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ABSTRACT 

The fractional Fourier transform has found many applica- 
tions in signal and image processing and optics. An iterative 
algorithm for signal recovery from partial fractional Fourier 
transform information is presented. The signal recovery al- 
gorithm is constructed by using the method of projections 
onto convex sets and convergence of the algorithm is as- 
sured. 

1. INTRODUCTION 

The fractional Fourier transform is widely used in optics 
and found applications in signal and image processing [ 13- 
[SI. The p-th order fractional Fourier transform operation 
corresponds to the p-th power of the ordinary Fourier trans- 
form operation. The zeroth-order fractional Fourier trans- 
form of a function is the function itself and the first-order 
transform is equal to the ordinary Fourier transform. In op- 
tics, it is well-known that Fourier Transform of an object 
corresponds to the image of the object at the focal point of 
the lens, and fractional Fourier Transform describes the im- 
age of the object in the near field of the lens for 0 < p < 1. 

In this paper, an iterative algorithm for signal recovery 
from partial fractional Fourier transform information is de- 
veloped by making alternating projections onto sets rep- 
resenting measurements in fractional Fourier domains. In 
other words, the image of the object may be reconstructed 
from partial near field measurements. The reconstruction al- 
gorithm is globally convergent and it is based on the method 
of projections onto convex sets (POCS), a classical numer- 
ical technique [6]. The convergence of t h s  algorithm can 
be proved easily in both continuous and discrete Fractional 
Fourier Transform domains because both partial fractional 
Fourier information in a band or in a location correspond 
to closed and convex sets in L2 or C2, respectively. Other 
closed and convex sets that may be used in the reconstruc- 
tion algorithm include sets representing bounded energy, 
non-negativity constraint and finite-support information in 

time domain. 

In the next section, basic concepts of fractional Fourier 
Transform is reviewed. In Section 111, the signal recovery 
algorithm is presented, and simulation examples are pre- 
sented in the last section. 

2. FRACTIONAL FOURIER TRANSFORM 

In this section, Fractional Fourier Transform is briefly re- 
viewed and the signal recovery problem is presented. For 
a thorough discussion of the Fractional Fourier Transform 
and its properties the reader is referred to [ 11-[SI. 

Let us denote the pth order fractional Fourier transform 
operator as FP. When p = 1 we have the ordinary Fourier 
transform operator F. Fractional Fourier transform is de- 
fined by the standard eigenvalue methods for finding a func- 
tion G(31) of a linear operator 3t. Hermite-Gaussian func- 
tions are the eigenfunctions of the regular Fourier trans- 
form: F?,bn(u) = exp(-in.rr/2)?,bn(u), where ?,bn(u), 
n = 0,1,2,  . . . are the set of Hermite-Gaussian functions: 
21/4(Znn!)-1/2Hn(d%u) exp(-.rru2) and & ( U )  are the 
standard Hermite polynomials. The fractional Fourier 
transform is defined in terms of the eigenvalue equation 
FP?,bn(u) = [exp(-in.rr/Z)]P$~~(u) where the fractional 
pth power satisfies [exp( - in~/2)]P = e x p ( - i p n ~ / 2 ) .  An 
analytic expression for the fractional Fourier transform of 
an arbitrary square-integrable function z( t )  is obtained by 
expanding it in terms of the complete orthonormal set of 
functions ?,bn(u) and then applying the above eigenvalue 
equation to each term of the expansion. It is shown in 
[3] that the pth order fractional Fourier transform z p ( u )  E 
FPz(u)  is given by 

-2 csc(pn/2)ut + cot(p7r/Z)t2)]dt (1) 

The zeroth-order fractional Fourier transform of a function 
is the function itself and the fist-order transform is equal to 
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the ordinary Fourier transform. Positive and negative inte- 
ger values of p simply correspond to repeated application of 
the ordinary forward and inverse Fourier transforms respec- 
tively. The fractional Fourier transform operator satisfies 
index additivity: 3 P 2 3 P 1  = 3 P 2 + P 1 .  The operator 3 P  is 
periodic in p with period 4 since FT2 equals the parity oper- 
ator which maps z ( t )  to z(-t) and F4 equals the identity 
operator. 

The pth order discrete fractional Fourier transform X, of 
an N x 1 vector x is defined as X, = Fax, where X" is 
the N x N discrete fractional Fourier transform matrix [ 5 ] ,  
which is essentially the pth power of the ordinary discrete 
Fourier transform matrix X. Let the discrete-time vector x 
contains the samples of the continuous time signal z ( t ) ,  and 
if N is chosen equal to or greater than the space-bandwidth 
product of the signal z ( t ) ,  then the discrete fractional trans- 
form approximates the continuous fractional transform in 
the same way as the ordinary discrete transform approxi- 
mates the ordinary continuous transform. 

The signal recovery problem is the reconstruction of z ( t )  
from zP(u) ,  U E U where U is a subset of R. The set 
U may consist of union of some bands in the p-th frac- 
tional Fourier domain. It may also contain or consist of iso- 
lated discrete points representing measurements of zp(u)  at 
ui , i = 1 , 2, . . . , I As in the case of signal recovery from par- 
tial Fourier Transform information, the reconstruction prob- 
lem is very noise sensitive, if U represents a narrow band in 
the p-th fractional Fourier transform domain. In addition to 
recordings in the p-th fractional domain, measurements can 
be available in the q-th fractional domain and this informa- 
tion can be used for signal recovery as well. 

3. ITERATIVE SIGNAL RECOVERY ALGORITHM 

This section presents the signal recovery algorithm which is 
devised by using the method of projections onto convex sets 
(POCS) [6] that has been successfully used in many signal 
recovery and restoration problems [SI-[lo]. The key idea is 
to obtain a solution which is consistent with all the available 
information. In this method the set of all possible signals 
is assumed to constitute a Hilbert space with an associated 
norm in which the prior information about the desired signal 
can be represented in terms of convex sets. In this paper, the 
Hilbert space is L2 or l2 with Euclidian norm for continuos 
time and discrete-time signals, respectively. Let us suppose 
that the information about the desired signal is represented 
by M sets, C,, m = 1 , 2 ,  ..., M .  Since the desired signal 
satisfies all of the constraints it must be in the intersection 
set CO = n,",,C,. Any member of the set CO is called 
a feasible solution [lo]. If all of the sets C, are closed 
and convex then a feasible solution can be found by making 
successive orthogonal projections onto sets, C,. Let P, 

be the orthogonal projection operator onto the set C,. The 
iterates defined by the following equation 

converge to a member of the set CO, regardless of the ini- 
tial signal yo. The number of convex sets can be infinite. 
The rate of convergence can be improved by using non- 
orthogonal projections as well. The underlying mathemati- 
cal concepts can be found in [6], [7].  

We define the set C1 in L2 as the set of signals whose 
fractional Fourier Transform are equal to zp(u)  in the band 
U E U in the p-th fractional domain. This set is con- 
vex because the integral operator in (1) is a linear opera- 
tor. The proof of closure can be established as in []. If 
data is also avalible in the q-th fractional domain another 
set C2 can be defined in a similar manner. If the signal is 
a finite extent signal then this information can be modelled 
as a closed and convex set as in other regular signal recon- 
struction problems. Actually, any time-domain information 
about the original signal including z ( t )  = 0 in a bounded 
or unbounded window in time domain and non-negativity 
information belongs to the above class of sets in fractional 
Fourier domain as time-domain corresponds to the case of 
p = 0. Equation (1) simply becomes the identity operator 
for the fraction p = 0. 

Partial information in the discrete fractional Fourier do- 
main can be represented as convex sets in l2 in discrete-time 
domain as well. 

Another convex set which can be used in the signal re- 
covery algorithm is the bounded energy set, C, which is the 
set of sequences whose energy is bounded by eo,  i.e., 

(3) 

This set provides robustness against noise, if eo is known or 
some idea about eo is available. 

Other convex sets describing partial fractional Fourier do- 
main information can be defined as in []. 

The key operation of the method of POCS is the orthogo- 
nal projection onto a convex set. Projection operations onto 
the sets C1, C2, ..., CK are straightforward to implement. 
Let dk) ( t )  be the Ic-th iterate of the iterative recovery pro- 
cess. Let zL"(u) be fractional Fourier transform of dk) in 
the p-th domain. The projection operator replaces the frac- 
tional Fourier transform values of zp) ( U )  in the band U 

zF+1)(u) = zp(u) U E U, (4) 

and retains the rest of the data outside the band U :  
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Projection onto the set C, is described in [SI. It simply 
consists of scaling the signal x(t) such that the energy of the 
scaled signal is E , .  Projection onto the non-negativity set 
C, is carried out by simply forcing the negative values of 
x ( t )  to zero. 

Let us describe the signal recovery algorithm from par- 
tial fractional Fourier transform information. The algo- 
rithm starts with an arbitrary initial estimate y(0) E L2.  
The initial estimate yo is successively projected onto the 
sets C,, m = 1,2,  ..., M ,  representing the partial frac- 
tional Fourier domain information in fractional domains 
p,, m = 1,2,  ..., M by using Equations (3) and (4). The 
order of projections is immaterial. In this manner the first 
iteration cycle is completed and the K-th iterate y(K) is ob- 
tained. If the energy (non-negativity) information is avail- 
able then the current iterate is also projected also onto the 
set C, (C,). This iterative procedure is repeated until a sat- 
isfactory level of error difference in successive iterations is 
obtained. 

sets used in the reconstruction process. In Fig. 2(a), the 
reconstructed signal is shown, and percent error versus the 
number of iteration cycles is shown in Fig. 2(b). 

In all the examples tried we have observed the consistent 
behavior of the algorithm. 

If the fractional Fourier domain data is available only 
in a narrow band then the reconstruction process can be 
noise sensitive as in regular signal reconstruction from par- 
tial Fourier domain data problem. 

5. CONCLUSION: 

This paper presents an iterative algorithm for signal recov- 
ery from partial fractional Fourier transform domain infor- 
mation. The signal reconstruction algorithm is developed 
by using the method of projection onto convex sets. Con- 
vergence is assured regardless of the initial estimate. 

The signal recovery technique can be easily extended to 
multi-dimensional signal recovery problems as well. 

4. SIMULATION EXAMPLES: 
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Figure 1: (a) Reconstructed signal (top), and (b) percent 
error versus the number of iteration cycles (bottom) in Ex- 
ample 1. 
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Figure 2: (a) Reconstructed signal (top), and (b) percent 
error versus the number of iteration cycles (bottom) in Ex- 
ample 2. 

220 


