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Ray representation for k-trees
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Abstract: k-trces ban: established themselves as useful data structures in pattern recognition. A fundamental operation regarding
k-trees is the construction ota it-trce. We present a method to store an object as a set ol‘ rays and an algorithm to convert such
a set into a k-tree. The algorithm is conceptually Simple. works for any A". and builds a k-tree from the rays very fast. It produces
a minimal k-tree and does not lead to intermediate storage swell.
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1. Introduction

k-trees are data structures based on the symmet-
ric recursive partitioning ol‘space. In order to make
the upcoming presentation more concrete and the
definitions less cumbersome. hereafter we shall
choose octrees (k = 3) as the representative member
of this group. It will be observed that our results
will be applicable to both quadtrees (k = 2) and
k-trees with k > 3 as well.

We are concerned in this paper with a task of fun
damental importance in systems based on octrees.
This is the operation of constructing an octree. The
algorithms cited in recent overviews [1.2] are nei-
ther efiicient nor conceptually easy to understand
and implement.

We aim to accomplish two things: (i) propose a
new way of storing an object as a set of rays. and
(ii) describe an original algorithm to convert this set
of rays into an octree. In a previous publication [3].
we have called the rays parallelepipeds. It will be
seen that the latter term is indeed more suggestive
but for the sake of conciseness we shall adopt the
former.
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2. Termhobgy

An octree is a special case of the abstract data
type digital s'i‘tit‘t‘ii tree [5]. The object. which we
shall denote as “. is contained in a universe. I.
which is a cube of size U x U x U where U = 2’.
Here I is a positive integer. 7' is made of U3 small
cubes of unit volume called iroxels. To obtain an oc-
tree. which wc shall denote as Q. l’ is continuously
subdivided into eight symmetric octants of equal
volume. Each of these octants will either be homo‘
geneous (i.e.. either fully occupied by E or void) or
heterogeneous tie. partly occupied by E). We fur-
ther subdivide the heterogeneous octants into sub-
octants, This is stopped when octants (possibly
voxels) of uniform properties are obtained.

Following the established usage. let us consider
the obeis, An obel can be empty-Juli. or partial. l’
is considered to be a level-O obel. If E is not void
but does not till 1’ either. then the universe obel is
labeled as partial. Then the following recursive
process is carried out. Iii < K then a partial obel at
level-[ is divided evenly into eight obels at level i +
I. Each of these obels is again labeledtiiil. empty.
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or partial and the process is repeated on the partial
ones. Let us assume. without loss of generality. that
the partial voxels. if any. at level-/' are arbitrarily
declared to be full.

The level of an obel v in an oetree is detined re—
cursively as let't'ltvi : t}. in ease \' is the root and as
[ere-dirt = i'ei'eltiiitlit‘rii-ii + 1. otherwise. The depth
ofan octree is understood as the level of its deepest
(lowest) leaf.

3. Relev ant research

Quadtrees. octrees. and to a lesser extent higher

dimensional lt-trees have proved to be a fertile area
of research with many hundreds of papers and var-
ious surveys. A recent. rather nontechnical over-
view is provided by Samet and Webber [1.3] who
cite about 300 references (althOugh with some im-
portant omissions). Since we carry no pretensions
of covering all the relevant work. we shall be selec-
tive and refer the reader to Requicha [6} and Srihari
[7] for two informative surveys on the representa-
tion of rigid solids.

Early work on quadtree algorithms was done by

Hunter and Steiglitz [8} who showed how to per»
form a set of operations on images using quadtrees.
Jackins and Tanimoto [9] extended this work to oc-
trees. Doctor and Torborg [l0] presented display
techniques for octree-encoded objects.

Construction of a software system to represent
and manipulate irregular 3D objects was first ac-
complished by Meagher [1]]. His system lets the
user build quadtrces interactively. extend them to
oetrees. and carry out transformations and set-

theoretic operations on them. Later. Meagher built
a special hardware. ‘The Solids Engine'. which is a
system for interactive solid modeling based on oc-
trees.

Techniques for building octrees include merging
the cross—sectional images (which are represented as
quadtrees] of the object in sequence. This technique
is examined by Yau and Srihari [l 2]; they show how
to construct a k—dimensional tree representation
from multiple (k — li-dimensional cross-sectional
images. It is noted that there is a superficial resem-
blance between the algorithm in [ll] and our algo-
rithm. Tamminen and Samet [13] give an algorithm
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for converting from the boundary representation of
a solid to the corresponding octree model using a
technique called ‘eonnectivity labeling'. Samet [H]
considers the conversion of tasters to quadtrees.

Sometimes. it is possible to use a small number
of 2D images to reconstruct an octree representa-
tion of a 3D object. This is done by taking silhou-

ettes from various viewpoints. These silhouettes are
then proceSsed to create a bounding volume that
serves as an approximation ol‘tlie object. cf. Potme-
sil [15].

4. Ray representation

Ray representation has. in fact. been known for
a long time. For example. to compute the volume

of a 3D object. 5. one approximates it with a set of
rectangular parallelepipeds. These parallelepipeds
(or. as noted before. rays. from now onl are as—

sumed. without loss of generality. to be evenly
spaced in the xy—plane but to have varying lengths
along the :fiirection. Figure 1 shows the rays for a
JD object (region). In 3D these thin rectangles
would become thin parallelepipeds. We assume
throughout this paper that the rays are cast at unit
spacing.

Let each ray be given in the format p 2
l.\'._l.'.:1.:;.’tl.tl:]. ‘~\:tct‘€ .\‘.}‘.:;.Z:E[O.U - I}. This
corresponds to a ray with fixed (Lt) that enters the
object at :l and leaves it at :3 (assume that :l g :2).
When an object is given as a set of rays. it is as—
sumed that all rays in the set are distinct and dis-
joint. The siujrttt'e normals iil and P1; are associated
with :l and :1. respectively. They are used to dis-
play E realistically so that the user can determine
its shape. especially if it is an irregular object. In the
sequel. we sometimes ignore the surface normals
Since they can be easily handled by our algorithm.

E
tr:

Figure 1 Rd) representation for a region Iregion boundary not
shown‘i,
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There are several advantages ofthe ray format:
' Set—theoretic (Boolean) operations on two oc-

trees can be performed via trivial operations
on rays since rays are 1D.
Translation of a ray is easy. (Rotation is still
problematic.)

' To display an octree stored as a set of rays. we
simply paint the rays into the frame butler
back to front. Notice that this would work for
any display angle.

5. Rays from quadrie solids

Before we present our algorithm to build an oc-
tree from a set of rays. we consider the problem of
obtaining a ray representation for quadric solids.
eg. an ellipsoid. Thus. we shall effectively show
how to obtain an octree from a quadrie solid. since
the output rays from the following process are
direcly supplied as input to the stacking algorithm
of Section 7. it is fair to note that quadric solids are
taken as an exemplary case for they are neither too
trivial nor too complicated (like bieubic patchest.

The algorithm below was implemented in For-
tran—T? on a Prime 750.

Let E be a 4 x 4 matrix and let 1 be the vector
[x y : l]". (The superscript T denotes the transpose.)
A concise way of writing down the equation of a
quadric is then 1 "31' = 0. We first clip a quadric
solid to the unit cube lie. [0. l]’) and then output
a set of rays and surface normals as described be-
fore. We assume that each ray goes through the
lower left corner of the obel: the alternatiye would
have been that the rays go through the center.

The algorithm to obtain rays from quadric solids
is as follows:

Algorithm
0. lterate up the quadric solid in y. For each y.

find the 3D conic in .\' and :.
I. For each conic in the x:-plane. find the range

of x for which : is real. This range contains up to
two (0. l. or 3) segments that may be finite or inti-
nite. To determine the range of x for which the 3D
conic fuzz) is real. six cases should be considered
depending on the discriminant of the formal solu-
tion for : in terms of x. That is. if f'lx.:) =
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of + (ha — lilx): #— lcn + clx + cg“) = 0. then
the discriminant is (its) : (hm + h; t)3 .. Jute... +
t'1.\' + (33(2). The six cases are: nix) is always posi-
tive; tilt) is positive outside a finite interval; til )5] is
positive inside a finite interval; tilx) is nexer posi-
tive; tilxl is positive above a certain value; and final-
ly. nix) is positive below a certain Value,

2. lterate in x and solve the quadratic equation
for :._ and :2. Clearly. they are clipped to [0, l].

3. Calculate the normals in the usual way. If :,
were clipped in step 3. then the associated normals
would be (0.0 i l).

The above algorithm is fast because it doesn‘t
work with the rays that do not intersect the object.
For reasonable objects. these are typically the ma-
jority ofall the rays.

For ray tracing higher order solids. such as bi-
cubic patches. we propose to use the following ob-
servation. The functions-tiny) and nlx._t') ._ for in—
tcrscctions and normals 7 although complicated.
are smooth. Therefore. efficient simple approxima-
tions using splines can be found.

6. Combining and splitting

Now we come to the main concern of the paper.
At the core of our algorithm for piling up an octree
are two operations: combining and splitting. We
now explain them.

Given a ray
These are computed recursively as follows. First
search for the longest (in :) row in p and remote it
from p, This is a maximal row. Now p is either re-
duced to a shorter ray or divided into two rays both
shorter than the original. in both cases. the search
continues until maximal rows of :-length equal to
l are obtained. it is noted that. once the maximal
rows of p are found. it should be impossible to ob-
tain a longer row by putting two maximal rows to-
gether. For example. Figure 2 shows the nine maxi—
mal rows obtained from the ray (l. 1.17.93).

A row at level-i is a triple l.\'._t',:l where : is divisi-
ble by I” “. Clearly. this is shorthand for the ray
(.\'."t'.:.: ~.- 2’ ' ‘ i l); in other words. the :—length of
a row at level-i is always 2’

u. we need the maximal rows of p.

". Two rows. pi =
(xhrpn and u1 = l.\'3.y3.:). at the same leycl are

MT
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length of row

' 2 4 B 32 15 a 4 I
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Figure 3. Splitting J ray (l. l. [7. L33) into nine maximal routs
mm) (L) the settle).

called adjacent if x. = x2 and l)‘. -— ‘1‘: = I. (Note
that they both have the same z.) A set of 2‘ rows at
level K A i can be combined if. when sorted by y to
get a set of rows. every row in this set is adjacent
to its predecessor and its successor. When rows are
combined one obtains squares which are explained
below. For example. the rows (0.0.0). (0. LG).
(0.3.0). and (0.3.0) at level / — l can be combined.
while the rows (0.1.0). (0.2.0). (0.3.0) and (0.4.0)
at level / — I cannot (Figure 3).

Let pin-72.... be a set of Bi combinable rows at
level / — i. A square. 0. at level X A i is obtained by
combining them into a single triple (x.y.:) where
x =p1's .t.:=p1‘s :. and y :min. p.75 _)'. Two
squares. a. =(x1.y.,:) and a; = (x3435) at the
same level are called adjacent if y. = y; and x. —

= l. A set of2i squares at level / —— {can be mm-
bined if. when sorted by x to get a set of squares.
every square in this set is adjacent to its predecessor
and its successor. As a result of combining squares
we obtain cubes which are defined below. For ex—
ample. the squares (0.0.0). (l.0.0). (2.0.0). and
(3.0.0) at level / —i are combinable while the

.v;

(0.3.0)

(0.2.0) v; (m C4)

(0.1.0)

(0.0.0)

(0.4.0)

. .A. . (0.3.0)
fl .0

(0.2.0)

(0.1.0)

Figure 3. Four rows of length four that are combined into one
square versus four rows that cannot be combined. since they are

misaligned.

-. ;
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(4.0.0)

iii 3'.) l (3.0.0)

(2.0.0)

(1.0.0)

Figure 4. Four squares ot‘length four that are combined into one
cube versus (our squares that cannot be combined. since they are

misaligned.

squares (|.0.0). (2.0.0). (3.0.0). and (4.0.0) are not
(Figure 4).

Let 01.02.... be.2‘ combinable squares at level
.v‘ — i. A cube. K. is obtained as the triple (x._v.:)
where y = a.‘s y.: 2 01‘s 2. and x = min.- a.‘s x.

If a row (,\‘.I)'.:) .:t level-i is split in the : di-
rection. then two rows. (x431) and (x.y.: +0).
are obtained at level 1+ l. [fa square (x.y.:) at
level—i is split in x and y directions, then four
squares. (.x‘.‘v.:). t.v.)'+ft.:). (.v+fi.y.:) and
(x «1- It.) ¢ h.:). are obtained at level 1-)- 1. Here
it = 2" ‘l'1.()bviously. the idea of splitting is gene-
rizable to cubes and h} percubes. once we are at 2
4D. See Figure 5 for illustrations ol‘ splitting.

Figure 5. Two rows of length {out that cannot be combined into
A square but can be split into ("our rows oflength two and com-

bined into two squares of Side two,



Volume 10. Numberi

The main data structure is a set of lists which will
be called ittlists (dimension-level lists). An indi-
vidual list in this set is denoted as JD_L. where D de-
notes the dimension and L denotes the level it be-
longs to.

7. The stacking algorithm

We assume that each ray has already been di-
vided into its maximal rows and these maximal
rows have already been inserted into the relevant
lD std-lists.

Our stacking algorithm first tries to combine ad-
jacent rows into squares. If a row cannot be com-
bined, it will be split into two smaller (half-size)
rows which are tried until the remaining pieces are
at level—f. These are inserted into 9 since there is
no way they can be combined.

Then the stacking algorithm tries to combine ad-
jacent squares into cubes. Any square that cannot
be thus combined will be split into four smaller
(quarter-size) squares and the process will be re-
peated until the remaining pieces are at level-K.
These latter pieces are added to 9. Clearly. the ob—
tained cubes are also added to £2. It is noted that
the elements of inL are rows when l) = 1. squares
when D = 2. cubes when D = 3. and hypercubes
when D > 3. Our algorithm is still correct when
D > 3 as a result of its general approach. Another
important point to observe is that we need
(k — l) x (f + l)lists in k-dimensional space.

This process will build the octree. Q. in its re—
duced form. (An octree is in its reduced form if it has
no partial nodes with all empty or all full children.)

When there are many rays. it may be suitable to
use linear disk files to implement .H-lists. Only
three files will be open during the execution of the
stacking algorithm: (or. for read operations and
[0+ LL and in“1 for write operations. Since the
reads always take place sequentially and the writes
are always carried out as appends, the algorithm is
safe against virtual-memory page faults.

The algorithm works by iterating on dimensions
as follows.

Algorithm
0. Each ray is partitioned into a set of rows which
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comprise a 1D octree. Thus. each row has a length
which is a power of 2 and a starting : value which
is a multiple ofits length.

l. The rows are sorted into lexicographic order
by 0.2.x), This is necessary to detect combinablc
rows in oneapass.

2. Adjacent rows are combined into squares
whenever this is possible. A square has a side of 2’
for some 0 S l S ,f and starting x and : coordinates
that are multiples of 2‘. If we find 2‘ rows with posi~
tions

(i x 3‘ + m] x 11; x 2‘).
where m : 0.....2‘. then we can combine them into
one square. Combining rows is illustrated in Figure
3. The process of combining and splitting starts at
l: O and iterates up to K. At any I. after all the rows
that can be combined are indeed combined into
squares. the remaining squares are each split into
two rows of length 2’ ‘ 1. These smaller rows. it may
turn out. may later be combined into smaller
squares (cf. Figure 5). At the end, the remaining
rows are of size 1 and can be considered as voxels.

3. The squares are sorted into lexicographic order
by (:.x._i-), This is necessary to detect combinable
squares in one-pass.

4. Next the ~quares are either combined into
obels or split into squares of size 1 that are voxels.
Combining squares is illustrated in Figure 4.

5. Finally. the obels are formed into the new oc-
tree. Giien an obel. inserting it into an incomplete
octrce is a simple problem. cf. Knuth [5].

It is emphasized that the combining operation re-
quires. inspecting only adjacent items in memory
and when a nev- square (or cube) is created, it is ap-
pended sequentially to a list in memory. Since eth-
cient external sorts are known [5]. the whole process
executes efficiently in a virtual memory environ—
ment.

8. Timing

We have implemented the stacking algorithm in
Ratlor. a structured dialect of Fortran. on 3. Prime
750. Building a 1.8 sphere took 9.2 seconds ofCPU
time; this object has 6569 obels and is made of 833
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rays. For a paraboloid built from 916 rays. the final
octree has 5913 obels and the timing is 7.4 seconds
of CPU. In each case the I 0 time is small: ()9 and
0.3 second. respectively.

A higher resolution sphere consisting of 12985
rays took about 3 minutes of CPU: the octree has
106833 obels with the following distribution: 67570
full. 35909 empty. and 13354 partial. This is larger
than many of the examples cited in Yau and Srihari
[12]. and Tamminen and Samet113].

9. Conclusion

We have presented a novel algorithm for con-
structing a k-tree from a set of rays approximating
a k-dimensional object. Our algorithm is simple to
program and easy to implement. [t is suitable for
handling precisely specified objects. that is. objects
consisting of many thousands of rays. since it can
work with linear files which are accessed in an or-
derly manner. Thus. of the various data structures
to implement the abstract k-tree. a set of rays (along
with an algorithm for converting this to a k—trccl
seems to be the most elficient.
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