
MULTIFONT OTTOMAN CHARACTER RECOGNITION

Ali OZTURK' , Salih G m E S , Member, IEEE2 and Yuksel OZBAY2

' Bilkent University, Computer Center, 65530, AnkardTURKiYE
Selpk University, Electrical and Electronics Engineering ,42031, Konya / TURK&E

e-mail: ozturka@bilkent.edu.tr, sgunesQselcuk.edu.tr, ybay@selcuk.edu.tr

ABSTRACT - Ottoman characters from three
different fonts are used character recognition
problem, broadly speaking, is transferring a page
that contain symbols to the computer and
matching these symbols with previously known
or recognized symbols after extraction the
features of these symbols via appropriate
preprocessing niethods. Because of silent
features of the characters, implementing an
Ottoman character recognition system is a
difficult work. Different researchers have done
lots of works for years to develop systems that
wou Id recognize Lut i n characters. Although
almost one million people use Ottoman
characters. great cieal of whom has different
native languages. the number of studies on this
field is insufficient.
In this study 28 different machine-printed to
train the Artit'icial Neural Network and a %95
classitication accuracy for the characters in these
fonts and a 5670 classification accuracy for a
different font has been found.

1. INTRODUCTON

We can describe the character recognition
operation as transferring the hand-written or
printed text to the computer correctly to
facilitate the human-computer interaction.
Segmentation of the symbols in document
analysis systems is the most critical operation.
The recognition of a hand-written Text is more
challenging that recognizing a printed text. For
this reason the recognition applications of
printed characters are implemented much more.
Often, the written or printed symbols that will

be recognized may be interconnected. While the
Latin characters are interconnected if they are
hand-written, the Ottoman characters are being

found as interconnected character groups even
in a printed text. The noise which appears not
only from the natural effects of hand writing, but
also by means of other factors such as scanner
resolution, printer and paper quality may
connect the symbols or breaks one symbols into
pieces. This problem is known as connectivity
and segmentation. [I].
The neural network that was used to recognize
the Ottoman Characters in this study is a
MultiLayer FeedForward Network with
BackPropagation. There are 700 nodes in the
input layer for each character, 30 nodes in the
hidden layer and 28 nodes in the output layer for
each characters. Sigmoid function is used as
activation function.

2. THE PROPERTIES OF THE
OTTOMAN CHARACTERS

Although important achievements are made in
recognizing the Ottoman numbers, there are
very few papers about recognizing the Ottoman
characters especially by means of neural
networks. Recognizing the Ottoman characters
is a challenging work because of the evident
features of them. Each character has four
different shapes according to its position in a
word. In a word a character may be :

At the beginning
In the middle
At the end and
May be isolated from other characters.

The properties of an Ottoman text that makes it
different from all other languages are [2] :

The characters are as interconnected symbol
groups. (To be hand-written or printed
doesn't make sense).
The shape of a character changes according

0-7803-6542-91001$10.00 0 2000 IEEE
945

to the position in an interconnected
character group.
The width of the characters may be different
even for the same font and the width of a
character may change according to its
position.
Some characters may be vertically aligned.

As either the hand-written or the printed
Ottoman text includes interconnected character
groups, the segmentation operation is very
important. Even to recognize a printed Ottoman
text is more valuable than recognizing a hand-
written Latin text, because the character width
may change in different positions[3].

Table 1. Basic Ottoman characters each of
which belongs to a different class
-
%ss
No
1
2
3
4
5
6
7

-

-

Letter Group

3 3

12

13

I I

Letter Group 7
Table 2. The basic character groups that are

obtained by assigning the characters having
similar shapes to the same group

Letter Class
No

15
16
17
18
19
20

21

-
Letter

J"
b
k
F

c ;
d
9

Class
No

22

23

24
25
26
27
28

3

3. BACKPROPAGATION NEURAL
NETWORK

Multilayer perception trained by
backpropagation [4] is the most common and
famous neural network classifier. It is well
known that the networks having one hidden

layer and non-linear activation function are the
most widely used classifiers. If they are trained
properly they have the power to make the right
classification after obtaining the property set
which determine a pattern as an input vector
from their input layers.

After feeding the input vector to the input layer
of the neural network, passing through the
hidden layers by means of weight values, the
result appears in the output layer. Each of the
neuron in the network passes the value to all the
neurons behind its layer as the result of a non-
linear activation function after taking the
arithmetical sum of all the weight values that
end on itself. This explanation can be
summarised as in the following equation.

J

There are many alternatives for an activation
function. In this study "Sigmoid" is used.

(2)
1

f (net,) = ~ -net,

I + e '0

Qo is the temperature value of the neuron. The
higher the temperature, the slower the sigmoid
function changes. In very low temperatures it
becomes a step function [4].
In the backpropagation-training algorithm, the
mean square error is used as the error criterion.

Here E, is the error for the p* vector, t,, is the
expected value for j* neuron (that is the related
output value in the training set) and OPj shows
the real value' of the jth output neuron. Taking
the square of the errors provides the output
values that are far from the expected values to
constitute the total error. If we increase the
exponent this effect will be much strong.

The equation used for backpropagation training
is,

946

A w J I = q6JIJopl (4)
Here q i s the learning rate, 6, is the error

signal of the neuron in the L' layer ve O,, is the
output value of the neuron in the (L-l)th layer .
6, error signal,

1) For the output layer neurons,

= (' p J - ' p J b p J (' - ' p]) (5)
2) For the hidden layer neurons

' p , = - OpJ 6 p k wkJ (9
k

Here 0,, is for the Lth layer neurons, 0, is for

(L-l)th layer neurons and 6,,
layer neurons.

is for (L+l)"

L ' ~ layer
output

(L- 1 lth layer Expected
Value

tl

Figure 1. Output layer neurons training

In practice a coefficient a i s added to the
equation 4 in order to make faster convergence
. This coefficient value provides to obtain the
previous values of the weights and makes the
error surface of the weigth space smooth
filtering the changes in high frequencies. The
weight values are adjusted as in the following if
a momentum constant is used:

A W J L (f l + l > = ~ (6 , 0 , ,) + ~ W , , (f l) (7)

The momentum constant value is generally 0.7,
but it can change for a specific application. The
optimum value can only be found by means of
experiments.

To begin training with the backpropagation
algorithm very small values are given to the
weights. Making opposite of this may cause the

training to fail. In the next step the training set
vectors are applied to the input layer neurons.

After the forward computation the real values
will occur on the output layer neurons. The
weight values are adjusted by applying
backpropagation algorithm. The total network
error has to decrease after much iteration. If this
is not the case, the training parameters q ve a
may be changed. Including contradictory values
in the training set (e.g., giving different
expected output values for the same input
vector) may also cause the total error not to
decrease independent from the training
parameters. In this case the training set must be
checked.

(L- 1)" layer

c 2 +
AWji = 770, I PkWkJ

oj (1 - O j)

Figure 2. The training of the hidden layer
neurons.

If the total network error falls below a
predetermined value after a number of iterations
then it means that the network has converged.
Decreasing of the total network error linearly is
not needed. There may be oscillation in the very
first steps of the training. [11

4. CHARACTER RECOGNITION
SYSTEM

There are two main steps for the system
implemented in this study:

0 Training the neural network
Testing the system

The data must be converted to the form that the
neural network will be able to process and the

947

output values must be meaningful to the system
user (the human). These operations are called
preprocessing and postprocessing respectively.

4.1. Preprocessing Step
The data that is needed to train the neural
network, which is the classifier part of the
system, are obtained from three different
Ottoman newspapers that make publications via
the internet(Figure 3). Since these texts were
written via keyboard and didn’t contain any
noise, the preprocessing step was relatively easy.
These texts are published as images in GIF
picture format on the newpapers homepages.
These were converted to 4 bit BMP images by
means of Microsoft Photo Editor, because 16-
colour image is sufficient to handle the black-
white text images[5][6]. The Ottoman characters
in these images are manually segmented and
pasted on a different BMP image file. To be
processed by means of the neural network, these
characters must passed through segmentation
and feature extraction step.

4.2. Segmentation

To express the characters digitally, the BMP
file must be converted to a text file that includes
zero and ones. The program that is written for
this purpose provides this situation by writing 1
for black pixels and 0 for white pixels.

Elif Be Te Se Cim Ha HI Dal Zal Re Ze Sin Sin Sad

Dad TI ZI Avn Gavn Fe Gaf Kef Lam Mim Nun Vav He Ye

Figure 3. The Ottoman characters in three
fonts that are used to train the neural network

The segmentation operation finds the upper,
lower, left and right bounds of each character in
the text file and stores them as 20x35 matrixes.
This matrix size is the optimum value that can
be used without loosing the features of the
characters. The following steps are applied to

extract the characters from the file :

1) Since the characters are written line by line
on a page the algorithm finds the line
bounds on its first pass.

2) The left and right bounds of each letter are
extracted from each line. (Figure 4)

3) The character data that are stored as zeros and
ones in matrixes are normalized for the input
layer of the neural network. That is, the two
dimensional matrix of 20x35 elements is
converted to a one-dimensional array of 700
elements.

Figure 4. Segmentation of the Ottoman
characters.

The characters data extracted from the steps
explained above and the corresponding output
values were written to a file that would be used
for training. Since there are 28 basic characters
84 different character vectors are obtained from
3 different fonts. Since there are 700 data each
of which is on a different line for each
character, there are 58800 lines for the input
data and a matrix of 28 column and 84 rows for
the corresponding output values in the training
file.

4.3. Training The Neural Network

BORLAND C++ for Windows writes the
program that implements the supervised
feedforward neural network with
backpropagation. The program requires the
following values from the user:

a) The name for the file that will keep the
training results

b) The name of the file which includes the
training data

c) The neuron number in the input layer
d) The neuron number in the output layer
e) Hidden Layer number and the neuron

948

number in the hidden layers
f) Maximum iteration number
g) Learning Rate (Eta)
h) Weight Adaptation Rate (Momentum)

The program has also the ability of interrupting
the training, saving the weights and continuing
from the point where it remains. At the end of
training the program saves the data about the
network state to the related files.

4.4. Testing The Recognition System

To test the implemented character recognition
system and to give visual properties to the
program a graphical user interface was
developed using Delphi programming language.
In this interface, there are two main windows
on the interface. One of them is the window that
contains the characters that will be used to test
the system and the other is a small box in which
the results are displayed. The user selects the
characters via mouse and gives the command
“Recognize” to the system. The pronunciation
of the selected characters appears on the screen.

5. SIMULATION RESULTS AND
CONCLUSIONS

The input layer of the neural network contains
as many neurons as the row numbers (700) of
the input vectors and the output layer includes
a neuron for each of the 28 Ottoman characters.
There are 30 neurons in the single hidden layer.
The neural network was trained for 8 hours with
nearly 4000 iterations until the total network
error decreased to 0.000106. The network has
achieved to classify the characters in the training
set by nearly %94 classification accuracy. Only
the following characters are misclassified.

Figure 5. The misclassifed training set
characters

Since there are 28 basic characters in Ottoman
alphabet, 84 different character vectors are
obtained from 3 different fonts. The matrix that

stores a character includes 20 rows and 35
columns, so the input layer must have 700
neurons. The output layer has 28 neurons for
each character. To determine the
misclassification rate for each character the
following Root Mean Square Error equation was
used.

The character recognition system has been
tested with a different font character set which
doesn’t contain any characters from the training
set and found a %70 classification accuracy for
the characters in this new font.

6. REFERENCES

[I] S. P. Abhijit, B. M. and Robert, Pattern
Recognition with Neural Networks in C+ +,
IEEE Press, 1996.

[2] B. Al-Badr, R.M. Haralick, “ Segmentation-
Free Word Recognition with Application to
Ottoman”, The Intelligent Systems
Laboratory, University of Washington,
1995.

[3] R.F. Walker, M. Bennamoun and B.
Boashash, “Comparative Results For
Ottoman Character Recognition Using
Artificial Neural Networks”, Queen Sland
University of Technology, 1995.

[4] D.E. Rumelhart, G.E. Hinton and R.J.
Williams , “Learning Internal
Representations by Error Propagation”,
Parallel Distributed Processing, vol. 1,
Foundations, D.E. Rumelhart and J.L.
McClelland (Eds.), MlT Press, Cambridge,

[5] J. Levine, Programming for Graphics Files
in C and C++, John Wiley & Sons, 1994,
New York.

[6] S. Rimmer, Supercharged Bitmapped
Graphics, WindcrestMcGraw, 1992,
NewY ork.

MA, 1986, pp 3 18-362.

949

