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Strictly localized states on the Socolar dodecagonal lattice
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Socolar dodecagonal lattice is a quasicrystal closely related to the better-known Ammann-Beenker and
Penrose lattices. The cut and project method generates this twelvefold rotationally symmetric lattice from
the six-dimensional simple cubic lattice. We consider the vertex tight-binding model on this lattice and use
the acceptance domains of the vertices in perpendicular space to count the frequency of strictly localized
states. We numerically find that these states span fNum � 7.61% of the Hilbert space. We give 18 independent
localized state types and calculate their frequencies. These localized state types provide a lower bound of
fLS = 10919−6304

√
3

2 � 0.075854, accounting for more than 99% of the zero-energy manifold. Numerical evidence
points to larger localized state types with smaller frequencies, similar to the Ammann-Beenker lattice. On the
other hand, we find sites forbidden by local connectivity to host localized states. Forbidden sites do not exist for
the Ammann-Beenker lattice but are common in the Penrose lattice. We find a lower bound of fForbid � 0.038955
for the frequency of forbidden sites. Finally, all the localized state types we find can be chosen to have constant
density and alternating signs over their support, another feature shared with the Ammann-Beenker lattice.

DOI: 10.1103/PhysRevB.106.064207

I. INTRODUCTION

Quasicrystals are formed by nonperiodic, yet, highly sym-
metric arrangements of atoms. While their initial synthesis [1]
was done by carefully controlled alloying, they have since
been observed to form through natural processes [2]. More
recently, defect-free and highly controllable synthetic systems
with quasicrystalline order have been demonstrated. These
meta-quasicrystals in photonic systems [3], polaritons [4],
cold atoms [5,6], and synthetic surfaces [7] promise direct
access to elementary excitations of quasicrystals, which goes
beyond the structural tools such as x-ray scattering [8].

The high degree of symmetry in quasicrystals makes it
possible to understand structural properties in great detail.
For example, the x-ray diffraction images of quasicrystals are
now well characterized in terms of the quasicrystal lattice and
the unit cell decorations [9,10]. However, this symmetry does
not yield a tool like Bloch’s theorem to constrain the exci-
tation spectrum. Except for some examples in one dimension
[11–13], the excitation spectrum of quasicrystalline systems is
not well understood. Eigenstates not only contain the extended
and localized state possibilities of disordered systems but can
also be critically self-similar [14]. The energy spectrum can
be singularly continuous with multifractal properties [15,16].
The connection between the energy spectrum and the symme-
tries of the quasicrystal is not obvious. In the absence of a
general theory, large-scale numerical calculations [17–19] or
in-depth understanding of specific eigenstates [14,20,21] are
valuable.

A common occurrence in the quasicrystal spectrum is the
existence of strictly localized states (LS) [22]. LS are identi-
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cally zero beyond a finite domain and are also called confined
states or compact localized states. LS were first identified in
numerical diagonalization of tight-binding models of the Pen-
rose lattice [23–25]. Local destructive interference, similar to
Aharonov-Bohm cages [26], confines the LS wavefunction to
a finite region. LS have zero energy for bipartite lattices [27],
and their properties have been studied for two well-known
models, the Penrose (PL) [22,28,29] and Ammann-Beenker
lattices (ABL) [30,31]. In both cases, almost ten percent of
the Hilbert space is spanned by the LS. However, there are
significant differences between the LS in the two models. In
the ABL, all sites host LS, but a substantial portion of the
sites in the PL are forbidden by local connectivity to be in the
support of an LS. The LS in the PL are formed by only six
LS types, while the ABL seems to have an infinite number
of LS types. While the choice for LS type expansion is not
unique, the known ABL LS types can all be chosen to be
rotationally symmetric around an eightfold symmetric vertex.
Furthermore, all LS type wavefunctions in the ABL can be
selected to be of constant density. The interference leading
to localization is provided only by the fluctuating sign of
the wave function. There is no choice for LS types in the
PL with constant density. Finally, the LS in the PL show
remarkable robustness [32]. A uniform magnetic field applied
to the system leaves the total LS fraction in the PL invariant,
while the LS fraction in the ABL quickly decreases with the
applied field.

These striking differences between the two commonly used
models of quasiperiodic order make it worthwhile to explore
the LS in other quasicrystal systems. It is essential to ask
if the PL or the ABL display a more generic behavior and
which properties in their definition lead to such qualitative
differences. Another quasicrystal lattice closely related to the
PL and ABL is the Socolar dodecagonal lattice (SDL) [33].
SDL can be constructed by projection from a six-dimensional
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FIG. 1. Socolar dodecagonal lattice has three kinds of tiles, a
square, a hexagon, and a rhombus with π/6 angle. All bonds are
parallel to the six star vectors êm shown in red. Each vertex can
be classified by its connections to the nearest neighbors. There are
only five vertex types B, C, D, E, and F. One example of each is
highlighted in the figure.

simple cubic lattice, while PL and ABL are projected from
five- and four-dimensional simple cubic lattices. All three
lattices have scaling symmetry with simple inflation-deflation
rules, can be constructed with local matching rules, and admit
simple decorations, which line up to form a quasiperiodic grid
called an Ammann pattern.

A recent paper considered the vertex tight-binding model
on the SDL [34]. The LS fraction was numerically calculated
as 0.076, and eleven LS types were identified. However, the
contributions of the LS types were significantly short of the
numerical result. In this paper, we consider the same model
but use the perpendicular space accounting method [29,31] to
count the frequencies of the LS types. Our numerical result
for the total LS fraction agrees with Ref. [34]. However, we
find that the LS type frequencies significantly differ from what
was reported. We calculate the contribution of the LS types
reported in Ref. [34] as fLS � 0.0719. We identify seven more
LS types bringing the total covered to fLS = 10919−6304

√
3

2 �
0.0758. We show the perpendicular space images for the
support of all LS types and prove their independence. We
conjecture that there are LS types of lower frequencies related
to the types we identified and the total frequency sum gives
fConj = −1089+629

√
3

6 � 0.076660. We inspect the local density
of states (LDOS) formed by the LS and find forbidden sites
where the local density of states for LS is zero. We give
four arguments on the lattice, which lead to forbidden sites.
These arguments show that at least 3.8955% of all sites are
forbidden. The calculation of LDOS in perpendicular space
suggests that there may be more forbidden sites, but we have
not found real space arguments to prove that they cannot host

FIG. 2. The perpendicular space of the SDL consists of four
hexagons Vi j . V11 and V22 form the even sublattice, and sites in them
can only have a bond connecting to the odd sublattice formed by
V12 and V21. The D vertex highlighted in Fig. 1 has the perpendicular
space space image shown in V12, the six possible bond directions
taking this point to V11,V22 are shown. Only five of six remain inside
their respective hexagons, making this point a D vertex. V21 is marked
with regions belonging to vertex types. Unmarked regions can be
deduced by symmetry.

LS. While the presence of forbidden sites is similar to the PL,
the existence of large LS types with low frequencies makes
the spectrum more similar to the ABL. All LS types have
wavefunctions that can be chosen to have a constant density
similar to the ABL. We also find that the LS fraction decreases
quickly with an applied magnetic field. Overall our results
indicate that the properties of the ABL zero-energy manifold
may be more commonly observed in quasicrystals, and the
PL may have other unidentified properties, which restrict the
behavior of its LS.

The paper is organized as follows: We introduce the SDL
giving its projective definition in Sec. II. The following
Sec. III details our numerical method and results for the local
density of states and total LS fraction. We identify LS types
and discuss their properties in Sec. IV and Sec. V details the
forbidden sites arguments. Finally, we compare our results for
SDL to ABL and PL cases and discuss outstanding questions
in Sec. VI.

II. CUT AND PROJECT DEFINITION OF THE SOCOLAR
DODECAGONAL LATTICE

Socolar constructed the SDL as an analog of the PL with
twelvefold rotational symmetry [33]. The same construc-
tion method applied to eightfold symmetry gives the ABL.
Thus, these three lattices share remarkable properties beyond
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FIG. 3. (a) Numerically calculated LS fraction as a function of neighborhood depth. We used ten randomly chosen initial points to generate
the neighborhood, each providing one data point at each depth. For one initial point, data points are linked by the red line to show variation
with depth. The black-dashed line is our best estimate for the infinite lattice’s LS fraction, and the red-dashed line is the lower bound provided
by LS types. (b) The same data plotted as a function of inverse neighborhood depth, showing the linear fit used to estimate the infinite lattice
LS fraction.

quasiperiodic order. All three are self-similar under simple
deflation rules, and simple decorations of tiles generate match-
ing rules for the lattice construction. Following the work of
De Bruijn [35,36], all three lattices can be constructed as
duals of grids made of equally spaced lines. Grids of fourfold
symmetry generate the ABL, fivefold symmetry generates the
PL and sixfold symmetric “hexagrids” generate the SDL. Here
the most important distinction for the SDL appears as the
hexagrid has to be chosen so that three lines that make 2π/3
angles with each other always meet at a single point. The triple

FIG. 4. LDOS on the odd sublattice. Notice that some sites have
zero LDOS, although they are in the odd sublattice. The LDOS is
highly correlated with the local environment, as explained by the
existence of LS types. The highest LDOS value is ρmax � 0.2132.

intersection points give rise to a third tile shape, in contrast to
just two for the ABL and PL. The SDL defines a quasiperiodic
tiling of regular hexagons, squares, and π/6 angle rhombuses
(see Fig. 1).

SDL can be generated using the dual grid method, the
deflation method, or the quasiperiodically spaced Ammann
decoration method. However, as we use perpendicular space
properties to explore the LS, we first repeat the definition
through the cut-project approach. We start with a six-
dimensional space (R6) filled with a grid of unit cubes. We
can define any interior point of each cube indexed with six
integers k0, . . . , k5 in terms of the orthogonal unit vectors

FIG. 5. The LS type-A1 has six C sites around an F vertex. No-
tice that the sums of the wavefunctions linked to the nearest-neighbor
sites marked in red are zero.
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FIG. 6. The allowed regions in V12 and V21 for the type-A1 state
in Fig. 5 are shown in blue. Three of the sites in the support are in
one hexagon and the remaining three in the other. Another type-A1
LS can be constructed by rotating Fig. 5 by π/3. Allowed regions for
the rotated state are shown in red.

ûn = (δ0n, . . . , δ5n) as

�x =
5∑

n=0

xnûn (1)

with kn − 1 < xn < kn for n = 0, . . . , 5. This six-dimensional
space can be also spanned by the following orthogonal vectors
defined in terms of the complex number ζ = e

iπ
6 :

�a1 =
∑

n=0,1,4,5

�(ζ n)ûn −
∑

n=2,3

�(ζ n)ûn,

�a2 =
∑

n=0,1,4,5

�(ζ n)ûn −
∑

n=2,3

�(ζ n)ûn,

�a3 =
∑

n=0,3,4

�(ζ−n)ûn −
∑

n=1,2,5

�(ζ−n)ûn,

�a4 =
∑

n=0,3,4

�(ζ−n)ûn −
∑

n=1,2,5

�(ζ−n)ûn,

�a5 = (1, 0, 1, 0, 1, 0) = û0 + û2 + û4,

�a6 = (0, 1, 0, 1, 0, 1) = û1 + û3 + û5, (2)

with �ap.�aq = 3δpq. We also define ξ = 2 + √
3. An intercept

vector �γ = ∑5
n=0 γnûn is chosen so that γ0 + γ2 + γ4 = γ1 +

γ3 + γ5 = 0. The vertices of the SDL are given by �k.�a1x̂ +
�k.�a2ŷ, where �k = (k0, . . . , k5) ∈ Z6, whose open cube has a
nonempty intersection with the plane described by the follow-
ing equations:

(�x − �γ ).�a3 = 0, (�x − �γ ).�a4 = 0,

(�x − �γ ).�a5 = 0, (�x − �γ ).�a6 = 0. (3)

If a point in the six-dimensional lattice �R = ∑5
n=0 knûn, has

an open unit cube satisfying Eq. (3), we can express it in terms
of the a vectors as

�R = 1
3 {(�k.�a1)�a1 + (�k.�a2)�a2 + (�k.�a3)�a3 + (�k.�a4)�a4

+ (�k.�a5)�a5 + (�k.�a6)�a6}
= 1

3 {x‖�a1 + y‖�a2 + x̃�a3 + ỹ�a4 + xLi�a5 + yLi�a6}. (4)

The point (x‖, y‖) is the real space projection of �R, which
is defined in two-dimensional physical space, and the point
(x̃, ỹ, xLi, yLi ) is the perpendicular space projection of �R,
which is defined in four-dimensional perpendicular space.
Nevertheless, �R.�a5 = k0 + k2 + k4 = i ∈ Z and �R.�a6 = k1 +
k3 + k5 = j ∈ Z. Both i and j can take only the values 1
or 2 [33]. Therefore, the perpendicular space projections
of all lattice points do not fill the four-dimensional per-
pendicular space, but fall on four two-dimensional planes.
Furthermore, the perpendicular space projections lie only
within four hexagons in these planes, which we designate as
Vi j = {V11,V12,V21,V22} (see Fig. 2).

The projection from the six-dimensional space to the real
space means that a positive move in the nth direction kn →
kn + 1 changes real space position by a star vector ên. The

FIG. 7. LS type-A2 in real space and its allowed regions in V12. Perpendicular space regions covered by previous LS types are shown as
the grey background.
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FIG. 8. LS type-B1 in real space and corresponding allowed regions for all three independent orientations in V12. Although there is overlap
with previous LS types, at least one allowed hexagon lies entirely in an uncovered region, proving independence from the LS types above.

star vectors are

ên = cos(nπ/6)î + sin(nπ/6) ĵ, n = 0, 1, 4, 5,

ên = − cos(nπ/6)î − sin(nπ/6) ĵ, n = 2, 3, (5)

as shown in Fig. 1. The same move is also reflected in perpen-
dicular space, however, through a different set of vectors ˆ̃en

where the projection rules dictate

ˆ̃e0 = ê0, ˆ̃e2 = ê4, ˆ̃e4 = ê2,

ˆ̃e3 = ê3, ˆ̃e1 = ê5, ˆ̃e5 = ê1. (6)

The combination of perpendicular space allowed regions and
star vectors makes it possible to describe the local environ-
ment of the lattice. Consider a point inside the perpendicular
space hexagon V12 as shown in Fig. 2. Any vertex can, in
principle, have 12 bonds emanating from it in ±êm directions
for m = 0, ..., 5. However, if a point has a perpendicular space
projection inside V12, its first index i can only change to 2.

Thus, vectors +ê0,+ê2,+ê4 are allowed, while the i index
forbids their negatives. Similarly, the second index j allows
for −ê1,−ê3,−ê5, and forbids a positive move along these
three directions. These allowed vectors are shown on the
hexagon V12 in Fig. 2. Correct index change is not enough for a
move to be allowed. Also, the result of the move must lie in the
new Vi j hexagon. For the point shown in Fig. 2, all three moves
along −ê1,−ê3,−ê5 result in a point inside V11, while only
two out of the three moves along +ê0,+ê2,+ê4 lie inside V22.
Thus, we conclude that this vertex is connected to five neigh-
bors, with bond directions along −ê1,−ê3,−ê5,+ê0,+ê2.
Notice that the correspondence in Eq. (6) allows the real space
star vector ê2 rather than ê4.

The perpendicular space construction makes it easy to de-
duce the local environment of any vertex if its perpendicular
space position is known. Any vertex has at most six and at
least three bonds. Following Ref. [33], we classify vertices
into five vertex types up to rotations and reflections. One

FIG. 9. Type-B2 in real and perpendicular space. Its allowed region area and frequency are the same as type-B1.
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FIG. 10. Type-C1 LS and allowed regions for its six independent rotated copies. This LS type has frequency fC1 = ξ−3+ξ−4

2 � 0.006098

example of each is highlighted in Fig. 1. Vertex types C, D,
and F, have 3, 5, and 6 bonds, respectively. Two vertex types,
B and E, have four bonds. As the number and orientation of
the bonds are uniquely determined by the perpendicular space
position of the vertex, it is possible to split the perpendicular
space hexagons into smaller regions corresponding to each
vertex type. This division is shown on V21 in Fig. 2, which
can be extended to all unmarked regions and other hexagons
by symmetry. As the projection from the six-dimensional lat-
tice to the perpendicular space is linear, all the areas inside
the hexagons are filled densely and uniformly with projected
points. Consequently, area sizes in perpendicular space reflect
the frequencies of local environments.

Consider the central hexagon corresponding to the F ver-
tices. The area of that small hexagon divided by the area of Vi j

gives the frequency of F vertices as fF = 7 − 4
√

3 � 0.0718.
Similarly, other vertex types have frequencies fB = 3

4 (9 −

5
√

3) � 0.255, fC = 3
4 (

√
3 − 1) � 0.549, fD = 3

4 (11
√

3 −
19) � 0.0394, and fE = 1

4 (9 − 5
√

3) � 0.0849. The perpen-
dicular space area method for calculating local environment
frequencies can be extended beyond the first neighbors. We
use this method to count the LS types in the following
sections.

The perpendicular space picture is also helpful in describ-
ing the symmetries of the SDL. First, notice that points in V11

and V22 are only connected to points in V12,V21 but not to each
other. Thus the lattice is bipartite, composed of two sublat-
tices. We refer to the collection of points in V11,V22 as the even
sublattice and V12,V21 as the odd sublattice. Also, notice that
the perpendicular space hexagon shapes can be obtained from
each other by rotations. Under a counter-clockwise rotation
of π/6 we have V22 → V12 → V11 → V21 → V22. Any local
environment has a thirty-degree rotated copy in the lattice.
However, the sublattices are exchanged for the rotated copy.

FIG. 11. Type-C2 LS has allowed areas adjacent to type-C1. The two LS types have the same frequency.

064207-6



STRICTLY LOCALIZED STATES ON THE SOCOLAR … PHYSICAL REVIEW B 106, 064207 (2022)

FIG. 12. LS type-C3. While the allowed area is similar in shape to types C1 and C2, its scaled down. The frequency is ξ−4+ξ−5

2 � 0.003268.

Similarly, any local environment must have a sixty-degree
rotated copy with the same sublattice assignments. However,
the two copies have exchanged V11 ↔ V22 and V12 ↔ V21.

We define a tight-binding model on the SDL as

H = −
∑
〈i j〉

| �Ri〉〈 �Rj |, (7)

where the sites 〈i, j〉 are connected by a bond. We focus on
the eigenstates that have zero density beyond a finite lattice re-
gion. Such LS appear at zero energy for bipartite lattices. If an
energy E is an eigenvalue, the bipartite property of the lattice
ensures that −E is also an eigenvalue. Similarly, changing the
sign of the wave function on only one of the sublattices can be
used to choose zero-energy states to be confined to only one of
the sublattices. In the following, we present calculations and
examples for LS that are nonzero only on the odd sublattice of
V12,V21, understanding that everything can be mapped to the
even sublattice by a thirty-degree rotation.

III. NUMERICAL LS FRACTION AND THE
ZERO-ENERGY LOCAL DENSITY OF STATES

We construct large SDL domains by using the algorithm
presented in the previous section. We start by specifying the
initial point’s perpendicular space coordinates and calculating
its nearest-neighbors’ real and perpendicular space positions.
Repeating the same process on the nearest neighbors gener-
ates the second neighbors, and iteration can be repeated up to
the desired neighborhood depth D. This process also records
the Hamiltonian with open boundary conditions within this
neighborhood. The most extensive domains we use have a
neighborhood depth of D = 180, containing approximately
66 000 sites.

This construction method has the advantage that all the
sites on the boundary belong to the same sublattice. If the
initial site is in the even sublattice and the neighborhood depth
D is even, then all the sites on the boundary are in the even
sublattice. Recall that LS can be chosen to lie only in one

FIG. 13. LS type-C4 has the same frequency as C3, and its allowed areas fill in the empty regions between C3 allowed areas.
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sublattice. Hence, if we find any LS in the odd sublattice in
this finite domain, it is guaranteed that the same LS exists for
the infinite SDL. There will be no extra LS generated due to
the open boundary conditions. To be more specific, we can
write the Hamiltonian in a block form by grouping the odd
and even lattice sites

H =
[

0 C
CT 0

]
, (8)

where C acts on only the odd sublattice sites.
We do not use matrix diagonalization to find the eigenval-

ues of the above Hamiltonian. Instead, we numerically find the
dimension of the null space of the sparse matrix C. Available
QR decomposition routines efficiently handle this calculation.
The size of the null space of the matrix C divided by the total
number of sites in the odd sublattice gives us a numerical
estimate fEst (D) of the LS fraction [31].

In Fig. 3, we plot the numerically obtained LS fraction as a
function of neighborhood depth D. We repeat the calculation
for ten randomly chosen initial points. While the LS fraction
depends on the perpendicular space position of the initial point
for small neighborhood depths, the results quickly converge
to a narrow band for D > 50. The numerical LS fraction
increases with increasing neighborhood depth. Our method
captures all the LS, which lie entirely inside the boundary but
misses any LS, which are present in the infinite lattice but
cross the boundary. Thus, the lower numerical LS fraction is
a boundary effect. We can utilize this to obtain more infor-
mation about the infinite system. As we expect the estimated
LS fraction to be deficient due to the boundary, the numerical
calculations for large enough domains should follow

fEst (D) � fNum − C1

D
. (9)

We plot the same data as a function of inverse neighborhood
depth in Fig. 3, where one can observe that the above scaling
form provides a good fit. By fitting a line to the data, we can
extract an estimate for the LS fraction of the infinite system as

fNum � 0.0761. (10)

This value agrees with the value reported in Ref. [34], which
is obtained with larger lattices. It is also close to the analytical
lower bound calculated by counting LS types below. How-
ever, considering the spread of the data coming from different
neighborhoods, the numerical result has an uncertainty of
±0.0006.

The numerical calculation yields information beyond the
dimension of the null space. The QR decomposition also re-
sults in an orthonormal vector set that spans the null space. As
all the LS are degenerate, the basis set found from the numer-
ical diagonalization does not resemble the LS types discussed
in the next section. Nevertheless, a basis independent physical
quantity can be calculated from this set. We define the local
density of states (LDOS) from LS as

ρ( �Ri ) =
∑

m

|〈 �Ri|�m〉|2, (11)

where |�m〉 satisfy both H|�m〉 = 0 and 〈�m|�n〉 = δn,m. Be-
cause we use the null space of C, the wavefunctions forming

the LS manifold are automatically localized to only one sub-
lattice.

A representative result for LDOS is displayed in Fig. 4.
First, we notice that, unlike the PL, there are no large regions
devoid of LS. Most of the sites host LS. Still, it is crucial to
notice that some sites have zero LDOS. In the ABL, no such
forbidden sites are found. We also see that local connectivity
is strongly correlated with LDOS. The sites with the largest
LDOS have ρmax � 0.2132 and are always nearest neigh-
bors of F vertices of the even sublattice. Yet, not all nearest
neighbors of F sites have maximum LDOS. This correlation
is explained with the LS types and their overlaps in the next
section.

Recent experiments in synthetic lattices, whether in cold
atom systems, polaritons, or assembled surfaces, feature local
probes of density. We believe that general properties of LDOS,
such as the existence of forbidden sites or maximum of the
LDOS, can be observed with local probes such as scanning
tunneling microscopy [7] or site-resolved density measure-
ments of cold atoms [5].

IV. LOCALIZED-STATE TYPES

Without Bloch’s theorem, there is no simple way to la-
bel the eigenstates of quasicrystals. This problem is most
clearly seen in the LS, where almost 8% of all the states
are degenerate and even energy cannot be used to index the
states. However, the LS are confined in a finite region, and
we can describe how many independent zero-energy states
are translated copies of specific LS types. If an LS is iden-
tified in a limited area of the lattice, it must have infinitely
many copies throughout the infinite lattice. This is ensured
by Conway’s theorem [37] showing that any finite pattern is
repeated throughout the quasicrystal. One must then ask what
percentage of the eigenstates correspond to the translated and
rotated copies of the same LS. We designate all the rotated
and translated copies of an LS as the same LS type.

We can designate any LS as an LS type. However, we aim
to find LS types with the highest frequency while remain-
ing independent from other LS types. For the PL, just six
LS types are enough to span the whole zero-energy mani-
fold [22,28,29]. Recent ABL results [30,31] indicate that an
infinite number of LS types organized into generations are
required. The first few generations of these types were shown
to account for most of the numerically obtained degeneracy.
Orthogonality of LS types is not easily assured; however,
their independence is more straightforward to prove. If one
of the vertices of the support of an LS type is not in the
support of any other LS type, then independence follows
trivially.

The frequency of an LS type is found by counting the
occurrences of its support throughout the lattice. This count-
ing is generally done by using the scaling symmetries of the
lattice, which gets increasingly more complex as the support
region for the LS type grows. Another way of calculating
the frequencies is based on calculating the perpendicular
space acceptance region for the vertices on which the LS type
is defined. We successfully applied this method to the PL,
the ABL, and local isomorphism classes of pentagonal
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FIG. 14. (a) The local configuration forbids the site encircled in red. It is easy to see that �1 = �2 = �3, which makes �4 = 0. (b) Up to
eleven more sites (encircled in red) can be forbidden following the first site.

quasicrystals, which lack simple scaling symmetries
[29,31,38]. Here we use the same procedure for the SDL.

In a recent paper [34], Koga introduced 11 LS types for
the SDL. One surprising result of this paper was that the
total frequency of the calculated LS types accounts for only
84.2% of the numerically obtained LS fraction. Here, we also
find the same 11 LS types. However, our results for their
frequencies are different. We believe the frequencies reported
in Ref. [34] are incorrect, possibly due to the complexity of
the scaling for the SDL. Our results for the same 11 types
give us a lower bound fLS � 0.0719, which is almost 94.5%
of the numerical result. We find a further 7 LS types, which
bring out the total to fLS = 10919−6304

√
3

2 � 0.075855, which is
99.7% of the numerical result. Considering the projections of
the acceptance regions in perpendicular space, we believe that
infinitely many LS types are required to span the zero-energy
manifold. A similar scenario was found in the ABL. We give
both the real space configurations and the perpendicular space
acceptance domains for 18 LS types. The first eight types have

high frequency and are presented in this section, while the
remaining ten are given in the Appendix.

As the first LS type, consider the state in Fig. 5. We call
this state type-A1 LS. Its support has six C vertices, and
wavefunction has an alternating ±1 sign. We plot the ac-
ceptance region for all six vertices in Fig. 6 in blue. As
can be seen, three of the vertices in the support lie in V12

and the other three in V21. The LS support has rotational
symmetry under 2π/3 rotation; however, recall that such a
rotation exchanges the perpendicular space hexagons V12 ↔
V21. Thus, a 2π/3 rotated version of the type-A1 LS re-
mains independent, as can be seen from the areas plotted
in red in Fig. 6. The two can also be distinguished by ob-
serving that the central F vertex lies in V11 in one case and
V22 in the other. For all the LS types, symmetry is restored
once all rotated copies of the same state are considered.
Hence, for the remaining LS types, we only plot the al-
lowed areas in V12. A simple rotation gives the allowed areas
for V21.

FIG. 15. (a) Another local configuration forces the LS wavefunction to vanish on the encircled site. Five more sites (circled in red) in
(b) can follow this site as forbidden sites.
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FIG. 16. Perpendicular space regions forbidden by the four ar-
guments given in the paper. Only the regions in one corner of V12

are shown. Other regions can be deduced by rotation. Red regions
follow from the argument in Fig. 14, green regions from Fig. 28. The
local configurations causing the blue and cyan regions are given in
the Appendix.

The frequency of LS type-A1 is the ratio of the areas of
one of the allowed hexagons in Fig. 6 and V12. This ratio is
fA1 = ξ−3/2 = 26−15

√
3

2 � 0.00962. We further checked this
frequency by numerically counting F sites with six C ver-
tex neighbors. Thus, our results indicate that the frequency
reported in Ref. [34], 0.0052, is incorrect.

As the next LS type, consider the real space and perpendic-
ular space images for type-A2 displayed in Fig. 7. Type-A2
LS has 13 sites in its support, but allowed regions for any

FIG. 17. LDOS plotted in perpendicular space. Finite neighbor-
hoods with a depth of 80 are used, so perpendicular space is not
uniformly sampled. Notice that most of the empty regions correspond
to forbidden sites. Also, LDOS follows the outline of the LS type
allowed areas.

of these vertices have the same area as type-A1 LS. Hence
type-A2 has the same frequency as type-A1. Furthermore, no
site as the first LS type in the support of type-A1 can also
belong to the support of type-A2. This is most easily observed
by comparing the perpendicular space allowed regions for the
two types. To facilitate such comparisons, we plot the total
allowed areas belonging to all previous LS types in gray on
all subsequent perpendicular space images.

In Fig. 8 we give display type-B1 LS. First, notice that the
support is symmetric under π rotation. Hence copies of the
same state rotated by π/3 as well as 2π/3 are independent
of the original. The second important thing to notice is an
overlap between the support of type-B1 and type-A2. Six
out of the ten sites in the support of type-B1 can also be
in the support of a type-A2 LS. Thus, two such states are
not orthogonal. However, notice that four of the sites in the
support are not covered by previous LS types. As a result, the
B1 type is independent of A1 and A2. The independence is
most easily seen in the perpendicular space figure. Even if a
single allowed area covers a new portion of the perpendicular
space, the independence of the new LS type is established.
This reasoning is enough to demonstrate the independence of
all the remaining states in this paper.

The LS fraction for type-B1 and type-B2 is the same
fB1 = fB2 = 3ξ−3+ξ−4

4 = 175−101
√

3
4 � 0.01572. The definition

of the type-B2 state is given in Fig. 9. Once again, indepen-
dence is established by the newly covered areas, such as those
in the F vertex regions. One can also explore the interplay
between independence and orthogonality by considering the
LDOS of a point shared by type-A1 and type-B2 states. If
these two states were orthogonal, LDOS would be a sum
of their densities. As the type-A1 wavefunction is normal-
ized by 1/

√
6, and type-B2 by 1/4, the LDOS at a common

point would be ρmax = 1
6 + 1

16 = 11
48 � 0.2292. This value is

higher than the maximum value from the numerical calcula-
tion ρmax � 0.2132. As these states are not orthogonal, their
overlap 〈B2|A1〉 = 1

2
√

6
reduces the LDOS just due to these

two types to 9/46 � 0.1956. Other LS types contribute to
the LDOS at this point to raise its value to the numerically
observed peak.

Next, we give four states with no rotational symmetry
in real space, types C1 to C4. Their real space and per-
pendicular space images are given in Figs. 10–13. Now all
six copies obtained by rotations are independent. Hence, the
frequencies for type-C1 and type-C2 are fC1 = fC2 =
ξ−3+ξ−4

4 = 123−71
√

3
4 � 0.00609 and, for types C3 and C4 are

fC3 = fC4 = ξ−4+ξ−5

2 = 459−265
√

3
2 � 0.00327.

The total LS frequency of the types given in this section is
0.0694, which corresponds to 91.2% of the numerically ob-
served LS fraction. We identified 10 more LS types as given
in the Appendix. We give the allowed area for a single vertex
of each LS type in Table I. These values combined with the
symmetry factors and the total area of the perpendicular space
give the frequency of LS types, listed in Table II. The LS type
frequencies sum up to fLS = 10919−6304

√
3

2 � 0.07585 a lower
bound, which is quite close to our numerical estimate.

We used small (up to 35 neighbors) system sizes to identify
new LS types. Instead of QR decomposition, we use Gauss-
Jordan elimination to put the C matrix into a reduced row
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FIG. 18. LS type-A3. The allowed region for each vertex is a hexagon similar to Vi j , but scaled with
√

ξ−5

2 . The frequency of this LS type

is ξ−5

2 � 0.00069.

echelon form. While this is not numerically efficient, it gives a
set of LS where wavefunctions are rational numbers. This ap-
proach is limited by the cluster size we use, and the existence
of other LS types is almost assured by comparing large cluster
null space results with the total areas covered by the LS types
we identified. We expect that many, possibly infinitely many,
independent small frequency LS types to exist in the SDL,
similar to the ABL. Another interesting point about the LS
types is that they can all be chosen to have a constant density
over their support. Such a choice was possible for the ABL but
not for the PL. It is unclear why the LS would be organized
in a specific form for the two lattices or which property of the
PL prevents the same situation.

The perpendicular space images of LS types suggest a hier-
archical organization. The allowed perpendicular space region
for a single vertex of type-A3 is just the allowed region for

the type-A1 state scaled by ξ . Consequently, their frequencies
differ by a factor of ξ 2. The SDL has deflation symmetry,
where ξ is the scaling factor between the original lattice and
its deflation [33]. It is not unreasonable to conjecture that an
infinite number of LS types are generated by deflation [30].
We present such a conjecture in Table III.

The support of any LS type defines a domain in the real
space lattice. The deflation applied to this domain creates a
larger domain and possibly new LS types. We specify five
different domains. In the domain of A0, the LS types A1 and
A2 are defined. Applying deflation to this domain generates
the domain A1, where LS types A3 and A4 occur. The LS
types B1 and B2 live in the B0 domain. LS types C1, C2,
define C0

x , C3, C4 similarly define C0
y . Our last domain, C0

z ,
contains the LS types C6, C7, C8, and C9. If these are the only
domains that are not generated by deflation, and deflations

FIG. 19. LS type-A4. The allowed region area and frequency is the same as type-A3 fA4 � 0.00069 although there are many more vertices
in the support.
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FIG. 20. LS type-B3. The allowed region for each vertex is an irregular hexagon with π/2 rotational symmetry. Total frequency for this
type is fB3 = 3ξ−5+ξ−6

4 � 0.00113.

FIG. 21. LS type-B4 has the same frequency as type-B3 fB4 � 0.00113.

FIG. 22. LS type-C5 has an allowed region, which is an irregular pentagon with area 3ξ−5

2 � 0.00207. The frequency is ξ−5+ξ−6

2 � 0.00088.
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FIG. 23. LS type-C6 has a frequency of ξ−5+ξ−6

4 � 0.00044.

FIG. 24. LS type-C7 fills perpendicular regions adjacent to type-C6. Its frequency is also the same with type-C6.

FIG. 25. LS type-C8 has the same allowed region area and frequency as type-C6.
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TABLE I. Perpendicular space areas for the allowed areas of
vertices for the 18 LS types. The ratio of these areas to the area of
V12, combined with symmetry factors yield the LS type frequencies.

LS type Areas of polygons in terms of ξ

Vi j
3
2 (1 + ξ )

A1, A2 3
4 (ξ−2 + ξ−3)

A3, A4 3
4 (ξ−4 + ξ−5)

B1, B2 1
2 (2ξ−2 + ξ−4)

B3, B4 1
2 (2ξ−4 + ξ−6)

C1, C2 3
4 ξ−3

C3, C4 3
2 ξ−4

C5 3
2 ξ−5

C6, C7, C8, C9 3
4 ξ−5

C10 1
4 (ξ−5 + ξ−6)

of only these domains can generate all LS types, we get
fConj = 3ξ−1+2ξ−2+2ξ−3+ξ−4

ξ 2−1 � 0.076660 in the thermodynamic
limit. This value is close to our numerical estimate.

V. FORBIDDEN SITES

One of the most critical properties of LS on the PL is that
there are large regions of the lattice where the LDOS is zero.

TABLE II. The eighteen LS types and their frequencies.

LS type Frequency

A1 ξ−3

2 = 26−15
√

3
2 ∼ 0.009619

A2 ξ−3

2 = 26−15
√

3
2 ∼ 0.009619

A3 ξ−5

2 = 362−209
√

3
2 ∼ 0.000691

A4 ξ−5

2 = 362−209
√

3
2 ∼ 0.000691

B1 3ξ−3+ξ−4

4 = 175−101
√

3
4 ∼ 0.015717

B2 3ξ−3+ξ−4

4 = 175−101
√

3
4 ∼ 0.015717

B3 3ξ−5+ξ−6

4 = 2437−1407
√

3
4 ∼ 0.001128

B4 3ξ−5+ξ−6

4 = 2437−1407
√

3
4 ∼ 0.001128

C1 ξ−3+ξ−4

4 = 123−71
√

3
4 ∼ 0.006098

C2 ξ−3+ξ−4

4 = 123−71
√

3
4 ∼ 0.006098

C3 ξ−4+ξ−5

2 = 459−265
√

3
2 ∼ 0.003268

C4 ξ−4+ξ−5

2 = 459−265
√

3
2 ∼ 0.003268

C5 ξ−5+ξ−6

2 = 1713−989
√

3
2 ∼ 0.000876

C6 ξ−5+ξ−6

4 = 1713−989
√

3
4 ∼ 0.000438

C7 ξ−5+ξ−6

4 = 1713−989
√

3
4 ∼ 0.000438

C8 ξ−5+ξ−6

4 = 1713−989
√

3
4 ∼ 0.000438

C9 ξ−5+ξ−6

4 = 1713−989
√

3
4 ∼ 0.000438

C10 ξ−6

2 = 1351−780
√

3
2 ∼ 0.000185

Total 23ξ−4+24ξ−5

2 = 10919−6304
√

3
2 ∼ 0.075855

More specifically, the lattice is split by strings of forbidden
sites, and each part has LS only in one of the sublattices [22].
Any site in the PL is either a forbidden site or in the support of
at least one LS [29]. Contrary to the PL, large-scale numerical
results for the ABL show no forbidden sites [30,31].

The LDOS picture we obtained for the SDL differs from
the PL and the ABL results. First, LDOS of a sublattice is not
confined to any regions like the PL but is spread somewhat
uniformly throughout the lattice. However, there are isolated
sites that have zero LDOS. We identified four ways local
connectivity can prevent a site from hosting an LS. A single
forbidden site can also forbid a finite string of sites. We give
two of these arguments in this section, and two more are in the
Appendix.

First consider the local environment shown in Fig. 14, an F
site in the odd sublattice encircled by five C sites and an E site.
All the neighbors of the central F are in the even sublattice.
Hence, they give an equation relating the wavefunctions of
their neighbors. First, consider the equations provided by the
sites labeled 1 and 2 in the figure. Subtracting these two
equations give us �1 = �2. The same operation on Eqs. (3)
and (4) similarly gives �1 = �3. Finally, equations on sites
5 and 6 give �2 = �3 + �4. The only possible solution is
�4 = 0, making this site a forbidden site. Any time a site
is labeled as forbidden, we look for next-nearest neighbors
that must have the same wavefunction due to local con-
nections. There may be a string of attached sites to any
forbidden site. There may be up to 11 more linked forbid-
den sites for the forbidden site identified above, as shown in
Fig. 14.

As the second argument, consider the configuration in
Fig. 15. First, using logic similar to the above argument, we
can subtract equations of sites that share two neighbors to
identify three pairs marked with the wavefunctions �1,±�2,
and ±�3. We identify two more sites with the wavefunctions
�4, �5. Considering the sum of Eqs. (2), (3), and (4) and
subtracting the equation from the central site 1, we obtain
�1 + �4 + �5 = 0. A new forbidden site can be identified
when this equation is combined with the equation on site 5.
There may be six attached sites to this forbidden site, as shown
in Fig. 15.

Two more independent arguments for forbidden sites are
given in Appendix B. Once the real space structure of a
forbidden site is known, it is possible to count the frequency
of their occurrence by calculating the acceptance domains for
the sites that give the necessary equations. We do this for
all the four arguments and their attached sites. The forbidden
perpendicular space regions resulting from all four arguments
are shown in Fig. 16. The total fraction of sites forbidden
through the four arguments is fForbid � 0.038955.

We identified that large regions of perpendicular space be-
long to the support of LS and a much smaller area corresponds
to the forbidden sites. Still, there are regions in perpendicular
space that are not identified as forbidden or allowed for an
LS vertex. Repeating the LDOS calculation in perpendicular
space gives us at least a suggestion about the properties of
the unidentified regions. The result of such a calculation on
80-deep neighborhoods of five random starting perpendicular
space points is given in Fig. 17. Identifying small regions
in perpendicular space is challenging as no neighborhood
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TABLE III. The scaling argument leading to the conjectured LS frequency fConj = 3ξ−1+2ξ−2+2ξ−3+ξ−4

ξ2−1
� 0.076660.

LS type Frequency LS type Frequency LS type Frequency LS type frequency LS type Frequency

A0 ξ−3 B0 3ξ−3+ξ−4

2 C0
x

ξ−3+ξ−4

2 C0
y ξ−4 + ξ−5 C0

z ξ−5 + ξ−6

A1 ξ−2ξ−3 B1 ξ−2 3ξ−3+ξ−4

2 C1
x ξ−2 ξ−3+ξ−4

2 C1
y ξ−2(ξ−4 + ξ−5) C1

z ξ−2(ξ−5 + ξ−6)

A2 ξ−4ξ−3 B2 ξ−4 3ξ−3+ξ−4

2 C2
x ξ−4 ξ−3+ξ−4

2 C2
y ξ−4(ξ−4 + ξ−5) C2

z ξ−4(ξ−5 + ξ−6)

A3 ξ−6ξ−3 B3 ξ−6 3ξ−3+ξ−4

2 C3
x ξ−6 ξ−3+ξ−4

2 C3
y ξ−6(ξ−4 + ξ−5) C3

z ξ−6(ξ−5 + ξ−6)

... ... ... ... ... ... ... ... ... ...

An ξ−2nξ−3 Bn ξ−2n 3ξ−3+ξ−4

2 Cn
x ξ−2n ξ−3+ξ−4

2 Cn
y ξ−2n(ξ−4 + ξ−5) Cn

z ξ−2n(ξ−5 + ξ−6)

... ... ... ... ... ... ... ... ... ...∑∞
0

ξ−1

ξ2−1

∑∞
0

3ξ−1+ξ−2

2(ξ2−1)

∑∞
0

ξ−1+ξ−2

2(ξ2−1)

∑∞
0

ξ−2+ξ−3

ξ2−1

∑∞
0

ξ−3+ξ−4

ξ2−1

FIG. 26. LS type-C9 fills areas adjacent to type-C8, and has the same frequency as type-C6

FIG. 27. LS type-C10 has the lowest frequency of the LS types reported in this paper f = ξ−6

2 � 0.00019. There are further LS type, which
have lower frequencies, and are not reported here.
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FIG. 28. Local configurations, which lead to new forbidden sites. The sites encircled in red cannot be in the support of an LS.

uniformly samples the perpendicular space. Nonetheless, we
expect that all F, D, and E vertices are in the support of some
LS. There seem to be forbidden regions of C vertices next
to the identified forbidden areas. We cannot be sure about the
areas close to the tips of the C and the B regions; LS may cover
those regions entirely. Overall, the lower bound we provide
for the LS fraction and the identified forbidden sites seem to
give a reasonably comprehensive picture of the perpendicular
space.

VI. CONCLUSIONS

Socolar dodecagonal lattice is a quasicrystal closely related
to the ABL and PL. A recent paper [34] considered the vertex
tight-binding model on this lattice and numerically found that
fNum � 0.076 of the states are in the zero-energy manifold.
The same paper claims that considering a small family of LS
types does not adequately explain the observed LS fraction.
We study the same model and used a scaling argument to
find the LS fraction using smaller lattices with open bound-
ary conditions. Our result agrees with Ref. [34] for the LS
fraction of fNum � 0.0761. However, we find different results
for the frequencies of the LS types. We believe our method
based on perpendicular space images of LS types is less error
prone than methods based on inflation-deflation. We find 18
LS types, which provide a lower bound fLS = 10919−6304

√
3

2 �
0.07585 for the LS fraction.

Beyond finding the LS types that explain the 99.7% of
the numerical value, we also calculate the zero-energy LDOS
for this lattice. We find that zero-energy LDOS is nonzero
throughout most of the lattice, yet we also observe that some
sites have zero LDOS. We show that some local structures
in the SDL prohibit specific sites from hosting LS. We give
four arguments leading to forbidden sites and using their
perpendicular space images, and we find that at least fForbid �
0.038955 of the sites cannot host any LS.

The LS type structure of the SDL is more similar to the
ABL than the PL. All LS types found for the SDL and the
ABL have wavefunctions of constant density and alternating
sign. Both lattices require extensive LS types with very low

frequency, while just six LS types span PL zero-energy man-
ifold. In a forthcoming paper, we also study the robustness of
the zero-energy manifold with respect to an applied magnetic
field. The SDL loses most of its zero-energy LS with an
applied field similar to the ABL and in direct contrast with
the PL. One property of SDL closer to the PL than the ABL is
the presence of forbidden sites.

All three lattices, the ABL, the PL, and the SDL, are
obtained by a similar projection procedure from four-, five-
, and six-dimensional simple cubic lattices. All three have
perpendicular spaces that reduce to two-dimensional polygons
and have scaling symmetries. Our results indicate that the
zero-energy manifold of the SDL and the ABL may be more
generic compared to the PL. However, we cannot pinpoint
what property of the quasicrystal controls the frequency, ro-
bustness, or the required number of LS types. Similarly, we
cannot predict the existence or frequency of forbidden sites
beyond finding specific instances of local environments. We
hope these questions will stimulate further research into ele-
mentary excitations in quasicrystals.

APPENDIX A: LS TYPES WITH LOW FREQUENCY

We give the real space configurations of ten LS types
in addition to the eight in the main text. For each type in
Figs. 18–27, we plot the real-space configuration and the
allowed areas for each vertex in V12. The areas covered by
all previous LS types are indicated as a gray background so
that the independence of the new LS type can be visually
established.

APPENDIX B: FORBIDDEN SITES WITH LOW
FREQUENCY

The configurations in Fig. 28 allow us to find new forbid-
den sites. We start with the left configuration. Equations on
site 1 and site 2 are �0 + �1 + �3 = 0 and �0 + �1 + �2 +
�4 = 0, respectively, and, here, we get �2 + �4 = �3. Thus,
the equation on site 3 gives us the first forbidden site shown
by the red circle for this configuration. The equation on site 4
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gives the second forbidden site. We can easily get �5 + �6 +
�7 = �3 = −(�8 + �9 + �10) by equations on sites 5 and 6.
Finally, the equation on site 7 gives us the last forbidden site
for this configuration.

For another forbidden site, consider the right configuration
in Fig. 28. Here equations on site 1, �1 + �2 + �10 +
�14 = 0, and on site 2, �1 + �2 + �4 + �5 = 0,
give us the following equation: �4 + �5 = �10 + �14.

From equations on site 3, �4 + �5 + �6 + �7 = 0,
and on site 4, �6 + �7 + �8 + �9 + �10 = 0, we
obtain following relations: �1 + �2 = �6 + �7 =
−(�8 + �9 + �10) = −(�10 + �14). Equation on site
5, �8 + �9 + �10 + �11 + �12 + �13 = 0, gives us
−(�10 + �14) = �11 + �12 + �13. Now if we consider
equation on site 6, we find that the site shown by red circle is
forbidden.
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