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ABSTRACT

CONSTRUCTIONS AND SIMPLICITY OF THE
MATHIEU GROUPS

Mete Han Karakaş

M.S. in Mathematics

Advisor: Matthew Justin Karcher Gelvin

August 2020

Of the 26 sporadic finite simple groups, 5 were discovered by E. Mathieu in 1861

and 1873 [1], [2]. These Mathieu groups are the focus of this thesis, where we will

prove their simplicity using elementary methods. E. Witt [5] realized a connection

between the Mathieu groups and certain combinatorial structures known as Steiner

systems. We will follow his construction to define the Mathieu groups as the auto-

morphism groups of certain Steiner systems. Much of the work of the thesis lies in

the construction of these Steiner systems, which we achieve by using both methods

from finite geometry and the theory of Golay codes.

Keywords: Mathieu groups, Steiner systems, Golay codes.
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ÖZET

MATHIEU GRUPLARININ OLUŞTURULMASI VE
BASİTLİĞİ

Mete Han Karakaş

Matematik, Yüksek Lisans

Tez Danışmanı: Matthew Justin Karcher Gelvin

Ağustos 2020

26 tane sporadik sonlu basit gruplardan 5 tanesi 1861 ve 1873 yıllarında E. Mathieu

tarafından keşfedildi [1], [2]. Bu Mathieu grupları tezimizin odak noktası. Tezde

bu grupların basitliğini elementer yollarla kanıtladık. E. Witt [5] Mathieu gruplarla

kombinatorik bir yapı olan Steiner sistemler arasındaki bağlantıyı fark etti. Biz E.

Witt’in grupları oluşturma yolunu takip ettik ve bu yüzden Mathieu grupları Steiner

sistemlerin otomorfizması olarak tanımladık. Tezdeki çalışmanın büyük bölümü de

bu Steiner sistemlerin oluşturulmasına dayanıyor. Oluşturma metodlarından ikisi

sonlu geometriye, biri ise Golay kod teorisine dayanıyor.

Anahtar sözcükler : Mathieu grupları, Steiner sistemler, Golay kodları.
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Year after year I have searched for myself,

In no way have I found myself.

Am I a spectre or am I a dream? It cannot be known.

In no way have I found myself.

Am I a human, an animal or a plant?

Am I a crop, sown and reaped,

Or else, am I health itself?

In no way have I found myself.

Aşık Veysel Şatıroğlu

Transl. by Ruth Davis

Special thanks to Yılmaz Akyıldız

çınla’mak...
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to my mother Gülüşan Ünal, who is the greatest survivor in life,
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to the memory of distinguished mathematician Cem Tezer (1955-2020),

and

to my advisor Matthew Gelvin, who is my mathematical role-model.



Chapter 1

Introduction

1.1 Motivation

Let G be a finite group. If G does not contain any non-trivial normal subgroup then

G is called finite simple group. Emile Mathieu gave first examples of finite simple

groups in his two articles published in 1861 and 1873 [1], [2]. Now the groups that

he introduced are called the Mathieu groups.

For many years mathematicians have tried to determine all finite simple groups.

In 1980’s, the classification of finite simple groups has been completed [3]. Now the

classification theorem is stated below.

Theorem 1.1.1. [4, The Classification Theorem]

Let G be a finite simple group. Then G is isomorphic to one of the following

groups as follows:

(i) A cyclic group of prime order,
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(ii) An alternating group of degree n for n ≥ 5,

(iii) A simple group of Lie type,

(iv) One of the twenty-six sporadic simple groups.

The Mathieu groups are the five of the list of the twenty-six sporadic simple groups.

In addition, these five groups are permutation groups that act multiply transitive

on 11, 12, 22, 23 and 24 points respectively and denoted by M11,M12,M22,M23 and

M24. In particular, M12 and M24 are 5-transitive, M22 is 3-transitive and also M11

and M23 are 4-transitive [8, Chapter 9].

Furthermore, Ernst Witt has showed the relation between combinatorial structures

known as Steiner systems and the Mathieu groups in his article [5]. He defined the

Mathieu groups as the automorphism groups of certain Steiner systems. Then we

will follow his construction to define the Mathieu groups as the automorphism groups

of certain Steiner systems. Then definitions of the Mathieu groups based on Steiner

systems as follows [16, Chapter 6]:

(i) M24 := Aut(S(5, 8, 24))

(ii) M23 := Aut(S(4, 7, 23))

(iii) M22 := Aut(S(3, 6, 22))

(iv) M12 := Aut(S(5, 6, 12))

(v) M11 := Aut(S(4, 5, 11))

In history, there are several methods to construct the Mathieu groups. Since we

define the Mathieu Groups as the automorphism group of Steiner systems, construct-

ing the Mathieu groups is equivalent to constructing the associated Steiner system.
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1.2 Main focus of the thesis

Our much of the work lies in the constructions of S(5, 6, 12) and S(5, 8, 24). We

achieve our goal for the construction of S(5, 6, 12) by using methods from finite

geometry. Also we achieve our goal for construction of S(5, 8, 24) by using the theory

of Golay codes. Then we see that S(4, 7, 23), S(3, 6, 22) and S(4, 5, 11) are the

immediate results of the latter Steiner systems by Theorem 3.2.1.

We consider showing the simplicity of the Mathieu groups as a supplementary

part of the thesis. We do not deeply study simplicity. We aim to show the simplicity

of the Mathieu groups by using group-theoretic elementary methods. First we follow

the first three sections in chapter 9 of the book [8] to develop simplicity criteria

for M12,M24 and M22 in chapter 2. Then we develop Theorem 7.2.1 for showing

simplicity of M11 and M23 in chapter 7.

1.3 Outline of the thesis

We will briefly explain the contents of the thesis.

In chapter 2, we give some background knowledge on group theory and finite

geometries. In particular, we review group actions, Sylow theorems and k-transitivity

in group theory. We develop the criteria of simplicity for multiply transitive groups

that are used in chapter 7.

Also we explain affine and projective planes in chapter 2 since some certain Steiner

systems are exactly affine or projective planes. In particular, our constructions of

S(5, 6, 12) based on S(2, 3, 9) and S(2, 4, 13), and S(2, 3, 9) is a finite affine plane

and S(2, 4, 13) is a finite projective plane.
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In chapter 3, we introduce Steiner systems and their properties. We investigate

the necessary and sufficient conditions of the existence of Steiner systems. Also we

explore properties of the automorphisms of Steiner systems.

In chapter 4, we form S(5, 6, 12) by using Steiner system of type S(2, 4, 13), that

is a projective plane, due to Hans Havlicek and Hanfried Lenz [19]. We classify sets

containing six points on a projective plane and develop blocks of S(5, 6, 12).

In chapter 5, we form S(5, 6, 12) by using Steiner system of type S(2, 3, 9), that is

an affine plane. The construction is based on 3-fold extension of S(2, 3, 9). In other

words, we first show the existence of S(3, 4, 10) and continue in this fashion. Finally,

we show the existence of S(5, 6, 12).

In chapter 6, we form the binary Golay code and S(5, 8, 24) simultaneously. We

realize that binary Golay code of 12 dimension with length 24 is exactly Steiner

system of type S(5, 8, 24).

In chapter 7, we show the simplicity of the Mathieu groups in an elementary way.

We firstly develop our main Theorem 7.1.5. Also we use simplicity criteria that are

introduced in chapter 2.

In conclusion, we show two different construction methods for S(5, 6, 12). Also we

show construction of the binary Golay code and S(5, 8, 24).
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Chapter 2

Preliminaries

In this chapter, we will give some background knowledge that we will use throughout

the thesis.

2.1 Review of group theory

In this section, we follow several algebra books: [6], [7], [8], [9], [10], [11].

2.1.1 Permutation groups

We start with basic definitions regarding permutations.

Definition 2.1.1. Let X be a non-empty set. A permutation of X is a bijective

function from X to X.

Definition 2.1.2. The set of all permutations of a set X is called the
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permutation group or symmetric group on X. It is denoted by SX . If X is the

set of {1, 2, ..., n}, then we usually write Sn. The group structure on SX is the

composition of permutations.

Definition 2.1.3. Let π be in Sn and i be in {1, 2, ..., n}. π fixes i if π(i) = i. Also

π moves i if π(i) 6= i.

Definition 2.1.4. Let i1, i2, ..., ir be distinct integers in {1, 2, ..., n} and π be in Sn.

If π(i1) = i2, π(i2) = i3, π(i3) = i4, ..., π(ir−1) = ir, π(ir) = i1 and π fixes the other

integers (if any) then π is called an r-cycle or is a cycle of length r. A 2-cycle is

called transposition.

Definition 2.1.5. Let π be an r-cycle. Then π will be denoted by (i1 i2 ... ir).

Then r-cycle π can be seen as a clockwise rotation of a circle and so any ij can be

considered as a first point of a cycle. Thus we have r different cycle notations as

follows:

(i1 i2 ... ir−1 ir) = (i2 i3 ... ir i1) = ... = (ir i1 ... ir−2 ir−1).

Definition 2.1.6. Let α, λ be in Sn. Then α and λ are conjugate if there is a

permutation γ such that γαγ−1 = λ.

Now, we are ready to prove our next theorem.

Theorem 2.1.7. Let π = (i1 i2 ... il−1 il) be l-cycle in Sn. For all α ∈ Sn,

απα−1 = (α(i1) α(i2) ... α(il)).

Proof. Let X = {1, 2, ..., n} and Sn be the set of all permutations of X. Since α ∈ Sn,

α is a bijection from X to X. This means that α(1), α(2), ..., α(n) are all distinct.

Therefore we can write X as a set of {α(1), α(2), ..., α(n)}. Let r be any integer

such that 1 ≤ r < l. Then α(ir) ∈ X. Hence απα−1(α(ir)) = α(π(α−1(α(ir)) =

α(π(ir)) = α(ir+1). Moreover when r = l, απα−1(α(il)) = α(π(α−1(α(il)) =

α(π(il)) = α(i1).
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Now let x ∈ X such that x 6= α(ir) for all r, where 1 ≤ r ≤ l. Also α−1(x) ∈ X
and α−1(x) 6= ir for all r, where 1 ≤ r ≤ l. Hence απα−1(x) = α(π(α−1(x)) =

α(α−1(x)) = x. Therefore we have απα−1 = (α(i1) α(i2) ... α(il)).

2.1.2 Group actions

In our discussion, a group G will be finite and a set X will be non-empty. In this

section, we will develop relation between orbits and stabilisers of the group action

and their special cases.

Definition 2.1.8. Let G be a group and X be a set. A (left) group action of G on

X is a function µ : G×X 7−→ X that satisfies the following properties:

(1) 1x = x for all x ∈ X.

(2) g1(g2x) = (g1g2)x for all x ∈ X and g1, g2 ∈ G.

Then we will say that G acts on X and call X a G-set.

Example 2.1.9. Let G be Z2 = {1, α} and X be R2 = {(x1, x2) | x1, x2 ∈ R}. We

will define the action of the element α on X in this way: α(x1, x2) = (−x1,−x2).
The first property of a group action is satisfied trivially. The second property of a

group action is satisfied as follows; 1(α(x1, x2)) = 1(−x1,−x2) = (−x1,−x2). Also,

(1α)(x1, x2) = α(x1, x2) = (−x1,−x2). Therefore G acts on X.

Theorem 2.1.10. Let G act on X, where G is a group and X is a non-empty set.

Define a relation ∼ on X by for all x,y ∈ X, x ∼ y if and only if gx = y for some

g ∈ G. Then ∼ is an equivalence relation on X.

Proof. Since 1x = x for all x ∈ X, we have x ∼ x. Hence ∼ is reflexive. Let x, y, z

be in X. Now we suppose that x ∼ y. Then there exists g ∈ G such that gx = y. It
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follows that x = g−1(gx) = g−1y. We see that g−1y = g−1(gx) = (g−1g)x = 1x = x.

Hence y ∼ x and ∼ is symmetric. Lastly, we suppose that x ∼ y and y ∼ z. Then

there exist g1, g2 ∈ G such that g1x = y and g2y = z. Thus (g2g1)x = g2(g1x) =

g2y = z. Hence x ∼ z and so ∼ is transitive. Therefore ∼ is an equivalence relation

on X.

Definition 2.1.11. Let G act on X, where G is a group and X is a non-empty set.

The equivalence classes Gx = {gx : g ∈ G} determined by the equivalence relation

in Theorem 2.1.10 are called the orbits of G on X. The orbit containing x ∈ X is

denoted by O(x).

Lemma 2.1.12. Let G act on X, where G is a group and X is a non-empty set.

For all x ∈ X, the subset Gx = {g ∈ G : gx = x} is a subgroup of G.

Proof. Let x ∈ X. 1 ∈ Gx since 1x = x. Hence G 6= ∅. Let g1, g2 be in Gx. Then

we have g1x = x and g2x = x. It follows that g−12 (g2x) = (g−12 g2)x = x = g−12 x. This

means g−12 ∈ Gx. Moreover (g−12 g1)x = g−12 (g1x) = g−12 x = x. Hence g−12 g1 ∈ Gx.

Therefore Gx is a subgroup of G.

Definition 2.1.13. The subgroup Gx of Lemma 2.1.12 is called stabiliser of x.

We have defined the orbit and the stabiliser of a group action so far. We want to

prove the Orbit-Stabiliser Theorem in our following discussion. For this purpose, we

define cosets of subgroup of a group G and show their main properties.

Definition 2.1.14. Let H be a subgroup of G. The set gH = {gh : h ∈ H} is called

(left) coset of H in G for all g ∈ G.

Theorem 2.1.15. Let H be a subgroup of G. Either g1H = g2H or g1H ∩ g2H = ∅
for all g1, g2 ∈ G.

Proof. Let g1, g2 ∈ G, and suppose that g1H ∩ g2H 6= ∅. Hence there exists x ∈ G
such that x ∈ g1H ∩ g2H. This means that x ∈ g1H and x ∈ g2H and so x = g1h1
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and x = g2h2 for some h1, h2 ∈ H. Since g1h1 = g2h2, g
−1
2 g1 = h2h

−1
1 ∈ H. Therefore

g1H = g2H.

Corollary 2.1.15.1. The set of cosets {gH : g ∈ G} forms a partition of G.

Proof. Straightforward from the previous theorem.

Theorem 2.1.16. Let H be a subgroup of G. Then there is a bijection between H

and gH for all g ∈ G.

Proof. Let g ∈ G. We will show the existence of a bijection between H and its

left coset gH. Define a map γ : H 7−→ gH by γ(h) = gh for all h ∈ H. For any

h1, h2 ∈ H, γ(h1) = γ(h2) if and only if gh1 = gh2. Thus γ is well-defined and

one-to-one. Let gh ∈ gH. Since h ∈ H, γ(h) = gh. Hence γ is onto. Therefore γ is

a bijection map and |H| = |gH|.

Definition 2.1.17. Let H be a subgroup of G. The number of distinct left cosets

of H in G is denoted by [G : H] and is called the index of H in G.

Now, we are ready to prove our main theorem in this section.

Theorem 2.1.18. Orbit-Stabiliser Theorem[6] Let G act on X, where G is a

group and X is a non-empty set. For all x ∈ X,

|O(x)| = [G : Gx].

Proof. Let x ∈ X. We will show the existence of a bijection between left cosets of Gx

and O(x). Define a map α : G/Gx 7−→ O(x) by α(gGx) = gx for all gGx ∈ G/Gx.

We first look at well-definedness of the map. We suppose that g1Gx = g2Gx for

some g1, g2 ∈ G. Then we get g−12 g1 ∈ Gx, and so g−12 g1x = x. It follows that

g2g
−1
2 g1x = g2x. Hence this means g1x = g2x, and α is well-defined.
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Secondly, we suppose that α(g1Gx) = α(g2Gx) for some g1, g2 ∈ G. Thus we

have g1x = g2x. It follows that g−12 g1x = x, and so g−12 g1 ∈ Gx. Therefore we get

g1Gx = g2Gx, and α is one-to-one.

Lastly, let y ∈ O(x). Then there exists g3 ∈ G such that g3x = y. Hence

α(g3Gx) = g3x = y, and so α is onto. Therefore α is a bijection map, and so

|O(x)| = [G : Gx].

Example 2.1.19. Let G be a group. We will define an action of G on itself by

conjugation: β : G × G 7−→ G by β(gx) = gxg−1 for all g, x ∈ G. We check two

properties of a group action. Let g1, g2, x ∈ G. Firstly, 1x = 1x1 = x. Secondly,

g1(g2x) = g1(g2xg
−1
2 ) = g1g2xg

−1
2 g−11 = (g1g2)x. Hence this action satisfies group

action criteria. Now we will find out orbit and stabiliser of it.

Then the orbit O(x) = {gx : g ∈ G} = {gxg−1 : g ∈ G} for all x ∈ G. The

stabiliser Gx = {g ∈ G : gx = x} = {g ∈ G : gxg−1 = x} = {g ∈ G : gx = xg} for all

x ∈ G.

Example 2.1.20. [9] Let G be a group. We will define an action of G on the set of

all subsets of G, namely P(G), : δ : G × P(G) 7−→ P(G) by δ(gA) = gAg−1 for all

g ∈ G and A ∈ P(G). We check two properties of a group action. Let g1, g2 ∈ G
and A ∈ P(G). Firstly, 1A = 1A1 = A. Secondly, g1(g2A) = g1(g2Ag

−1
2 ) =

g1g2Ag
−1
2 g−11 = (g1g2)A. Hence this action satisfies group action criteria. Now we

will find out orbit and stabiliser of it.

Then the orbit O(A) = {gA : g ∈ G} = {gAg−1 : g ∈ G} for all A ∈ P(G). The

stabiliser GA = {g ∈ G : gA = A} = {g ∈ G : gAg−1 = A} = {g ∈ G : gA = Ag} for

all A ∈ P(G).

Definition 2.1.21. (i) The orbit O(x) of Example 2.1.19 is called the

conjugacy class of x in G.

(ii) The stabiliser Gx of Example 2.1.19 is called the centralizer of x in G and is
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denoted by CG(x).

(iii) Two subsets A and B are called conjugate in G if there exists g ∈ G such

that B = gAg−1.

(iv) The stabiliser GA of Example 2.1.20 is called the normalizer of A in G and

is denoted by NG(A).

The next two propositions are the special cases of the Orbit-Stabiliser Theorem.

Proposition 2.1.22. Let G act on itself by conjugation. Then the number of con-

jugates of x is the index of its centralizer. That is,

|O(x)| = [G : CG(x)] for all x ∈ G.

Proposition 2.1.23. Let G act on P(G) by conjugation. Then the number of con-

jugates of A is the index of its normalizer. That is,

|O(A)| = [G : NG(A)] for all A ∈ P(G).

Definition 2.1.24. Let G act on X, where G is a group and X is a non-empty set.

Let x ∈ X and g ∈ G. Then x is called fixed by g if gx = x. If gx = x for all g ∈ G
then x is called fixed by G.

Theorem 2.1.25. Let G act on X, where G is a group and X is a non-empty set.

For all g ∈ G and x ∈ X, ρg : x 7−→ gx is a permutation of X. Then ρ : G 7−→ SX

defined by ρ(g) = ρg is a homomorphism.

Proof. Firstly, we will show that ρg is a permutation of X. Let g ∈ G and x ∈ X.

Then, ρgρg−1(x) = ρg(g
−1x) = gg−1x = x. Also ρg−1ρg(x) = ρg−1(gx) = g−1gx = x.

Hence ρg has an inverse ρg−1 . Thus ρg is a permutation.
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Lastly, we will show that ρ is a homomorphism. Let g1, g2 ∈ G. Then

ρg1ρg2(x) = g1g2x = ρg1g2(x). It follows that ρ(g1g2) = ρg1g2 = ρg1ρg2 . Therefore

ρ is a homomorphism.

Definition 2.1.26. [8] The homomorphism ρ in Theorem 2.1.25 is called a

permutation representation of G. If the kernel of the ρ is trivial then the action of

G on X is called faithful.

Theorem 2.1.27. Burnside’s Lemma Let G act on X, where G is a group and

X is a non-empty set. Then the number of orbits of G on X is

1

|G|
∑
g∈G

|Xg|,

where |Xg| is the number of elements of X fixed by g.

Proof. Let T = {(g, x) ∈ G×X : gx = x} and X = X1∪X2∪ ...∪Xk where the Xis

are the distinct orbits of X and xi ∈ Xi for 1 ≤ i ≤ k. Since |Xg| is the number of

elements of X fixed by g, we have |T | =
∑

g∈G |Xg|. On the other hand, since |Gx|
is the number of elements of G fixing x, then |T | =

∑
x∈X |Gx|. Therefore,∑

g∈G

|Xg| =
∑
x∈X1

|Gx|+
∑
x∈X2

|Gx|+ ...+
∑
x∈Xk

|Gx|.

By the Orbit-Stabiliser Theorem (2.1.18), if two distinct elements of X are in same

orbit, then the order of their stabilisers will be same. Hence,
∑

x∈Xi
|Gx| = |Xi||Gxi|.

It follows that, ∑
g∈G

|Xg| = |X1||Gx1|+ |X2||Gx2 |+ ...+ |Xk||Gxk |.

=
|G|
|Gx1 |

|Gx1 |+
|G|
|Gx2 |

|Gx2 |+ ...+
|G|
|Gxk |

|Gxk |.

Thus
∑

g∈G |Xg| = k|G|, where k is the number of orbits of G on X.
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2.1.3 Sylow theorems

In this section, we will prove Sylow theorems. We first give some definitions and

theorems that we use in the proofs of Sylow theorems. A group G will be finite.

Definition 2.1.28. Let p be a prime number and G be a group. A group G is called

p-group if its order is a power of p.

Lemma 2.1.29. Let G act on X, where G is a p-group and X is a non-empty set.

Let XG be a set of fixed points in the action as follows;

XG = {x ∈ X : gx = x for all g ∈ G}.

Then |XG| ≡ |X| mod p.

Proof. Let X be a union X1 ∪X2 ∪ ... ∪Xk, where Xi’s are all distinct orbits of X

for 1 ≤ i ≤ k. Without loss of generality, we suppose that |Xi| = 1 for 1 ≤ i ≤ j

and |Xi| > 1 for j + 1 ≤ i ≤ k. Therefore,

|XG| = X1 ∪X2 ∪ ... ∪Xj,

and so |XG| = j. Then,

|X| = |XG|+
k∑

i=j+1

|Xi|. (2.1)

Also by the Orbit-Stabiliser Theorem (2.1.18), we have |Xi| = |G|
|Gxi |

, where xi ∈ Xi

for 1 ≤ i ≤ k. It follows that since the order of G is a power of p, |Xi| is also a

power of p for 1 ≤ i ≤ k. Therefore |Xi| = p0 = 1 for 1 ≤ i ≤ j and |
∑k

i=j+1 |Xi|| is

a multiple of p.

Then in mod p, (2.1) becomes |X| ≡ j = |XG|.
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Theorem 2.1.30. Lagrange’s Theorem Let H be a subgroup of a group G. Then

the order of H divides the order of G and the ratio is equal to the index of H in G,

namely
|G|
|H|

= [G : H].

Proof. Let H be a subgroup of G. By Corollary 2.1.15.1, G can be partitioned into

cosets of H. Then let g1H, g2H, ..., gnH be all distinct cosets of H in G. Thus

G = g1H ∪ g2H ∪ ... ∪ grH and |G| = |g1H|+ |g2H|+ ...+ |gnH|. Since |H| = |giH|
for all 1 ≤ i ≤ n by Theorem 2.1.16, |G| = n|H|. Therefore |H| divides |G| and

n = [G : H].

Lemma 2.1.31. [10, 1.8. Lemma] Let p be a prime number; and let r ≥ 0 and

m ≥ 1 be integers. Then (
prm

pr

)
≡ m mod p.

Proof. Let n be a positive integer such that (1+x)n is polynomial. Then by binomial

expansion,

(1 + x)n = xn +

(
n

n− 1

)
xn−1 + ...+

(
n

n− k

)
+ ...+

(
n

1

)
+ 1

where 1 ≤ k ≤ n− 1 and
(

n
n−k

)
’s are called binomial coefficients.

When n = p,

(1 + x)p = xp +

(
p

p− 1

)
xn−1 + ...+

(
p

p− k

)
+ ...+

(
p

1

)
+ 1

where 1 ≤ k ≤ p− 1.

We note that all
(

p
p−k

)
in the above expansion are divisible by p since k < p and

p is prime. Hence we have (1 + x)p ≡ 1 + xp mod p. This means that binomial
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coefficients of corresponding powers of x are congruent mod p. If we take p power of

each congruence sides then we have

((1 + x)p)p ≡ (1 + xp)p ≡ 1 + (xp)p ≡ 1 + xp
2

mod p.

If we keep continuing in this way, we have (1 + x)p
r ≡ 1 + xp

r
mod p. It follows that

(1 + x)p
rm ≡ (1 + xp

r

)m mod p. (2.2)

Therefore we have
(
prm
pr

)
xp

r ≡
(
m
1

)
xp

r
mod p from out last congruence relation 2.1,

and so (
prm

pr

)
≡ m =

(
m

1

)
mod p.

Definition 2.1.32. Let G be a group and p be a prime number.

(i) Let |G| be prm where p - m and r ≥ 0. If there exists a subgroup P of order

pr then P is called a Sylow p-subgroup of G.

(ii) The set of all Sylow p-subgroups of G is denoted by Sylp(G).

(iii) The number of Sylow p-subgroups of G is denoted by np.

Now, we are ready to prove the existence theorem of Sylow.

Theorem 2.1.33. Sylow’s Existence Theorem[10] Let G be a group with order

|G| = prm, where p - m and r ≥ 1. Then there exists a Sylow p-subgroup in G.

Proof. Let X be the set of all subsets with order pr in G. Then G can act by right

multiplication on X, and so X can be partitioned into orbits. This means that the

order of X is a summation of the order of orbits. The order of X is simply
(
prm
pr

)
.

We note that
(
prm
pr

)
≡ m mod p by Lemma 2.1.31. Hence p - |X| and there exists an

orbit, say Xk, such that p - |Xk|.
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Let A be a subset in G such that A ∈ Xk. Also let GA be the stabiliser of A in

G. By the Orbit-Stabiliser Theorem 2.1.18, we have |Xk| = |G|
|GA|

. Also since p - |Xk|
and pr | |G|, pr divides |GA|. This means that pr ≤ |GA|.

Let a ∈ A and h ∈ GA. Then ah ∈ Ah = A. This means that aGA ⊆ A. Since

|GA| = |aGA|, we have |GA| ≤ |A| = pr. Hence the order of GA is pr. Therefore GA

is a Sylow p-subgroup of G.

Hence we know that a Sylow p-subgroup exists in a group G. Next, we prove the

remaining Sylow theorems.

Theorem 2.1.34. Sylow Theorems[9] Let G be a group with order |G| = prm,

where p - m and r ≥ 1.

(i) Any two Sylow p-subgroups of G are conjugate in G and any p-subgroup of G

is contained in a Sylow p-subgroup.

(ii) The number of Sylow p-subgroups of G, np, is congruent to 1 mod p, namely

np ≡ 1, and np divides |G|.

Proof. We have shown that there exists a Sylow p-subgroup P in G in Theorem

2.1.33. Then let X be the set of all conjugates of P , namely X = {gPg−1 := P g :

g ∈ G}. Thus P acts on X by conjugation. Since P is a p-group, |X| ≡ |FP (X)|
mod p, where FP (X) = {Q ∈ X : Qg = Q for all g ∈ P}, by Lemma 2.1.29.

Obviously P is in FP (X) and so FP (X) 6= ∅. Then let Q ∈ FP (X), and so

gQg−1 = Q for all g ∈ P . This means that P ≤ NG(Q). Also since Q E NG(Q),

PQ is a group such that P ≤ PQ ≤ NG(Q). It follows that |PQ| = |P ||Q|
|P∩Q| = pk

for some k ≤ r. Since P and Q are both Sylow p-subgroups and Q ≤ PQ, we have

PQ = P = Q. Therefore |FP (X)| = 1 and so |X| = np ≡ 1.
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Let R be a p-subgroup of G. Then R acts on X by conjugation. By Lemma

2.1.29 and our previous work above, |FR(X)| ≡ |X| ≡ 1 mod p. Therefore there is a

Q ∈ FR(X) such that gQg−1 = Q for all g ∈ H. Since R ≤ NG(Q) and Q E NG(Q),

RQ is a group such that Q ≤ RQ ≤ NG(Q). This means that RQ is a p-subgroup

of G containing Q, which is a Sylow p-subgroup. Hence we have RQ = Q. It follows

that R ≤ RQ = Q. Therefore any p-subgroup R is contained in a Sylow p-subgroup.

Let K be a Sylow p-subgroup of G. In our above argument, R can be K. Then

K ≤ Q for some Q ∈ X. Since both K and Q are Sylow p-subgroups, they have same

order. This means that K = Q. Therefore the set X contains all Sylow p-subgroups

of G, and so any two Sylow p-subgroups are conjugate.

Finally, we have shown that the order of X is the number of conjugates of P .

Thus |X| = [G : NG(P )] by Proposition 2.1.23. It follows that m = [G : P ] = [G :

NG(P )][NG(P ) : P ]. Hence |X| divides m.

Theorem 2.1.35. Cauchy’s Theorem[10] Let G be a group and its order |G| be

divisible by prime p. Then G has an element of order p.

Proof. By Sylow’s Existence Theorem (2.1.33), we know that there exists a Sylow

p-subgroup of G, say P . Then |P | = pr where pr is the highest power of p dividing

the order of G. Let x be non-identity element of P . By Lagrange’s Theorem (2.1.30),

the order of x, say |〈x〉|, divides |P |. Since x is not identity, 1 < |〈x〉| = pm for some

1 ≤ m ≤ r. It follows that the order of xm is p. Hence G has an element of order

p.

2.1.4 k-transitive actions

In this section, we will develop simplicity criterias for multiply transitive groups.

The last two results of this section will help to show the simplicity of the Mathieu
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groups M12, M24 and M22.

Definition 2.1.36. Let G act on X, where G is a group and X is a non-empty set.

If there exists only one orbit of G then the action of G is called transitive. In other

words; for any x, y ∈ X there exists a g ∈ G such that x = gy.

Definition 2.1.37. Let G act on X, where G is a group and X is a non-empty set.

The action is called k-transitive if for any two ordered k-tuples (x1, ..., xk), (y1, ..., yk)

of distinct elements of X there exists a g ∈ G such that xi = gyi for 1 ≤ i ≤ k,

where k ≥ 1. We may call our action in Definition 2.1.36 1-transitive. When

k ≥ 2, we may call our actions multiply transitive and our groups in the action

multiply transivite groups.

Definition 2.1.38. If G acts transitively on a set X then the number of orbits of

the stabiliser Gx on X is called rank.

The next theorem is fundamental for k-transitive actions.

Theorem 2.1.39. Let G act transitively on X and x ∈ X. Then G acts k-transitively

on X if and only if the stabiliser Gx acts (k−1)-transitively on X \{x}, where k ≥ 2.

Proof. Suppose that G acts k-transitively on X. Then let (x1, ..., xk−1) and

(y1, ..., yk−1) be ordered (k − 1)-tuples of X \ {x}, where all xi and yi’s are dis-

tinct entries of tuples. Also let (x1, ..., xk−1, x) and (y1, ..., yk−1, x) be k-tuples of X.

It follows that there exists a g ∈ G such that xi = gyi for 1 ≤ i ≤ k − 1 and x = gx.

Thus g ∈ Gx and so Gx acts (k − 1)-transively on X \ {x}.

Conversely, suppose that Gx acts (k − 1)-transitively on X \ {x}. Let (y1, ..., yk)

be ordered k-tuple of X, where all yi’s are distinct entries of a tuple and also let

x2, ..., xk be distinct elements of X \{x}. Since G acts transitively on X, there exists

g ∈ G such that gyk = x and gyi = zi for 1 ≤ i ≤ k− 1. That is, g(y1, ..., yk−1, yk) =

(z1, ..., zk−1, x). Since Gx acts (k − 1)-transitively on X \ {x}, there exists h ∈ Gx
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such that hzi = xi for 1 ≤ i ≤ k − 1. Hence h(z1, ..., zk−1, x) = (x1, ..., xk−1, x). This

means that there exists hg = f ∈ G such that f(y1, ..., yk) = (x1, ..., x). Therefore G

acts k-transitively on X.

Definition 2.1.40. Let G be a group and X be a non-empty set. Then let

H = {x1, ..., xk} be a subset of distinct elements of X. If G acts on X then the

pointwise stabiliser of H in G is the set {g ∈ G : gxi = xi for 1 ≤ i ≤ k} and

denoted by Gx1,...,xk .

Definition 2.1.41. Let G act k-transitively on a non-empty set X. If only the

identity element of G fixes k distinct elements of X then the action is called sharply

k-transitive.

Now we will show the Orbit-Stabiliser relation of k-transitive and sharply k-

transitive actions.

Theorem 2.1.42. Let G act k-transitively on a non-empty set X. Then

|G| = n(n− 1)...(n− k + 1)|Gx1,...,xk |,

where |X| = n and xi’s are all distinct elements of X.

Proof. Let G acts k-transitively on X and x1, ..., xk be distinct elements of X. By

Orbit-Stabiliser Theorem (2.1.18), we have |G| = n|Gx1|. Since G acts k-transitively,

Gx1 acts (k − 1)-transively on X \ {x1}. Then if we apply Orbit-Stabiliser Theorem

on Gx1 , we have |Gx1| = (n − 1)|Gx1,x2|. In a similar manner, since Gx1,x2 acts

(k − 2)-transitively on X \ {x1, x2}, we have |Gx1,x2| = (n − 2)|Gx1,x2,x3|. If k ≤ 3,

our process is already finished.

If we continue (k−3) times more in this way for k ≥ 4, then we have |Gx1,...,xk−1
| =

(n− (k − 1))|Gx1,...,xk |.

Therefore |G| = n(n− 1)...(n− k + 1)|Gx1,...,xk |.
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Corollary 2.1.42.1. If G acts sharply k-transitively on X, then

|G| = n(n− 1)...(n− k + 1).

Proof. Since G acts sharply, only the identity fixes x1, ..., xk. Thus |Gx1,...,xk | = 1.

Theorem 2.1.43. Let G act faithfully and k-transitively on X and x ∈ X. Then G

acts sharply k-transitively on X if and only if the stabiliser Gx acts sharply (k − 1)-

transitively on X \ {x}, where k ≥ 2.

Proof. Suppose that G acts sharply k-transitively. Let x ∈ X. By Theorem 2.1.39,

Gx acts (k − 1)-transitively on X \ {x}. Let (x1, ..., xk−1) be ordered (k − 1)-tuple

of X \ {x}, where all xi’s are distinct. Since G acts sharply, the identity element of

G is the only element fixing (x1, ..., xk−1, x). This means that the identity element is

also the only element of Gx fixing (x1, ..., xk−1). Therefore Gx acts sharply (k − 1)-

transitively.

Conversely, suppose that Gx acts sharply (k − 1)-transitively on X \ {x}. Then

by Theorem 2.1.39, G acts k-transitively on X. Let (x1, ..., xk) be ordered k-tuple

of X, where all xi’s are distinct and let g ∈ Gx1,...,xk . Then Gxi acts sharply (k− 1)-

transitively on X \ xi for 1 ≤ i ≤ k. For this reason, the identity element is the only

element fixing (x1, ..., xk). Hence g is the identity element, and so G acts sharply

k-transitively on X.

Definition 2.1.44. A sharply 1-transitive group action is called regular.

2.1.4.1 Primitive actions

Definition 2.1.45. Let G acts on X, where G is a group and X is a non-empty

set. A block is a subset, say B, of X with special property: for all g ∈ G, either
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gB = B or gB ∩ B = ∅. Then if B is empty set, X or one-point subset of X then

we call B trivial block. If B is not previously mentioned trivial block then we call

B non-trivial block.

Definition 2.1.46. Let G act transitively on X. If all blocks are trivial then G acts

primitively on X. If there exists a non-trivial block then G acts imprimitively on

X.

Theorem 2.1.47. If G acts k-transitively on X, where k ≥ 2, then the action is

primitive.

Proof. We suppose that there exists a non-trivial block in X, say B. Then let

x1, x2, x3 be distinct elements in X such that x1, x2 ∈ B and x3 /∈ B. Since k ≥ 2,

there exists g ∈ G such that gx1 = x1 and gx2 = x3. Thus B ∩ gB 6= ∅ and so we

get a contradiction.

In the previous theorem, we show that if k ≥ 2 then k-transitive actions are

primitive. Now we will prove the fundamental theorem of primitive actions.

Theorem 2.1.48. Let G act transitively on X. Then the action is primitive if and

only if the stabiliser Gx is a maximal subgroup of G for all x X.

Proof. We suppose that Gx is not a maximal subgroup. Thus there exists a subgroup

H such that Gx < H < G. Let Hx = {gx : g ∈ H} and suppose that Hx∩gHx 6= ∅.
Then there exist h1, h2 ∈ H such that h1x = gh2x, and so x = h−11 gh2x. Thus we

have h−11 gh2 ∈ Gx < H. This implies that g ∈ H. Therefore Hx = gHx and so Hx

is a block.

Since H > Gx, Hx is non-empty. We suppose that Hx = X. Let us pick g ∈ G
such that g /∈ H. Then there exists h ∈ H such that hx = y for all y ∈ X. That is,

gx = hx for some h ∈ H. It follows that g−1h ∈ Gx < H. Thus g ∈ H and so we
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get a contradiction. Lastly, we suppose that Hx is a one-point subset of X. Thus

H ≤ Gx. Since Gx < H, we get a contradiction. Hence the action is not primitive.

Now, we suppose that Gx is a maximal subgroup and also there exists a non-trivial

block, say B, in X. Let H be {g ∈ G : gB = B}. H is clearly a subgroup of G.

Let x ∈ B. If gx = x then x ∈ B ∩ gB and g ∈ Gx. Hence gB = B and Gx ≤ H.

Since B is non-trivial, there exists y ∈ B such that x 6= y. Also since the action is

transitive, there exists g ∈ G such that gx = y. This means that y ∈ B ∩ gB and so

gB = B. Hence g ∈ H but g /∈ Gx. Thus Gx < H. Assume that H = G. Since G

acts transitively, X = B. Then we get a contradiction. Hence we have Gx < H < G.

Since Gx a maximal subgroup, we get a contradiction.

2.1.4.2 Simplicity criteria

We first establish a relation between k-transitive action of a group G and normal

subgroup H in G.

Definition 2.1.49. Let G be a group and H be a subgroup of G. If gHg−1 = H

for all g ∈ G then H is called normal subgroup of G and the relation is denoted by

H CG.

Definition 2.1.50. Let G be a group such that G 6= {1}. G is called simple if G

has only trivial normal subgroups, namely {1} and G.

Definition 2.1.51. Let G act on X and H C G. If H acts regularly on X then H

is called regular normal subgroup.

Theorem 2.1.52. Let G act on X and x, y be in X. Assume that H is subgroup

of G. Then if Hx ∩ Hy 6= ∅ we have Hx = Hy. If we assume that H is a normal

subgroup then we call Hx block for any x ∈ X.
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Proof. We suppose that Hx ∩ Hy 6= ∅. Then there exist h1, h2 ∈ H such that

h1x = h2y. Thus x = h−11 h2y and so x ∈ Hy. This implies that Hx = Hy.

Let g ∈ G. Now, we suppose that H is a normal subgroup of G and gHx ∩ Hy 6=
∅. It follows that gHx ∩ Hx = Hgx ∩ Hx. Then there exist h1, h2 ∈ H such that

h1gx = h2x. Thus gx = h−11 h2x and so gx ∈ Hx. This implies that gHx = Hy;

hence Hx is a block of G.

Theorem 2.1.53. Let G act faithfully and primitively on X. If H is non-trivial

normal subgroup of G then H acts transitively on X.

Proof. We know that for all x ∈ X, Hx is a block from Theorem 2.1.52. Then Hx

must be one of the trivial blocks since G acts primitively. It follows that Hx can not

be empty set or {x} since H is non-trivial subgroup and G acts faithfully. Therefore

Hx = X for all x ∈ X and so H acts transitively on X.

Theorem 2.1.54. Let G act faithfully and primitively on X and Gx be simple. Then

we have either G is simple or every non-trivial normal subgroup H of G is a regular

normal subgroup.

Proof. If H is a non-trivial normal subgroup then H acts transitively on X by The-

orem 2.1.53. It follows that H ∩Gx CGx for all x ∈ X. Since Gx is simple, H ∩Gx

must be equal to 1 or Gx. If H ∩ Gx = 1 then H acts regularly on X. Then if

H ∩Gx = Gx then Gx ≤ H. By Theorem 2.1.48, Gx must be maximal subgroup of

G. This means that H = G since H acts transitively on X.

Definition 2.1.55. Let G act on two non-empty sets X and Y . A function f :

X 7−→ Y defined by f(gx) = gf(x) for all g ∈ G and x ∈ X is called G-map. If f is

a bijection then we call f G-isomorphism and say that two actions are isomorphic.

Theorem 2.1.56. Let G act transitively on X and H be a regular normal subgroup

of G. Let x be fixed in X and Gx act on H∗ := H \ {1} by conjugation. Then the

actions of Gx on X \ {x} and H \ {1} are isomorphic.
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Proof. Let us define f : H∗ 7−→ X \ {x} by f(h) = hx. Suppose that f(h1) = f(h2)

for some h1, h2 ∈ H∗. Then h1x = h2x implies that h−12 h1 ∈ Hx, and so f is one-to-

one. Also since H acts regularly on X, |X| = |H|. Then |H∗| = |X \ {x}| and f is

onto. Therefore f is a bijection.

Now, we show that f is a Gx-map. Let g ∈ Gx and h ∈ H∗. Then f(gh) =

f(ghg−1) = ghg−1x = ghx = gf(h). Therefore f is a Gx-map.

Definition 2.1.57. Let p be a prime. An elementary abelian group is a group that

is isomorphic to Zp × ...× Zp.

Now, we are ready to give simplicity criteria for k-transitive groups.

Theorem 2.1.58. [8] Let G act k-transitively on X and H be a regular normal

subgroup of G, where 2 ≤ k and |X| = n. Then k ≤ 4. Also,

(i) If 2 ≤ k ≤ 4 then H is an elementary p-group and |X| = n = pk for some p

and k.

(ii) If 3 ≤ k ≤ 4 then either H ∼= Z3 and n = 3 or H is an elementary 2-group

and |X| = n = 2k for some k.

(iii) If k = 4 then H ∼= V = Z2 × Z2 and |X| = n = 22.

Proof. Since G acts k-transitively on X, Gx acts (k − 1)-transitively on X \ {x} by

Theorem 2.1.39. Then by Theorem 2.1.56, Gx acts (k−1)-transitively on H \{1} :=

H∗ by conjugation.

(i) Since elements of H∗ are conjugate in G, all elements in H∗ have same order

that is prime, say p. Hence |H| = pk for some k. Since H acts regularly on X,

|X| = n = pk. Also since the center of H is the H itself, H is abelian, and so H is

an elementary abelian p-group.
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(ii) Since k ≥ 3, Gx acts primitively on H∗ by Theorem 2.1.47. Let h ∈ H∗. Then

{h, h−1} is a block since Gx acts by conjugation. It follows that {h, h−1} should be

either H∗ or {h}. If {h, h−1} = H∗ then H = {1, h, h−1} and so H ∼= Z3 and |X| = 3.

If {h, h−1} = {h} then h2 = 1 and so H is an elementary 2-group and |X| = n = 2k

for some k.

(iii) We suppose that k = 4. Then k − 1 = 3 and |X| ≥ 4 and by Theorem

2.1.56, |X \{x}| = |H∗|. Thus |H∗| ≥ 3. From part (ii), we have H is an elementary

2-group and since |X| ≥ 4, H contains V. Let V = {1, h, k, hk}. Then Gxh acts

2-transitively on H∗ \ {h}. Hence this action also is primitive by Theorem 2.1.47.

Then {k, hk} is a block since Gxh acts by conjugation. Therefore {k, hk} = H∗ \{h}
and so H = V = Z2 × Z2 and |X| = 4.

Theorem 2.1.59. [8] Let G act faithfully and k-transitively on X, where k ≥ 2,

|X| = n and Gx be simple for some x ∈ X.

(i) If k ≥ 4 then G is simple.

(ii) If k ≥ 3 and |X| 6= 2k for some k then either G ∼= S3 or G is simple.

(iii) If k ≥ 2 and |X| 6= pk for any k and prime p then G is simple.

Proof. Since G acts faithfully and primitively on X and Gx is simple, we have either

G is simple or G has regular normal subgroup H. We suppose that G has regular

normal subgroup H. By Theorem 2.1.58, k ≤ 4 and if k = 4 we have H ∼= V and

|X| = 4. Also let ρ be a permutation representation of the action of G on X. Thus

ρ(G) ≤ S4. It follows that S4 has only 4-transitive subgroup that is itself and the

stabiliser of any point in S4 is S3 that is not simple. Therefore we get a contradiction.

Hence G is simple.

If we have k ≥ 3 and |X| 6= 2k for some k then we get H ∼= Z3 and n = 3 by
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Theorem 2.1.58. This means that ρ(G) ≤ S3. Since S3 has only 3-transitive subgroup

that is itself and the stabiliser of any point in S3 is S2 that is simple, we have either

G ∼= S3 or G is simple.

If we have k ≥ 2 then we have |X| = n = pk for some p and k by Theorem 2.1.58.

Therefore we get a contradiction and so G is simple.

2.2 Affine and projective planes

In this section, we mainly follow G. Eric Moorhouse’s book [12] and Bart De Bruyn’s

book [13]. We will explain basic properties of finite affine and projective spaces. In

chapter 4, we will see that these finite geometries have a connection with certain

Steiner systems.

2.2.1 Introduction

Definition 2.2.1. An incidence structure contains two certain objects together

with a binary relation that shows an incidence relation between these objects.

Throughout our discussion, we will consider certain objects as points and lines.

Definition 2.2.2. A point-line incidence structure is an S = (P ,L, I) where P is

a set of points, L is a set of lines and I is the incidence relation. In other words, I

is a subset of P ×L, which means that it is a binary relation showing which pairs of

point-line are incident.

We will show an example of the classical point-line incidence structure.
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Example 2.2.3. Let P = R2, where R is the set of real numbers and let L be the

set of straight lines incident with (x, y) ∈ R2. Then I is a set containment. Thus S

becomes the Euclidean Plane.

Definition 2.2.4. If a point-line incidence structure satisfies following properties:

(i) There exists at most one line through any two distinct points.

(ii) Every line contains at least two points.

then call it partial linear space.

Definition 2.2.5. If a point-line incidence structure satisfies following properties:

(i) There exists exactly one line through any two distinct points.

(ii) Every line contains at least two points.

then call it linear space.

Now, we are ready to show some basic properties of our special examples of linear

spaces: Affine and projective planes.

2.2.2 Affine planes

Definition 2.2.6. An affine plane is a linear space satisfying following properties:

(i) For any line ` and any point x not on ` there exists exactly one line through

x that does not meet `.

(ii) There exists four points, no three of which are collinear.

27



Definition 2.2.7. Let ` and m be two lines in an affine plane. Then ` is parallel to

m, denoted by ` ‖ m, if either ` = m or ` and m have no common point.

Lemma 2.2.8. Parallelism is an equivalence relation.

Proof. Let `,m, h be distinct lines. Firstly, ` ‖ `, and so our relation is reflexive.

Also if we have ` ‖ m then we have m ‖ ` too. Thus our relation is symmetric.

Lastly, suppose that ` ‖ m and m ‖ n. We assume that ` and n are not parallel.

Then they have a common point, say x. However m is parallel to both ` and n; and

since x /∈ m there exists a unique line through x parallel to m. However there exist

two lines that are incident to x. Therefore we get a contradiction. Then ` ‖ n, and

so our relation is transitive. Thus ‖ is an equivalence relation.

Theorem 2.2.9. Let S be an affine plane. Any two lines in S contain the same

number of points.

Proof. Let `1 and `2 be two distinct lines. Then there exists a point x ∈ `1 such that

x /∈ `2. Similarly, there exists a point y ∈ `2 such that y /∈ `1. Let `3 be a line that is

incident to x and y. Also let z1 be any point in `1. Hence there exists a line `4 that

contains z1 is parallel to `3. It follows that `4 is not parallel to `3, and so `4 contains

a common point with `3, say z
′
1. We suppose that `1 contains n points for n ≥ 2.

Then we can repeat same procedure for the remaining n− 1 points of `1. Therefore

we have a bijection between `1 and `2. Hence `2 contains n points.

Definition 2.2.10. The order of an affine plane is the number of points on the line

of the plane.

If an affine plane is of order n then each line in an affine plane contains n points.

Theorem 2.2.11. Let S be an affine plane of order n ≥ 2. Then the following

properties hold:
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(i) Every point of S is incident with exactly n+ 1 lines.

(ii) Every parallel class of S is comprised of n lines.

(iii) There exists n+ 1 parallel classes in S.

(iv) There exists n2 points in S.

(v) There exists n2 + n lines in S.

Proof. (i) Let x and y be two distinct points of S. We know that for any line `1

through x there exists a unique line `2 through y that is parallel to `1. This means

that there exists bijection between lines containing x and lines containing y. By

Theorem 2.2.9, each line has n points such that n+ 1 is the number of lines through

any point.

Let x, y and z be three non-collinear points. In addition to a line through x, y and

a line through x, z, there exists a unique line through x parallel to the line through

y, z. This means that we have at least three lines through x. Hence n+ 1 ≥ 3.

(ii) Let K be a parallel class of S. Then let `1 ∈ K. We suppose that there is a

point x in `1. Also let x ∈ `2 such that `1 6= `2. `2 contains n− 1 points other than

x. It follows that there exists a unique line that is parallel to `1 through for each

n− 1 points on `2. This means that |K| ≥ n. Also since there are n points on `2 and

`2 /∈ K, each line in K is incident with a point of `2. So |K| ≤ n. Therefore we have

|K| = n

(iii) Let x be a point. For every parallel class K, there exists a unique line through

x which is in K. Also there exists n + 1 lines that are incident with x. Hence there

are n+ 1 different parallel classes.
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(iv) Since parallelism is an equivalence relation, a parallel class partition the points

of S. In each parallel class, there exist n lines and each line contains n points. Hence

there are n2 points in S.

(v) There are n+1 parallel classes and each containing n lines. Hence there exists

n(n+ 1) lines in S.

2.2.3 Projective planes

Definition 2.2.12. A projective plane is a linear space satisfying following proper-

ties:

(i) Any two distinct lines have a unique common point.

(ii) There exists four points, no three of which are collinear.

Theorem 2.2.13. If we remove a line from a projective plane then we will have an

affine plane.

Proof. We suppose that `1 is a line that is removed from the projective plane. Since

we have a linear space, we only need to check properties of an affine plane. Let x be

a point such that x /∈ `1 and `2 be a line such that `2 6= `1 and x /∈ `2. Let y = `1∩`2.
Then every line is incident with x intersects `2 in a point outside `, apart form the

line through x and y, which is the unique line through x parallel to `2.

Let x, y, z, w be four points in the projective plane such that no three of which

are collinear. If `1 contains at most one of the x, y, z or w then the last property of

an affine plane is satisfied by remaining three points. Without loss of generality, let

z, w ∈ `1. Let p be the common point of the line through x, z and the line through
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y, w. Then we have p /∈ `1 and p not in the line through x, y. Therefore p, x, y satisfy

the last property of an affine plane. Hence we have an affine plane.

We will use Theorem 2.2.13 to prove basic properties of a projective plane in the

next theorem.

Theorem 2.2.14. Let S be a projective plane of order n ≥ 2. Then the following

properties hold:

(i) Every line of S contains exactly n+ 1 points.

(ii) Every point of S is incident with exactly n+ 1 lines.

(iii) There exists n2 + n+ 1 points in S.

(iv) There exists n2 + n+ 1 lines in S.

Proof. By previous theorem, if we remove a line ` from the projective plane we get

an affine plane. Let n be the order of the affine plane. Each affine line contains n

points. Thus adding the removed point leads to n + 1 points on each line in the

projective plane. There exist n + 1 lines that is through each point in the affine

plane. If we have a removed point then there exists n affine lines through it. Then

there are n2 affine points and n+ 1 points of the removed line. Also there are n2 +n

affine lines and one removed line.
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Chapter 3

Steiner Systems

In this chapter, we will introduce Steiner systems and its some properties that we will

use throughout the thesis. We mainly follow John D. Dixon and Brian Mortimer’s

book [16] Permutation groups.

3.1 Introduction

Definition 3.1.1. [17] Let t, k, v be integers such that 1 < t < k < v. A

Steiner system S(t, k, v) is a set V of v points together with a family B of sub-

set of k points, blocks, of V with the property that every subset of t points of V is

contained in exactly one block.

Example 3.1.2. [18] The Fano Plane in Figure 3.1.1 is an example of the Steiner

system of type S(2, 3, 7) that is unique up to isomorphism. In the plane, there are 7

points that form a set V . Then a family B of subsets of 3 points is seen as 7 lines with

the property that any two points of V lie in a unique line. Also we note that proving
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strategy of the uniqueness of S(2, 3, 7) is similar to the proof of the uniqueness of

S(2, 3, 9) in Theorem 5.1.1.
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Figure 3.1.1 [18]: The Fano Plane

Now, we will count the number of blocks, namely |B|. The number of subset of t

points of V is
(
v
t

)
. Likewise, the number of subset of t points in each block is

(
k
t

)
.

Since every subset of t points is contained in a unique block then |B| is equal to(
v
t

)(
k
t

) . (3.1)

In a similar manner, we will count the number of blocks containing any given

point, say α. Since α is fixed in blocks we consider set of points as V \ {α} and its

order of blocks as k − 1 in our further calculation. The number of subset of t − 1

points of V \ {α} is
(
v−1
t−1

)
. Similarly, the number of subset of t− 1 points containing

α in each block containing α is
(
k−1
t−1

)
. Hence the number of blocks containing α is

(v−1
t−1)

(k−1
t−1)

.

This result can be extended to t points if we proceed in a same way. Therefore

the number of blocks containing i points where 1 ≤ i ≤ t is equal to(
v−i
t−i

)(
k−i
t−i

) . (3.2)

Our observation and its generalization above lead to Theorem 3.2.1 in the following

section that will play key role to the construction of Mathieu groups by Steiner

systems.
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3.2 Some properties

Theorem 3.2.1. If there exists an S(t, k, v) then there exists an S(t−1, k−1, v−1)

where 2 < t < k < v.

Proof. We suppose that an S(t, k, v) exists. Then let β be any point in V . Our claim

is that we can form a Steiner system on a set V \ {β} of v − 1 points.

Firstly; in S(t, k, v) we exclude blocks not containing β. Hence we have gotten

only blocks containing β. In these blocks, every subset of t points is contained in

exactly one block. If we remove β from blocks containing β we have a sets of k − 1

points and every subset of t− 1 points is in a unique set of k − 1 points. Therefore

there exists an S(t− 1, k − 1, v − 1).

We can generalize Theorem 3.2.1 as follows.

Corollary 3.2.1.1. If there exists an S(t, k, v) then there exists an S(t−i, k−i, v−i)
where 1 ≤ i ≤ t− 2.

Proof. We suppose that an S(t, k, v) exists. Then by Theorem 4.2.1., S(t − 1, k −
1, v− 1) exists. Hence S(t− 2, k− 2, v− 2) exists too. If we repeat this process t− 4

times more we will get S(2, k − t+ 2, v − t+ 2) that exists.

Proposition 3.2.2. If there exists S(2, 3, 7) then there exists S(3, 4, 8).

Proof. We have already introduced the Fano Plane, S(2, 3, 7), in Example 3.1.2. We

assume that we already have an S(3, 4, 8). Also by Corollary 3.2.1.1, if S(3, 4, 8)

exists then S(2, 3, 7) exists too. As a result if we remove one point, say α, from

S(3, 4, 8) we will have S(2, 3, 7). For this reason, a block in S(3, 4, 8) containing α is
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of the form Ω∪{α} where Ω denotes a block; that is, a line in S(2, 3, 7). Since there

are 7 such Ω, we have 7 such form of Ω ∪ {α}.

We note that Ω∪{α} has three collinear points and α. Also the number of blocks

in S(3, 4, 8) is
(8
3)

(4
3)

= 14. We have already known seven blocks which are of the form

Ω ∪ {α}. Then there are remaining seven blocks that do not contain α or any three

collinear points. That is, these blocks have 4 points from S(2, 3, 7) and these points

of no three are collinear.

In S(2, 3, 7), there are
(
7
4

)
= 35 sets of four points in total. Now, we want to

exclude sets which have three collinear points. Recall that there are seven lines.

Hence, we pick a one line in
(
7
1

)
different ways. Also, we choose a one further point

out of four points those are not in the line that we have picked. Hence there are(
7
1

)(
4
1

)
= 28 sets of four points containing three collinear points. Therefore there are

7 blocks that do not have three collinear points, and so we have found the remaining

blocks for S(3, 4, 8). Then S(3, 4, 8) is a one-point extension of S(2, 3, 7).

Remark 3.2.3. A One-point extension of a Steiner system does not always exist. For

example, there is no one-point extension of S(3, 4, 8). If S(4, 5, 9) exists then the

number of blocks of S(4, 5, 9) is
(9
4)

(5
4)

but this is not an integer. Hence there is no such

Steiner system of that type.

Definition 3.2.4. [17] Let S(t, k, v) be a Steiner system, where V is a set of points

and B is a family of blocks B. Let i and j be integers such that 0 ≤ i, j ≤ k,

and let N and M be disjoint subsets of B of sizes i and j, respectively. The num-

ber of blocks containing all elements of N but no elements of M is called the i, j-

intersection number λi,j. The array (λi,j : 0 ≤ i+j ≤ k) is the intersection triangle

of a Steiner system.
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We can immediately compute λi,0 as below by the formula (3.2).

λi,0 =


(v−i
t−i)

(k−i
t−i)

when 0 ≤ i ≤ t

1 when t < i ≤ k ,

and we can easily observe that λi−1,1 = λi−1,0− λi,0 for i ≥ 1. Then λi−2,2 = λi−2,1−
λi−1,1 for i ≥ 2. When we continue in this way, we get λi−j,j = λi−j,j−1 − λi−j+1,j−1

for 1 ≤ j ≤ i. Then we can rewrite this equation in a more general way, namely

λi,j = λi,j−1− λi+1,j−1 for j ≥ 1, by interchanging i− j with i in the latter equation.

Example 3.2.5. We will give an example of the intersection triangle of a Steiner

system S = S(3, 4, 8) for Definition 3.2.4. The number of blocks in S(3, 4, 8), namely

λ0,0, is
(8
3)

(4
3)

= 14. Let N and M be disjoint subsets of block B. Suppose that

|N | = |{x}| = 1 and |M | = 0. Then the number of blocks containing x, λ1,0, is
(7
2)

(3
2)

= 7. Likewise, suppose that |N | = 0 and |M | = |{x}| = 1. Hence the number of

blocks containing x, λ0,1, is
(7
2)

(3
2)

= 7.

Now, we look at the case where |N | = |{x, y}| = 2 and |M | = 0. Then the

number of blocks containing x and y, λ2,0, is
(6
1)

(2
1)

= 3. Likewise if |N | = 0 and

|M | = |{x, y}| = 2 then the number of blocks containing x and y, λ0,2, is
(6
1)

(2
1)

= 3.

Furthermore if |N | = |{x, y, z}| = 3 and |M | = 0 then the number of blocks, λ3,0,

is
(5
0)

(1
0)

= 1. Similarly if |N | = 0 and |M | = |{x, y, z}| = 3 then the number of blocks,

λ0,3, is
(5
0)

(1
0)

= 1.

Then we will examine the case that both N and M are non-empty. Suppose that

|N | = |{x}| = 1 and |M | = |{y}| = 1. This means that we are looking for blocks

containing x but not y. The number of blocks containing x and y, λ2,0, is 3. Also

the number of blocks containing x, λ1,0, is 7. Since blocks containing x and y are

included in blocks containing x, the number of blocks containing x but not y, λ1,1, is
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7− 3 = 4, namely λ1,1 = λ1,0− λ2,0. In a similar reasoning we have λ2,1 = λ2,0− λ3,0
and λ1,2 = λ1,1 − λ2,1.

At last, the intersection triangle of S(3, 4, 8) is in as below.

14 = λ0,0

7 = λ1,0 7 = λ0,1

3 = λ2,0 4 = λ1,1 3 = λ0,2

1 = λ3,0 2 = λ2,1 2 = λ1,2 1 = λ0,3

Theorem 3.2.6. [16, Theorem 6.2A.] Let S(t, k, v) be a Steiner system with b blocks

such that each point lies in exactly r blocks. Then

(i) bk = vr,

(ii) v ≤ b and k ≤ r (Fisher’s inequality).

Proof. Let V be a set of v points in S(t, k, v) and let α be in V . Then we form a

pair (α,B) such that α is in the block B. To prove our first assertion, we will count

the number of pairs (α,B) in two ways.

We note that there are b blocks and in each blocks there are k points. Hence

there are k options for choosing α and b options for choosing blocks. Therefore the

number of pairs is equal to bk. Secondly, we have v options for choosing α from the

set V and r options for choosing blocks containing α. Therefore the number of pairs

is equal to vr. Hence bk = vr.

Now, we will prove the Fisher’s inequality. We will define S(t, k, v) by using

incidence matrix v × b, say M . Let αi be points in V and Bj be blocks such that
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1 ≤ i ≤ v and 1 ≤ j ≤ b. Hence we identify (i, j)-entries of M with α1 and Bj such

that (i, j)-entry will be 1 if αi ∈ Bj and (i, j)-entry will be zero if otherwise.

Let MT be transpose of M . Then MT is a b × v matrix and MMT is a v × v
matrix. We note that (i, j)-entry of MMT is the dot product of ith row of M with

jth row of M . This means that (i, j)-entry gives us the number of blocks containing

both αi and αj, say r2. If i = j then (i, j)-entry will be r that is the number of

blocks containing αi. By the formula (3.2),

r =

(
v−1
t−1

)(
k−1
t−1

) =
(v − 1)(v − 2)...(v − t+ 1)

(k − 1)(k − 2)...(k − t+ 1)

and

r2 =

(
v−2
t−2

)(
k−2
t−2

) =
(v − 2)(v − 3)...(v − t+ 1)

(k − 2)(k − 3)...(k − t+ 1)
.

Then we get r2
(v−1)
(k−1) = r. It follows that r2(v−1) = r(k−1). Since 1 < t < k < v,

r > r2.

MMT =



r r2 r2 ... r2

r2 r r2 ... r2

r2 r2 r ... r2

... ... ... ... ...

r2 r2 r2 ... r


MMT is illustrated as above. Now we apply elementary row and column opera-

tions. Firstly; for this purpose, we add −1 multiple of first row to other rows. After

that, we add second column to first column. Then we proceed as adding remaining

v − 2 columns to first column. Hence we have a matrix of the form:
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U =



r + r2(v − 1) r2 r2 ... r2

0 r − r2 0 ... 0

0 0 r − r2 ... 0

... ... ... ... ...

0 0 ... ... r − r2


Hence we have an upper-triangle matrix, and so det(U) is the multiplication of

diagonal entries. Our operations to MMT do not affect the determinant, namely

det(MMT ) = det(U). Therefore det(MMT ) = (r + r2(v + 1))(r − r2)
v−1. Since

r > r2, det(MMT ) 6= 0. This means that MMT is v× v invertible matrix, and so it

has rank v. For this reason the v × b matrix M also has rank v, thus v ≤ b.

Since v ≤ b and bk = vr, we have k ≤ r. Therefore we have proved Fisher’s

inequality.

To sum up, we can find b and r from t, k, v. For this reason we do not need to show

b and r in our notation S(t, k, v). Moreover from Theorem 3.2.6, we note that t, k

and v must be an integer. Also the number of blocks containing i points, calculated

by the formula (3.2), that we have shown before must be an integer. Therefore we

have shown necessary conditions on the parameters of a Steiner system.

Next we will show the connection between finite geometries and Steiner systems

since in chapter 4 and 5, we will use the properties of affine and projective planes.

Theorem 3.2.7. [13] S(2, n+ 1, n2 + n+ 1) is a projective plane of order n, where

n ≥ 2.

Proof. We suppose that S is a projective plane of order n. Then S contains n2+n+1

points and every line is incident to exactly n + 1 points by Theorem 2.2.14. Also
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every two distinct points determine the unique line. Hence S is S(2, n+1, n2 +n+1)

Steiner system by Definition 3.1.1.

For the converse, we suppose that S is an S(2, n+ 1, n2 +n+ 1). Since there exist

exactly one line through any two distinct points and every line is through at least two

points, S is a linear space by Definition 2.2.5. Also since S contains n2 +n+1 points

and every line is incident with exactly n + 1 points, there exist n + 1 lines through

each point. Let `1 and `2 be two distinct lines `1 and `2 such that x ∈ `2 \ `1. Since

`1 contains n + 1 points, there exist n + 1 lines through x meeting `1. Since these

are the complete set of lines through x, the lines `1 and `2 must have an intersection.

Hence S is a projective plane of order n by Definition 2.2.12.

Theorem 3.2.8. [13] S(2, n, n2) is an affine plane of order n, where n ≥ 2.

Proof. We suppose that S is an affine plane of order n. Then S contains exactly

n2 points and every line is incident with exactly n points by Theorem 2.2.11. Also

every two distinct points determine the unique line. Hence S is S(2, n, n2) Steiner

system by Definition 3.1.1.

For the converse, we suppose that S is an S(2, n, n2). Since there exist exactly

one line through any two distinct points and every line is through at least two points,

S is a linear space by Definition 2.2.5. Also since S contains n2 points and every

line is incident with n points, there exist n + 1 lines though each point. Also we

have n + 1 ≥ 2. Then there are three non-collinear points. It follows that there are

exactly n lines through x contained in ` since ` contains n points. Hence there is a

unique line m through x such that m 6= `. Hence S is an affine plane by Definition

2.2.6.
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3.3 Automorphisms of Steiner systems

Let S be a Steiner system with ordered pair (V,B), where V is a set of points and B
is a family of subsets of V . We denote S by S(V,B).

Definition 3.3.1. [8] Let S(V,B) be a Steiner system. An automorphism of S(V,B)

is a bijection f : V 7−→ V such that B ∈ B implies f(B) ∈ B. That is to say, f

permutes the blocks of S by permuting the points of S.

Theorem 3.3.2. [8] The set of all automorphisms of a Steiner system S(V,B) is a

group.

Proof. Let G be a set of all automorphisms of S(V,B). Let e be an identity function

such that e(B) = B for any B ∈ B. Thus e ∈ G, and so G is non-empty. Let

f and h be in G. Now, we want to show that h−1 is an automorphism. Since

all automorphism in G are permutations of V , G is a subset of SV , symmetric

group on V . Also since SV is finite group, h−1 = hn for some n > 0. Hence hn is

an automorphism because composition of automorphisms is an automorphism too.

Thus h−1 is an automorphism, and so h−1 is in G. Therefore fh−1 is also in G and

hence G is a group.

Remark 3.3.3. The group of automorphisms of S(V,B) is denoted by Aut(S(V,B))

or if S(V,B) = S(t, k, v) then its group of automorphisms may be denoted by

Aut(S(t, k, v)).

Proposition 3.3.4. [16] Aut(S(V,B)) acts on both points of V and the blocks B.

Proof. Let θ : Aut(S(V,B)) × V 7−→ V by θ(fv) = f(v) for all f ∈ Aut(S(V,B))

and v ∈ V . We check two properties of a group action. Let f1, f2 ∈ Aut(S(V,B))

and v ∈ V . Firstly, ev = e(v) = v, where e is the identity function. Secondly,
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f1(f2v) = f1(f2(v)). Then f2(v) = v
′

for some v
′ ∈ V . It follows that f1(f2v) =

f1(v
′
) = (f1f2)(v). Hence this action satisfies group action criteria.

In a same manner, let η : Aut(S(V,B)) × B 7−→ B by η(fB) = f(B) for all

f ∈ Aut(S(V,B)) and B ∈ B. We check two properties of a group action. Let

f1, f2 ∈ Aut(S(V,B)) and B ∈ B. Firstly, eB = e(B) = B, where e is the identity

function. Secondly, f1(f2B) = f1(f2(B)). Then f2(B) = B
′

for some B
′ ∈ B. It

follows that f1(f2B) = f1(B
′
) = (f1f2)(B). Hence this action satisfies group action

criteria.

Therefore we have shown that Aut(S(V,B)) acts on both points of V and the

blocks B. The next theorem we will deal with the connection of these actions.

Theorem 3.3.5. [16, Theorem 6.2B.] Let S(V,B) be a Steiner system and G be a

group of automorphisms of S(V,B), namely Aut(S(V,B)). Then,

(i) The number of orbits of an action of G on B is at least as great as the number

of orbits of an action of G on V.

(ii) Let G act transitively on both B and V. Then the rank of G acting on B is at

least as great as the rank of G acting on V.

Proof. (i) Let V1, V2, ..., Vs be the orbits of G on V and B1,B2, ...,Bf be the orbits of

G on B. Also let us define ni := |Vi|. Our aim is to show that s ≤ f .

Now, let cik be the number of points in Vi that lie in any given block in Bk and dkj

be the number of blocks in Bk that contain a given point of Vj, where 1 ≤ i, j ≤ s

and 1 ≤ k ≤ f .

We fix i and j then define sets T1, T2 as

T1 := {(α,B) ∈ Vi × Bk : α ∈ B},

42



T2 := {(B, β) ∈ Bk × Vj : β ∈ B}.

Then the order of the sets as follows,

|T1| =
f∑
k=1

cik and |T2| =
f∑
k=1

dkjnj.

Due to the definitions of cik and dkj, we can combine the sets T1 and T2 to define

a new set T . Then,

T := {(α,B, β) ∈ Vi × Bk × Vj : α, β ∈ B}.

Therefore the order of the set T as follows,

|T | =
f∑
k=1

cikdkjnj.

Moreover, we try to compute |T | in a different way. Firstly, let us pick α in Vi

and β in Vj. By the formula 3.2 in the chapter 3, the number of blocks containing α

and β is equal to
(v−2
t−2)

(k−2
t−2)

:= λ2 and the number of blocks containing one of the α and

β is equal to
(v−1
t−1)

(k−1
t−1)

:= λ1 under the assumption that S(V,B) = S(t, k, v). Then we

pick a block containing α and β.

More precisely, we firstly suppose that i 6= j. Then we pick α from Vi out of ni

options. Similarly, we pick β from Vj out of nj options. Also the number of blocks

containing α and β is λ2. Therefore, the order of T is equal to ninjλ2.

Now, we suppose that i = j. We pick α from Vi out of ni options. Similarly, we

pick β from Vi out of ni − 1 options. Also the number of blocks containing α and

β is λ2. Since α and β are in the same orbit, there is also one more case, that is
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α = β. In this case, we only pick one point, namely α. Then the number of blocks

containing α is λ1. Therefore the order of T is equal to ni(ni − 1)λ2 + niλ1.

In summary,

|T | =
f∑
k=1

cikdkjnj =

ni(ni − 1)λ2 + niλ1 if i = j

ninjλ2 if i 6= j.

After dividing both sides by nj,

f∑
k=1

cikdkj =

(ni − 1)λ2 + λ1 if i = j

niλ2 if i 6= j.

The term
∑f

k=1 cikdkj can be seen as the (i, j)th entry of the matrix which is the

matrix multiplication of C and D, where C is an s× f matrix with entries [cik] and

D is an f × s matrix with entries [dkj]. Hence,

CD =



(n1 − 1)λ2 + λ1 n1λ2 n1λ2 ... n1λ2

n2λ2 (n2 − 1)λ2 + λ1 n2λ2 ... n2λ2

n3λ2 n3λ2 (n3 − 1)λ2 + λ1 ... n3λ2

... ... ... ... ...

nsλ2 nsλ2 ... ... (ns − 1)λ2 + λ1



CD is illustrated as above. Now we apply elementary row and column operations.

Firstly; for this purpose, we add −1 multiple of second column to first column. Then

we add −1 multiple of third column to second column. We continue with this fashion

till adding −1 multiple of sth column to s− 1th column. Hence we have a matrix of
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the form:

E =



−λ2 + λ1 0 0 ... n1λ2

λ2 − λ1 −λ2 + λ1 0 ... n2λ2

0 λ2 − λ1 −λ2 + λ1 ... n3λ2

0 0 λ2 − λ1 ... n4λ2

... ... ... ... ...

0 0 ... ... (ns − 1)λ2 + λ1



Moreover we apply elementary row operations to E. For this purpose, we add +1

multiple of first row to second row. Then we add +1 multiple of second row to third

row. We continue with this fashion till adding +1 multiple of s− 1th row to sth row

and so we have a matrix of the form:

U =



−λ2 + λ1 0 0 ... n1λ2

0 −λ2 + λ1 0 ... (n1 + n2)λ2

0 0 −λ2 + λ1 ... (n1 + n2 + n3)λ2

0 0 0 ... (n1 + n2 + n3 + n4)λ2

... ... ... ... ...

0 0 ... ... (n1 + n2 + ...+ ns−1 + ns − 1)λ2 + λ1



As a result, we have an upper-triangle matrix U , and so det(U) is the multipli-

cation of diagonal entries. Our operations to CD do not affect the determinant,

namely det(CD) = det(U). Therefore det(CD) = (λ1− λ2)s−1(n1 + n2 + ...+ ns−1 +

ns − 1)λ2 + λ1. Since
∑s

i=1 ni = v, we have det(CD) = (λ1 − λ2)s−1(λ1 − λ2 + vλ2).

We also note that λ1 > λ2. This implies that det(CD) 6= 0. Then CD is an s × s
invertible matrix with rank s. For this reason s× f matrix C also has rank s. Thus

s ≤ f .

Remark 3.3.6. Let G consist of only identity element, 1. Then the number of orbits

of G on B is |B| := b and the number of orbits of G on V is |V | := v. Hence v ≤ b.
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This result gives us one of the Fisher’s inequality, which is stated in Theorem 3.2.6

in chapter 3.

(ii) Let G act transitively on both B and V. Also let α ∈ V and B ∈ B. Then

the rank of G acting on V is equal to the number of orbits of Gα acting on V by

Definition 2.1.38. Similarly, the rank of G acting on B is equal to the number of

orbits of GB acting on B.

Let m be the number of orbits of G acting on V ×B. Since G acts transitively on

B and V , m is equal to the number of orbits of Gα on V , say m1, and to the number

of orbits of GB on B, say m2 by Definition 2.1.38. Thus m1 is at most m and m2 is

at least m by part (i).

Proposition 3.3.7. Let G be an automorphism group of a Steiner system S and α

be a point in S. Then Gα is an automorphism group of the one-point contraction of

S, namely Sα.

Proof. Let S = S(V,B) and α ∈ V . By Theorem 3.2.1, there exists a Steiner system

Sα = S(V
′
,B′), where V

′
= V \ {α} and B′ is a family of blocks. In the process

of contraction, we firstly exclude blocks not containing α. Later, we remove α from

blocks containing α and get a new family of blocks B′ .

Let g ∈ Gα and also let B ∈ B such that α ∈ B. Then α ∈ g(B) and g(B) is a

block in S. It follows that g(B) \ α is a block in Sα. Since g leaves α invariant, we

have g(B \ α) = g(B) \ α. Therefore Gα ⊆ Aut(Sα).

Let h ∈ Aut(Sα) and also let B
′ ∈ B′ . Then h(B

′
) is block in Sα. It follows that

B
′ ∪ α and h(B

′
) ∪ α are blocks in S. h leaves α invariant since α is not a point in

Sα. This means that h(B
′ ∪ α) = h(B

′
). Thus h ∈ Gα. Therefore Aut(Sα) ⊆ Gα.

Hence Gα = Aut(Sα).
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Chapter 4

The construction of S(5, 6, 12) by

S(2, 4, 13)

This chapter is entirely based on the article of Hans Havlicek and Hanfried Lenz

[19]. In this chapter, our construction of S(5, 6, 12) is based on S(2, 4, 13) that is a

projective plane of order 3 by Theorem 3.2.7. Also I want to thank Hans Havlicek

for allowing me to use his own figures in their article.

4.1 Introduction and definitions

Let P be the set of points of the projective plane of order 3; that is to say, S(2, 4, 13).

We know that there are exactly four lines (blocks) through each point of the projective

plane of order 3 and each two lines have an intersection with exactly one point from

Theorem 2.2.14. Also there are 13 points, and 13 lines, known as blocks, by the

formula (3.1). The unique line joining distinct points A and B will be written AB.
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Let α be fixed in P . We will show that W := P \ {α} together with a family B of

subsets of six points is S(5, 6, 12).

We start with the definitions that we will use throughout in this chapter.

Definition 4.1.1. A triangle is a set of three non-collinear points and three lines

that are incident with two of them. We call points vertices and lines sides.

Remark 4.1.2. A side of a triangle in a projective plane is a line. On the other hand,

a side of a triangle in a euclidean plane is a line segment, which is a part of a line

bounded by two distinct points. Since closeness of points in a projective plane is not

defined, line segment is not defined in a projective plane.

Definition 4.1.3. An inscribed triangle in the triangle T is a set of a three non-

collinear points that separately lies on exactly one line of the triangle T

Definition 4.1.4. A quadrangle is a set of four points, no three of which are

collinear, and a six lines that are incident with each pair of these points. The four

points are called vertices and the six lines are called sides of the quadrangle.

Definition 4.1.5. Two sides of a quadrangle, say `1, `2 are opposite if the point that

is incident with both lines is not a vertex of `1 and `2.

Definition 4.1.6. A diagonal point of a quadrangle is a point that is incident with

opposite sides of the quadrangle.

Proposition 4.1.7. A quadrangle has three diagonal points in a projective plane.

Proof. Straightforward from using both Theorem 5.2.4 and Theorem 2.2.13.
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4.2 Classifying sets containing six points

In this section, we will show the classification of subsets of P , each of which consists

of six points since our aim is to discover sets of six points that are blocks of S(5, 6, 12).

We also note that figures of this section are illustrations of a projective plane of order

3.

Type 1. S is the union of a line and two additional points (Figure 4.1).

Figure 4.1

This set contains a line, which has four points. There are 13 options for the one

line. Also, there are nine points that are not in the line, left for the two remaining

points. So, there are
(
9
2

)
options for the two additional points. In Figure 4.1, we

illustrate a projective plane of order 3 and our example of choices for the one line

and the two remaining points in the plane. In the figure, points depicted bold form

a set of six points.

Hence, there are exactly 13 ·
(
9
2

)
= 13 · 36 sets of type 1.

Type 2. S is the symmetric difference of two different lines (Figure 4.2).
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Figure 4.2

Since two different lines meet at exactly one point, their symmetric difference is

the set of six points of two lines without the intersection point. We choose two lines

out of thirteen lines. In Figure 4.2, we illustrate our example of choices for the two

lines in the plane. In the figure, points depicted bold form a set of six points.

Hence, there are exactly
(
13
2

)
= 13 · 6 sets of type 2.

Type 3. S consists of a triangle and an inscribed triangle (Figure 4.3).

Figure 4.3

A triangle, so called main triangle, and an inscribed triangle, which is inscribed

in the main triangle, have three vertices each. Then, vertices of each triangles form

a set of six points S. Also, we note that each vertex of the inscribed triangle lies on

exactly one line of the main triangle.
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The main triangle has three lines that is incident with each pair of vertices. That

is to say, each vertex of the main triangle is on exactly two lines. For counting the

sets of type 3, we start with choosing the lines of a main triangle. Firstly, we choose

one line out of thirteen lines. There are 13 options for this line. We want to select a

second line, and so there are 12 options for that. These two lines that we have chosen

have an intersection at only one point. We know that there are four lines through

that point. Since we want to choose a line that does not intersect the previous two

lines that we have chosen at the common point, there are
(
9
1

)
options for the third

line. Therefore, we have chosen three lines for forming the main triangle

Moreover, we need to avoid repetitions because the order of choosing does not

matter. For this reason, we divide
(
13
1

)(
12
1

)(
9
1

)
by 3! for counting the number of ways

to form the main triangle.

Now, we have to choose the vertices of the inscribed triangle. What we know

about the vertices is that these must be non-collinear points that lie on exactly one

line of the main triangle each. Then, we have three lines and there are two vertices

of the main triangle in each line. So there are two possible vertices in each line for

the inscribed triangle.

Let us pick a one line out of three lines of the main triangle. There are two options

for the vertex of the inscribed triangle. Then, there are
(
3
1

)
· 2 options for the first

vertex. Further, we pick the second line out of two lines. Then, there are two options

for the second vertex of the inscribed triangle, and so there are
(
2
1

)
· 2 options for the

second vertex.

Finally, when we pick the last line of the main triangle, there is only one option for

the last vertex on the last line since the other two vertices of the inscribed triangle

decides the line that intersects at exactly one point of the last line. If we exclude

the two vertices of the main triangle and the intersection point, which violates the
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non-collinearity condition for the inscribed triangle, on the last line, we have only

one option for the remaining vertex of the inscribed triangle.

In Figure 4.3, we illustrate our example of the main triangle and the inscribed

triangle. In the figure, points depicted bold form a set of six points and lines depicted

bold are the sides of the main triangle.

Since the order of choice is not important, we divide
(
3
1

)
· 2 ·

(
2
1

)
· 2 by 3!.

Hence, there are exactly
(13

1 )(12
1 )(9

1)
3!

· (3
1)2(

2
1)2

3!
= 13 · 72 sets of type 3.

Type 4. S is the set of vertices of quadrangle and two of its diagonal points (Figure

4.4).

Figure 4.4

A quadrangle has four vertices, no three of which are collinear, and three diagonal

points. Our proceeding will be similar to type 3. That is, we will start picking lines.

We will have chosen four lines at the end.

First we choose one line out of thirteen lines, and so there are
(
13
1

)
options. Then,

we choose a second line out of twelve lines. There are
(
12
1

)
options. These two lines

that we have picked intersects in only one point. We know that there are four lines
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through that intersection point. Hence, we exclude these lines for choosing the third

line. Hence, there are
(
9
1

)
options for the third line.

Finally, we pick a fourth line that does not intersect previous three lines that we

have picked at common points of each of these lines between them since we want to

yield the four vertices of the quadrangle. We have already picked three lines, say

`1, `2, `3. Let us call c1 the common point of `1 and `2, c2 of `2 and `3, c3 of l1 and l3.

There are four lines through c1 and c2 each. Also, `2 is the common line through c1

and c2. Hence, there are seven lines through c1 or c2. Likewise, there are four lines

through c3. Since `1 and `3 are the common lines through c3, there are nine lines

through one of c1, c2 or c3. Hence, there are 4 options for the fourth line.

In Figure 4.4, we illustrate our example of the quadrangle. In the figure, points

depicted bold form a set of six points and lines depicted bold are the sides of the

quadrangle.

Also, we need to avoid repetitions since the order does not matter. For this reason,

we divide
(
13
1

)(
12
1

)(
9
1

)(
4
1

)
by 4!.

Hence, there are exactly
(13

1 )(12
1 )(9

1)(
4
1)

4!
= 13 · 18 sets of type 4.

Now, we will show that the four types are disjoint with each other.

Type 1 and Type 2

We suppose that there exists a set S of six points that belongs to both type 1

and type 2. Then, S is the union of a line, say `1, and two additional points, say A

and B. Since also S is the symmetric difference of two different lines, there is a line,

say `2, through A and B and so the symmetric difference of `1 and `2 will exclude

a point, say C, lies on `1 and `2 from the set S. However, C is in union of a line

and two additional points A and B. Therefore, we get a contradiction; so type 1 and
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type 2 are disjoint.

Type 1 and Type 3

We suppose that there exists a set S of six points that belongs to both type 1

and type 3. Then, S consists of a triangle with the set of vertices {E,F,G} and

an inscribed triangle with the set of vertices {P,Q,R} with P ∈ FG, R ∈ EF and

Q ∈ EG. Also, S is the union of a line and two further points.

Suppose the line FG has four points from the set S of six points, without loss of

generality. We know that P ∈ FG so we need to find one more point in FG. But

E /∈ FG because the points E,F,G are non-collinear. In addition, Q /∈ FG because

Q lies in EG and G is the only intersection point of the lines EG and FG. Similarly,

R /∈ FG because R lies in EF and F is the only intersection point of the lines EF

and FG. Therefore, we get a contradiction; so type 1 and type 3 are disjoint.

Type 1 and Type 4

We suppose that there exists a set S of six points that belongs to both type 1

and type 4. Then, S is the set of vertices of the quadrangle {A,B,C,D} and two

diagonal points {E,F} with E ∈ AD∩BC and F ∈ AB ∩CD. Also, S is the union

of a line and two additional points.

Without loss of generality; suppose the line AD has four points from the set S of

six points. We know that E ∈ AD so we need to find one more point in AD. But B

and C are not in AD since AD and BC have a common point E, which is a diagonal

point, make AD and BC opposite sides of the quadrangle. Also, F can not be in

AD since it is the other diagonal point. Therefore, we get a contradiction; so type 1

and type 4 are disjoint.

Type 2 and Type 3
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We suppose that there exists a set S of six points that belongs to both type 2

and type 3. Then S consists of a triangle with the set of vertices {E,F,G} and an

inscribed triangle with the set of vertices {P,Q,R} with P ∈ FG, R ∈ EF and

Q ∈ EG.

Also, S is the symmetric difference of two different lines, say a and b. Therefore,

the set S of six points lie in a and b. Let us say; for the triangle {E,F,G}, two of its

points lie on a. Also a and b have a common point, say U , which is not in S. There

is a one point remaining that lies on a, which is the one of the vertices {P,Q,R} of

the inscribed triangle. As a result, two of the vertices of the inscribed triangle lies

on b, and also one of the vertices {E,F,G} of the triangle lies on b.

Without loss of generality; let us say E and F lie on a and P and Q lie on b.

Hence, G must lie in b; but G /∈ b since b is uniquely determined by two distinct

points P and Q. Therefore, we get a contradiction; so type 2 and type 3 are disjoint.

Type 2 and Type 4

We suppose that there exists a set S of six points that belongs to both type 2 and

type 4. Then S is the set of vertices of quadrangle {A,B,C,D} and two diagonal

points {E,F} with E ∈ AD ∩ BC, F ∈ AB ∩ CD. Also, S is the symmetric

difference of two different lines, say a and b.

Since any three of vertices of the quadrangle must be non-collinear, without loss of

generality; let us say A and B lie on a and C and D lie on b. Then, F ∈ AB ∩ CD

will be excluded by the symmetric difference. Therefore, we get a contradiction; so

type 2 and type 4 are disjoint.

Type 3 and Type 4

We suppose that there exists a set S of six points that belongs to both type 3 and
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type 4. Then S is the set of vertices of quadrangle {A,B,C,D} and two diagonal

points {E,F} with E ∈ AD ∩ BC, F ∈ AB ∩ CD. Also S consists of a triangle

and an inscribed triangle.

AD and BC are the opposite sides of the quadrangle since these lines meet at

the diagonal point E. The line CD intersects these lines at the points C and D.

Since C, D and E are non-collinear, the lines AD, BC and CD form a triangle.

Furthermore, the remaining three points {A,B, F} lie in same line; hence, we can

not form a second triangle. Therefore, we get a contradiction; so type 3 and type 4

are disjoint.

In conclusion, these four types of sets of six points are distinct with each other.

We have 13 · (36 + 6 + 72 + 18) = 13 · 132 = 1716 sets of six points in total. As(
13
6

)
= 1716, our list contains all possible sets.

4.3 Construction of S(5, 6, 12)

We want to form S(5, 6, 12). For this purpose, we need to have a set W of 12 points

together with a family of subsets of 6 points in W .

Let α be fixed in P and let us define W := P \ {α}. A block B is defined to be a

subset of W satisfying one of the following conditions.

i. B is the symmetric difference of two distinct lines, neither containing α.

Since neither line is incident with α and there are four lines through α, there are

9 options for the first line. For the second line, there are 8 options.

If repetitions are taken into account, there are
(9
1)(

8
1)

2!
= 36 blocks of class i.
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ii. B ∪ {α} is the union of two distinct lines.

Firstly, α may be on both lines. Since there are four lines through α, we will pick

two lines out of four lines. Hence, we have
(
4
2

)
= 6 blocks of class ii.

Secondly, α may not be on both lines; but at least one line has α. There are four

lines that are incident with α. Then, we have four options for the line through α.

For the second line, we have nine options. Hence, we have 4 · (13− 4) = 36 blocks of

class ii.

Finally, if α is not on both lines, the union B∪{α} will be the set of seven points;

however, we want to form sets of six points. Hence, there are 42 blocks of class ii.

iii. B consists of a quadrangle with two of its diagonal points. Also, α is the

remaining diagonal point.

We take two distinct lines, say A and B, through α. Then, there are
(
4
2

)
= 6

options. Also, we will choose two distinct points on A\{α} and B\{α}, respectively.

Hence, there are
(
3
2

)(
3
2

)
options. Since α is excluded, two diagonal points are left;

and so we have only one option for picking diagonal points.

Therefore, we have
(
4
2

)(
3
2

)(
3
2

)
= 54 blocks of class iii.

To sum up, we have a total of 36 + 42 + 54 = 132 blocks.

Now, we have to prove that the set W together with the set of 132 blocks is

S(5, 6, 12). In the next theorem, we will prove that.

Here is the main result of this chapter.

Theorem 4.3.1. [19, Theorem 1] The set W , together with the set of all blocks, is

S(5, 6, 12).
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Proof. First we note that the number of points in W is 12 and all blocks have exactly

6 points.

Second we will show that for each set M of five points in W belongs to at least

one block. We consider S := M ∪ {α} as a set of six points. Then there are four

cases depending on the types of the sets of six points.

1. Suppose that S is a set of type 1, consists of a line a and two additional points.

Let b be the line joining these two points. Then (a ∪ b) \ {α} is a block of class ii

containing M .

Figure 4.5

In Figure 4.5, we illustrate an example of a set of type 1. In the figure, points

depicted bold form a set of six points and ring-shaped point is α.

2. Let S be a set of type 2, the symmetric difference of two distinct lines. Let a

and b be our two distinct lines. Then (a ∪ b) \ {α} is a block of class ii containing

M .
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Figure 4.6

In Figure 4.6, we illustrate an example of a set of type 2. Bold-lines are our lines

a and b and α is the common point of these lines. By the symmetric difference of a

and b, α is excluded and can be seen as ring-shaped point in the figure.

3. Let S be a set of type 3, consists of a triangle with the set of vertices {A,B,C}
and an inscribed triangle with the set of vertices {P,Q,R} with P ∈ BC, R ∈ AB
and Q ∈ AC.

A

B C

P
Q

R = α

X

Figure 4.7

A

B C = α

P
Q

R

X

Figure 4.8
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Now, we have to consider two cases for α: if α is in {P,Q,R}, let R = α without

loss of generality, and define the point X := AP ∩ BQ. X can be seen as ring-

shaped point in Figure 4.7. Then X ∈ CR and the set of points {A,B,C,X} is the

vertices of a quadrangle with diagonal points Q and P . Also R = α. Hence the set

{A,B,C,X,Q, P} is exactly the block of class iii containing M .

Otherwise, α is not in {P,Q,R}. Let C = α without loss of generality, and define

the point X := PQ ∩ BQ. X can be seen as ring-shaped point in Figure 4.8. Then

it follows that X ∈ AB ∪ PQ. Hence the symmetric difference of AB and PQ is a

block of class i containing M .

4. Let S = {A,B,C,D,E, F} be the set of vertices of the quadrangle and two

diagonal points, so called type 4.

A

B C

D

E

F = α

X

Figure 4.9

Without loss of generality, let α = F = AB ∩ CD in Figure 4.9. This means

that {A,B,C,D} is the set of vertices of the quadrangle with two diagonal points

E and α. Let X be the third diagonal point of the quadrangle that can be seen as

ring-shaped point in the figure. Hence the set {A,B,C,D,E,X} is the block of class

iii containing M .
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Finally, we will compute the number of blocks containing our set M of five points.

Each of the 132 blocks contains exactly
(
6
5

)
= 6 subsets of five points. Then we have

132 · 6 = 792 sets of five points in total. Previously, we have shown that any set M

of five points is contained in at least one block; and so it follows that the number of

blocks is greater than or equal to 1 for each
(
12
5

)
= 792 possible sets M . Hence, the

number of blocks is equal to 1 for all M .
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Chapter 5

The construction of S(5, 6, 12) by

S(2, 3, 9)

In this chapter, we will form a Steiner system of type S(5, 6, 12) by using the 3-fold

extension of S(2, 3, 9). Our work is based on John D. Dixon and Brian Mortimer’s

book [16] Permutation Groups. In chapter 4, our construction of S(5, 6, 12) is based

on S(2, 4, 13) that is a projective plane of order 3 by Theorem 3.2.7. On the other

hand, in this chapter, our construction of S(5, 6, 12) is based on S(2, 3, 9) that is

an affine plane of order 3 by Theorem 3.2.8. For this reason, we presume some

familiarities with an affine plane of order 3 in this chapter.

5.1 The one-point extension of S(2, 3, 9)

First what we mean by the one-point extension of a Steiner system of type S(t, k, v)

is to increase the parameters one point more to have S(t+ 1, k + 1, v + 1). Then we

have to sure that S(t + 1, k + 1, v + 1) really exists. In this section, we will extend

62



S(2, 3, 9) to S(3, 4, 10) by adding one point and show that S(3, 4, 10) exists. We start

showing the uniqueness of S(2, 3, 9) up to isomorphism.

Theorem 5.1.1. There is a unique S(2, 3, 9) Steiner system up to isomorphism.

Proof. Let S be any Steiner system of type S(2, 3, 9). Since S(2, 3, 9) is an affine

plane by Theorem 3.2.8, we call blocks of S lines, which are incident with three

points. Moreover, the lines of S can be partitioned into four parallel classes and

each parallel class has three lines by Theorem 2.2.11. Now, let us choose one parallel

class, say P1, and write down its lines, namely `1, `2, `3 as three columns. Then we

have displayed all nine points of an affine plane in the columns.

Let `4 be a line that is not parallel to the lines of P1. Then `4 contains exactly

one point in each lines `1, `2 and `3. By Definition 2.2.6, for every point x in the

plane and the line `4 not through x, there exists a unique line through x that does

not meet `4. Since there are six points that are not in `4, we can form two lines `5

and `6 that are parallel to `4. Hence, we have formed a second parallel class, say P2.

Let `7 be a line that is non-parallel to the lines of P1 and P2. When we apply our

previous reasoning to `7, we can form two lines `8 and `9 which are parallel to `7.

Hence, we have formed a second parallel class, say P3.

Our final fourth parallel class, say P4, will be formed with same previous proce-

dure. In short, we show that parallel classes of S(2, 3, 9) is formed in exactly one

way. Therefore, there is a unique S(2, 3, 9).

Now, we will show the one-point extension of the Steiner system of type S(2, 3, 9).

First we assume that we already have an S(3, 4, 10). Also, we know that if S(t, k, v)

exists then S(t−1, k−1, v−1) exists from Theorem 3.2.1. Therefore, if we remove a

point, say α, from S(3, 4, 10) then we will have S(2, 3, 9). For this reason, a block in
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S(3, 4, 10) containing α is of the form Ω ∪ {α} where Ω denotes a block in S(2, 3, 9).

Since there are 12 blocks in S(2, 3, 9) by the formula (3.1), we have 12 sets of form

Ω ∪ {α}.

We observe that Ω ∪ {α} has three collinear points and α. Also, we recall that

the number of blocks in an S(t, k, v) is
(v
t)

(k
t)

(3.1). As a result, the number of blocks in

an S(3, 4, 10) is
(10

3 )
(4
3)

= 30. We have already counted 12 blocks which are of the form

Ω ∪ {α}. Then there are 18 blocks that do not contain α or any three collinear

points. These blocks have four points from S(2, 3, 9), no three are collinear. We will

call these sets of four points quadrangles.

In S(2, 3, 9), there are
(
9
4

)
= 126 sets of four points in total. Now, we want to

exclude sets that have three collinear points. Recall that there are twelve lines.

Hence, we pick a one line in 12 different ways. Also, we choose a one further point

out of six points those are not in the line that we have picked. Consequently, there

are
(
12
1

)(
6
1

)
= 72 sets of four points containing three collinear points. Then, the

number of quadrangles is 126− 72 = 54.

Definition 5.1.2. Two sides of a quadrangle are opposite if these lines are parallel

to each other.

We know that there are four parallel classes for lines, and so six lines of a quad-

rangle belong to one of the four parallel classes. There are two pairs of the opposite

lines that provide us a four vertices of a quadrangle in their intersections. Hence, we

can relate to each quadrangle a pair {x, y} where x and y are those parallel classes

that contain such a pair.

Let us denote the set of four parallel classes of S(2, 3, 9) by a, b, c, d. The set

{a, b, c, d} can be partitioned in three different ways into a pair of sets of two points:

{a, b} | {c, d}, {a, c} | {b, d} and {a, d} | {b, c}. Then we assign each partition to the

sets Si as follows:
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(i) S1 := the set of quadrangles with the partition {a, b} | {c, d}.

(ii) S2 := the set of quadrangles with the partition {a, c} | {b, d}.

(iii) S3 := the set of quadrangles with the partition {a, d} | {b, c}.

Proposition 5.1.3. The automorphism group of S(2, 3, 9) acts transitively on the

set of 4 parallel classes, {a, b, c, d}.

Proof. We know that S(2, 3, 9) is an affine plane from Theorem 3.2.8. Then the points

of S(2, 3, 9) is the set F2
3 = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)}.

Each parallel class partition the nine points of S(2, 3, 9). Let a and b be two parallel

classes of S(2, 3, 9) and also let `1 ∈ a and `
′
1 ∈ b. Since automorphisms of S(2, 3, 9)

send an affine subspace to an affine subspace, there exists an automorphism g such

that g(`1) = `
′
1. Then let `2 and `3 be other two lines in a. Since g is not an identity

map, we have g(`2) 6= `2 and g(`3) 6= `3. Moreover, we have g(`2) 6= `3 and g(`3) 6= `2

since `
′
1 /∈ a. Also g can not send `2 to the parallel classes c or d since there is no

common point of `1 and `2. Hence g sends `2 and `3 to the remaining lines of the

parallel class b so that g(`1), g(`2) and g(`3) contains all nine points of F2
3. Therefore

Aut(S(2, 3, 9)) acts transitively on the set of parallel classes.

Since the automorphism group of S(2, 3, 9) acts transitively on the set of parallel

classes, each of these sets contains 18 quadrangles of the 54 quadrangles of S(2, 3, 9).

In the next theorem we will show that each triangle of S(2, 3, 9) is contained in a

unique quadrangle from each set Si for i = 1, 2, 3.

Theorem 5.1.4. [16, Theorem 6.3B.] Each set S = Si(i = 1, 2, 3) has the property

that each triangle of S(2, 3, 9) is in a unique quadrangle from each set. For the

converse, S1, S2 and S3 are the only sets of 18 quadrangles with this property.

Proof. In each quadrangle, we can form four different triangles since any three of
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four points of a quadrangle are non-collinear, and so there are
(
4
3

)
= 4 options for

having a triangle in a quadrangle. In S(2, 3, 9), there are
(
9
3

)
= 84 sets of three points

in total. Then if we exclude sets of three collinear points, which are the twelve lines,

we have 84 − 12 = 72 sets of three non-collinear points, so triangles. We will show

that each triangle is in unique quadrangle from each set Si. In other words, we will

show that the 18 quadrangles from each set Si cover 18 ·4 = 72 triangles of S(2, 3, 9).

Due to the symmetry of the partition of the parallel classes, we will contemplate

only one Si to prove each triangle is in a unique quadrangle. We choose S1, the set

of quadrangles with the partition {a, b} | {c, d}, without loss of generality. Let T be

any triangle. Since T is made up by 3 non-collinear points, three sides of T are in

different parallel classes. Then one parallel class, say d, is not represented in T .

We add a point, say π, to T in order to obtain a quadrangle. There are three

lines through the point π, and these lines lie in different parallel classes. Then d is

represented in the one of three lines through π. As a result, T is not contained in a

quadrangle with a parallel class pair {c, d}.

Thus T is contained in a quadrangle with a parallel class pair {a, b}. We will show

that this quadrangle is unique. Assume to the contrary, there exist quadrangles Ξ1

and Ξ2 containing T . Hence three vertices of these quadrangles are the same due to

T . Then the fourth vertex of the Ξ1 and Ξ2 is different, say π1 in Ξ1 and π2 in Ξ2.

Also, let us say the vertices of T as v1, v2, v3. We assume that the line through v1

and v2 is in the class of a, and the line through v2 and v3 is in the class of b without

loss of generality. There is a line in the class of a through v3 and a line in the class

of b through v1. Since these two lines are not parallel, these intersect at π1 and π2.

Then we have π1 = π2 and so we get a contradiction. Consequently, T is contained

in a unique quadrangle.

Conversely, we will prove that Si(i = 1, 2, 3) are the only sets of 18 quadrangles
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with this property. We suppose that S is a set of 18 quadrangles such that each

triangle of S(2, 3, 9) is in a unique quadrangle from S. Let q1 and q2 be a points

in the S(2, 3, 9). We define a set Q consisting of quadrangles which contain these

points.

If the line through q1 and q2 has a parallel pair in the quadrangle, then we have

two options left for the pair since a parallel class has three lines. Also, for the second

parallel pair we have three options since there are four parallel class in total. Thus

we can form 2 · 3 = 6 different quadrangles. If the line through q1 and q2 does not

have a parallel pair in the quadrangle, then we have three options left for the second

line that does not have a parallel pair since there are three parallel class left for

the second line. Thus we can form 3 different quadrangles. Hence in total we have

6 + 3 = 9 quadrangles in Q.

The number of triangles containing q1 and q2 in S(2, 3, 9) is six since we exclude

one point that lies in same line with q1 and q2, and so for the third vertex we have

six possible points. We know that a quadrangle has four triangles in it. Also each

triangle is in a unique quadrangle.

Previously we have shown that there are nine quadrangles containing q1 and q2.

In each quadrangle, there are uniquely represented two triangles containing these

points. However we do not have 2 · 9 = 18 triangles. Therefore we can partition

nine quadrangles into three sets those have three quadrangles consisting of all six

triangles in S(2, 3, 9).

Finally, we have shown 18 blocks that do not contain α or any three collinear

points of S(2, 3, 9). As a result, S(3, 4, 10) exists.
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5.2 The one-point extension of S(3, 4, 10)

In this section, we will extend S(3, 4, 10) to S(4, 5, 11) by adding one point and

show that S(4, 5, 11) exists. We start showing the uniqueness of S(3, 4, 10) up to

isomorphism.

Theorem 5.2.1. There is a unique S(3, 4, 10) up to isomorphism.

Proof. Let {a, b, c, d} be the set of parallel classes of S(2, 3, 9). In the previ-

ous section, we see that the set {a, b, c, d} can be partitioned in three different

ways into a pair of sets of two points: {a, b} | {c, d}, {a, c} | {b, d} and {a, d}
| {b, c}. Let the set {a, b, c, d} be ordered. By Proposition 5.1.3, Aut(S(2, 3, 9))

acts transitively on {a, b, c, d}. Then there exists g1 ∈ Aut(S(2, 3, 9)) such that

g1({a, b, c, d}) = {a, c, b, d}. Also there exists g2 ∈ Aut(S(2, 3, 9)) such that

g2({a, b, c, d}) = {a, d, b, c}. Therefore Aut(S(2, 3, 9)) acts transitively on X =

{{a, b} | {c, d}, {a, c} | {b, d}, {a, d} | {b, c}}.

We have formed S(3, 4, 10) by adding a point α to S(2, 3, 9) in the previous section.

Recall that we define sets S1 := the set of quadrangles with the partition {a, b} |
{c, d}, S2 := the set of quadrangles with the partition {a, c} | {b, d} and S3 := the

set of quadrangles with the partition {a, d} | {b, c}. By Theorem 5.1.4, 18 blocks

that do not contain α can be picked one of the S1, S2 or S3. Since Aut(S(2, 3, 9))

acts transitively on X, it also acts transitively on {S1, S2, S3}. Hence where we take

18 blocks does not matter. Therefore S(3, 4, 10) is unique up to isomorphism.

Now, we will show the one-point extension of S(3, 4, 10) in order to obtain

S(4, 5, 11). As in the previous section, we assume that we already have an S(4, 5, 11).

Let us pick two points α and β in S(4, 5, 11). If we remove α from S(4, 5, 11) we have

S(3, 4, 10). In a same manner, if we remove β from S(4, 5, 11) we have S(3, 4, 10).

Since S(3, 4, 10) is unique up to isomorphism by Theorem 5.2.1, the contractions
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of S(4, 5, 11) due to α and β are isomorphic. Also these are one-point extension of

S(2, 3, 9). Thus we can say that the set of points of S(4, 5, 11) consists of points of

S(2, 3, 9), α and β.

Hence the blocks of S(4, 5, 11) containing α or β or both are the following forms:

(i) Ω ∪ {α, β}

In this type of block, Ω is a block (line) of S(2, 3, 9). Since there are 12 such Ω,

we have 12 such form of Ω ∪ {α, β}.

(ii) Ξ ∪ {α}

In this type of block, Ξ is a quadrangle from Si that is defined in the previous

section. Since there are 18 such Ξ in Si, we have 18 such form of Ξ ∪ {α}. Without

loss of generality we pick S1 for Ξ to obtain Ξ ∪ {α}.

(iii) Ξ ∪ {β}

In this type of block, Ξ is a quadrangle from Si that is defined in the previous

section. Since there are 18 such Ξ in Si, we have 18 such form of Ξ ∪ {β}. Without

loss of generality we pick S2 for Ξ to obtain Ξ ∪ {β}.

Again, we recall that the number of blocks in an S(t, k, v) is
(v
t)

(k
t)

(3.1). As a

result, the number of blocks in an S(4, 5, 11) is
(11

4 )
(5
4)

= 66. We have already shown

12 + 18 + 18 = 48 blocks. We will look for remaining blocks that contain neither α

nor β. That is to say, remaining blocks are made by five points from S(2, 3, 9). For

this reason, we firstly prove some properties of S(2, 3, 9), which is an affine plane, for

our further purpose. Readers may check Section 2.2.2 in chapter 2 for background

knowledge for an affine plane in the proofs of four lemmas below.

Lemma 5.2.2. Any set of five points in S(2, 3, 9) contains at least one line.
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Proof. Assume to the contrary, there exists a set K of five points that does not

contain a line. That is, a line that is incident with any two points in K does not

contain a third point in K. Thus there are
(
5
2

)
= 10 different lines that are incident

with two points of K. Hence there must be ten points which are not in K. However

there are only four points that are not in K. Therefore we get a contradiction.

Lemma 5.2.3. Any set of five points in S(2, 3, 9) contains a quadrangle.

Proof. Let us choose any five points, say x1, x2, x3, x4, x5. Then without loss of

generality we pick x1, x2 to connect these with a line, say `1. Then one of the

remaining three points, x3, x4, x5, will lie in `1 by the previous lemma.

We suppose that x3 lies in `1 without loss of generality. Then there exist a line,

say `2, through x4 that is parallel to `1 and a line, say `3, through x5 that is parallel

to `1. First we assume that `2 = `3. We want to connect x4 with a point from `1,

without loss of generality say x1. Thus there exists a line, say `4, through x1 and

x4. Also there exists a line, say `5, through x1 and x5. We want to connect x5 with

one more point, say x2, without loss of generality. Then there exists a line, say `6,

through x2 and x5. Also there exists a line, say `7, through x2 and x4.

Hence we have six lines connecting each pair of four points. There are two lines,

`4, `5, through x1. Also there are two lines, `6, `7, through x2. In addition to these, `4

and `5 are in different parallel classes, and `6 and `7 are in different parallel classes.

Since `1 and `2 are in same parallel class, say a, `4, `5, `6, `7 represent remaining

three parallel classes, say b, c, d. Let us say `4 is in b. Then `5 must be in c or d. Let

us suppose `5 is in c. Since `6 and `7 are in different parallel classes, one of them will

lie in b or c. Therefore we see that one more parallel class, say c, that have two lines.

Hence we have a quadrangle with a parallel class pair {a, c}.
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Lemma 5.2.4. For any quadrangle Ξ in S(2, 3, 9), there is a unique point δ not in

Ξ that lies on two distinct lines of Ξ.

Proof. Let Ξ be a quadrangle. Without loss of generality, we assume that Ξ has a

parallel class pair {a, b}. We note that there are six lines that contain each pair of

vertices of Ξ. Four lines are counted in a pair {a, b}.

Then there are two lines, say `1, `2, that are in different parallel classes, namely c

and d. Therefore, `1 and `2 have a point in common, say δ. Also δ is not a vertex of

Ξ since the four vertices of a quadrangle lie in intersections of lines in a pair {a, b}.
Hence δ is not in Ξ. In addition to this, δ is unique point outside of Ξ since lines in

a pair {a, b} meet at vertices of Ξ.

Remark 5.2.5. The point δ is called the diagonal point of the quadrangle.

Lemma 5.2.6. For any quadrangle Ξ in the S(2, 3, 9), there exists a unique quad-

rangle Ξ∗ disjoint from Ξ, and Ξ and Ξ∗ have the same diagonal point.

Proof. Let Ξ be a quadrangle with a parallel class pair {a, b} without loss of gener-

ality. We note that in the S(2, 3, 9) there are 12 distinct lines. Then Ξ has 6 lines

by the definition of a quadrangle. Thus there are 6 lines that are not in Ξ.

Also there are five points that lie outside of Ξ. By Lemma 5.2.3, a set of five

points contains a quadrangle. Hence there exists a quadrangle, say Ξ∗. Then Ξ∗ has

also 6 lines, which means these are the remaining 6 lines that are not in Ξ. Therefore

Ξ∗ is a unique quadrangle.

Let δ be the diagonal point of Ξ. Thus δ is one of the five points that lie outside

of Ξ. Since there are four lines through a point in S(2, 3, 9), there are four lines

through δ. Two lines that are incident with δ are lines of Ξ. Since Ξ is a quadrangle

with a parallel class pair {a, b}, these lines are in parallel classes c and d separately.
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Then the remaining lines, which are lines of Ξ∗, will be in parallel classes a and b

separately.

We suppose that δ is a vertex of Ξ∗. Then Ξ∗ is a quadrangle with a parallel class

pair {a, b}. However there are only three lines in each parallel class and Ξ is also a

quadrangle with a parallel class pair {a, b}. This violates the disjointness between Ξ

and Ξ∗. Therefore we get a contradiction, so δ is not a vertex of Ξ∗.

Moreover, since δ lies in two distinct lines from different parallel classes, namely

a and b, the other four points, which are vertices of Ξ∗, lie in these lines. Therefore

δ is a diagonal point of Ξ∗.

In the proof of Lemma 5.2.6, we have also proven the corollaries below.

Corollary 5.2.6.1. If Ξ has a pair {a, b} then Ξ∗ has a pair {c, d}.

Corollary 5.2.6.2. Any set of five points that is disjoint from a quadrangle in

S(2, 3, 9) lies in exactly two distinct lines that have an intersection.

Now, we return our mission of finding the blocks of S(4, 5, 11). We look for blocks

that have neither α or β. In other words, we look for the blocks that are made of

five points from S(2, 3, 9).

We have shown that any set of five points in S(2, 3, 9) contains a quadrangle in

Lemma 5.2.3. The previous blocks that we have shown contains quadrangle from S1

and S2. Since every set of four points is in a unique block due to the definition of

a Steiner system of type S(4, 5, 11), the remaining blocks that we have looked for

contain a quadrangle from S3. From Lemma 5.2.4. we know that any quadrangle Ξ

from S3 will have a unique point δ, which is a diagonal point of Ξ. Hence the last

type of block is the following form:

(iv) Ξ ∪ {δ}
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In this type of block, Ξ is a quadrangle from S3 that is defined in the previous

section. Since there are 18 such Ξ in S3, we have 18 such form of Ξ ∪ {δ}.

Finally, we have shown 18 blocks that do not contain neither α nor β. Therefore

S(4, 5, 11) exists.

5.3 The one-point extension of S(4, 5, 11)

In this section, we will extend S(4, 5, 11) to S(5, 6, 12) by adding one point and

show that S(5, 6, 12) exists. We start showing the uniqueness of S(4, 5, 11) up to

isomorphism.

Theorem 5.3.1. There is a unique S(4, 5, 11) Steiner system up to isomorphism.

Proof. Let S be S(4, 5, 11) and α, β ∈ S. If we remove α and β from S we have

S(2, 3, 9), which is unique by Theorem 5.1.1. When we add α and β to S(2, 3, 9),

quadrangles in the blocks of S(4, 5, 11) are chosen from S1, S2 and S3. We note that

each Si contains 18 blocks by Theorem 5.1.4. Since Aut(S(2, 3, 9)) acts transitively

on {S1, S2, S3} by in the proof of Theorem 5.2.1, where we take 18 blocks does not

matter. Therefore S(4, 5, 11) is unique up to isomorphism.

Now, we will show the one-point extension of S(4, 5, 11) in order to obtain

S(5, 6, 12). Our process will be similar to previous section. Then we start assuming

that we already have an S(5, 6, 12). Let us pick three points α, β, and γ in S(5, 6, 12).

If we remove α from S(5, 6, 12) we have S(4, 5, 11). In the same manner, if we remove

β from S(5, 6, 12) we have S(4, 5, 11).

Also if we remove γ from S(5, 6, 12) we have S(4, 5, 11). Since S(4, 5, 11) is unique

up to isomorphism by Theorem 5.3.1, the contractions of S(5, 6, 12) due to α, β, and
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γ are isomorphic. Then these are one-point extension of S(3, 4, 10). Also we note

that S(3, 4, 10) is a one-point extension of S(2, 3, 9). Thus we can say that the set

of points of S(5, 6, 12) consists of points of S(2, 3, 9), α, β, and γ.

Hence the blocks of S(5, 6, 12) containing α, β or γ are the following forms:

(i) Ω ∪ {α, β, γ}

In this type of block, Ω is a block (line) of S(2, 3, 9). Since there are 12 such Ω,

we have 12 such form of Ω ∪ {α, β, γ}.

(ii) Ξ ∪ {β, γ}

In this type of block, Ξ is a quadrangle from Si that is defined in the section 5.1.

Since there are 18 such Ξ in Si, we have 18 such form of Ξ∪ {β, γ}. Without loss of

generality we pick S1 for Ξ so as to have Ξ ∪ {β, γ}.

(iii) Ξ ∪ {α, γ}

In this type of block, Ξ is a quadrangle from Si that is defined in the section 5.1.

Since there are 18 such Ξ in Si, we have 18 such form of Ξ∪ {α, γ}. Without loss of

generality we pick S2 for Ξ so as to have Ξ ∪ {α, γ}.

(iv) Ξ ∪ {α, β}

In this type of block, Ξ is a quadrangle from S3 that is defined in the section 5.1.

since every set of four points is uniquely involved in blocks. Then there are 18 such

Ξ in S3, and so we have 18 such form of Ξ ∪ {α, β}.

For the other blocks we will define a new set of subsets from S(2, 3, 9). In each

Si, we will call set of Ξ ∪ {δ} Ci where Ξ ∈ Si and δ is the diagonal point of Ξ.
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(v) R ∪ {α}

In this type of block, R is a set of quadrangle Ξ from Si and its diagonal point.

Since there are 18 such Ξ in Si, we have 18 such form of R ∪ {α}. Without loss of

generality we pick S1 for Ξ to have R ∪ {α} = C1.

(vi) R ∪ {β}

In this type of block, R is a set of quadrangle Ξ from Si and its diagonal point.

Since there are 18 such Ξ in Si, we have 18 such form of R ∪ {β}. Without loss of

generality we pick S2 for Ξ to have R ∪ {β} = C2.

(vii) R ∪ {γ}

In this type of block, R is a set of quadrangle Ξ from S3 and its diagonal point

since we have already chosen R from S1 and S2. Then there are 18 such Ξ in S3, and

so we have 18 such form of R ∪ {γ} = C3.

Now, we will consider blocks that do not contain α, β or γ. Then blocks that we

are looking for can not contain any set of five points in Ci(i = 1, 2, 3).

We will choose six points from S(2, 3, 9) to form a block. By Lemma 5.2.3, we

know that any set of five points contains a quadrangle. Hence we should avoid the

diagonal point of a quadrangle from a block that we are trying to build. Without

loss of generality, we consider a quadrangle with parallel class pair {a, b}. Then the

diagonal point can not lie in four lines of a pair {a, b}. Therefore, the diagonal point

lies in third line of a or third line of b. In other words, The diagonal point is the

common point of third line of a and third line of b. If we choose six points from two

distinct parallel lines then we will not get diagonal point. Hence, the block of this

type is the following:
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(vii) a union of two distinct parallel lines in S(2, 3, 9).

To sum up, we have shown 132 blocks in total. Therefore S(5, 6, 12) exists.

Theorem 5.3.2. There is a unique S(5, 6, 12) Steiner system up to isomorphism.

Proof. The strategy is similar to the proof of Theorem 5.3.1 since the uniqueness

of S(5, 6, 12) is also depended on quadrangles of S(2, 3, 9). The points of S(5, 6, 12)

consists of points of S(2, 3, 9) and three further points. We find out the blocks

of S(5, 6, 12) in our above discussion and points of blocks based on the points of

S(2, 3, 9). Since Aut(S(2, 3, 9)) acts transitively on points of S(2, 3, 9), S(5, 6, 12) is

unique.
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Chapter 6

The binary Golay code and

S(5, 8, 24)

In this chapter, we will form S(5, 8, 24) and the binary Golay code simultaneously

and conclude that they are the same structure. We will follow Robin J. Chapman’s

article [20] and P. J. Cameron and J. H. van Lint’s book [21]. We note that R. J.

Chapman’s article is actually recollection of John H. Conway’s lectures that can be

found in [22].

6.1 Coding theory

In this section, we will introduce coding theory briefly. We consider a set F as a

collection of q distinct symbols that is called an alphabet. In general, one may take

q = pr where p is a prime and F = Fq. Then the code is called a q-ary code. If

q = 2 we call it binary code. Also we regard F as 1-dimensional vector space over

the field F.
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Definition 6.1.1. We may form n-tuples by using the symbols of F. We call these

n-tuples words and n the word length. We denote the set of all words of length n

by Fn. We regard it as n-dimensional vector space over the field F.

Definition 6.1.2. Let x ∈ Fn and y ∈ Fn. The distance function d is defined as the

number of coordinate places in which x and y differ and is denoted by d(x, y). That

is to say,

d(x, y) = |{i : 1 ≤ i ≤ n; xi 6= yi}|.

The distance function d is called the Hamming distance. As in our definition, it

measures difference of the positions in two n-tuples. If d(x, y) = 0 then we have x = y.

Also d(x, y) = d(y, x), and so d is symmetric. Let z ∈ Fn. Then d(x, y) + d(y, z) ≥
d(x, z) since if there is a difference in the ith coordinate between x and z then there

should be a difference in the ith coordinate between x and y or y and z. Therefore

d is the metric.

For the next definition, we consider y as 0, that is the zero vector in Fn.

Definition 6.1.3. The weight of x ∈ Fn is w(x) := d(x, 0). That is, w(x) is the

number of non-zero entries in x.

Definition 6.1.4. The ball of radius ρ with centre at x ∈ Fn where ρ > 0 is

B(x, ρ) := {y ∈ Fn : d(x, y) ≤ ρ}.

Now, we will form a special subset C of Fn. The property of C is that any two

distinct words of C have distance at least 2e + 1. Let us pick any x in C. Then we

change t coordinates of x where t ≤ e to yield a new word x′. Since the distance

between x and x′ is t and t < 2e + 1, x′ looks like x more than any other words

of C. As a result, we can correct the t errors if we know C. A subset C is called

e-error-correcting code. Formal definition as follows.
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Definition 6.1.5. An e-error-correcting code C is a subset of Fn with the property

∀x∈C∀y∈C[x 6= y ⇒ d(x, y) ≥ 2e+ 1].

Remark 6.1.6. We may call words in C codewords.

We interpret that balls of radius e of two distinct codewords are disjoint in C. If

balls in C cover Fn then the code is called perfect. Formal definition as follows.

Definition 6.1.7. An e-error-correcting code C in Fn is called perfect if⋃
x∈C

B(x, e) = Fn.

Definition 6.1.8. A k-dimensional linear subspace C of Fn is called a linear code

over the field F .

Proposition 6.1.9. The minimum distance of a linear code C is the minimum weight

of a codeword in C.

Proof. Let x and y be in C. Since C is linear subspace, x− y is in C. Then we have

d(x, y) = d(x− y, 0) = w(x− y).

Definition 6.1.10. Let C be a k-dimensional linear code. Then

C⊥ := {x ∈ Fn : ∀y∈C [〈x, y〉 = 0]},

where 〈x, y〉 denotes the dot product in Fn, is called the dual code of C of (n − k)-

dimensional linear code. That is; dim C + dim C⊥ = n.

Definition 6.1.11. A code C is called self -dual and dim C = n/2 if C = C⊥. If

C ⊆ C⊥ then C is called self -orthogonal and dim C ≤ n/2.

Definition 6.1.12. Let C be a code of length n and let Ai denote the number of

codewords of weight i where i = 0, 1, ..., n. Then

A(x) :=
n∑
i=0

Aix
i

is called the weight enumerator of C.
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We have made our definitions in a general setting. Now, let consider binary linear

code of length n, say C, in more detail. As we had mentioned earlier, if q = 2 and C
is a linear subspace of Fn

2 then C is called binary linear code.

We will define codewords of C in terms of subsets of {1, 2, ..., n}. Let a be in C.
Since a is an n-tuple, we can write a explicitly as a = (a1 a2 ... an) or a = (aj) where

j ∈ {1, 2, ..., n}. Then we identify a with where aj is 1. Hence we form a set, say A,

of all j with aj = 1. A is a subset of {1, 2, ..., n} and we define a as the subset A.

With this new definition, Fn
2 becomes the power set of {1, 2, ..., n}.

Now, we make some definitions regarding the binary linear code C.

Let X be a set {1, 2, ..., n} and C be a binary linear code of the power set of X ,

namely P(X ). For all A,B in P(X ), addition is defined by symmetric difference,

namely A+B := (A∪B)− (A∩B), and multiplication is defined by AB := |A∩B|
in mod 2.

Definition 6.1.13. The length of C is the order of X , namely |X |.

Definition 6.1.14. Let A,B be in P(X ). Then the weight w(A) of A is the order

of A, namely |A|. Also the weight w(A+B) of A+B is the order of A+B, namely

|A+B|.

Since |A+B| = |A|+|B|−2|A∩B|, w(A+B) ≡ w(A)+w(B) in mod 2. Moreover

if AB = 0 then |A ∩B| is even, and so w(A+B) ≡ w(A) + w(B) in mod 4.

Definition 6.1.15. We call C even if the order of every non-empty subset of C is even

and also call C doubly even if the order of every non-empty subset of C is divisible

by 4.

Definition 6.1.16. Let C be a code of P(X ). Then

C⊥ = {A ∈ P(X ) : ∀B∈C [AB = |A ∩B| ≡ 0 mod 2]}

is the dual of C.
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Proposition 6.1.17. Let C be a self-orthogonal and H be a subset of C of words of

weights divisible by 4. If C is spanned by H then C is called doubly even. Conversely,

if C is doubly even then C is self-orthogonal.

Proof. We suppose that C is spanned by H, where H = {A ∈ C : w(A) ≡ 0 mod 4}.
Let B ∈ C. Then B can be represented by the summation of some elements of H.

Also since C is self-orthogonal, w(B) ≡ 0 mod 4. Therefore C is doubly even by

Definition 6.1.15.

Conversely, we suppose that C is doubly even. Let A,B ∈ C. Since A+B ∈ C, its

order is divisible by 4. This means that |A ∩ B| is even. Hence AB = 0. Therefore

C ⊆ C⊥ and so C is self-orthogonal by Definition 6.1.11.

Definition 6.1.18. The minimum weight of C is the order of the smallest non-zero

subset in C.

Definition 6.1.19. Let C be at least 12-dimensional. If every codewords’ length is

24 and the minimum weight of C is at least 8 then we call C binary Golay code.

6.2 Construction

Theorem 6.2.1. Let X be a set of order 24 and C be a subspace of P(X ) = V . If C
is a binary Golay code then it is exactly 12-dimensional.

Proof. Let x be fixed in X . Then we want to count such sets in V with the order less

than or equal to 4 or containing x have the order 4. We have 24 elements in X . It

follows that
(
24
1

)
is the number of sets of one element. Similarly,

(
24
2

)
is the number

of sets of two elements and
(
24
3

)
is the number of sets of three elements. If we count
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x in the sets then the number of sets of four elements is
(
23
3

)
. Also there is an empty

set. In short, the total number of sets we would like to count is as follows,(
24

0

)
+

(
24

1

)
+

(
24

2

)
+

(
24

3

)
+

(
23

3

)
= 4096 = 212.

We call this family of sets M. Let A,B ∈ M. We suppose that the orders of A

and B are 4. Thus x ∈ A ∩B. For this reason, the weight of A+B can be at most

6. Similarly, if the orders of A and B are less than 4 then the weight of A + B can

be at most 6. Hence A + B /∈ C since the weight must be at least 8 by Definition

6.1.19. Since the cosets A + C are all distinct, the order of set of cosets is at least

212. Also we note that |C| ≥ 212. Then it follows that the order of set of cosets must

be at most 212. Therefore |C| = 212, and so C is exactly 12-dimensional.

Theorem 6.2.2. Let X be a set of order 24 and C be a subspace of P(X ) = V . If C
is a binary Golay code then

(i) the weight of the smallest non-zero subset of C is 8.

(ii) the words of weight 8 in C form S(5, 8, 24).

Proof. (i) Let B in V but not inM and |B| = 4. Then B ∈ A+ C for some A ∈M.

Hence A+B ∈ C. This implies that |A| = 4 and |A+B| = 8. Therefore the minimum

weight of C is 8.

(ii) We continue with the result of the first part. We have shown that |A+B| = 8.

Since |A| = 4 and A ∈ M, we have x ∈ A. It follows that |{x} ∪ B| = 5 and

{x} ∪ B ⊂ A+ B. This means that sets of five elements containing x are contained

in at least one set of eight elements of C. Since x was chosen arbitrarily, we can

generalize the last sentence as follows. Any sets of five elements are contained in at

least one set of eight elements of C.
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Now we suppose that there exist distinct sets of C, say N,M , such that they

have weight 8 and also contain the same set of five elements, say L. That is to say,

L ⊆ N ∩M . It follows that the weight of N +M is at most 6. Since N +M ∈ C, we

get a contradiction. Therefore N = M and any sets of five elements are contained

in exactly one set of eight elements of C.

In conclusion, the words of weight 8 form S(5, 8, 24) by Definition 3.1.1.

Theorem 6.2.3. Let X be a set of order 24 and C be a subspace of P(X ) = V . If C
is a binary Golay code then it is spanned by the words of weight 8.

Proof. Let C ′ ⊆ C such that it is generated by the set of words of weight 8. We

want to show that C ′ ⊇ C. Let A be in V such that |A| ≥ 5. Then by Theorem

6.2.2, there exists a set B of weight 8 in C such that |A ∩ B| ≥ 5. This implies that

|A + B| < |A|, and so |A + B| ≤ 4. Also by Theorem 6.2.2, we know that if B in

V but not in M and |B| = 4 then there exists A ∈ M such that A + B ∈ C and

|A+ B| = 8. Hence we can say that every element of V is congruent to elements of

M in modulo C ′ . Therefore C ′ ⊇ C, and so C ′ = C

Theorem 6.2.4. Let X be a set of order 24 and C be a subspace of P(X ) = V . Also

let S = S(5, 8, 24) on X . Suppose that C is spanned by the blocks A in S. Then

(i) C is self-dual.

(ii) C is a binary Golay code and its weight enumerator is

1 + 759x8 + 2576x12 + 759x16 + 1x24.

(iii) The words of weight 8 are blocks of S.

Proof. (i) We know that if C = C⊥ then C is self-dual from Definition 6.1.11. For

this purpose we will firstly show that for all A,B ∈ S, we have |A ∩ B| is even.
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Let us fix A ∈ S and let I be a subset of A. We calculate the number of elements

of S containing I by using the intersection triangle of S. Let |I| = i. Then the

coordinates of the intersection triangle as follows from Definition 3.2.4.

λi,0 =


(24−i

5−i )
(8−i
5−i)

when 0 ≤ i ≤ 5

1 when 5 < i ≤ 8 ,

We compute λ0,0 = 759, λ1,0 = 253, λ2,0 = 77, λ3,0 = 21, λ4,0 = 5, λ5,0 = λ6,0 =

λ7,0 = λ8,0 = 1.

Let C,D be subsets of A such that C ⊆ D. Also let |C| = i and |D| = j. If B ∈ S
then we want to compute the number of B in S such that B ∩D = C. Then if i = j

then the number of B is λi,0. Now we suppose that i < j. Then there exists C
′

such

that C ∪ C ′ = D and |C ′ | = j − i.

That is to say, we are looking for blocks containing C but not containing all

elements of C
′
. Hence the number of blocks of this kind is the relation as in the

Definition 3.2.4, namely λi,j−i = λi,j−i−1−λi+1,j−i−1 for j− i ≥ 1. Also if j = 8 then

D ∈ S. It follows that λi,8−i is 0 for all odd i. Therefore the intersection of each two

elements of S has even order. This means that C is spanned by mutually orthogonal

sets in P(X ). Thus C is self-orthogonal, and so dim C ≤ n/2. Also from the proof

of the Theorem 6.2.1, we have dim C ≥ n/2. Therefore dim C = n/2 and so C = C⊥

by Definition 6.1.11.

(ii) We suppose that C is spanned by A in S. Then since |A| is divisible by 4, C is

doubly even by Definition 6.1.15. Let Ai denote the number of codewords of weight

i where i = 0, 1, ..., 24. Since C is doubly even, Ai = 0 for all i not divisible by 4.

Thus the weight enumerator of C is as follows by Definition 6.1.12.

A(x) = A0x
0 + A4x

4 + A8x
8 + A12x

12 + A16x
16 + A20x

20 + A24x
24.

We note that the minimum weight of C is at least 8. For this reason, if we show that
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A4 = 0 then C will be a binary Golay code. Then let A ∈ C such that |A| = 4. If

A ∈ M defined in the proof of Theorem 6.2.1 then A + C form a coset of C. Since

|M| = 212, distinct elements of M are not congruent to each other modulo C. If

A ∈ C then we may have A = B + C for some distinct elements B,C in M such

that |B| = 2, |C| = 2. But B and C are congruent to each other. Hence we get a

contradiction. Therefore there is no set of weight 4 in C and so C is a binary Golay

code.

We can easily see that A0 = A24 = 1, A8 = A16 = 759 and A12 = 2576. Therefore

the weight enumerator of C is

A(x) = 1 + 759x8 + 2576x12 + 759x16 + 1x24.

(iii) It is the immediate result of Theorem 6.2.2.

We see that construction of a binary Golay code is same as construction of

S(5, 8, 24).
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Chapter 7

Simplicity of the Mathieu Groups

In this chapter we will show the simplicity of the Mathieu groups. The entire chapter

will be based on Robin J. Chapman’s article [14] and Simon Rubinstein-Salzedo’s

article [15].

7.1 Preliminaries

Let Sp be a symmetric group of degree p in which p is a prime number. Also let G

be a subgroup of Sp. Then G acts on a set of p elements, namely {1, 2, ..., p}.

Lemma 7.1.1. G acts transitively on {1, 2, ..., p} if and only if p | |G| and a cyclic

Sylow p-subgroup exists in G.

Proof. Let X = {1, 2, ..., p} and x ∈ X. Then we suppose that G acts transitively

on X. This means that X has just one orbit. Thus by the Orbit-Stabiliser Theorem

(2.1.18), we have |X| = |G : Gx|. Hence p | |G|.
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We note that |Sp| = p!. Also since G is a subgroup of Sp, we have |G| | |Sp|,
and so |G| = pm where p - m. As a result, G has a Sylow p-subgroup of order p by

Sylow’s Existence Theorem (2.1.33). Since groups of prime order are cyclic, a cyclic

Sylow p-subgroup exists in G.

For the converse, we suppose that p | |G| and a cyclic Sylow p-subgroup, say P ,

exists in G. Then let P = 〈π〉 where π = (1 2... p). It follows that for any x, y ∈ X
there exists πi for some 1 ≤ i ≤ p such that πix = y. Therefore G acts transitively

on X.

Lemma 7.1.2. Let G be a group of order n and P be a cyclic Sylow p-subgroup of

G. Also let nG be the number of Sylow p-subgroups of G and rG = |NG(P ) : P |.
Then |G| = prGnG.

Proof. From Sylow’s Theorem (2.1.34), we know that nG = |G : NG(P )|. So we can

decompose order n of the group G as follows:

n = |G| = |G : NG(P )||NG(P ) : P ||P | = prGnG.

Lemma 7.1.3. Let rG = |NG(P ) : P |. Then rG is congruent to n
p

in mod p.

Proof. By Sylow’s Theorem (2.1.34), we have nG ≡ 1 (mod p). We suppose that

P = 〈(1 2... p)〉 and π = (1 2... p). Let σ ∈ NSp(P ). Then σPσ−1 = P and so

σπσ−1 = πk. For k = 1, we have σπσ−1 = π = (σ(1) σ(2)... σ(p)). Hence, we have

p different σ satisfying σπσ−1 = π. Thus CSp(P ) = P . Since we can choose k up to

p− 1, we get |NSp(P )| = p(p− 1).

It follows that rG is a factor of p− 1; hence 1 ≤ rG ≤ p− 1. Since n
p

= rGnG and

nG ≡ 1 (mod p) by Lemma 7.1.2, this implies that rG ≡ n
p

(mod p).
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Lemma 7.1.4. Let G ≤ Sp act transitively on X = {1, 2, ..., p}. Also let rG =

|NG(P ) : P | and nG = |G : NG(P )|. If nG > 1 then rG > 1.

Proof. Let |G| = n. We suppose that nG > 1 and rG = 1. Thus |G| = n = pnG

by Lemma 7.1.2. Since a cyclic group of order p has p− 1 generators and nG is the

number of distinct cyclic groups of order p, the number of elements of order p is

nG(p − 1) = n − nG. Moreover, these elements permute all points in X since their

order is p. Hence there are at most nG elements that permute not all points of X.

We note that G acts transitively on X. Thus |O(x)| = p for all x ∈ X. Then

by the Orbit-Stabiliser Theorem (2.1.18), we have |O(x)||Gx| = |G|. Hence |Gx| =

n/p = nG for all x ∈ X. This means that stabilisers of every x in X are the same.

Since the identity element is the only element fixing every x in X, we have nG = 1.

Therefore, we get a contradiction.

Corollary 7.1.4.1. Let G ≤ Sp act transitively on X = {1, 2, ..., p} and rG = 1.

Then G ∼= Zp.

Proof. Let rG = 1 and |G| = n. From previous lemma’s proof, we know that G has

n− nG elements of order p and |Gx| = nG = 1 for all x ∈ X. Since |G| = n = prGnG

by Lemma 7.1.2, we have |G| = p. Therefore G ∼= Zp.

Theorem 7.1.5. Let G ≤ Sp act transitively on X = {1, 2, ..., p}. Also let |G| = pmr

such that m > 1 and m ≡ 1 (mod p), r < p and r is prime. Then G is simple.

Proof. Let r = rG and m = nG where rG and nG defined as in Lemma 7.1.2. Also

let H C G be non-trivial. Then H acts on X. It follows that Hx is block for any

x ∈ X by Theorem 2.1.52 and Hx is also an orbit of the action of H on X. Since

G acts transitively and H is non-trivial subgroup, |Hx| = s > 1 for all x ∈ X. As a

result, |Hx| = s = p. Thus H acts transitively on X.
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There is a Sylow p-subgroup of G, say P
′
, such that P

′ ≤ H by Lemma 7.1.1.

Since any two Sylow p-subgroups of G are conjugate in G, all Sylow p-subgroups of

G are contained in H. This means that the number of Sylow p-subgroups of H is

equal to the number of Sylow p-subgroups of G, namely nG = nH . Also we have

|H| = pnHt = pnGt. Then t | r by Lagrange’s Theorem (2.1.30). Also t > 1 by

Lemma 7.1.4. Since r is a prime number, we have t = r. Hence |H| = |G| and so

H = G. Therefore G is simple.

Now, we will show some theorems that we give without proofs. We follow chapter

9 of the book [8] of J. J. Rotman for pages between 286-292. We will use these

theorems in section 7.2. More specifically, we will use Theorem 7.1.6 and Theorem

7.1.7 to show the simplicity of M11 and M23. Also we study multiply transitive

groups in section 2.1.4 in chapter 2 and develop simplicity criterion Theorem 2.1.59.

Then we will use it with Theorem 7.1.8, Theorem 7.1.9 and Theorem 7.1.10 to show

the simplicity of the remaining Mathieu groups.

Theorem 7.1.6. [8, Theorem 9.52, page 288] The order of the Mathieu Group M11

is 7920.

Theorem 7.1.7. [8, Theorem 9.56, page 291] The order of the Mathieu Group M23

is 10200960.

Theorem 7.1.8. [8, Theorem 9.53, page 289] M12 is a 5-transitive group such that

the stabiliser of a point in M12 is M11.

Theorem 7.1.9. [8, Theorem 9.55, page 290] M22 is a 3-transitive group such that

the stabiliser of a point in M22 is PSL3(F4).

Theorem 7.1.10. [8, Theorem 9.57, page 292] M24 is a 5-transitive group such that

the stabiliser of a point in M24 is M23.
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7.2 Results

Theorem 7.2.1. The Mathieu Groups M11 and M23 are simple.

Proof. Now, M11 < S11, and |M11| = 7920 by Theorem 7.1.6. By Lemma 7.1.3,

rM11 ≡ n
p

= |M11|
11

= 720 ≡ 5 (mod 11). This implies that rM11 = 5 and mM11 =

144 > 1. Thus, mM11 ≡ 1 (mod 11), rM11 < 11 and rM11 is prime. Therefore, by

Theorem 7.1.5, M11 is simple.

Also, M23 < S23, and |M23| = 10200960 by Theorem 7.1.7. By Lemma 7.1.3,

rM23 ≡ n
p

= |M23|
23

= 443520 ≡ 11 (mod 23). This implies that rM23 = 11 and mM23 =

40320 > 1. Thus, mM23 ≡ 1 (mod 23), rM23 < 23 and rM23 is prime. Therefore, by

Theorem 7.1.5, M23 is simple.

Also, we want to show that the Mathieu groups M12,M24 and M22 are simple too.

Theorem 7.2.2. The Mathieu Groups M12,M24 and M22 are simple.

Proof. M12 is 5-transitive group whose stabiliser at any point is M11 by Theorem

7.1.8. Then M11 is a simple group by Theorem 7.2.1. Therefore M12 is simple by

Theorem 2.1.59.

M24 is 5-transitive group whose stabiliser at any point is M23 by Theorem 7.1.10.

Then M23 is a simple group by Theorem 7.2.1. Therefore M24 is simple by Theorem

2.1.59.

M22 is 3-transitive group whose stabiliser at any point is PSL3(F4) by Theorem

7.1.9. Then PSL3(F4) is a simple group [8, Theorem 8.23, page 232]. Therefore M22

is simple by Theorem 2.1.59.
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