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Abstract— In this paper, we present a quasi-convex mini-
mization method to calculate an upper bound of dwell-time
for stability of switched delay systems. Piecewise Lyapunov-
Krasovskii functionals are introduced and the upper bound for
the derivative of Lyapunov functionals are estimated by free
weighting matrices method to investigate non-switching stability
of each candidate subsystems. Then, a sufficient condition for
dwell-time is derived to guarantee the asymptotic stability of the
switched delay system. Once these conditions are represented
by a set of linear matrix inequalities (LMIs), dwell time
optimization problem can be formulated as a standard quasi-
convex optimization problem. Numerical examples are given
to illustrate improvements over previously obtained dwell-time
bounds.

Index Terms— Time delay systems, dwell time optimization,
switched systems, free weighting matrices method

I. INTRODUCTION

A switched system is a dynamical system that includes
a set of subsystems and a discrete switching event between
those subsystems. General behaviour of a switched system
is governed by following differential equation:

ẋ(t) = fσ(t)(x(t)), ∀t > t0,

where σ denotes the switching signal which belongs to an
index set. See the survey [12] for a review of the recent
results and further references.

The stability analysis encountered in switched systems can
be classified into three categories [13]. The first one is to find
conditions that the switched systems are stable under any
arbitrary switching signal [16], [4], [9]. The second one is to
construct a switching signal that makes the switched system
asymptotically stable [11]. The third category is the slow
switching strategies such as dwell time stability or average
dwell time stability for which the system is asymptotically
stable [14], [8], [21]. The class of switching signals can
be restricted to signals with the property that the interval
between any consecutive switching times is not less than a
value called the dwell time. The switched delay system is
asymptotically stable if all of the candidate subsystems are
asymptotically stable and the dwell time is large enough [15].

The literature is abounded with various of approaches for
the stability analysis of time-delay systems, one can refer
to [5] for a review on the topic. Main methods to deal
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A. Delibaşı is with Department of Control and Automation
Engineering, Yıldız Technical University, İstanbul, Turkey
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with delay-dependent stability problems are model trans-
formations. Stability analysis with model transformations
leads to a sort of conservatism since analysis operates on
the transformed system instead of the original system [5].
A less conservative approach to stability analysis is the
free-weighting matrices method which does not include any
model transformation of the original system [13], [6], [19].

There are recent results on dwell time stability of the
switched delay systems. In [18] and [10], stability conditions,
for a given average dwell time, are presented. There are
some optimization based methods to calculate minimum
dwell time [3], [20]. In [3], the calculation of dwell time is
formulated as a semi-definite programming (SDP) in terms of
LMIs. Piecewise Lyapunov-Krasovskii functionals is derived
by model transformation methods. The upper bound of the
derivative of the Lyapunov function is minimized which
ends up with a sub-optimal solution to the dwell time
minimization problem. The present paper proposes a quasi-
convex optimization approach to directly minimize the dwell
time for which the switched delay system is asymptotically
stable. To reduce conservatism due to model transformation,
we derive the stability conditions by using free weighting
matrices.

The notation to be used in the paper is standard: R (R+,
R

+
0 ) stands for the set of real numbers (positive real numbers,

non-negative real numbers), C is used to denote the set
of differentiable continuous functions, Z

+ symbolizes the
set of positive integers. The identity matrices are denoted
by I . We use X ≻ 0 (�, ≺, � 0) to denote a positive
definite (positive-semidefinite, negative definite, negative-
semidefinite) matrix. σmax [X ] and σmin [X ] denote the
maximum and minimum singular values of X , respectively.
The asterisk symbol (∗) denotes complex conjugate transpose
of a matrix. The operator diag [X1, X2, . . . , Xn] denotes a
block diagonal matrix whose elements on the main block
diagonal are X1, X2, . . . , Xn. The norm ‖ · ‖ is defined as
the Eucledian norm for a vector in R

n and the norm on C is
defined as follows:

|f |[a,b] = max

{

sup
t∈[a,b]

‖f(t)‖, sup
t∈[a,b]

‖ḟ(t)‖

}

II. PRELIMINARIES AND PROBLEM DEFINITION

Consider a class of switched delay system given by

ẋ(t) = Aσ(t)x(t) + Āσ(t)x(t − rσ(t)(t)), t ≥ 0

x(θ) = ϕ(θ), ∀θ ∈ [−τmax, 0] (1)
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where x(t) ∈ R
n is the pseudo-state and σ(t) is the

piecewise switching signal such that σ(t) : R
+ → P ,

P := {1, 2, ...,m} is an index set, m ∈ Z
+ is the number of

subsystems and initial condition belongs to Banach space of
continuous functions such that ϕ(·) ∈ C. Time delay, rσ(t)(t),
is a time-varying differentiable function that satisfies

0 ≤ rσ(t)(t) ≤ τσ(t), (2)

|ṙσ(t)(t)| ≤ dσ(t) < 1, (3)

where τσ(t), dσ(t) > 0 are piecewise constants. We introduce
the quartet

Σi :=
(

Ai, Āi, τi, di
)

∈ R
n×n × R

n×n × R× R

to describe the ith candidate subsystem of (1) and τmax =
maxi∈P τi.

Similar to [20], we modify the stability definition in [7]
to switched delay system as in definition 1.

Definition 1. We say that switched delay system is stable if
there exists a function β of class K such that

‖x(t)‖ ≤ β(|x|[t0−τmax,t0])

along every solution to (1). Furthermore, switched delay sys-
tem is asymptotically stable when it is stable and lim

t→∞
x(t) =

0.

Lemma 1. ([5]) Consider the non-switched linear subsystem
Σi of the system (1) for an i ∈ P . Suppose ui, vi,
wi : R+

0 → R
+
0 are continuous, non-decreasing functions

satisfying ui(0) = vi(0) = 0, wi(s) > 0 for s > 0. If there
exists a continuous functional V , such that

ui(‖x(t)‖) ≤ Vi(t, xt) ≤ vi(|x|[t−τi,t]), ∀t ≥ t0 (4)

V̇i(t, xt) ≤ −wi(‖x(t)‖), ∀t ≥ t0

then the solution x = 0 of the subsystem Σi is uniformly
asymptotically stable.

Let us construct the following piecewise Lyapunov func-
tion:

Vi(t, xt) := xT (t)Pix(t) +

∫ t

t−τi

xT (s)Qix(s)ds

+

∫ 0

−τi

∫ t

t+θ

ẋT (s)Ziẋ(s)dsdθ, ∀i ∈ P (5)

Lemma 2. Consider non-switched subsystems Σi for i ∈
P of switched system (1) with varying delays, ri(t). Given
scalar τi > 0 and di > 0 for which (2) and (3) hold, the ith

subsystem is asymptotically stable if there exist symmetric
matrices Pi ≻ 0, Qi � 0, Zi ≻ 0, and

[

X11i X12i

∗ X21i

]

� 0,

and any appropriately dimensioned matrices N1i and N2i

such that the following LMIs hold:

φi =





φ11i φ12i τiA
T
i Zi

∗ φ22i τiĀ
T
i Zi

∗ ∗ −τiZi



 ≺ 0, (6)

ψi =





X11i X12i N1i

∗ X22i N2i

∗ ∗ Zi



 � 0, (7)

where

φ11i = PiAi +AT
i Pi +N1i +NT

1i +Qi + τiX11i,

φ12i = PiĀi −N1i +NT
2i + τiX12i,

φ22i = −N2i −NT
2i − (1− di)Qi + τiX22i.

Proof. (For complete proof, see [19], page 45). The deriva-
tive of the Lyapunov function in (5) can be bounded as
follows,

V̇i(t, xt) ≤ ξT1 (t)Ξiξ1(t)−

∫ t

t−τi

ξT2 (t, s)ψiξ2(t, s)ds (8)

where

ξ1(t) =
[

xT (t), xT (t− τi)
]T
,

ξ2(t, s) =
[

xT (t), xT (t− τi), ẋ
T (s)

]T
,

Ξi =

[

φ11i + τiA
T
i ZiAi φ12i + τiA

T
i ZiĀi

∗ φ22i + τiĀ
T
i ZiĀi

]

.

The variable φi in (6) is the Schur Complement of Ξi. Hence,
ith subsystem is stable if both (6) and (7) hold.

Now, some specific lower and upper bounds for the
Lyapunov function (5) can be given as

ui(s) := σmin [Pi] s
2

vi(s) :=

(

σmax [Pi] + τiσmax [Qi] +
1

2
τ2i σmax [Zi]

)

s2

Another lower bound of the Lyapunov function with
respect to norm of ẋ(t) can be defined as

udi
‖ẋ(t)‖2 :=

1

2
τ2i σmin [Zi] ‖ẋ(t)‖

2 ≤ Vi(t, xt).

III. MAIN RESULTS

The following proposition is a modified version of a result
obtained in [3].

Proposition 1. For any non-switching subsystem Σi satis-
fying lemma 1 with lim

s→∞
ui(s) → ∞, assume there exists a

function udi
such that

udi
(‖ẋ(t)‖) ≤ Vi(t, xt).

For an arbitrary η, 0 < η < δ2, |x|[t0−τi,t0] ≤ δ1 < δ2
implies

|x|[t−τmax,t] ≤ η, ∀t > t0 + τmax + Ti(η)

where Ti(η) = [vi(δ1)] /γi(η), vi defined as in the lemma 1
and γi(η) = infη≤s≤δ2 wi(s).

Proof. Let T∗ > 0 and let ‖x(t1)‖ > η for a time instant
t1 > t0 + T∗. Let γi(η) = infη≤s≤δ2 wi(s). Since the
subsystem Σi is stable and Vi is a Lyapunov-Krasovskii
functional, from lemma 1, we have the following

V̇i(t, xt) ≤ −wi(‖x(t)‖) < −γi(η), ∀t ≥ t0
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This implies

Vi(t, xt) ≤ Vi(t0, ϕ)− (t− t0)γi(η)

≤ vi(δ1)− (t− t0)γi(η).

Let T∗ > [vi(δ1)] /γi. Then for every t > t0 + T∗, we have
Vi(t, xt) ≤ 0. However, we assume that there is a time instant
t1 > t0 + T∗ such that ‖x(t1)‖ > η. This implies that

Vi(t1, xt1) ≥ ui(‖x(t1)‖) ≥ ui(η) > 0

This is a contradiction. Therefore time instant t1 cannot exits
and this implies

‖x(t)‖ ≤ η, ∀t > t0 +
vi(δ1)

γi(η)
.

Similarly, assuming there is a time instant t1 > t0+T∗ such
that ‖ẋ(t1)‖ ≥ η

Vi(t1, xt1) ≥ udi
(‖ẋ(t1)‖) ≥ udi

(η) > 0

which is also a contradiction. Hence,

‖x(t)‖ < η, ‖ẋ(t)‖ < η, ∀t > t0 + T∗

If we wait for a period of maximum time-delay such that
t > t0+T∗+ τmax, the inequality |x(t)|[t−τmax,t] ≤ η holds,
which concludes the proof.

Proposition 2. Consider the system (1) with each Σi satis-
fying Lemma 2, if there exist matrices WT

i = Wi � 0 such
that following LMIs hold,

φ̄i :=





φ11i +Wi φ12i τiA
T
i Zi

∗ φ22i τiĀ
T
i Zi

∗ ∗ −τiZi



 ≺ 0, (9)

then V̇i(t, xt) ≤ −xT (t)Wix(t).

Proof. Consider the inequality (8). Since ψi � 0, we know
that V̇i(t, xt) ≤ ξT1 (t)Ξiξ1(t). Bounding this inequality,

ξT1 (t)Ξiξ1(t) ≤ −xT (t)Wix(t)

yields ξT1 (t)Diξ1(t) ≤ 0 where

Di :=

[

φ11i +Wi + τiA
T
i ZiAi φ12i + τiA

T
i ZiĀi

∗ φ22i + τiĀ
T
i ZiĀi

]

.

Since φ̄i is the Schur Complement of Di, if (9) holds,
then V̇i(t, xt) ≤ −xT (t)Wix(t).

Then we can define the upper bound for the deriva-
tive of the Lyapunov function in lemma 1 as wi(s

2) :=
σmin [Wi] s

2.

Theorem 1. Consider the switched delay system described
in (1). Assume all of the candidate subsystems satisfy
lemma 2. Then, the switched delay system is asymptotically
stable for all switching signals satisfying dwell time require-
ment τD

τD =
1

α2
max
i∈P

vi
wi

+max
i∈P

τi, for any α ∈ (0, 1) (10)

where

vi = σmax [Pi] + τiσmax [Qi] +
1

2
τ2i σmax [Zi] ,

wi = σmin [Wi]

Proof. Let’s choose η = αδk where δk denotes norm
of the state at the kth switching instant such that δk =
|x|[tk−τmax,tk]. Introducing the dwell time as

τD = max
i∈P

τi +max
i∈P

Ti(η)

leads us to an inequality from proposition 1 as following,

|x|[tk−τmax,tk] ≤ α|x|[tk−1−τmax,tk−1], ∀tk > tk−1 + τD

where
Ti(η) = Ti(αδk) =

vi
α2wi

.

From (4), we know that

‖x(t)‖ ≤

√

vi
ui

|x|[tk−τmax,tk]

for any i ∈ P . Let’s define

β = max
i∈P

√

vi
ui
.

Then,

‖x(t)‖ ≤ β|x|[tk−τmax,tk]

≤ βα|x|[tk−1−τmax,tk−1]

...

≤ βαk|x|[t0−τmax,t0]

≤ βα|x|[t0−τmax,t0], ∀α ∈ (0, 1)

which is satisfying the stability condition described in defi-
nition 1.

Remark 1. The parameter α can be regarded as a measure
of the decay rate. This parameter quantifies a trade-off
between the dwell time and the decay rate, i.e.; the larger
α, the smaller dwell time but the slower decay rate.

IV. MINIMUM DWELL TIME VIA QUASI-CONVEX

OPTIMIZATION

In order to minimize dwell time given by (10), the cost
function f(vi, wi) := maxi∈P vi/wi should be minimized.
This is a quasi-convex function since it is the composition
of a convex function with a nondecreasing function [2].
It is known that an optimization problem with a quasi-
convex cost function and convex constraints can be solved by
iterative methods such as bisection algorithm [1]. We define
a parameter t to denote an upper bound for the cost function
such that f(vi, wi) ≤ t.

Let’s define

Xi :=

[

X11i X12i

∗ X21i

]

.
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For the free parameters Pi, Qi, Zi, Wi, X11i, X12i, X21i,
N1i,N2i pi, qi, zi, wi, t, minimum dwell time can be
computed via following optimization problem:

min t (11)

s.t. diag [Pi, Qi, Zi,Wi, Xi] ≻ 0,

diag [Pi, Qi, Zi,−Wi] ≺ diag [piI, qiI, ziI,−wiI] ,

ψi � 0, φ̄i ≺ 0

pi + τiqi +
1

2
τ2i zi − twi < 0, ∀i ∈ P

where ψi and φ̄i are defined in (7) and (9), respectively.
Then, dwell time is τD = t + τmax. However, optimization
problem in (11) involves a bilinear matrix inequality when t
is considered as a free parameter.

Searching for minimum t with bisection algorithm gener-
ates a sequence of linear semi-definite programming (SDP)
feasibility problems which can easily be solved by SeDuMi
[17].

V. NUMERICAL EXAMPLES

In this section, the examples are taken from [3] and [20]
for comparison purposes.

Example 1. Let Σ1 be

A1 =

[

−2 0
0 −0.9

]

, Ā1 =

[

−1 0
−0.5 −1

]

,

τ1 = 0.3s, d1 = 0.

and let Σ2 be

A2 =

[

−1 0.5
0 −1

]

, Ā2 =

[

−1 0
0.1 −1

]

,

τ2 = 0.6s, d2 = 0.

Corresponding minimum dwell times for different τi and
di values are illustrated in table II.

Example 2. Let Σ1 be

A1 =

[

−1.799 −0.814
0.2 −0.714

]

, Ā1 =

[

−1 0
−0.45 −1

]

,

τ1 = 0.155s, d1 = 0.

and let Σ2 be

A2 =

[

−1.853 −0.093
−0.853 −1.1593

]

, Ā2 =

[

−1 0
0.05 −1

]

,

τ2 = 0.2s, d2 = 0.

Comparison of present paper with previous works for
examples 1 and 2 can be seen in table I. Corresponding
minimum dwell times for different τi and di values are
illustrated in table III.

TABLE I

DWELL TIME FOR α = 0.99

Ex. Paper [20] Paper [3] Present Paper

1 6.51 s 3.4 s 1.11 s
2 – 0.72 s 0.58 s

TABLE II

DWELL TIME FOR DIFFERENT τi AND di VALUES OF EXAMPLE 1

τ1 τ2 d1 d2 τD

0.15 s 0.3 s 0 s 0 s 0.69 s
0.15 s 0.3 s 0.15 s 0.3 s 0.69 s
0.3 s 0.6 s 0 s 0 s 1.11 s
0.3 s 0.6 s 0.3 s 0.3 s 1.11 s
0.3 s 0.6 s 0.6 s 0.6 s 1.11 s
0.6 s 1.2 s 0 s 0 s 2.54 s
0.6 s 1.2 s 0.3 s 0.3 s 2.76 s
0.6 s 1.2 s 0.6 s 0.6 s 3.51 s

TABLE III

DWELL TIME FOR DIFFERENT τi AND di VALUES OF EXAMPLE 2

τ1 τ2 d1 d2 τD

0.08 s 0.1 s 0 s 0 s 0.46 s
0.155 s 0.2 s 0 s 0 s 0.58 s
0.155 s 0.2 s 0.15 s 0.15 s 0.58 s

0.3 s 0.4 s 0 s 0 s 0.84 s
0.3 s 0.4 s 0.2 s 0.2 s 0.84 s
0.6 s 0.8 s 0 s 0 s 1.38 s
0.9 s 1.2 s 0 s 0 s 1.38 s
0.9 s 1.2 s 0.3 s 0.3 s 2.39 s
0.9 s 1.2 s 0.6 s 0.6 s 3.15 s
0.9 s 1.2 s 0.9 s 0.9 s 176.70 s

VI. CONCLUSIONS

We performed the calculation of minimum dwell time
to ensure stability of switched delay systems. Minimization
of dwell time is formulated as a quasi-convex optimiza-
tion problem. Stability conditions are derived by using free
weighting matrices method to find appropriate Lyapunov-
Krasovskii functionals. By the numerical examples, it is
shown that the results obtained in [3] and [20] can be
improved using the method proposed in the present paper.
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[20] P. Yan and H. Özbay. Stability analysis of switched time delay systems.
SIAM Journal on Control and Optimization, 47(2):936–949, 2008.

[21] J. Zhang, Z. Han, F. Zhu, and J. Huang. Stability and stabilization of
positive switched systems with mode-dependent average dwell time.
Nonlinear Analysis: Hybrid Systems, 9(0):42 – 55, 2013.

1982


