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Abstract—We present the solution of large-scale scattering
problems discretized with hundreds of millions of unknowns. The
multilevel fast multipole algorithm (MLFMA) is parallelized us-
ing the hierarchical partitioning strategy on distributed-memory
architectures. Optimizations and load-balancing algorithms are
extensively used to improve parallel MLFMA solutions. The
resulting implementation is successfully employed on modest
parallel computers to solve scattering problems involving metallic
objects larger than 1000λ and discretized with more than 300
million unknowns.

I. INTRODUCTION

Electromagnetics problems can be solved accurately

and efficiently with the multilevel fast multipole algo-

rithm (MLFMA) [1]. For an N × N dense matrix equation,

MLFMA reduces the complexity of matrix-vector multiplica-

tions from O(N2) to O(N log N), allowing for the iterative

solution of large-scale problems discretized with large num-

bers of unknowns. Nevertheless, many real-life problems re-

quire discretizations with millions of unknowns, which cannot

easily be solved with sequential implementations of MLFMA.

In order to solve such very large problems, MLFMA can

be parallelized on distributed-memory architectures [2]–[5].

However, due to the complicated structure of this algorithm,

this is not a trivial process. Recently, we developed a hierarchi-

cal partitioning strategy [6],[7], which significantly improves

the parallelization of MLFMA compared to previous paral-

lelization techniques. Using the hierarchical strategy, we were

able to solve scattering problems discretized with more than

200 million unknowns on relatively inexpensive computing

platforms [7].

Although the hierarchical strategy provides improved parti-

tioning of the tree structures constructed in MLFMA, solutions

of large-scale problems require many other robust techniques

to handle large data structures, to organize communications

between processors, and to economically use the available

memory. Optimizations and load-balancing algorithms are

required at each stage of the program to improve parallel solu-

tions. In this paper, we present our recent efforts to solve large-

scale scattering problems using a parallel implementation of

MLFMA. We demonstrate the effectiveness and robustness of

the developed implementation by solving scattering problems

involving metallic objects larger than 1000λ and discretized

with more than 300 million unknowns.

II. PARALLEL MLFMA IMPLEMENTATION

A. Robust Construction of the Tree Structure

For an object with an electrical dimension of kD, where

k = 2π/λ is the wavenumber, a multilevel tree structure with

L = O (log(kD)) levels is constructed by placing the object

in a cube and recursively dividing the object into subdomains.

For efficient solutions, subdomains at the lowest level (l = 1)

should be small, but they should be large enough to avoid

excessive errors caused by the low-frequency breakdown of

MLFMA. In our typical solutions with maximum 1% error,

we choose the size of the subdomains at the lowest level in

the 0.15λ − 0.3λ range. For an object larger than 615λ, the

tree structure involves at least 13 levels. Although we consider

only nonempty subdomains and most objects lead to sparse

octrees, constructing a tree structure with large numbers of

levels can be difficult and it can easily become a bottleneck

of the MLFMA implementation.

Table I summarizes a robust technique that can be used

to construct a multilevel tree structure with large numbers of

levels. The first loop is constructed over basis/testing functions

and we locate each basis/testing function in a subdomain at the

lowest level. Starting from level L−1, one of eight subdomains

containing that particular basis/testing function is determined

at each level. Given a subdomain C at level l > 1, indices

of eight subdomains C ′ ∈ C at level l − 1 can be found

easily using the properties of octrees. Indices of subdomains

at the lowest level containing the basis/testing functions are

stored in an array called subdomains. When all basis/testing

functions are processed, the subdomains array storing the

indices according to the full octree is sorted using a quick-

sort algorithm. This allows us to trace the array rapidly to

determine the number of distinct subdomains at the lowest
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TABLE I
PSEUDOCODE FOR ROBUST CONSTRUCTION OF THE MULTILEVEL TREE

STRUCTURE

do for each basis/testing function n = 1, 2, ..., N
do for each level l = (L − 1), (L − 2), ..., 1

place the function in one of eight subdomains
subdomains[n] ← full-octree index of the subdomain

at the lowest level
sort subdomains array
count number of distinct subdomains at the lowest level
renumber subdomains at all levels
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Fig. 1. Partitioning maps of two consecutive levels into 16 processes using the
hierarchical strategy. Each processor (or process) handling a group of clusters
and a portion of the field spectrum is denoted by a number. Processors that
need to communicate with Processor 5 are marked with circles and squares.

level, as well as the number of basis/testing functions in

each subdomain. Finally, subdomains are renumbered at all

levels, considering only nonempty ones. The complexity of

this technique is O(N log N), which is appropriate for an

MLFMA implementation.

B. Hierarchical Partitioning Strategy

MLFMA can be parallelized efficiently using the hierar-

chical partitioning strategy, which is based on partitioning

both subdomains and field samples among processors [7]. A

typical partitioning of two consecutive levels into 16 processes

using the hierarchical strategy is depicted in Fig. 1. At level

l, the number of partitions, both along subdomains (horizontal

direction) and samples (vertical direction), is four. At level

l + 1, however, the partitioning is changed, subdomains are

divided into two partitions, and samples are divided into

eight partitions. In general, the partitioning at each level

is optimized using load-balancing algorithms such that the

processing time and the memory required by the MLFMA

implementation are minimized. As detailed in [7], the hier-

archical strategy provides important advantages, compared to

previous parallelization techniques for MLFMA. Specifically,

partitioning both subdomains and samples of fields leads to

improved load-balancing among processors at all levels. In

addition, communications between processors are reduced and

communication time is significantly shortened.

C. Communications
Using the hierarchical partitioning strategy, there are three

different types of communications required among processors

during matrix-vector multiplications [7],[8]. Here we describe

these communications by considering Processor 5 in Fig. 1;

other processors also perform similar communications. During

aggregation and disaggregation stages, Processor 5 needs to

communicate with two neighboring processors in the same

column, i.e., Processors 6 and 7 at level l and Processors

1 and 3 at level l + 1. These (first type) communications

need perfect synchronization between processors and their

efficiency can be improved with load-balancing algorithms.

Then, during the translation stage, Processor 5 communicates

with processors in the same row of the partitioning map, i.e.,

Processors 1, 9, and 13 at level l and Processor 13 at level

l + 1. For these (second type) communications, the order of

pairing is important and directly affects the efficiency [8].

For example, at level l, Processor 5 can be paired with

Processors 1, 9, and 13 in different orders, such as {1, 9, 13},

{1, 13, 9}, {9, 1, 13}, {9, 13, 1}, {13, 1, 9}, and {13, 9, 1}, but

only one of them is optimal in terms of the processing time. In

practice, we consider the overall tree structure to determine the

order of communications among processors. Load-balancing

algorithms are also helpful to improve the synchronization and

to avoid waiting periods between pairing rounds. Finally, from

level l to level l+1, Processor 5 exchanges data with Processor

1 to modify the partitioning. Considering levels l and l+1, this

(third type) communication is performed once, but it involves

large data transfers between processors. This is an extra com-

munication type introduced by the hierarchical strategy [7],

but we emphasize that it results in an improvement in terms

of parallelization. Specifically, this type of communication

replaces many (first and second type) communications that

would be required during aggregation, disaggregation, and

translation stages if the hierarchical strategy was not applied.

Instead of transferring many small packages, the hierarchical

strategy enables us to collect them and communicate the same

amount of data with larger packages, which effectively reduces

the communication time.

D. Memory Recycling
Solutions of large problems require efficient use of the

available memory. In our MLFMA implementation, we utilize

memory recycling as much as possible to solve larger problems

with limited computational resources. We accomplish this with

a three-point strategy:

1) Allocate memory for a data structure just before its

storage is required, not earlier.

2) Deallocate memory used for a data structure whenever

it becomes useless and thus it will not be used again as

the program continues.

3) Rearrange the program by relocating code segments such

that items (1) and (2) can be further applied to reduce

the memory requirement.

Relocation of code segments, particularly in the input and

setup stages of the MLFMA implementation, can effectively
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Fig. 2. Solution of a scattering problem involving a metallic sphere of
diameter 560λ discretized with 374,490,624 unknowns. Normalized RCS (dB)
is plotted as a function of bistatic angle from 175◦ to 180◦, where 180◦
corresponds to the forward-scattering direction.
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Fig. 3. Very large metallic objects (NASA Almond and Flamme) whose
scattering problems are solved with the parallel MLFMA implementation.
Both objects are discretized with more than 300 million unknowns.

reduce the instantaneous memory usage and prevent memory

overflows prior to the iterative solution (matrix-vector multi-

plications) stage of the program.

E. Optimization of the Peak Memory

Applying memory recycling, all unnecessary data structures

are deallocated; only essential data structures remain allocated

before the iterative solution. During the iterative solution, a

majority of the memory is used for near-field interactions,

radiation/receiving patterns of basis/testing functions, transla-

tion operators, and aggregation/disaggregation arrays [4]. For

solving large problems on distributed-memory architectures, it

is essential to distribute those data structures equally among

processors. Otherwise, even though the total amount of mem-

ory is sufficient to solve a problem, the memory required by a

specific processor can exceed the maximum memory available

for that processor, and this may prevent the solution of the

problem. Hence, the peak memory of the parallel MLFMA

implementation should be carefully optimized such that all

processors require approximately the same amount of memory

during iterative solutions. We note that this optimization is

different from the load-balancing scheme for the multilevel

tree structure, which is essential to minimize the processing

time. For the optimization of peak memory, we consider all

significant contributions in terms of memory, such as near-field

interactions, in addition to the tree structure.

III. NUMERICAL EXAMPLES

In order to demonstrate the accuracy and efficiency of

the developed parallel MLFMA implementation, we present

the solution of a scattering problem involving a metallic

sphere of diameter 560λ illuminated by a plane wave prop-

agating in the −x direction. Discretization of the sphere

with the Rao-Wilton-Glisson functions on λ/10 triangles

leads to a 374,490,624×374,490,624 matrix equation. Both

near-field and far-field interactions are calculated with max-

imum 1% error using a 13-level MLFMA (L = 13). The

solution is parallelized into 64 processes on a cluster of

quad-core Intel Nehalem processors with a 2.67 GHz clock

rate (Nehalem cluster). Convergence to 0.001 residual error

is achieved in 31 iterations using the biconjugate-gradient-

stabilized (BiCGStab) algorithm. The total processing time

is 21 hours and the total memory required for the solution

is 1.3 TB (1330 GB). Fig. 2 presents the normalized bistatic

radar cross section (RCS) of the sphere in decibels (dB) on

the x-y plane as a function of the bistatic angle φ from 175◦

to 180◦, where 180◦ corresponds to the forward-scattering

direction. We observe that computational values provided by

the parallel MLFMA implementation agree perfectly with an

analytical Mie-series solution.

Next, we present the solution of scattering problems involv-

ing two important metallic targets from the literature, namely,

the NASA Almond and the Flamme [9], as depicted in Fig. 3.

The NASA Almond is investigated at 1.4 THz, where its size

corresponds to 1177λ, and it is discretized with 306,696,192

unknowns. The Flamme is investigated at 620 GHz, where

its size corresponds to 1240λ, and it is discretized with

308,289,024 unknowns. Both targets are located on the x-y
plane such that their noses are directed towards the x axis,

and they are illuminated by a plane wave propagating in the

−x direction with the electric field polarized in the φ direction.

The NASA Almond and the Flamme problems are solved in 11

and 17 hours, respectively, by employing a 14-level MLFMA

parallelized into 64 processes on the Nehalem cluster using a

total of 1.3 TB memory.

Fig. 4 illustrates the amount of memory (in GB) used

by each process as a function of time for the solution of

the Flamme problem. Only one matrix-vector multiplication

is considered since the memory requirement is exactly the

same for all matrix-vector multiplications. We observe that the

used memory is not monotonically increasing and it fluctuates

due to allocations and deallocations (memory recycling). In

addition, Process 0 uses more memory than the other processes

during input and setup stages since we allocate some sequen-

tial arrays only for this process. It is also remarkable that all

processes use nearly the same amount of memory during the

matrix-vector multiplication, thanks to the optimizations.

Finally, Fig. 5 presents the bistatic RCS in dB meter

squares (dBms) of the NASA Almond and the Flamme on the

x-y plane as a function of the bistatic angle φ. We observe

that the cross-polar RCS of the NASA Almond is quite low

compared to its co-polar RCS, and the RCS of the NASA
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Fig. 4. Memory (GB) used by each process as a function of time for the
solution of the Flamme problem in Fig. 3.

Almond exhibits a visible peak only in the forward-scattering

direction. On the other hand, the cross-polar RCS of the

Flamme is significant and comparable to its co-polar RCS, and

the Flamme RCS exhibits two significant peaks at around 150◦

and 210◦, due to specular reflections from the two straight

edges of the nearly flat surfaces of this target.

IV. CONCLUSION

An efficient parallel implementation of MLFMA using the

hierarchical partitioning strategy is presented for rigorous

solutions of very large scattering problems. The developed

implementation is successfully used to solve difficult problems

involving metallic objects larger than 1000λ and discretized

with more than 300 million unknowns.
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