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Introduction 
 

Physical optics (PO) technique is a very fast and widely used approximation employed 
for the computation of electromagnetic scattering from electrically large targets.  
Nevertheless, further acceleration may be needed in real-life applications, where the 
computation of the scattering pattern over a range of frequencies and/or angles with a 
sufficient number of samples is desired.  For such applications, a multilevel physical 
optics algorithm (MLPO) can be used to decrease the computation time [1], [2].  MLPO 
is based on the evaluation of the PO integral in a multilevel fashion by dividing the 
surface of a target into triangles and evaluating the PO integral on each triangle.  We 
show that the computational efficiency of the MLPO algorithm can be further increased 
by employing nonuniform triangulations of the target surface so that the triangle size is 
not nearly uniform, but instead, is determined by the surface curvature. 
 
 

MLPO Algorithm 
 

MLPO is based on the fact that PO scattering pattern of any target should be sampled at a 
rate proportional to the dimensions of that target [1].  When the target surface S  is 
divided into Q  non-overlapping smaller subdomains, sampling of each subdomain 
pattern at a lower sampling rate becomes possible.  After computing the subdomain 
patterns on a coarser grid, each pattern can be interpolated to the finest grid of the whole 
scatterer.  This can be done with a relatively low computational cost if the interpolation is 
performed locally.  Following the interpolation, each subdomain pattern can be 
aggregated to find the scattering pattern of the entire scatterer.  Note that, each 
subdomain origin will be different than the global origin.  Therefore, each subdomain 
will have a rapid phase oscillation in its scattering pattern.  This phase oscillation can be 
factored out as an exp(2 )s

qj ⋅k r  term, where sk  is the wavevector of the scattered field 
and qr  is the center of the thq  subdomain.  This phase term should be removed from each 
subdomain pattern and should be restored after the interpolation.  Let qO  

 r  denote the 
multiplication with exp( 2 )s

qj− ⋅k r , qE  
 r  denote the multiplication with exp(2 )s

qj ⋅k r  
and f

f

N N
N N

φ

φ
I  denote the interpolation matrix that increases the number of samples from 
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N Nf φ×  points to N Nf φ×  points, where Nf  and Nφ  are the numbers of frequency 
and angle samples, respectively, in a coarser grid.  Then, the PO operator Ψ  that 
computes the PO scattering from the whole surface S  can be written as 
 

 
1

f

f
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q q qN Nq

S E O Sφ

φ=
   Ψ = Ψ   ∑ r I r . (1) 

 

This scheme can also be implemented in a multilevel fashion.  For instance, each 
subdomain in (1) can be decomposed into non-overlapping subdomains recursively until 
the subdomain size is in the order of λ .  This approach can be written in operator form as 
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       Ψ = ⋅ ⋅⋅ Ψ       ∑ ∑r I r r I r . (2) 

 

When the subdomain size is in the order of λ , subdomain patterns can be computed 
directly with PO integration.  The patterns of the remaining upper-level subdomains can 
be computed by aggregation. 

 
 

Complexity of the MLPO Algorithm 
 
Computational complexity of the MLPO algorithm can be found as 

( ) ( )2 2
1 2 logC O R C O R R+  [1].  Since there will be ( )2O R  subdomains in the bottom 

level, computational complexity of evaluating the scattering patterns in this level is 
( )2O R .  The reason is that the required number of samples in the frequency and angle 

grids is fixed in the bottom level since the size of each subdomain is bounded in terms of 
λ .  At each aggregation step, local interpolations of scattering patterns from one level to 
the upper one require ( )2O R  operations.  As the number of levels will be ( )logO R , the 
computational complexity of all interpolations become ( )2 logO R R .  Note that the 
constant 1C  is usually much greater than 2C .  In other words, the computation of the 
bottom-level radiation patterns dominates the overall CPU time in MLPO.  However, the 
computational complexity turns out to be ( )4O R  for the direct PO integration since there 
should be ( )2O R  integration points and ( )O R  samples in both frequency and angle. 
 
 

(a) 
 

(b) 
 

(c) 
 

 
(d) (e) 

Figure 1.  Geometry of the stealth Flamme target:  (a) front, (b) top, and (c) rear view.  
(d) A nonuniform mesh example.  (e) A uniform mesh example. 
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Application of MLPO on Nonuniform Triangular Meshes 
 
We are able to apply the PO method to targets with arbitrarily complicated geometries 
without sacrificing accuracy.  This is because we triangulate the surfaces of complex 
targets and accurately compute the PO integral on each triangle via an analytical 
approach [3].  For uniform triangulations, the mesh size is usually chosen to be around 
/ 5λ  or /10λ  depending on the desired accuracy.  Alternatively, for nonuniform 

triangulations, the mesh size is determined by the surface curvature, resulting in fewer 
triangles.  In such a scheme, triangle size gets larger in smooth regions and smaller in 
curved regions.  In Figure 1, both nonuniform and uniform meshes of the airborne stealth 
target called Flamme [4] are presented as an example. 
 
For a nonuniform mesh, the computation time of the bottom-level radiation patterns 
decreases as the number of triangles decreases.  Hence, the overall computation time of 
the MLPO also decreases.  Note that the subdomains at the bottom level are bounded 
with λ  and their scattering patterns are the only scattering patterns that are directly 
computed with PO integration.  Although this is not a problem for a uniform mesh of 
triangle size / 5λ  or /10λ , there may be “larger” triangles that are too large to fit in 
bottom-level subdomains in a nonuniform mesh.  Since the radiation patterns of those 
“larger” triangles will have higher oscillations in accordance with their sizes, aggregating 
them in the bottom level will cause an interpolation error that will grow at each 
aggregation step.  In contrast, computing the scattering patterns of such triangles directly 
at the finest grid will reduce the computational efficiency.  Therefore, radiation pattern of 
each “larger” triangle should be sampled at a rate proportional to its size and aggregated 
at the appropriate level, as illustrated in Figure 2. 
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Figure 2.  Application of MLPO on a nonuniform triangulation.  Patterns of larger 
triangles are sampled denser and aggregated in upper levels. 

 
To demonstrate the efficiency of MLPO applied on a nonuniform mesh, Flamme 
geometry given in Figure 1 is illuminated from the back (tail) and backscattering radar 
cross section (RCS) is computed in the frequency range of 0.1–20 GHz.  The uniform 
mesh of this model, for which the triangle size is approximately /10λ  at 5 GHz, 
consists of more than 1,500,000 triangles.  In contrast, the nonuniform mesh consists of 
approximately 175,000 triangles.  The CPU time of the PO integration with the uniform 
mesh is 73 min, whereas the CPU time of the MLPO with the same mesh is only 2.1 min.  
Furthermore, the CPU time of MLPO with the nonuniform mesh is 0.43 min.  Figure 3 
shows that, up to 5 GHz, PO, MLPO, and nonuniform MLPO results are in good 
agreement.  Above 5 GHz, the uniform mesh becomes insufficient.  Therefore, the 
nonuniform mesh is expected to provide more accurate results since it contains smaller 
triangles in the curved regions of the target surface.  
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Figure 3.  Backscattering RCS results of the stealth Flamme geometry shown in Figure 1. 

 
Conclusion 

 
The use of MLPO on uniform and nonuniform triangulations of a stealth target is 
demonstrated for RCS computations.  It is shown that, a speedup of approximately 35 can 
be achieved when MLPO is employed.  It is also shown that an additional speedup of 
approximately 5 can be achieved when nonuniform mesh is used in MLPO instead of a 
uniform mesh.  It should be noted that a uniform mesh of size /10λ  at the highest 
frequency of interest (20 GHz) would contain 24,000,000 triangles.  Electromagnetic 
computations aside, even the generation of so many triangles with today’s computer 
resources is a cumbersome task.  Furthermore, the PO computations are performed 
accurately since the PO integrals on triangles are evaluated analytically. 
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