
produce robust robotic structures [12]. In particular, revolutionary 4D printing technologies
have outstanding potential for the generation of a wide range of dynamic intelligent structures
[13]. Biomimicry of living creatures, energy efficiency, viscoelasticity, and low cost are remarkable
assets of advanced materials that can be used in biosystem technologies including sensing
devices, health monitoring tools, wound dressing, drug design, and pharmacology. Besides bio-
technology, the energy-generation, automotive, computer, avionics, and entertainment
industries, in addition to military applications, agriculture, and architecture, have exploited the
advantages of SMs in the design of more advanced systems [14]. In this context we highlight not
only the basics of SMs but also their characteristics and types for robust and well-organized
designs that will shape the biotechnology of the future.

SMs are rapidly evolving to achieve superior properties
SMs, also defined as intelligent or advanced materials, can respond to stress, temperature, light,
pressure, magnetic or electric stimuli. They are capable of passively or actively altering their self-
organization in response to specific stimuli under specialized conditions. Passive SMs only sense the
external stimulus and do not have the inherent capability to transduce the received signal. They are
therefore usually used as sensors, and not as transducers or actuators [15]. To give an example,
fiber optic materials can transfer electromagnetic waves without any alterations in their structure [16].

By contrast, active SMs can alter their properties in response to applied stimuli. These are mainly
divided into two subtypes. The first can alter only a limited number of properties; for example,
photochromic glasses can only change their color when exposed to sunlight [17]. The latter sub-
type of active SMs can convert one type of energy into another, as observed in piezoelectric crys-
tals that generate a current when exposed to stress or change their shape when subjected to a
potential difference [16,18,19]. Moreover, classifying SMs depends on the types of response to
different stimuli, including magnetic fields (magnetostrictive materials and magneto-rheological
fluids), electric fields (electrostrictive and electro-rheological fluids), pressure and electricity (pie-
zoelectric), stress or thermal effect (shape-memory alloys), pH or humidity (pH-responsive or
moisture-sensitive materials), and lastly strain and light (optical fibers and materials) [16,20–22].
Most commonly, the properties of SMs rely on their method of synthesis, which is usually through
conventional processes. Despite a huge demand for advanced technology to meet the needs of
affordable, easy-to-produce, controllable, and consistent manufacturing, there are significant
obstacles that must be faced when translating smart products from the laboratory bench to industry
[23,24]. To overcome these challenges, an AI-assisted perspective has many advantages
because SMs have diverse applications across different disciplines. For example, AI has been
used in the production of piezoelectric materials, carbon fiber-based materials, and shape-
memory polymers/alloys that are also used as the basis of aerospace hardware [25]. In another
example, the near-IR and visible spectrum of sunlight suits the powerful spectral response of
crystalline silicon or GaAs-based solar cells; however the solar cells employed as outdoor
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solving linear equations for classification
and regression investigation.
Levenberg–Marquardt algorithm
(LM): a technique which is used to solve
non-linear least-squares problems.
Multilayer feed-forward neural
network (MLFFNN): a type of ANN
containing multiple layer
interconnections between the nodes.
Poly(N-isopropylacrylamide) [poly
(NIPAAm)]: a thermosensitive polymer
that is insoluble at body temperature but
the phase changes reversibly at room
temperature.
Radiomic analysis: a technique to
extract a large number of features from
technologies become insufficient between 400 and 650 nm spectral region. In this manner, ML
models can be the key to hurdle this limitation [130]. Moreover, AI-based techniques have been ini-
tiated to utilize SMs in healthcare applications [26]; for instance, AI-assisted systems are the key to
combating the COVID-19 pandemic [27]. AI-assisted next-generation trends in standardization,
design, and fabrication are summarized in Box 1.

AI is a powerful tool for the rational design of SMs to revolutionize future
biotechnology
Industry 4.0 has garnered significant attention for manufacturing SMs because conventional
methods are challenging as a result of limitations in construction platform dimensions, inaccurate
manufacturing methods, lack of adaptation to different industrial fields, limited reproducibility,
restricted production scale, limited interlayer communication, inconvenience, poor data
management, and non-sustainability.
Box 1. The path towards smart design and material fabrication

The first step in the creation of SMs is the selection of material type and its composition, which can be an organic/inorganic,
biological, and composite [127], and the identification of a suitable fabrication method such as microfacturing and
nanofacturing (e.g., laser cutting, chemical etching, and photolithography) to obtain different structures, geometries,
and shapes. The final pathway is to functionalize the material with physical and chemical modifications that affect the prop-
erties of stimulus-sensitive SMs (Figure I). Both the degree of 'smartness' and the 'adaptivity' of the material make the SM
distinguishable from other materials in terms of transiency (responsiveness to different stimuli), immediacy (instantaneous
response to stimuli), self-actuation (the ability to alter shape), selectivity, and directness of action/reaction [128]. Smart
design comprises five key components: (1) (tactile sensing) data acquisition – the collection of raw input data; (2) (sensory
nerve) data transmission – the transport of the raw data; (3) (brain) command and control unit – controlling, analyzing,
and managing the data to achieve an output; (4) (motor nerve) data instruction – transmitting the output decision; and
(5) (muscle) action devices: taking action by activating a control unit [129].

TrendsTrends inin BiotechnologyBiotechnology

Figure I. The overall process of SM fabrication integrated with AI and machine learning. Figure constructed
with BioRender.com.
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a medical image using
Novel smart biomaterials includ-
data-characterization algorithms.
Regression tree: a type of decision

tree containing one or multiple input
variables and a single output variable to
design approximate real-value functions
instead of classification methods.
Response surface methodology
(RSM): an analytical methodology that
investigates the relationships between
one or more response variables and
several explanatory variables.
Support vector regression (SVR):
ML models that examine data for
classification and regression analysis.
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ing hydrogels, nanomaterials, nanofibers, bioconjugates, and shape-memory materials can be
used in AI-based beacon technology, basic sciences, cyber-physical systems, big-data-
driven frameworks, blockchains, and additive manufacturing that include – but are not limited
to – cloud, digital twin, robot-assisted, improved reality, and IoT visualization systems. They are
mainstays in enabling rapid, simple, and autonomous production before prototyping, tooling,
and printing smart devices [28]. For instance, smart pillbox, temperature-responsive wearable
devices, eyeglasses, biodegradable drug-delivery agents, and light-sensitive smart gels can be
fabricated via IoT-assisted 4D printers [29,30], incorporating additive manufacturing for building
time-varying systems. In particular, hydrogels – polymeric 3D materials – are strong candidates
as printable biomaterials because they are biocompatible, adhesive, and viscoelastic polymers
{e.g., poly(N-isopropylacrylamide), [poly(NIPAAm)] [31]} that can interface with organs and
soft tissues in bioelectronics and tissue-engineering applications [32–34]. Moreover, soluble
smart biopolymers can be conjugated with proteins, cells, peptides, carbohydrates, lipids, RNA
or DNA to adjust their self-assembly behavior, bioactivity profile, and stability for bioseparations,
drug delivery, microneedles, and molecular-switching technologies [35–37]. Nevertheless, the
synthesis of well-defined bioconjugates remains challenging owing to the complexity of their func-
tional group interactions and molecular constituents [38].

SMs are at the forefront of novel biomedical applications. For example, wearable devices for
health monitoring can directly detect analytes and trigger a response to inform users. These
can be designed in different forms such as watches, wristbands, shirts, headbands, shoes, neck-
laces, and eyeglasses [39]. The sensing devices generally contain a combination of SMs that
interact with analytes, and the sensing materials are mainly classified as electric, capacitive or
resistive. For instance, a touchpad was demonstrated as a calculator on a thin polyethylene tere-
phthalate (PET) substrate containing a triboelectricity-based self-powered nanogenerator array
through pretraining using a convolutional neural network (CNN) [40]. Furthermore, smart
nanofibers can be used to reproduce tissue architecture owing to their high adhesivity, high
porosity, 1D morphology, high contact surface area, surface charge density, and high surface-
to-volume ratio. They can be integrated with piezoelectric materials to enhance nanogenerator
power generation at human–machine interfaces (Figure 1) [41]. However, advanced interfaces
are hampered by structural complexity and the requirement for a convenient power source;
these systems therefore need to be modulated in a programmable manner with non-linear neural
interfaces [42]. For example, neural activities can be collected via thermal, electrical, optical, and
pharmacological methods, and the dynamic responses of the body can be tracked bymultimodal
flexible sensing using implantable devices for health monitoring [43]. Thanks to its ability to store
energy and its mechanical strength, one of the most used components in the flexible system is
graphene – an excitable 2D shape-memory biomaterial with a very long periodic carbon honey-
comb chain in the horizontal plane, but 1–3 atoms in the vertical plane [44–46]. Moreover,
graphene has a high Young's modulus and improved dielectric characteristics, yet does not
have a band-gap. Graphene quantum dots (GQDs) are, on the other hand, quantum-confined
materials and contain a band-gap owing to their size and edge effects. Conventional quantum
dots (QDs) are potential SMs that could provide precise responses to stimuli such as pH, light,
temperature, and pressure [47]. Their fabrication is mainly classified into top-down and
bottom-up models, and the production and characterization of QDs can be managed by either
ANN- or ML-derived algorithms (Table 1) [48].

In addition to graphene, SMs include shape-memory alloys, composites, ceramics, and polymers
that show unique characteristics including pseudo-elasticity (PE) and shape-memory effects in
response to external stimuli [49,50]. To exemplify, polyurethane (PU) with a polycaprolactone
(PCL) switching segment, poly[ethylene-co-(vinyl acetate)], poly(NIPAAm), poly(propylene
990 Trends in Biotechnology, August 2022, Vol. 40, No. 8
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Figure 1. Diverse biomaterials have been synthesized and characterized via artificial intelligence (AI) and
machine learning (ML) methods for use in the field of biotechnology. (A) A composite electrospun fiber-based
nanosheet consisting of MXene (2D inorganic compound), polyvinylidene fluoride (PVDF), and trifluoroethylene (TrFE) for
use as a triboelectric nanogenerator. Reproduced, with permission, from [111]. (B) Lattice constant and crystal structure

(Figure legend continued at the bottom of the next page.)
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fumarate), poly[ethyleneterephthalate-co-(ethylene oxide)] and their combinations are examples
of shape-memory polymers [51].

Nickel–titanium (NiTi) alloys have been used in cardiovascular surgery, orthodontics, and ortho-
pedics owing to their biocompatibility and superelasticity enabled by austenite-to-martensite
phase transformation. On the other hand, NiTi is vulnerable to corrosion, and it can extensively
release Ni ions into the bloodstream, possibly inducing toxicity [52]. To overcome this drawback,
the optimum chemical structure, manufacturing method, and physical properties of NiTi were in-
vestigated with a myriad of AI-assisted models, such as multilayer feed-forward neural
network (MLFFNN), fuzzy inference system (FIS), and ANNs [53–56].

In terms of biochemistry, quantum mechanics has enabled models based on fundamental physics
that can predict the behavior of molecules [57], and simulations allow the properties of a chemical
compound to be predicted with high accuracy. Designing a workflow via computational chemistry
requires extensive data collection, representation, assisted learning, andmodel selection [6]. In partic-
ular, data collections may require smoothing because of error propagation, and cheminformatics-
based applications compare molecular similarities and fingerprints via data fusion to improve the
accuracy of data collection [58]. For instance, bymeans of SMs, nanoparticles (NPs) and their assem-
blies can be used in dozens of areas such as chemical and bioanalyte sensing, diagnostics,
pharmaceutics, and catalysis [59,60]. During the synthesis of NPs, physical properties including
size, shape, surface chemistry, isotropy, and polydispersity should be controlled to provide the
desired features. Owing to the increasing amount of experimental data, several ML models have
been deployed to build stimulus-sensitive molecules. One example is the density functional theory
(DFT)-assisted ML algorithm for predicting the catalytic activity of rhodium/gold (RhAu) NPs through
kinetic information analysis of single-crystal surfaces – the representation of a solid-state lattice via ML
can theoretically be achieved in an infinite number of ways because of the fractional coordinates and
translation vectors of the atoms [61].

AI-assisted materials can be embedded into a broad range of biosystems
Bioinspired polymers with stimulus-responsive properties
Stimulus-responsive materials are able to modify their chemical and physical features in response
to external stimuli in adaptive, interactive, and self-regulating modes [62–65]. However, many
obstacles remain in terms of scalability, reproducibility, and robustness in altering, transferring, and
converting stimuli [66]. AI-inspired methods are crucial in overcoming these challenges. For
instance, biomaterials such as hydrogels are widely used as contact lenses [67] and in wound
dressing [68], but better understanding their swelling–deswelling behavior would be possible
using AI techniques because numerous parameters must be investigated simultaneously.
AI-based analysis of a combinatorial hydrogel library of thousands of diverse chemical structures
can accelerate the design of new hydrogels [69]. ML systems can effectively link the molecular
skeleton and the properties of stimulus-responsive materials by calculating the molecular
descriptors and fingerprints of a large library of different chemical structures in conjunction with
millions of parameters [70]. After resampling of these parameters, three ML algorithms (random
of shape-memory graphene oxide (C8O) consisting of a P1 phase transition to P2 when an electric filed is applied, or vice
versa. Reproduced, with permission, from [45]. (C) Versatile experimental factors affecting the fluorescence of architectura
neural network (ANN)-assisted carbon dots. Reproduced, with permission, from [112]. (D) Selective laser melting and ANN
model for shape-memory NiTiHf alloys. Reproduced, with permission, from [55]. (E) Different local activation energy
diagrams of RhAu nanoparticles (NPs) according to rhodium and gold allocations, the disintegration of NO at 500 K, and
the binding energies of N, O, and NO to various atomic distributions. Reproduced, with permission, from [61]. (F) Random
forest and gradient-boosting ML algorithms for the rational design of the chemical and physical structure of hydrogels
according to shear rheology. Reproduced, with permission, from [70].
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forest, gradient boosting tree, and logistic regression) were found to be highly effective. In
addition, support vector regression (SVR) and least-squares support vector machine
(LS-SVM)-based techniques are powerful tools to model non-linear relationships and can tackle
the challenges associated with real-world applications more efficiently than ANNs [71]. Using
such techniques, there was excellent consistency between the predicted and experimentally
observed mechanical properties of poly(NIPAAm-co-AAc) IPN hydrogels as a function of pH, tem-
perature, and time, thus facilitating the practical design of hydrogels for various applications [31].

AI-assisted drug design and modeling of drug release
SMs typically have complex thermomechanical and shape-memory behavior, as well as poor
fatigue properties, which may affect their drug-release kinetics and compromise model predictions
[67]. However, the drug-release behaviors of SMs can be accurately predicted via AI-based
methods using training data based on the type, size, and structure of material and drug,
material–drug interactions, the type of external stimulant, and other factors [72] (Figure 2). The
input–output relationships in the experimental data can be trained in AI-based systems to predict
drug-release kinetics. AI-assisted studies reliant on drug-release modeling have garnered signifi-
cant attention in many fields. For example, riboflavin release from pH- and temperature-sensitive
hydrogels was modeled using an ANN in conjunction with a three-layered feed-forward
backpropagation network, and this predicted that increasing temperature (up to 52oC) at a
more basic pH (pH 7) resulted in more drug release. The AI-based model was more accurate
than the conventional response surface methodology (RSM) model. The same AI model
developed on an ANN was also used to estimate the release of doxorubicin from hydrogels under
different pH and temperature conditions [69]. After data-training with the Levenberg–
Marquardt (LM) algorithm optimization method supported by LS-SVM and SVR, the predicted
data exhibited excellent consistency with the experimental data. ML and perturbation theory have
been recently combined to train a large dataset (chemical and physicochemical structures of
NPs, coating agent, and drug) obtained from over 30 000 preclinical assays [73]. A final dataset
of over half a million drug-delivery systems was successfully designed to predict the activity/
toxicity profiles of the drugs released. A similar AI-based technique was also used to design a release
system for drug–vitamin mixtures for cancer cotherapy [74]. Recently, 3D printing technology has
been widely used to produce drug delivery and drug release systems [75]. Specific parameters
such as shape, dimensions, weight, and layer thickness were trained in ML models. As an exam-
ple, the trained data from different formulations allowed the accurate prediction of drug release
times. Similarly, ANNs, SVMs, and ensembles of regression trees were shown to be highly ef-
fective in predicting in vitro dissolution profiles and drug release [76]. So far, the data acquired
from thousands of studies can be effectively trained in AI systems to predict the outcome of
drug design and release systems for future medical applications such as cancer therapy, immu-
notherapy, and bacteriophage therapy [77,78].

AI-assisted biosensors to accelerate clinical decisions
Biosensors are platforms that contain biological recognition elements to capture specific analytes
[79]. Despite their widespread use in clinics, they may suffer from insufficient accuracy [80,81]. In
addition, SM-integrated biosensors are highly susceptible to environmental factors, and regener-
ation between each measurement may be highly variable [82]. However, the accuracy and
response time of electrochemical biosensors can be improved by using AI-based techniques
(Table 2). Conventional methods usually involve quantitative modeling of the kinetic behavior of
the biosensor. ANN and SVM techniques were recently applied to glucose oxidase biosensors
to analyze overlapping signals, which is not possible using linear models [79]. Excellent consis-
tency between the predictors and the response time of the sensor was presented in this study.
Non-invasive biosensors typically facilitate signal acquisition such that health-related data can
996 Trends in Biotechnology, August 2022, Vol. 40, No. 8
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Figure 2. Artificial intelligence (AI)-assisted materials and their applications in different fields of biotechnology
(A) Design of machine learning (ML) methods to synthesize soft polymer-based robotics. Reproduced, with permission, from
[64]. (B) Perturbation-theory ML data preprocessing and processing workflow for drug design and drug release kinetic
analysis. Reproduced, with permission, from [72]. (C) Workflow of preprocessing classical calculation of an ML-assisted

(Figure legend continued at the bottom of the next page.
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Table 2. Accuracy of AI-assisted diagnostics, therapeutics, and clinical decision techniques

AI-ML method Mechanism Targeted analyte and discipline Accuracy Refs

Artificial neural network and
support vector machine

Electrochemical sensor Glucose oxidase biosensors 95% [79]

Biovitals™ analytics engine Electrochemical sensor Early detection of COVID-19 95% [90]

Chan–Vese-based level set
segmentation method

Image processing Brain tumor detection ≥90% [92]

Deep neural network Image processing Lesion detections ≥80% [93]

Deep neural network Image processing Adenocarcinoma enumeration via
miRNA biomarkers

95% [95]

Artificial neural network Surface-chemistry
dependent
characterization

Breast cancer diagnosis 90% [96]

Random forest algorithm Image processing Bone marrow involvement in subjects
with suspected relapsed acute
leukemia

≥62.5% [97]

Random forest, support
vector machines, and neural
network

Strain sensor Human gait analysis 93% [100]

Deep neural network Optic tactile sensor Electronic tactile sensor for 28–61% [101]
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be rapidly processed [83]. Plasmonic biosensors, for instance, measure resonance shifts caused
by the excitation of surface plasmons once biomolecular interaction occurs [84,85]. Despite their
label-free nature that allows real-time and continuous measurements with high sensitivity, they
still face limitations such as immobilization effects, steric hindrance with binding, and mass trans-
port limitations [86]. There have been attempts to use AI-assisted systems to overcome these
challenges. A label-free meta-plasmonic biosensor was recently designed through ML-based
algorithms (i.e., multilayer perceptron and autoencoder) and provided 13-fold higher detection sen-
sitivity than the conventional system, and also resulted in fewer errors and higher accuracy than
interpolation methods in predicting reflectance curves and resonance angles [87]. Moreover, in
non-invasive biosensor systems, AI methods can eliminate the high rate of false-positives in pros-
tate cancer screening [88]. In this study, using training data from 76 urine specimens, random for-
est and ANN algorithms screened prostate cancer patients with over 99% accuracy and
minimized false-positive outcomes [88]. From a mobile health (mHealth) perspective, the preci-
sion of smartphone-assisted wearable biosensors is also improved through the use of AI strate-
gies [89]. Recently, continuously collected data from different physiological conditions of 34
patients with COVID-19 symptoms were used to train a Biovitals™ analytics engine – an
ML system [90] – and multivariate analysis was highly accurate in detecting COVID-19 patients.
Overall, AI-enabled biosensors have significantly improved the diagnostic accuracy of patients
with different conditions.

AI improves image-guided theranostic drug delivery: a combination of diagnostics and therapeutics
The concept of theranostics combines both therapeutics and diagnostics. Theranostic materials
coupled with advanced imaging techniques (i.e., optical, nuclear, ultrasound, etc.) have the
potential to revolutionize precision medicine [91]. However, a major drawback in the design of the-
ranostic systems is that multiple components are required, leading to structural heterogeneity
multimarker biosensing device for prostate cancer screening using a drop of urine and its sensing performance. Reproduced
with permission, from [88]. (D) An ML-based prediction model for 18F-fluoro-deoxyglucose (FDG) positron emission
tomography (PET)/computed tomography (CT) radiomic analysis for identifying bone marrow involvement in patients with
suspected relapsed acute leukemia. Reproduced, with permission, from [97]. (E) The basic concept of e-skin and deep
neural network architecture for reliable sensing. Reproduced, with permission, from [103].
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and low reproducibility. AI techniques would significantly improve treatment schedules. For
instance, tumor segmentation involves the separation of the tumor from normal tissues during
radiopharmaceutical therapy [92], and AI-assisted models were recently generated to automate the
segmentation process and allow accurate prediction of the absorbed dose and the outcome of
therapy [93]. Deep learning also has the potential to estimate tumor profiles non-invasively. An
ML approach, for instance, was previously used to analyze microRNAs (miRNAs) as non-invasive
biomarkers for theranostic applications in prostate cancer [94]. Another deep-learning model was
used to predict tumor immune profiles using the CytAct biomarker with fluorodeoxyglucose pos-
itron emission tomography (FDG-PET) in lung adenocarcinoma [95]. The model successfully pre-
dicted CytAct, which is related to cytotoxic CD8+ T cell activity against the tumor, thus providing a
potentially feasible theranostic method to define immunotherapy response. ML was also able to
identify the presence and type of cancer using luminescent carbon NPs, and could accurately
determine cancer stages [96]. Neural network interneuron connections were used to map the rela-
tionships between the input and output data, and they showed superior results compared to
conventional methods. The diagnosis of 18F-FDG PET/CT-based leukemic bone marrow involve-
ment (BMI) is a crucial issue in patients with acute leukemia. Data obtained from 41 patients were
recently used to train an ML model, and radiomic analysis showed high precision in identifying
BMI in patients [97]. Further delivery of 18F-FDG in combination with nanotherapeutics to the tar-
get site would be a promising technique as a theranostic system. Ongoing expansion of thera-
nostic systems is expected to accelerate the transition from experimental design to clinical
decision making in the near future.

Integration of ML into electronic skins (e-skins) and soft robots
e-Skins can continuously receive and process tactile signals from human skin and allow real-time
health monitoring in patients with different conditions. e-Skins should possess specific properties
such as minimal latency, high sensitivity, and rapid response. They are usually made of soft and
conformable materials with mechanical durability [98,99]. Recent advances in materials science,
data processing, andML have led to the design of novel e-skins. As an example, ML was recently
applied to diagnose human gait disorders using e-skins made of four stretchable textile-based
strain sensors patched on an ankle brace [100]. Three supervised ML algorithms processed
the data obtained from different human gait phases and showed >90% diagnostic accuracy.
Recently, a tactile glove composed of 548 active sensors in a matrix form was manufactured [101],
and convolutional neural networks were trained a large-scale dataset of tactile maps acquired
from the sensor array. Artificial analogs of the natural mechanoreceptor network would be a
potential tool for the future design of prosthetics. Such prosthetic design can be improved using ML
algorithms. For example, AI-assisted design was used to design a graphene-based piezoresistive
sensor with enhanced performance, high durability, and improved sensitivity to vibrations in epidermal
signal monitoring at different arteries [102]. Similarly, a biomimetic and porous nanofiber-based
sensor assisted with an ML algorithm of 'long short-term memory' successfully distinguished
between different human actions and pressure stimuli [41]. The network architecture,
composed of 200 hidden input layers and five output layers, exhibited well-distrubuted
pressure-level results for designing an accurate strain sensor. Another macroscale e-skin
was constructed using a single-layered piezoresistive multi-walled carbon nanotube
(MWCNT)-polydimethylsiloxane (PDMS) composite film which was computed through a deep
neural network (DNN) consisting of two channels for position and pressure recognition. This
platform processed the alterations in electrical resistance induced by a mechanical stimulus [103].
Moreover, by using a set of half a million datapoints, the DNN-assisted e-skin sensor outperformed
most of the previously reported sensors in terms of pressure sensitivity. Various ML algorithms
were also tested to predict the deformation magnitude of soft optoelectronic sensory foams
made of silicone rubber [104]. The defined model outperformed standard algorithms such as
Trends in Biotechnology, August 2022, Vol. 40, No. 8 999
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Outstanding questions
Can we predict how novel SMs will
respond to external stimuli?

Can SMs be organized and designed
for specific goals in biosystems?

What are the most promising AI tools
for the production, characterization,
and benchmarking of SMs?

What are the main contributions of AI
methods and/or ML-based algorithms
to recent innovations in advanced
materials used in biotechnology?
SVM and predicted the deformation level with high accuracy. Such approaches hold great
promise for the design of soft e-skins and robotics with the desired responsiveness to external
stimuli, thereby enabling soft robots to intelligently interact with their surroundings. Despite the
accuracy of the AI models, fault detection in e-skins remains challenging. Notably, the training
data may not be entirely representative and may be noisy, and incorrect model assumptions
are often encountered, leading to modeling failures. Hence, obtaining relatively low variance
is crucial for the success of a model [104]. Defining which architectures are the most simple
and fastest to use for data training will pave the way to the design of e-skins and soft robots
that are more conscious of themselves and their environment [105].

Concluding remarks and future perspectives
Industry 4.0 is a new stage of industry in which manufacturing and information and
communication technologies (ICTs) merge to form a cyber-physical system which is
simultaneously monitored and controlled by complex computer-based algorithms in a robust
manner. Such a dynamic system requires a specific group of materials to meet the growing
requirements of the Information Age. SMs possess unique characteristics that are sensitive
to changes in an external stimulus, and have far-reaching potential in diverse fields. Despite
their immense potential, SM fabrication and integration into biosystems remain in their infancy.
The worldwide biotechnology market for SMs is continuously growing. Aerogel-based [106],
metal foams [107], biocomposites, and bioconjugates (i.e. artificial spider silk) [108] for
diagnostic devices, bone regeneration, wound healing, and drug delivery are rapidly advancing
[109]. The use of graphene, carbon nanotubes, and amorphous metals is becoming an essential
part of biodesigns [110].We foresee thatmeeting the requirements of SMmarket will only be possible
with the assistance of AI. AI-based self-replicating technologies would greatly accelerate the imple-
mentation of SMs in biomedical and biorobotic platforms, particularly in the design of novel drugs
(e.g., identification of newDDR1 kinase inhibitor), biosensors (e.g., contact lenses andmouth guards),
theranostics (tumor monitoring), e-skins, and soft/wet/hard robotics. AI-assisted systems will be the
mainstay not only of biosystem models but also for resolving administrative issues, data design and
management, and the production of advanced software and hardware. Biomonitoring using
AI-assisted products is set to revolutionize healthcare across human society. However, several
major challenges remain to be overcome in integrating SMs into real-world applications, as well
as in evaluating economic outcomes and AI ethics. Process automation combined with new
insights provided by combining AI with advances in biology, engineering, mathematics, and
computation offers a real prospect of surmounting these obstacles (see Outstanding questions).
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