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ABSTRACT

COHOMOLOGY OF INFINITE GROUPS REALIZING
FUSION SYSTEMS

Muhammed Said Giindogan
Ph.D. in Mathematics
Advisor: Ergiin Yalc¢in

September 2019

Given a fusion system F defined on a p-group S, there exist infinite group
models, constructed by Leary and Stancu, and Robinson, that realize F. We
study these models when F is a fusion system of a finite group G. If the fusion
system is given by a finite group, then it is known that the cohomology of the
fusion system and the [F,-cohomology of the group are the same. However, this
is not true in general when the group is infinite. For the fusion system F given
by finite group G, the first main result gives a formula for the difference between
the cohomology of an infinite group model 7 realizing the fusion F and the
cohomology of the fusion system. The second main result gives an infinite family
of examples for which the cohomology of the infinite group obtained by using the
Robinson model is different from the cohomology of the fusion system. The third
main result gives a new method for the realizing fusion system of a finite group
acting on a graph. We apply this method to the case where the group has p-rank
2, in which case the cohomology ring of the fusion system is isomorphic to the
cohomology of the group.

Keywords: Fusion Systems, Cohomology of Groups, Cohomology of Fusion Sys-
tems, Graph of Groups.
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OZET

FUZYON SISTEMLERINI GERCEKLEYEN SONSUZ
GRUPLARIN KOHOMOLOJISI

Muhammed Said Giindogan
Matematik, Doktora
Tez Danigmani: Ergiin Yalgin
Eyliil 2019

S bir sonlu p-grup ve F de S iizerinde tanimh bir fiizyon sistemi olsun.
Leary-Stancu ve Robinson bu F fiizyonunu gercekleyen sonsuz grup modelleri
vermislerdir. Biz bu modelleri fiizyon sisteminin aslinda sonlu bir G grubundan
gelmig oldugu durumlarda caligtik. Flzyon sistemi bir sonlu grup tarafindan
verildiginde, fiizyon sisteminin kohomolojisi ile grubun F, kohomolojisinin ayni
oldugu bilinmektedir. Fakat bu sonsuz gruplar icin her zaman dogru degildir. Ik
ana sonug, sonlu fiizyonlar i¢in fiizyonu gercekleyen sonsuz grubun kohomolojisi
ile fiizyonun kohomolojisinin iligkisini formiile etmek oldu. Ikinci ana sonucta bu
formiildeki farkin sifir olmadig duruma sonsuz bir aileyi 6rnek gosterdik. Uciincii
ana sonucta ise fiizyonun p ranki 2 olan sonlu bir gruptan geldigi durumda yeni bir
model bulduk. Bu sonsuz grup modeli hem fiizyonu gercekliyor hem de kohomolo-
jisini tam olarak veriyor. Bu boliimde ortaya koydugumuz yeni yontem bir sonlu
grubun bir altgrup posetine yaptigi etkiyi kullanarak yeni fiizyon gergekleyen
sonsuz gruplar bulmak.

Anahtar sozcikler: Fiizyon Sistemleri, Grup Kohomolojisi, Grup Graflari,
Fiizyon Sistemlerinin Kohomolojisi.
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Chapter 1

Introduction

Let p be prime and G be a discrete group. Let S be a finite subgroup of G having
order a power of p. We say S is a Sylow p-subgroup of G if any p-subgroup of GG
is a conjugate to a subgroup of S in GG. By Sylow Theorems, if G is finite then
it has a Sylow p-subgroup. However, there are some infinite groups that do not
have any Sylow p-subgroups. For example, the group C5 * C5 does not have any

Sylow 3-subgroups, where C} is the cyclic group of order 3.

For discrete group G with Sylow p-subgroup S, we define the fusion system
on S gwen by G as the category with objects as all the subgroups of S and
morphisms given by conjugations of elements of G. We denote this by Fg(G).
An abstract fusion system defined on a p-subgroup S is a category with objects
as subgroups of S and morphisms that satisfies some conditions explained in
Definition 3.1.1. Given a fusion system F defined on a p-group S, if there exists
a group G with Sylow p-subgroup S such that F = Fg(G), we say G realizes the
fusion F. Chapter 3.1 is devoted to the theory of the fusion systems.

Leary-Stancu [1] and Robinson [2] give infinite group models realizing fusion
systems. That means given a fusion system S, there are infinite groups realizing
the fusion F. However, we may not find a finite group realizing the fusion F. We

say JF is a finite fusion if there exists a finite group G realizing F.



Leary-Stancu and Robinson uses the method of graphs of groups to construct
infinite group models realizing fusion systems. The theory of graph of groups is

discussed in Chapter 2 which is the first preliminary chapter of the thesis.

Assume G is a finite group with Sylow p-subgroup S and F = Fg(G). Let 7 be
an infinite group realizing the fusion F constructed via Robinson or Leary-Stancu
model. In this case, there is a homomorphism y : # — G that satisfies some
properties. We call such a homomorphism storing homomorphism (see Definition
3.3.3). This homomorphism is used to understand the relation between their
cohomology groups. These infinite group constructions and our new definition of

“storing homomorphism” are explained in Section 3.3.

The cohomology of the fusion system F is defined as the inverse limit
H*(F) := }DIEH}_H (P;TF,)
or, equivalently, as the F-stable elements in H*(S;F,). For finite fusions, by a
theorem of Cartan-Eilenberg we have H*(F) =~ H*(G,F,) where G is the finite
group realizing F. However, for infinite groups this isomorphism does not hold

in general.

Let G be a group with Sylow p-subgroup S. For a fusion system F defined
on S, we say that G realizes the fusion F and its cohomology if G realizes the
fusion and if H*(F) = H*(G;F,). The infinite group models of Robinson and
Leary-Stancu do not realize the cohomology of the fusion system F, in general.
Counterexamples were already known and we give an infinite family of examples
in Chapter 4. The question of whether there exists an infinite group model

realizing F and its cohomology given a fusion F is still open.

In Chapter 4, we present our main results about the cohomology of infinite
groups realizing fusion systems. Our first theorem is about explaining the differ-
ence between the cohomology of a given finite fusion system and the cohomology

of an infinite group model realizing the fusion.

We say H controls p-fusion in G if H < G such that Fs(G) = Fs(H). We say

G is p-minimal if G has no proper subgroup H controlling p-fusion.
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Main Theorem 1. Let F = Fs(G) be a fusion system of a finite group G.
Assume that G is p-minimal, and let © denote the infinite group realizing F
obtained by either the Leary-Stancu model or the Robinson model. Then there is
a group extension 1 - F — 1 — G — 1 where F is a free group, and there is an

isomorphism of cohomology groups
H* Y (G;Hom(Fy, F,)) ® H*(F) =~ H*(r;F,)

where Fy, := F/[F, F] denotes the abelianization of F.

As we state in Theorem 6.1.10, Libman and Seeliger show that H*(F) is a
direct summand of H*(m;F,) but the difference ker(res%) is not calculated. Here,

in the first main theorem, we calculate the difference for finite fusion systems.

We have an example of a fusion system where in the Leary-Stancu model, the
difference between the cohomology of the fusion system and the cohomology of
the infinite group realizing fusion system is not zero. Our second main theorem
gives infinitely many examples for the Robinson model where the difference in

the previous theorem is not zero.

Main Theorem 2. Let G = GL(n,2) forn = 5. Let S be the Sylow 2-subgroup
consisting of upper triangular matrices in G. Let (G,Y) be the graph of groups

constructed according to Robinson model for F = Fg(G). Then we have

H*(F) ¢ H*(n(G,Y),Fs).

Since there are examples where Leary-Stancu model or Robinson model do
not realize the cohomology of the fusion, we try to find a new model that realizes
fusion and its cohomology. In Chapter 5, we give the method of obtaining infinite
group models realizing fusion systems by using subgroup posets. By using an
action of a group on its subgroup poset, we obtain a graph of groups which
has a fundamental group realizing the fusion under certain conditions. By using
this method we find a new model that realizes fusion and its cohomology for

finite fusion of p-rank 2 groups. Here, we say a group G has p-rank n, if n



is the maximum number such that there exists a subgroup of G isomorphic to
(Cp)" :=Cp x Cp x Cp x -+ x Cp. We denote this by rank,(G) = n.

n copies

Main Theorem 3. Assume G is a finite group with Sylow p-subgroup S and
rank,(G) = 2. Let X be the poset of elementary abelian subgroups of S. Then
I' := m(EG X X) realizes the fusion of G on S, i.e. Fg(I') = Fs(G). Moreover,
there is an isomorphism of F,-cohomology groups H*(I',F,) = H*(G,F)).

In Chapter 6, we introduce the theory of the linking systems, and give the proof
of the main theorem of the paper [3]. This theorem shows that the cohomology
of the fusion system is a direct summand of the IF,-cohomology of the infinite
group model realizing the fusion under some conditions on the model. Then, we
give a group theoretic proof of the fact that the F,-cohomology of (P) is zero for
dimensions ¢ > 2. This fact is used in our paper [4] to find a long exact sequence
from the spectral sequence associated with an extension of a category (see [4,
Theorem 1.3]).



Chapter 2

Graph of Groups

The functor m; : Top — Grp sends a topological space X to its fundamental
group m(X). In the first definition of this chapter, we introduce the functor
K(—,1) : Grp — Top that sends a group G to a topological space which has
fundamental group isomorphic to the group GG. These two functors give a relation
between the category of groups and the category of topological spaces. In the
reference [5], the graph of groups considered as a topological method in group
theory where the relationship between the categories of groups and topological
spaces used. In this method, we take several groups indexed by a graph, and
glue their corresponding topological spaces, then we get a group by taking the
fundamental group of the last total space. After introducing this theory from [5],

we speak briefly of the algebraic construction of the same theory from [6].

2.1 K(G,1) spaces

Definition 2.1.1. Let Y be a topological space. A covering space of Y is a
topological space X such that there is a continuous surjective map p : X — Y
which satisfies that for any y € Y, there exists an open neighborhood U of y, such

that the preimage p~1(U) is a union of disjoint open sets in X, each of which is



mapped homeomorphically onto U by p.

A covering space is a universal covering space if it is simply connected.

Definition 2.1.2. Let GG be a discrete group. A topological space Y is called a
K(G,1) space if it satisfies the following conditions:

(i) Y is connected.

(iii) The universal cover X of Y is contractible.

The circle S! is a K(Z,1) because the line, the universal cover of S, is con-
tractible, and S* is connected with 7(S') = Z. The infinite dimensional real
projective space RP* is a K(Z/27,1).

Let G be a group. As shown in [7, page 89], the classifying space construction
for one object category G gives a CW-complex which is a K(G,1). Then, we
can always refer to a CW-complex K (G, 1) for any group G. Also, it is shown
that the homotopy type of a CW-complex K (G, 1) is uniquely determined by G.

Then we state the following result proven in [7].

Theorem 2.1.3. For any group G, there exists a CW-complex K(G,1) which is

unique up to homotopy.

Remark 2.1.4. This theorem is crucial for the well-definedness of the funda-
mental group of a graph of groups. In the construction of the fundamental group
of a graph of groups, we glue CW-complex K(G, 1) spaces and take the funda-
mental group of the glued space. Since a CW-complex K (G, 1) space unique up
to homotopy, the total glued space has fundamental group independent of choice

of CW-complex K(G,1)’s. These arguments are explained in the next section.



2.2 Graph of Groups

In this section, we introduce the theory of Graph of Groups from the references [7]
which has a short but well-explained introduction, and [5] which has a topological
approach for graph of groups. Also we have [6] for algebraic approach for the
theory that will be discussed later.

Definition 2.2.1. An abstract graph I' consists of two sets E(I') and V(I"), called
the edges and vertices of I, an involution on E(I") which sends e to €, where e # €,
and a map dy :E(I") — V(I).

We define d,e := dye and say that e is an edge from Jye to 0qe.

Definition 2.2.2. A graph of groups (G,Y) consists of an abstract graph Y
(which will always be assumed to be connected) together with a function G as-
signing to each vertex v of Y a group GG, and to each edge e a group G., with

G: = G., and an injective homomorphism ¢, : G, — G, when v = Jy(e).

From now on, we construct the theory of graph of groups topologically as it is

done in [5]. Then, we will speak briefly of the algebraic approach in [6].

Definition 2.2.3.

(i) A graph of topological spaces consists of an abstract graph Y together with a
function assigning to each vertex v of Y a topological space X, and to each edge
e a topological space X, , with X; = X,, and a continuous map f, : X, — X,

for v = dy(e), which is injective on homotopy groups.

(ii) A total space X (G,Y') corresponding to above graph of spaces is the quotient
of

lJ xu (X, x [0,1])
)

veV(Y) eeF

by the identifications



X, x [0,1] - Xz x [0,1] by (z,t) — (2,1 — )

Xe x {0} = Xpe by (2,0) — fo(z).

Here, if we start with CW-complexes and glue them via cellular maps, we will

obtain a CW-complex as a glued space.

Definition 2.2.4. Given a graph of groups (G,Y) with vertex groups G, for a
vertex v and edge groups G, for an edge e and injective homomorphisms ¢, :
G. — G,. We construct the graph of topological spaces by assigning a vertex
v to a CW-complex K(G,,1) and an edge e to a CW-complex K(G,,1) with

injective cellular maps f. on edges so that they induce ¢, homomorphisms.

The fundamental group of the total space of this graph of spaces called the
fundamental group of the graph of groups which we denote by 7(G,Y).

Example 2.2.5. (Amalgamation) Consider a graph consisting of one edge with
two vertices. Let A and B be the vertex groups and C be the edge group with
two monomorphisms A <— C' — B. By Van Kampen theorem, the fundamental
group of the graph of groups gives the amalgamated product A *c B which is
the quotient of the free product A = B by identifying two images of C' under

monomorphism.

Example 2.2.6. (HNN product) Consider an abstract graph with one edge with
one vertex, i.e. the graph is just a loop. If the vertex group is A and edge group is
C and monomorphism the identity embedding C' — A and ¢ : C' — A, we obtain
an HNN product A=c which is the group defined by (A, t|tct™! = ¢(c),Vc e C)

as explained in [5].

The fundamental group of a graph of groups defined algebraically in [6]. Let
(G,Y) be a graph of groups. Take a spanning tree 7" in Y. For an edge e and
a € G, we denote the image of a in ¢, by a®. Let E be the free group with
generator set as E(Y'). Define F(G,Y) as the quotient group of the free product

E«( % Gy
veV(Y)
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by the normal subgroup N, where N is the normal closure of the relations

cate ™ =q® andée=e!

foralle e E(Y) and a € G.. The group n(G, Y, T) is defined as the quotient group
of F(G,Y) subject to the relations e = 1 if e € E(Y). It is shown in [6, Proposition
20]), the group 7(G,Y, T) is independent of the choice of the spanning tree T'. So
we write 7(G,Y") instead of 7(G,Y,T). This definition and the Definition 2.2.4

are equivalent as shown in [8, page 204].

Theorem 2.2.7. Let (G,Y) be a graph of groups. The total space of the corre-
sponding graph of spaces has a contractible universal covering. For any vertex

group G, we have an injective homomorphism G, — m(G,Y’)

Here, we always work with K (G, 1)-spaces which are CW-complexes in order

to construct theory carefully.

Proof. Consider the corresponding graph of spaces. We have K(G,, 1) space X,
for a vertex v and K (G, 1) space X, for an edge e. Let X be the total space of
the corresponding graph of spaces. We will show that the universal cover X is

contractible.

For any vertex v € Y, define L, = X,|J( U X x [0,1]) where we have
doe=v

intersections X, (X, x [0,1]) = X, x {0} as we glued in the definition of total

space.

Fix a vertex vy and let Y; be the universal cover of L,,. The universal cover
Y, is contractible because it is a union of a universal cover Z, and copies of
universal covers X, for edges satisfying dy(e) = vy where we can contract the
copies )?; x [0, 1] into )?; which is also contractible. Here, since the maps G, — G,
are injective, we have deformation retraction from X, x [0,1] to X, x {0} which

is a copy of Z, due to gluing.

We define X; by adding Y} to the spaces XNU’S for vertices satisfying ¢;(e) = v
for some edge e we considered in Y. We define Y; by adding X; to spaces )?; for

9



edges e satisfying dy(e) = v for some vertex v we considered in the last step. We
have an obvious deformation retractions Y; — X; — Yy — =. Hence, Y7 is also

contractible.

Step by step, we can construct Y,, which is also contractible. The space Y =

| Y, is contractible and evenly covers the total space X. Hence, X has a
n=1
contractible universal cover.

Take any vertex v € Y. Consider the inclusion ¢ : X, — X. Take any
loop v : S' — X,. Assume the loop a = i o7 is null-homotopic. Then the
lift & : [0,1] — X is also null-homotopic in the universal cover X. The lift is
contained in one of the copies of the X, in X (see [5, page 166] for more details).
Since & is null-homotopic in one of the copies of )?;, ~ is null-homotopic in X,,.
Hence, the map ¢ induces injective homomorphism in homotopy groups. In other

words, the induced homomorphism i* : G, — 7(G,Y) is injective.

2.3 Groups Acting on Graphs

In this section we mention how a group action on a graph gives a graph of groups
structure. Here, we only consider group actions without inversions that means if
an element of the group fixes a vertex of an edge then it fixes the edge. In other
words g -e = é is forbidden for g € G and e € E(Y'). These actions are also called
cellular actions. In fact, given a non-cellular group action on a graph, we can

obtain a cellular action by applying a barycentric subdivision.

Lemma 2.3.1. Let I’ be a quotient graph of a graph Z. For any tree T in I" there

exists a lift T' in Z such that T" is also a tree which is isomorphic to T.

Proof. Take any vertex vy in 1" and any lift of w; in Z. Then consider all the
incident edges of the vertex v;. We take the lifts of theses edges so that the

lifts are incident to w;. Then we continue in this way. For any edge e in T', we

10



consider a lift of e such that ¢’ incident to the current construction of the graph.
This construction gives a connected lift 7" of the tree T. Here, 7" must be a
tree because otherwise any loop in 7" gives an image loop in T. Note that, the

construction of the lift 77 of T" gives an isomorphism between them. m

Theorem 2.3.2 (Scott-Wall [5]). Let G be the fundamental group of a graph of
groups (G,Y). Let X be the universal cover of the total space X of the graph
of groups as we constructed in Theorem 2.2.7. We consider the standard G-
action on X. There exists a tree Z with a cellular G-action such that we have an

isomorphism of graphs f : Z/G — Y and a G-equivariant map h : X - Z.

Proof. In the proof of Theorem 2.2.7, we constructed the universal cover X of the
total space X of the graph of groups (G,Y). Since 7(G,Y") is the fundamental
group of X, by definition, 7(G,Y’) acts on the universal cover X. The space X

consists of copies of X,’s and X, x [0,1]’s.

Let F : X x [0,1] — X be the deformation retract obtained by the contrac-
tions of XNU’S and )?e’s. The restriction of F' to a copy of )z, for a vertex v is
the contraction of X, and the restriction of F to a copy of a X, x [0,1] is the
deformation retract of X, x [0,1] to [0,1]. Hence, we obtain a homotopy from
X to a graph Z where we have vertices in Z for each copy of Z,’s in X and we
have edges in Z for each copy of )A(; in X. Since X is contractible, Z is also

contractible which means it is a tree.

The 7(G,Y)-action on X induces m(G,Y )-action on the tree Z where the
homotopy respects this action. Then we obtain a 7(G,Y)-equivariant map
h:X — 2. O

In the proof of the last theorem, the construction of an action on a tree from the
graph of groups (G,Y) is called the corresponding w(G,Y )-action on a tree. The
next theorem says that we can restore the graph of groups from its corresponding

(m(G,Y))-action on a tree up to conjugate monomorphisms.

Theorem 2.3.3 (Scott-Wall [5]). With the notations and hypothesis in Theorem
2.8.2, from G-action on Z, we can obtain a graph of groups (G', Z/G) such that

11



the corresponding vertex and edge groups of the graph of groups are isomorphic

and the monomorphisms may differ by a conjugation with an element g € G.

Proof. Now, we construct a graph of groups from the G = 7(G,Y)-action on Z.
First, we choose a maximal tree T in the quotient graph I' := Z/G. From the
Lemma 2.3.1, we can take a lift 77 of T"in Z so that T is isomorphic to T'. Since
T and T are isomorphic trees, we can use stabilizers of lifts of vertices and edges
as vertex and edge groups. For a vertex v € T', we assign the stabilizer of the lift
of the vertex in 7" (i.e. for v € T' we have vertex group GG, which is the stabilizer
of v' € T where v’ is the lift of v in 7”). Similarly, for an edge e € T', we assign
edge group G, which the stabilizer of ¢’ € T where €’ is the lift of e in T”. The
stabilizer of an edge €’ € T" is a subgroup of the stabilizers of the end points of

¢’. Then we have obvious monomorphisms from edges to vertices in 7.

Now, we have a graph of group structure on 7. Then, we need to extend this
structure to I'.. We have vertex groups for all vertices v € I'. So we add edge
groups and monomorphisms for edges e € I' — T'. Take any e € ' — T with end
points v and w. There exists a unique lift ¢’ of the edge e such that ¢’ has end
point v" where ¢’ is the lift of v satisfying v' € T”. The other end point of ¢’ is g-w’
for some g € G where w' is the lift of w in T7". Then the stabilizer G, := Stab(e’)
of € is a subgroup of Stab(v') = G, and Stab(guw’) = gStab(w’)g™' = gG,g™ '
Then we assign G, as edge group for e € I' and monomorphisms ¢., : G, — G, as
inclusion and ¢,, : G, — G,, by sending x — g~'zg. By completing this process

for all e e I' — T', we obtain a new graph of groups (G’,T").

For an edge (or vertex) x € Y, we have one G-orbit of X, in X which corre-
sponds one G-orbit in Z. Then, we have exactly one edge (or vertex) in I' = Z/G,
constructing the desired isomorphism Y — I'. Moreover, for an edge group (or
vertex group) G, in (G,Y), we have G-orbits of X, in X which corresponds a
G-orbit where any point has stabilizer isomorphic to GG,. Then, the map Y — I’
sends x to an edge (or vertex) having edge group (or vertex group) isomorphic to
G. Since the construction of monomorphisms in (G’,I") depend on the choice of

maximal tree in I', they may differ by a conjugation by an element of ge G. [

12



In the proof of the last theorem, the construction of graph of groups ((G)', Z/G)
from a G-action on a tree Z is called the graph of groups obtained from the G-

action on the tree Z.

Example 2.3.4. Let G = A »¢ B be as in Example 2.2.5. Then G acts a tree Z
induced by the G-action on )f(z as we see in the proof of Theorem 2.3.2. Then the
vertices of Z corresponds to K (A, 1)-complexes and K(B,1)-complexes. These
spaces having stabilizers isomorphic to A and B respectively under the action of
G. This gives that the vertices of Z having stabilizers A or B. Similarly, we can

deduce that the edges of Z having stabilizers isomorphic to C.

Now, take any path starting from the reference point of a copy of K(A,1)-
complex to the reference point of K (A, 1)-complex in the universal cover )r(VG of
the total space of the graph of groups. After dividing by G-action this path must
become a loop. This shows that all these K (A, 1)-complexes are in the same
orbit under the G-action on )f(vG Then, passing to Z, the tree Z has two vertex
orbits under the G-action which are those having stabilizer A and those having
stabilizer B. Similarly, Z has one edge orbit under the G-action which having
stabilizer C'.

For the generalization of the construction of a graph of groups for a G-action

on a tree to all graphs, we have the following result

Proposition 2.3.5 (page 84 in [9]). Let G acts on a graph X. For the construc-
tion of the graph of groups (G,Y") for this action, we have 7(G,Y) = 71(EGxcX).

Here, we can consider EG as the universal cover of a CW-complex K(G, 1)

space.

Proof. Here, Y = X /G from the construction. Let U be a CW-complex K (G, 1)
space with universal cover U ~ EG. For a subgroup H < GG, we have that U /H is
a K(H,1) space having CW-complex structure. Define the map f : Ux X —> X
by forgetting the first coordinate. We induce the map f : U xg X > X/G=Y

in quotient spaces. Here, for any vertex v € Y we have f~!(v) = U /G, which
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is a K(G,,1). Here, G, is the stabilizer of a lift of v, or equivalent the vertex
group corresponding to v in the above construction. Similarly, we have K(G., 1)
spaces for edges glued with vertices. Hence, U x ¢ X is a realization of the graph
of groups (G,Y). That means 7(G,Y) = m(U x¢ X). O

From now on, we construct the theory of graph of groups in a topological way
as [5] does. This theory can be constructed in an algebraic approach as it is done
in [6]. Now we speak briefly of the theory in [6]. We start a group G acting on a
graph X. We construct a graph of groups (G,Y) as we explain in Construction
1. Then we construct the tree T = X (G,Y,T) as explained in [6, page 51]. Then

we have the following theorem.

Theorem 2.3.6 (Serre, [6]). With the above notation and hypothesis, the follow-

ing properties are equivalent
i-) X is a tree.
ii-) ¥ : X — X is an isomorphism.

ii-) ©(G,Y,T) 2 G is an isomorphism.
Proof. See [6, page 55]. ]

With our topological notations and hypothesis used in this chapter, the same
theorem can be stated. Assume G acts on a connected graph X without inver-
sion. Let Y := G/X and (G,Y) be the graph of groups constructed from that
action. We consider the corresponding action of 7(G,Y’) on a tree 7. We have a
surjective map of graphs ¢ : T'— X and a surjective homomorphism of groups

¢:m(G,Y) — G so that the following are equivalent

i-) X is a tree.

ii-) ¢ : T — X is an isomorphism.

14



iii-) 7(G,Y) % Gis an isomorphism.

Here, we point a topological approach for the proof of Theorem 2.3.6. From
Proposition 2.3.5, we have 7(G,Y) = 7(EG xg X). Define f : EG x X — EG
by annihilating X. Since f is G-map, we can induce f : EG xg X — BG by
dividing via G-action. f induces in homotopy groups ¢ : m(EG x¢ X) — G or
equivalently, ¢ : 7(G,Y) — G. Since any loop in BG has a non-trivial preimage
loop in EG x¢ X under f. We can say ¢ is surjective. As we explained before,
we construct 7" by using the universal cover of the total space EG x4 X of the
graph of groups m(G,Y’). Then, the surjective map from the universal cover to
the cover EG x¢g X gives that surjective map v : T' — X. For (i) < (i) ,
since T is a tree and T %> X induced from a covering, X is tree if and only if
¢ is an isomorphism. For (i) <= (iii) , from Theorem 2.3.2, we know that
X/G =Y is isomorphic to T/m(G,Y). If X is tree then T is isomorphic to X
and the surjective homomorphism 7(G,Y") %, G must be an isomorphism. And,

if 71(G,Y) %G is isomorphism then 7" must be isomorphic to X.

Now we have a corollary of Theorem 2.3.6 on the subgroups of (G, ).

Corollary 2.3.7. Let (G,Y) be a graph of groups with vertex groups G,’s and
edge groups G.’s. If H < 7(G,Y’), then H is the fundamental group of a graph
of groups with vertex groups as subgroups of conjugates G,’s and edge groups as

subgroups of conjugates of G, ’s.

Proof. We construct the m(G,Y)-action on a tree Z. Since H is a subgroup of
m(G,Y), H acts on tree Z with stabilizers as conjugates of subgroups of vertex
and edge groups of (G,Y’). From Theorem 2.3.6, H-action on Z gives a graph of
groups (H,Yy) where vertex groups are subgroups of conjugates of G,’s and edge

groups are subgroups of conjugates of G.’s with 7(H,Yy) =~ H. n

Then, we have a useful corollary of the previous corollary.

Corollary 2.3.8. Let H be a subgroup of m(G,Y). If H intersects trivially with
all the vertex groups of (G,Y'), then H 1is free.
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Proof. Tt H intersects trivially with all the vertex and edge groups of (G,Y") then
the vertex and edge groups of the corresponding graph of groups of H are all
trivial. Then, H is the fundamental group of a graph. Hence, H is free. O
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2.4 Cohomology of a Graph of Groups

In this section, we obtain homological results using group actions on trees.

Given a CW-complex X, we write C,(X) for cellular chain complex of X. If X
is a graph, then C,(X) = 0 for n > 2. A graph is called a tree if it is connected

and has no loops.

Lemma 2.4.1. [6, page 126] For the chain complex of a tree X, we have an exact

sequence
0— Ci(X) D Cy(X) S Z — 0.

Moreover, if a group G acts on X cellulary, the exact sequence above is an exact

sequence of ZG-modules.

Proof. Let E and V denote the egde and vertex sets of X, respectively. C;(X)
consists of the elements of the form i n;e; where e; € E.
i=1
Now, we fix an orientation for edges of the graph X. In other words, for any
edge e the two vertices of it distinguished to be initial and final which are denoted
by do(e) and 0;(e), respectively. By the way, we have two functions dy and ¢,
from E to V. We assume these maps satisfy d(e) = dye — dpe.

n
Assume d is not injective, then there exists a sum > n;e; € kerd. Then,
i=1

= d(znl TLZ'GZ‘) = zn: nid(ez an alez Oei)
i=1 =1 i=1

Then there exists e;, such that dye;, = d1eq or dre;, = d1eq because of the cancel-
lations on the sum over vertices of these all edges. Without loss of generality, we
can assume dpe;, = 01e1. Similarly, without loss of generality, there exists e;, such
that dype;, = 0d1€;,... In this process, it is not important whether dpe;, = die;,_,

or 0ie;, = 01€;,_,. In any case, at the end our sequence ele“ez2 ... e, will give

a cycle. Since there are finitely many terms on the sum Z n;(01e; — dpe;), the

process will end up with a loop at a step we find e;, such that it ends with the
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starting of ej(i.e. die;, = Oper). Then the loop eje; e, ... e;, contradicts with

the assumption that X is a tree. To see the surjection of ¢, take any vertex v and

any integer n, € sends nv to n.

We only left with the exactness at Cy(X). Take any generator vy — v; of kere.
Since X is connected there exists a path ejes . . . e, starting at v; ending at vy (i.e.
Ope1 = V1, 016; = Ope;41 and 01e, = vy. Hence, d(i i) = i (Ore;—0p€;) = Vo —11.
So, Im d = ker € concludes the proof of the first ;):a}rt. -

The G-action on X induces actions on C;(X) and make them ZG-modules.
The trivial G-action on Z makes it to be a trivial module. Since the actions on
C;(X) and Z commutes with the maps d and €, these maps become ZG-module

maps. O]

Theorem 2.4.2 (Serre, [6]). Let a group G acts on a tree X. Let G, and o(v)
denote the stabilizer and orbit of a vertex v, respectively. Similarly, G. and o(e)
denote the stabilizer and orbit of an edge e. And we denote orbit representative
set of vertices and edges by OV and OF respectively. For each G-modulo M, we

have a long exact cohomology sequence

i Hi<GaZ) - 1_[ Hi(GvaZ) - H Hi(GE’Z) - Hi+1(G?Z) o
veOV ecOF

Proof. We have short exact sequence of ZG-modules,
0— Ci(X) D Cy(X) S Z — 0.
Applying Homzg(—, Z) functor, we obtain long exact sequence in cohomology.

0 — HOIIIZG (Z, Z) - Hong(C()(X), Z) - Hong<cl (X), Z) -
Exty(Z,7) — Bxtyo(Co(X),Z) — Extyo(C1(X),Z) — -

Using orbit stabilizer theorem we get,

Ci(X) = | [ Zo(e)

eeOF

= 1] zlc/G.].

ecOF
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Similarly,

Co(X) = [ Zo(v)

veOV

= 1] zlc/G.).

veOV
In Ext-groups we obtain,

Extio(Co(X),Z) = Extig( | | ZIG/G.1,2)
veOV

= || Bxtye(Z[G/G.), Z)

veOVv

- 1] #(G..2).

veOV

where the last equality comes from the Eckmann-Shapiro Lemma (see [10] pg.47).

Similarly,

Extyo(C1(X). Z) = Exti( [ | ZIG/G.,2)

= [ ] Exti(Z[G/G.], Z)

ecOF

- | #(G..2).

eeOF

Substituting these in the long exact sequence and writing Ext},(Z,7) =
H(G,Z) gives that

0— Hong<Z, Z) — Hong(CO(X), Z) - Hong(cl(X>, Z) -

H'(G,Z)— || H'(G,.2) > || H'(G..Z) —

veQV ecOF
H*G,Z) - || H*(GWwZ) - || H*(Ge,Z) — -+
veOV ecOF

Here, we have

Homy(Z,7) = H°(G,Z) = Z

Since a ZG-module homomorphism from Cy(X) to Z is determined by G-orbit
representatives,
Homya(Co(X),Z) = || B%(G..Z) = [] 2.
veOV veOV
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Similarly,
Homze(C1(X),Z) = [ [ H(G..2) = | ] 2.

ecOF ecOF

With this theorem we can find a long exact sequence for the fundamental group
of graph of groups by considering the standard action of 7(G,Y’) on the tree Z
explained in Theorem 2.3.2. In this action, the G, groups appear as stabilizer
groups of vertices of Z and G.’s appear stabilizer groups of edges of Z. Then the
theorem gives a long exact sequence relating (G, Y') with vertex and edge groups
homologically. For the simplest case, we can obtain Mayer-Vietoris sequence as

shown in the next example.

Example 2.4.3. Let G = A =¢ B be an amalgamation of groups as in Example
2.3.4. Then corresponding action on tree has one edge orbit having stabilizer
group isomorphic to C' and two vertex orbit having stabilizer groups isomorphic
to A and B. Then from the Theorem 2.4.2, we have

0 — H(G,Z) — H(A, Z)®H"(B,Z) — H(C,Z) — H'(G,Z) — H'(A,Z)®
H\(B,Z) — HY(C,Z) — H*G,Z) — H*(A,Z)® H*(B,Z) — H*C,Z) — ---
which is the Mayer-Vietoris sequence for gluing a K (A, 1)-complex and a K (B, 1)-
complex along a K (C,1)-complex to obtain a K (G, 1)-complex.
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Chapter 3

Graph of Groups and Realizing
Fusion Systems

In the first section of this chapter we present required theory of the fusion systems
mostly from the reference [11]. In the second section of this chapter, we give
infinite group models realizing fusion systems due to Robinson and Leary-Stancu.
In the third section, we construct these infinite group models for a fusion given
by a finite group G. We introduce the notion of storing homomorphism from the
fundamental group of a graph of groups to the group . Later, we will use this

homomorphism to relate the cohomologies of these groups.

3.1 Fusion Systems

In this section, we give some needed background for the theory of fusion systems,

mostly from the reference [11].

We say S is a Sylow p-subgroup of a group G if for any p-subgroup @ of G
there exist a g € G such that ¢gQg¢~!' € S. By Sylow theorems, it is known that

any finite group has at least one Sylow p-subgroup. However, it is not true for
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infinite groups in general. For example, the free product C5 = C'5 has no Sylow

3-subgroup.

Let S be a Sylow p-subgroup of a finite group G. A finite group fusion system
Fs(G) is a category having objects as subgroups of S and morphisms are the
conjugations by elements in G. By forgetting G, we can define an abstract fusion
system on a finite p-group S with certain properties, as shown in the following

definition.

Definition 3.1.1. Let S be a finite p-group. A fusion system F on S is a category
has objects as subgroups of S and the morphism set F (P, ()) consists of injective

homomorphisms with following properties

i-) For any s € S and P < S, the conjugation map ¢s : P — S is contained in
F(P,S)

ii-) For any ¢ : P — @ in F, the corresponding isomorphism ¢ : P — ¢(P) is
contained in F (P, ¢p(P))

iii-) For any group isomorphism 3 : P — Q in F(P,Q), the inverse map 37! is in
F(Q, P).

We say a fusion system F is finite if F = Fg(G) for some finite group G.

Most of the theorems and ideas of proofs in the theory fusion systems can
be done by mimicking their versions in group theory. For example, assume that
we have a group G and a p-subgroup P of G, we take a Sylow p-subgroup of
G which contains a Sylow p-subgroup of Ng(P). The corresponding argument
in the theory of fusion systems is “assume F = Fg and P < S, we take an
F-conjugate ) < S such that |[Ng(@)| is maximal along F-conjugates of P”.

Similar arguments in this theory motivates the following definition.

Definition 3.1.2. Let F be a fusion system on S. A subgroup P of S is said to
be fully F-normalized if for any () that is F-conjugate to P, we have

[Ns(P)| = [Ns(Q)].
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Obviously, for any P € F, there exists a fully F-normalized ) which is F-

conjugate to P.

Definition 3.1.3. Let F be a fusion system on S. We say F is saturated if
i-) Autg(S) is a Sylow p-subgroup of Autz(S)

ii-) For any ¢ : P — S in F, if ¢(P) is fully F-normalized, then ¢ extends to a
morphism ¢ : N, — S where N, := {g € Ns(P)|3h € Ns(¢(P)) with ¢(gpg™?) =
ho(p)h™ Vpe P}

It can be easily shown that any finite fusion system is saturated. By a finite
fusion system, we mean the fusion system can be realized by a finite group (i.e.
F = Fs(G) for some finite G).

Definition 3.1.4. Let P be a non-trivial p-subgroup of GG. Then
i-) P is p-centric if Z(P) is Sylow p-subgroup of C¢(P).
ii-) Pis p-radical if P = O,(Ng(P)).
Here, O,(X) denotes the largest normal p-subgroup of X.
Definition 3.1.5. Let F be a fusion system on S. Then
i-) Pis F-centric if for every @) which is F-conjugate to P, we have Cs(Q) = Z(Q).

ii-) Pis F-radical if Op(Autz(P)) = Inn(P) .

Here, being F-centric is a generalization of being p-centric. Although being
p-radical does not imply being F-radical, in general, the next lemma shows that

they are equivalent to p-centric groups.

Lemma 3.1.6. Let F = Fs(G) and P be a subgroup of S. Then,

23



i-) P is p-centric if and only if it is F-centric.
ii-) P is F-centric and F-radical then it is p-radical and p-centric.

Proof. Fori-), assume P is p-centric. Take any @ with Q = gPg~! for some g € G.
The automorphism ¢, of G sends P to Q and g~'Sg to S. Then, |Cy-15,(P)| =
|Cs(Q)]. Since P is p-centric [Cy-15,(P)| < [Z(P)]. Then, |Cs(Q)| < |Z(Q)].
Hence, Cs(Q) = Z(Q), proving P is F-centric.

For the converse, assume P is F-centric. Let X be any Sylow p-subgroup of
Cg(P). Take g € G such that X contained in g~'Sg. The automorphism ¢, sends
P to @, and X to ¢gXg~ ', and Cg(P) to Cs(Q), and g~'Sg to S. Since P is
F-centric, Cs(Q) = Z(Q). Then,

9Xg' < Cs(Q) = Z(Q) = gZ(P)g™"

So, X is a subgroup of Z(P). Hence, X = Z(P) because X is a Sylow p-subgroup
of C¢(P), completing the first part.

For ii-), assume P is F-centric and F-radical. ~We have Autr(P) =
Ng(P)/Cq(P) and Inng(P) = PCq(P)/Cq(P). Q = Oy(Ng(P)). Since P
normal in Ng(P), P < Q. The subgroup QC¢(P) is normal in N¢(P) because @
and Cg(P) are normal in Ng(P). By correspondence, QCq(P)/Cq(P) is normal
in Ng(P)/CG(P). So we must have P = ) otherwise the maximum normal
p-subgroup of Ng(P)/Cs(P) would be greater than PCq(P)/Cq(P). Hence, P

is p-centric and p-radical.

]

From [12], we have an example shows that the converse of the second statement

of the last lemma is not true in general. We take the dihedral group
G = Dy ={a,bla® =b* =1and bab =a™ ")

and its Sylow 2-subgroup S = (a3 b). Let F = F5(G) and P = (a®). Then P is
p-centric because Z(P) = {a®) is a Sylow 2-subgroup of Cg(P) = {a) . P is p-
radical as O,(Ng(P)) = O,(G) = P. However, Autz(P) consists of two elements
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the identity and the conjugation by b whereas Inn(P) has only one element, the
identity. Since Op(Autz(P) # Inn(P), P is not F-radical.

3.1.1 Alperin Fusion Theorem

Alperin fusion theorem states that automorphisms of some family of subgroups
of S generate the whole fusion F = Fg. We will use this theorem for realizing
fusion systems. For example, if a group G contains S as a Sylow p-subgroup
and elements that realize the generators of the fusion system F then we can say

F c fs(G)

Definition 3.1.7. Let F = Fg. A subgroup P of S is F-essential if P is F-
centric and Outx(Q) = Autxz(P)/Inn(P) contains a strongly p-embedded sub-

group.

Here, we say M is a strongly p-embedded subgroup of G if M contains a Sylow
p-subgroup of G and M n MY is a p/-group for all g € G\ M. In this case, since for
any p-subgroup P of G, there exists g € G such that P n P9 is trivial, G has no
normal p-subgroup (i.e. O,(G) = 1). That shows an F-essential subgroup must
be F-centric and F-radical.

Definition 3.1.8. Let F be a fusion system on a finite p-subgroup S. A family
F of subgroups of S is a conjugation family for F if F = (Autz(U)|U € F).

Theorem 3.1.9 (Alperin Fusion Theorem). Let F = Fg be a saturated fu-
sion system. Then, € = {P|P is fully F-normalized essential subgroup of S} is

a conjugation family.

Proof. See page 122 in [11]. O

Remark 3.1.10. Obviously, any family containing % is a conjugation fam-
ily. Since essential subgroups are F-centric and F-radical, the family € =
{P|P is fully F-normalized F-centric F-radical subgroup of S} is a conjugation
family. Also P = {P|P is a p-centric p-radical subgroup of S} is a conjugation
family because 7 > € © % .

25



3.1.2 Model Theorem

The model theorem states for some fusion systems there exist a finite model group
realizing the fusion which is unique up to some condition. In this case, we will

say “let take the model group of F” to refer to this model theorem.

Definition 3.1.11. Let F = Fs and P < S. We say P is normal in F if for any
morphism ¢ : Q — R in F there exists a morphism ¢ : QP — QR such that the

restriction ¢|p is an automorphism of P and ¢|g = ¢.

Definition 3.1.12. Let F = Fg be saturated. If there exists () <1.S which is

F-centric and normal in F, we say F is constrained.

Theorem 3.1.13 (Broto-Castellana-Grodal-Levi-Oliver, [13]). Let F = Fg be
saturated and constrained. Then there exists unique finite group G with S as a

Sylow p-subgroup so that
i-) F = Fs(G)
ii-) Op(G) =1
iii-) Ca(0p(G)) < Op(G)

We say G is the model for F.

Corollary 3.1.14. Let F = Fgs be a saturated fusion system. If F = (Autx(95)),
then the finite model group for F exists.

Proof. S is F-centric because Cg(S) = Z(S). S is normal in F because any
morphism in F can be extended to S. Since F is constrained saturated fusion

system the model theorem applies. O
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3.2 Realizing Fusion Systems

For an abstract fusion system F on a p-group S, we say that G realizes the fusion
F if S is a Sylow p-subgroup of G and F = Fs(G). Since there are abstract fusion
systems which cannot be realizable by finite groups, the theory of realization of
fusion systems includes infinite group models. In this case, the natural question
is that can we realize an abstract fusion system by using infinite groups. In 2007,
Robinson [2] write an infinite group model realizing an arbitrary abstract fusion
system. At the same year, Leary and Stancu [1] published a different infinite
group model realizing a given abstract fusion system. These models explained
below in terms of graph groups. However, for these models, we lose the property
that the IF, cohomology of the fusion system is the IF, cohomology of the finite
group it realizers. We cannot say this for these models. So finding an infinite
group model realizing an abstract fusion system with cohomology fits the fusion
systems cohomology is an open problem. Related to this, we quote a theorem
from [3] having a relation with the cohomology of the infinite group and the

cohomology of fusion for some special infinite group models.

Theorem 3.2.1 (Leary-Stancu, [1]). Let F be a fusion system on a p-group S
generated by morphisms f; : P, — Q; for 1 < 1 < r, where P;’s and );’s are

subgroups of S.

We define a graph of groups (G,Y') so thatY is a graph having only one vertex
v and edges eq, €1, €3, €3, ..., €., .. We have vertex group G, := S and edges groups
G., = Gg = P; and the morphisms ¢., : P; — S are inclusion and the morphisms

¢ P — S are f; composed with inclusion into S monomorphisms.

Then the fundamental group of the graph of groups realizes the fusion system,
that is
F = Fs(m(G,Y)).

Example 3.2.2. Let F = Fg(G) where G := S3 and S = Cj5 is the Sylow 3-
subgroup of GG. The fusion F can be generated by the nontrivial automorphism
of S. According to Leary-Stancu model, our graph of groups has vertex group as

S and the edge group S with two monomorphisms the identity and the nontrivial
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automorphism of S. Then, the infinite group 7 = 7(G,Y) = C3 x Z realizes F
(i.e. Fg(m) =F)

Theorem 3.2.3 (Robinson, [2]). Let F be a fusion system on a p-group S gen-
erated by the images Fg,(G;) under injective group homomorphisms f; : S; — S

forl1 <i<r.

We define a graph of groups (G,Y) so that'Y has vertices vy, vy, v, ..., v, and
edges e;, €; between vy and v; for 1 <i < r. The vertex groups are G, := S and
Gy, = G; for1 < i <r. The edge groups are G., = Ge = S; and monomorphisms
Ge; 1 Si — S, ¢z 1 S; — G are inclusions.

Then the fundamental group of the graph of groups realizes the fusion system
that is
F = Fs(n(G,Y)).

Since this construction does not determine the subfusions that generate F
and the realizations of these subfusions are not unique, there are many ways to
construct an infinite group realizing F according to the Robinson model. By
using Alperin Fusion theorem, the family of subfusions, where each subfusion is
generated by automorphisms of some fully F-normalized, F-centric and F-radical
subgroup of F, generates F. This makes the choice of subfusions Fg,(G;) unique.
We can also make unique the choice of realizations of these subfusions by using
the model theorem. This unique construction stated in the next example which
is the most famous way of constructing infinite group for realizing a saturated

fusion system according to Robinson model.

Example 3.2.4. Let F = Fg be saturated. Let Ry, Rs,..., Ry be fully F-
normalized, F-centric and F-radical subgroups of S. Let F; = Fpg, be the
fusion system on R; generated by the Autrz(R;). Then, by Alperin theorem
Fi, Fa, ..., Fr. generates F. From Corollary 3.1.14, there is a unique model L;
for F;. Now we construct the Robinson model by taking generators as Fg,(L;) .

Here, L;’s are the vertex groups and R;’s are the edge groups. More explicitly,
7 =mn(G,Y)=S%g, L1 #r, Lo--- =g, L.
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Here, we can also choose R;’s as the fully F-normalized essential subgroups of

S.

3.3 Realizing Finite Fusions and Storing Homo-

morphism

In this section, we focus on finite fusions and their realizations. Now, we mimic

Example 3.2.4, by changing L;’s.

Example 3.3.1. Let F = Fs(G) where G is finite. We take fully F-normalized
F-centric F-radical subgroups R, R, ..., R as we do in Example 3.2.4. We
define N; = Ng(R;). Since Fg,(N;)’s generate F by Alperin Fusion theorem. We

construct the Robinson model on these groups. Our infinite group is
T = W(g,Y) = S*R1 N1 *Ro NQ, cee *Rk Nk

realizing F.

In fact, we can make the 7 = 7(G,Y’) much smaller by changing R; with the
larger subgroups Ng,(NN;). Since Figy(r,)(IV;)’s generates F, the infinite group
™ = W(g,Y) =S *Ng(R1) Nl *Ng(R2) N2 ©*Ng(Ry) Nk realizes F (1e fS(ﬂ') = .F)

The group here is a quotient of the group in previous example.

Now, we state a bit different version of the Robinson model.

Example 3.3.2. Let F = Fs(G) where G is finite. We take fully F-normalized
F-centric F-radical subgroups Ry, Rs, ..., Rr as we do in previous examples (or
we can choose the essential ones from them as we can do in previous examples).
We construct a graph of groups (G,Y’) by taking Y as the complete graph with

k vertices so that

i) Gy, = Ng(R;) are vertex groups
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ii-) the edge groups between v; and v; are equal to Ng(R;) N Ng(R;).

From proposition 3.3 in [3], we can say S is the Sylow p-subgroup G. By
Alperin Fusion theorem, Fg(m) o Fs(G) because Fg(mw) contains all fusion of
F-normalized essentials which generate Fg(G). Also Fs(m) < Fs(G) because

any fusion in Fg(m) comes from Fg(G). Hence,

Fg(m) = F.

Definition 3.3.3. Let (G,Y) be a graph of groups and G be a finite group.
We say x is a storing homomorphism of (G,Y) if x is a homomorphism x :
7(G,Y) — G such that for any vertex or edge group G, and its inclusion map

ie : G, — 7(G,Y) we have that the composition y o i, : G, — G is injective.

If the storing homomorphism Y is surjective, we say G is a store of (G,Y).

Note that this definition is more than saying all vertex and edge groups are
subgroups of GG because it also requires these groups to have the same intersection

properties in GG as they have in T'.

Here, the map x has kernel non-intersecting any vertex or edge groups. Then

ker y is a free subgroup of I'.

Proposition 3.3.4. For the models constructed in Example 3.3.1, Example 3.3.2
and Theorem 3.2.1 the storing homomorphism always exists. Moreover, the kernel
of storing homomorphism is free and when the storing homomorphism is surjective

we have an exact sequence of groups
1>F->15%G->1

where F' := ker(x) is free.

Proof. Take any finite group G with Sylow p-subgroup S. Let F = Fg(G).

First, we construct the Leary-Stancu model. Let f; : P, — ;’s generate

F. Then, npg =< S,ty,te, - ,tg|lc,, = fi > is the infinite group realizing F
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according to Leary-Stancu. Define x : mg — G by sending s — s for s € S and
t; — g; where g; € G such that ¢,, = f;. x is storing homomorphism because it is

identity on the vertex group S.

Second, we construct the Robinson model as in Example 3.3.1. Define y :
mr — G by sending the vertex groups Ng(R;) to their original copies in G. x is
well-defined because for any edge groups, the two different restrictions of y are

the same. y is storing because it sends each vertex groups injectively.

Third, we consider Example 3.3.2. Define x : mg — G by sending the edge and

vertex groups to their original copies in GG. Similarly, y is storing homomorphism.

In each of the cases, ker() is a subgroup of 7(G,Y) such that it has a trivial
intersection with any vertex group of (G,Y’). Then, by Corollary 2.3.8, F :=
ker(y) is free.
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Chapter 4

Cohomology of Infinite Groups

Realizing Fusion Systems

In the previous chapter, we state several examples of infinite group models real-
izing fusion system. From now on, we focus on the cohomology of fusion systems.

We start with the definition of stable elements from the reference [14].

Let G be a group with subgroup H and A be a coefficient ring. An element
ain H*(H;A) is called G-stable if we have resﬁgﬁjﬂH(cz(a)) = resyy,1qu(a)
where ¢* : H*(H; A) — H*(xHz ') is the isomorphism induced by conjugation
map ¢, : tHz™' — H defined by c,(u) = 2~ 'uz. We extend this notion to fusion
systems. Let F be a fusion system on S. We say a € H*(S) is F-stable if for
any isomorphism P % Q in F, we have ¢*(resp(a)) = resp(a) where ¢* is the

isomorphism induced by ¢.

The cohomology of the fusion system F = Fg defined as the inverse limit
H*(F;F,) := }:}g}H (P;TF,)

or, equivalently, as the F-stable elements of H*(S;F,). Usually, we denote H*(F)
instead of H*(F;F,). By writing commuting diagrams, one can easily show that
the condition of being G-stable is the same as the F-stability condition. So we

have a version of Cartan-Eilenberg Theorem
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Theorem 4.0.1 (Cartan FEilenberg). Let G be a finite group with Sylow p-
subgroup S. If F = Fs(G), then

H*(F) =~ H*(G,F,).

Proof. See [15, Theorem I11.10.3]. O

From the previous section, we can realize any fusion by an infinite group.
However, this infinite group may not realize the cohomology of the fusion system
(in the sense of the last theorem) as the examples in the second section of the

next chapter. The open question is

Open Question 4.0.2. Given a saturated fusion system F = Fg, is there any

infinite group model m realizing F such that

H*(F) = H*(m; ).

Although we could not find the answer this question, we study the difference
of H*(F) and H*(m;F,). In Theorem 6.1.10, it is shown that H*(F) is a direct
summand of H*(m;F,) but the difference were unknown. For finite fusion systems,

we calculate the difference in the next section for some infinite group models.

This chapter includes our main theorems. In Section 4.1, we write H*(F) as
a direct summand of H*(w, F,) for finite fusion F and some conditions on the

infinite group model realizing F.

For both of the Leary Stancu and Robinson models, we have counterexamples
that show that these models do not realize cohomology of the fusion. Moreover,

in Section 4.2, we find infinitely many counterexamples for the Robinson model.
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4.1 Homology of Graph of Groups Constructed

from Subgroups of a Finite Group

Lemma 4.1.1. Let G be a finite group and (G,Y) be a graph of groups so that
G is a store of (G,Y). Then the storing homomorphism x has free kernel F. So
it gives an exact sequence 1 — F — w(G,Y) — G — 1. From the exact sequence,

we have a G-action on the abelianization F,, = F/[F, F].

Let w(G,Y) acts on a tree T. We consider the induced action of G = 7(G,Y)/F
on the graph X =T/F. This gives a G-action on Hqi(X).

There is a ZG-module isomorphism between Fy, and Hy(X).

Proof. Let I' := 7(G,Y") the fundamental group of the graph of groups.
Let m: T'— X be the projection map. Fix a vertex v € T. Let v = 7(v).

Define ¢ : F' — m(X,v) by sending an f € F to n(p(v, f-v)) where f-v is the
vertex in T obtained by I'-action on T" and p(v, f - v) is the path from v to f - v.
Here, 7 projects that path to a loop at v (i.e. w(p(v, f-v)) € m(X,0) ).

The map ¢ is well-defined because for any f € F' there is a unique path from

v to f - v in the tree and its projection is the loop ¢(f) € m1 (X, v).

Now, let show ¢ is a homomorphism. Take any fi, fo € F'. We have

o(fif2) = w(pv, frfov))
p(v, fiv) o p(fiv, f1f2v))
(

(
(
(p(v, frv))m(p(frv, f1f2v))
(
(

|
=

I
3

= o(fi)m(p(v, fov))
= o(f1)o(f2)
where the notation o is for composing paths. Here, w(p(fiv, fifov)) =

w(fip(v, fov)) = 7(p(v, fov)) because the projection 7 : T — X = T/F anni-
hilates the F-action.
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For any loop [ € 71 (X, 0) there exists a unique lifted path starting at v in the
tree T" by the path lifting theorem. This path has end point w € T such that
m(w) = v. Then w = fv for some f € F because v and w has same class in the
quotient X = T'/F. Here, there is a unique f € F' satisfying w = fv because F
freely acts on T . So for any loop [ € m1(X,7), we have a unique f € F such that

¢(f) = 1. Then, ¢ is surjective and has no kernel. Hence, ¢ is an isomorphism.

Let gg be induced isomorphism between the abelianization groups Fy;, and
(71(X,0))ap- We know that Hy(X) = (m1(X,0))e. So we have a commutative

F—2 r/(X,0)

|

Fo —2— Hy(X)

where j and k are abelianization maps.

1> F 5T 5 G — 1 induces a G-action on F,, by conjugation and the
G-action on Hi(X) is induced by the G-action on X.

Then we need to show that given any [f] € Fy, and g € G we have that

o(glf1g™") = 9o([f])-

Take f € F such that j(f) = [f]. Take v € T such that r(y) = ¢g. Then
J(vfy) = g[f]g~!. With the help of commutative diagram, we have

~

o(glflg™) = dG(v 1Y) = k(d(vfv )

and
S([f]) = S((f) = k().

To finish the proof, we work with ¢ and show that

gk(o(f)) = k(e(v /7).
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We have

o(f) = m(p(v, fv))
o(vfyh) = m(p(o, v fy 1))
= m(p(v, ) o p(yv, v fv) o p(v.fo, v fv " 'v)) (4.1)

As F T, vfy~ ! e F. Since 7 annihilates F' action, we obtain
m(p(vfo, v fr7 ) = (v fr (e, v) = T(p(yv, v)).
Substituting this in equation 4.1, we get
¢(vf17") = w(p(v,yv) o p(yv,7.fv) 0 p(yv,v)).

Moving to homology,

k(o(vfy7))

k(m(p(v,yv) o p(yv, v fv) o p(yv,v))
k(m(p(v,yv))) + k(m(p(yv, vfv))) + k(r(p(yv,v)))
k(m(p(yv,vfv))).

where k(7 (p(v,yv))) = —k(m(p(yv,v)) as we work in Hy(X).

Here, the path from v to vyfv goes to a loop at gv which is g times a
loop at v, working in homology. Writing formally, we have k(7 (p(yv,vfv))) =
gk(m(p(v, fv))). Which gives

gk(o(f)) = k(e(v /7).

That is equivalent to ¢(g[f]g~!) = go([f]), proving ¢ is G-module isomorphism
between F,, and Hy(X). O

Theorem 4.1.2. Let G be a finite group and (G,Y') be a graph of groups so that
G is a store of (G,Y) . Assume (G,Y) has a vertex G, such that the composition
G, = 7(G,Y) — G sends a Sylow p-subgroup of G, to a Sylow p-subgroup of G

isomorphically. For a field R of characteristic p, there is an isomorphism
H* Y G, Fp ® R)® H*(G; R) ~ H*(n(G,Y); R).

where F' is the kernel of storing homomorphism.

36



Proof. Let T' := w(G,Y). x, the store homomorphism, gives an exact sequence
1—- F —- T — G — 1where F := ker x is a free group. We consider the standard
[-action on the tree T. G = I'/F acts on X = T'/F, inducing the previous action.

Write cellular chain complex for X,
0— Cl g Co — 0.

Since X is connected we have an exact sequence of RG-modules C; — Cy — Z —
0, using that G' acts on X cellularly. Applying Hompgg(—, R) functor, we obtain
exact sequence 0 — Hompgg(Z, R) — Hompgg(Co, R) — Hompgg(Ch, R).

From the cochain complex
0 — Homg(Z, R) — Homg(Cy, R) — Homg(Cy, R),

we have

H'(X, R) = Hompg(C},7)/Im(Hompg(Co, R)).

So we complete the exact sequence,
0— R - C() - Cl -0
Considering G-action on C; simplices, we have

Hompg(Cy, R) = H R[|G/G,], and

veQV

HOIDR(Cl,R) = 1_[ R[G/Ge]a

ecOFE
where OF and OV are orbit representative sets for edges and vertices respectively.

Substituting in the last exact sequence, we get

0—R— [] RIG/G,] - |] RIG/G.] > H'(X;R) -0 (4.2)

veOV ecOF

Since ' has Sylow p-subgroup S, there exists G, containing S. Then the map

R — ]] R|G/G,] splits because we can write splitting over R[G/G,] as |[G/G,]|
veOV
is not divisible by p. We divide the exact sequence in 4.2 by defining

K :=Tm([[ RIG/G.,] — [] RIG/G.]) = ker(| | RIG/G.] — H'(X;R)).

veOV ecOF ecOF
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For the four-term exact sequence above, we use the idea stated in [16]. So we

have 2 exact sequences

0—>R— [] RIG/G,)]—> K —0 (4.3)
veOQV
0— K — [[ RIG/G.] > H'(X;R) — 0. (4.4)
ecOF

From above we have that 4.3 splits, and by Shapiro’s lemma, it gives an iso-
morphism

[ [ (G R) =~ H*(G; K) ® H*(G; R). (4.5)

veQV

The exact sequence 4.4 gives a long exact sequence in cohomology

'”H*_1<G; K) - H*_l(G7 H R[G/Ge]) - H*_l(G7 H1<X7R>> -
HY(G: K) — H(G, T] RIG/G.]) — H*(G.H(X:R)) — - -

ecOF

By coninduction and adding H*(G; R) for consecutive terms, we have

- HY G K) - [ HY(Ge, R) » H* (G R)@ H* (G, H'(X; R)) —
ecOF
H*(G;R)® H*(G;K) —» [] H*(G.,R) » H*(G,H'(X;R)) — - --.
ecOF

Using Equation 4.5, we have

HRNGK) — ] H* MG, R) — H*(G; R)® H* (G, H'(X; R)) —
H(G: T1 RIG/G)) > T1 H*(GuoR) — H* (G, H'(X;R)) — - -
veQV eeOF

Also we have a long exact sequence for I' by Theorem 2.4.2,

- H*YG;K)— ]] H*YG.,R) - H*(T;R) - H*(G; ]] R|G/G,]) —
ecOF veOV
[T H*(G., R) - H*(G,H'(X;R)) — - -
ecOF
By using a five lemma,
H* NG, H(X;R)® H*(G,R) ~ H*(T, R).
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By using Lemma 4.1.1, we have
H*YG, Fypy® R)® H*(G,R) ~ H*(T', R).
O

Corollary 4.1.3. Let T := 7(G,Y). For the restriction map Resy : H*(I', R) —
H*(S, R) we have
ker Resy =~ H* (G, F,y @ R).

Proof. From the Theorem 6.1.10 we have

H*(T, R) =~ H*(G, R) @ ker Resy.

Using the Theorem 4.1.2, we obtain

ker Resy =~ H* (G, F,, @ R).

The next example shows that Leary-Stancu model does not realize cohomology

of the fusion, in general.

Example 4.1.4. Let G = S3 = {a,b|p® = a* = 1,aba = b*) with Sylow 3-
subgroup S = (b) = C3 and F = Fg(G). The Leary Stancu model for F is the
infinite group

T ={bt|p> =1,tht ' = b = Cy x Z

The storing homomorphism x : 7 — G sends ¢t — a and b — b. So it is
surjective and F = ker(x) = (t*). Take R = F3 and use Theorem 4.1.2. Since G

acts on F' trivially we have
Hn71<53’ F3) S Hn(S?n FS) = Hn(ﬂ-? F3)

So, H*(m;F3) 2 H*(S53;F3) in this case.
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4.2 An Infinite Family of Examples

As we mention in Chapter 2, the Robinson model stated in Theorem 3.2.3 real-
izes fusion system but its cohomology does not fit with the cohomology of the
fusion system, in general. As a counter-example, in [17], it is shown that for
the fusion system of F 2-local finite group of G' = C§ x GL(3,2) and the corre-
sponding Robinson model group mg we have H*(mwg) # H*(F). In this section,
we show that, for any fusion system created by G'L(n,2), the cohomology of the
corresponding Robinson model group does not fits the cohomology of the fusion
system for n > 4. Then, we have infinitely many examples that realizing fusion
system by Robinson model does not give a realization of the cohomology of a

given fusion system.

To construct Robinson model on the Sylow 2-subgroup of GL(n,2), we must
understand its Sylow 2-subgroup and its F-radical and F-centric subgroups. So

we quote some known results.

We have a special case of Borel-Tits theorem having proof in [18] pg. 231.

Theorem 4.2.1 (Borel-Tits). If G = GL(n,p) then a p-subgroup U is equal to
O,(Na(U)) if and only if Na(U) is parabolic and U is its unipotent radical.

Here, we need to understand the parabolics of GL(n,2). A good source is
Chapter 6 and Chapter 12 of [19] which are devoted to Borel subgroups and
parabolic subgroups. We quote some results for GL(n, 2).

Let S be the upper triangular matrices in G := GL(n,2). Since the order of
S is 2=D=2)/2 |G S| is odd. Then S is a Sylow p-subgroup of G. As we see
in the proof of Theorem 6.4 in [19], we also have that S is a Borel subgroup of
G. That gives Ng(S) = S, by using the Theorem 6.12 in [19].

Corollary 4.2.2. The subgroup of upper triangular matrices S in G = GL(n,2)
is a Sylow 2-subgroup. Let F = Fs(G). Then a 2-subgroup U is F-centric, JF-
radical and fully F-normalized if and only if Ng(U) is parabolic containing S and

U 1is its unipotent radical.
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Proof. The first sentence explained above. What is left is the if only if statement.
Let us first prove the right direction. Assume 2-subgroup U is JF-centric, JF-
radical and fully F-normalized. From Theorem 4.2.1, Ng(U) is parabolic and U
is its unipotent radical. Since Ng(U) is parabolic, Ng(U) > B for some Borel
subgroup B. Since Borel subgroups are conjugate, there exists g € G such that
S =gBg~t. Let P = gUg™'. Then Ng(P) = gNg(U)g™* o gBg~! = S. Since
U is fully F-normalized, we have |[Ng(U)| = |Ng(P)|. So Ng(P) = S gives that
Ng(U) = S which means Ng(U) contains S as desired.

For the other direction, assume U is 2-subgroup so that Ng(U) is parabolic
containing S and U is its unipotent radical. From Theorem 4.2.1, U is p-radical.
As it is shown in [20, page 755], we have Cf,(P) = 1. So, U is p-radical. Since
Ns(U) = S, U is fully F-normalized. Since any unipotent radical of a parabolic

group is JF-centralized as shown in Lemma 4.2.3. [

Lemma 4.2.3. Let S be the group of upper triangular matrices in G = GL(n, 2)
and F = Fs(G). Then any unipotent radical U of a parabolic group P containing
S is F-centralized.

Proof. If V' is F-centric and V < U, then U is also F-centric. We know that the
maximal parabolics corresponds to the minimal unipotent radicals. Then, it is
enough to prove that the statement holds for all maximal parabolic P containing
S. Take any maximal parabolic subgroup containing S which is the form (as

mentioned in [21] )

P, =

GL(m, 2) Mm,n—m (Fg)
0 GL(m —n,2)
with unipotent radical
Im Mm n—m F
Uy, = ()
0 Infm

Take any s € S centralizing U,,, then for any m € U,,, we have sm = ms. Let

=[]
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Then for any M € M, ,,—m(F2), we have
a b1, M | [, M J[ab
0 ¢ 0 Inm 0 Lysm || 0 ¢ ]|

aM = Mc (4.6)

This gives

for any M € M, —m(F2).

Fixany 1 < <m and 1 < j < m —n. Choosing M having all entries 0 but
the (7, 7)th entry is 1, the equation 4.6 gives that ¢;; = a;;, ¢ = 0 for k # j
and a;; = 0 for k # i. By doing the argument for all possible (7, j) pairs, we get
that a and ¢ are diagonal matrices having all the same diagonal entries. Since
s €S, det(s) # 0. Then a and b are non-zero matrices. Working in Fy, we must
have that a = I,,, and b = I,,_,,. That means s € U,,, for any s € centralizing U,,.
Hence,

CS(Um) = Z(UM)

or equivalently U, is F-centralized. [

Here, we can mention the Robinson model for the fusion system of
Fs(GL(n,2)) because we know what are the F-centric, F-radical and fully F-
normalized subgroups of the fusion system. In the following theorem, we construct

the Robinson model by using these subgroups.

Theorem 4.2.4. Let G = GL(n,2) forn = 5. Let S be the Sylow 2-subgroup
consisting of upper triangular matrices in G. Let (G,Y) be the graph of groups of
Robinson model constructed for F = Fs(G). Then we have

H*(F) # H*(n(G,Y),Fy).

Proof. We know that H*(F) = H*(GL(n,2),Fy). From [22] table 6.1.3, we have
that H*(GL(n,2)) = 0 for n = 5. Then it is enough to prove that

H*(n(G,Y),Fy) # 0.
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From the Alperin Fusion Theorem, the fusion system is generated by the nor-
malizer of S and the normalizers of F-radical, F-centric and fully F-normalized
subgroups of S. From Corollary 4.2.2, we say that the fusion system is generated
by the fusion systems of Fg(P;) for 0 < i < k where Py = S and P, P, ..., P are
parabolic subgroups containing S. Note that the Sylow 2-subgroup of P;’s are S
because P; = Ng(U;) = Ns(U;) = S as shown in the proof of Corollary 4.2.2.

The graph of groups has vertex groups Py, Pi, P..., P, and has k many edge

groups all are S. From Theorem 2.4.2, we have a long exact sequence

o [ AP L [ [ HY(5:F) % HE (G, V)i F) — (4.7)

0<i<k 1

For any i, we have |H*(P;;Fy)| < |H'(S;Fy)| because S is a Sylow 2-subgroup
of P,. Without lose of generality, we assume that P, P»,..P,_; are maximal

parabolic subgroups such that, for 1 < m <n — 1, we have

GL(m,2) My pm(Fs)

P, =
0 GL(m —n,2)

Then we have that P, = P,,_; = C5 ' x GL(n —1,2). We have

HY(Cy ' % GL(n — 1,2);Fy) = Hom(Cy ™ x GL(n — 1,2),Cy).

Take any ¢ € Hom(Cy ' x GL(n —1,2),C,). Consider the restriction of ¢ to
GL(n—1,2) is a homomorphism from a simple group to Cy. Then ¢ must be zero
on GL(n —1,2). If ¢ is non-zero, we have ¢(a) = 1 for some a € Cy'. Take any
be Cy1—{0,—a}. Since GL(n—1,2) acts on C4~* by conjugation so that it sends
any nonzero element to any nonzero element, we have that ¢(a) = ¢(b) = ¢(a+0).

Hence a contradiction. So we must have
Hom(Cy ™ x GL(n —1,2),0) =0

Then we get
H1<P1;IF2) ZHl(Pnfl;Fz) =0 (48)
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In the long exact sequence 4.7, we have that

k

HH1(53F2)

1

<

[] H'(P:F2)

0<i<k

because in the left-hand side two terms are 0 as shown above and for each other
terms in the left we have |H*(P;; F2)| < |[H'(S;F2)|. Then, f cannot be surjective.
k

Since ker g = Im f, ker g is not the whole of [ [ H!(S;F3). Then g has a nonzero
1

image. Hence,
H*(n(G,Y); Fy) # 0.
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Chapter 5

Using Posets to (Generate Infinite
Group Models Realizing Fusion

Systems

We do not know any infinite group model realizing fusion and its cohomology.
Making the open question easier, we try to find an infinite group model realizing
fusion and its cohomology for finite fusions. Because of this, we start with the

fusion system of a finite group and try to find a desired infinite group realization.

Let G be a finite group acting on a graph X cellularly. As shown in Chapter
2.3, we can obtain a graph of groups (G, Y') from this action. In the first section of
this chapter, we show that, under some conditions we put for the G-action on X,

the infinite group 7(G,Y) = 7(EG x g X) realizes the fusion and its cohomology.

In the second section of this chapter we give the first example of this theorem.
We show that when G has p-rank 2 and X is the realization of the elementary
abelian poset of G where GG act on by conjugation, the infinite group n(G,Y) =
m(EG x g X) realizes the fusion. At the end of this chapter, we consider a known

model as an example of the first theorem of this chapter.
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5.1 From Posets to Graph of Groups

We denote the classifying space of G by BG with contractible universal cover
EG. We assume all the spaces in this thesis are CW-complexes in order to have

well-defined structures as we note in Remark 2.1.4. So BG is a K(G, 1)-space.

By a G-graph, we mean a graph with a GG-action on it such that GG acts cellularly
without inversion. If X is a G-graph, we can talk about the Borel construction
EG xg X. For a G-graph X, we say X is G-connected if the quotient graph X /G
is connected. In this section, we work on 1-dimensional G-connected graphs.
When X is a G-poset, by the Borel construction EG xg X, we mean the 1-
dimensional graph realization of X with a G-action. If X is a poset consisting of
subgroups of GG, then G-action is the conjugation. For example, if G is a finite
group and X is the poset of elementary abelian subgroups of GG, then we consider

the corresponding 1-dimensional G-graph in the notation EG x4 X.

Theorem 5.1.1. Let G be a finite group with Sylow p-subgroup S. Assume G
acts on a connected graph X so that S fizes at least one vertex and Hy(X;F),)
is projective F,G-module. If the embedding of S into I' := m(EG X ;X) is a
Sylow p-subgroup so that Fs(I') = Fs(G) then we determine the cohomology of
the fusion system by

H*(F) = H*(I';F,).

Proof. Define f: EG X X — X by sending (a,z) — z. We consider a G-action
on EG X X by g(a,z) = (¢ 'a, gz). Then the homotopy equivalence f preserves

G-actions. f induces a continuous map
g: EG x¢ X - X/G
by dividing G-action. Consider the graph YV := X/G. Define X, = g~ (v) for

any vertex of Y. Define X, = g~!(e) for any edge e in Y.

Fix any edge e and vertex v so that v belongs to e. The deformation retract
from X, to X, n X, gives a continuous map f. : X, — X, which is injective

on homotopy groups. Define a graph of groups (G,Y) so that the vertex groups
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are G, : m(X,) and the edge groups are G, := 7(X.) and the monomorpisms
¢e : G, — G, are induced by the f, maps.

For a vertex v € Y, let ¥ be a lift in X. Consider f~!(orb(v)), the preimage
of the G-orbit of v under the map f. The space f~'(orb(v)) contains |orb(v)|
copies of EG. Then g '(v) = f~!(orb(v))/G is homotopic to EG/stab(v) where
stab(v) is the stabilizer of v. Since the contractible space EG is the universal
cover of FG/stab(v), X, is a classifying space of stab(v). Then the fundamental
group of the graph of groups (G,Y) is I' = EG x¢ X. The graph of groups has
vertex groups (7, isomorphic to stab(v) and edge groups isomorphic to stabilizers

of their lifts.

Consider the map s : EG x X — EG defined by sending (a,x) — a. Similar
to above, we divide by G-action. We obtain an induced map t : EG xg X —

BG which is surjective. Then we obtain a surjective homomorphism y from

T(EG xg X) = 7(GY) to 7(BG) = G. In fact,
x:m(G,Y) > G

is a storing homomorphism because ¢ is injective on X, and X, spaces. Then

from the proof of Theorem 4.1.2, we have
H* G, HI(X;FP)) @ H*(G,F,) ~ H*(I';F,)

because the graph X can be considered as a T'/F appears in the proof where
F := ker(x) and T is obtained by developing 7(G,Y )-action on a tree. Since
H'(X;F,) is projective G-module, we have H* (G, H(X;F,)) = 0. Also, we
have H*(F) = H*(G,F,) because G is finite and F = Fg(G). Hence,

H*(F) =~ H*(T;F,).

]

Remark 5.1.2. As we see in the proof of the last theorem, for a G-poset X,
we consider FG xg X as a fundamental group of some graph of groups. By the
way, we are able to prove many statements in the borel product language by
translating them into the language of the theory of graph of groups. Most of the
proof of this chapter has that idea.
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Sometimes infinite groups do not have Sylow p-subgroups. For example, the
amalgam m = (5= Cy has no Sylow 2-subgroup. To talk about fusion systems and
realization by infinite groups, we first step we need to prove is that infinite group
does have Sylow p-subgroup. The next proposition is very useful to prove a given
infinite group has a Sylow p-subgroup when the infinite group is the fundamental

group of some graph of groups.

Proposition 5.1.3 (Libman-Seeliger [3]). Let (G,Y) be a graph of groups and
suppose that

i-) The groups G, and G, contain Sylow p-subgroups P, and P. for every vertex
vinY and edge e inY.

ii-) There exists a vertex vy such that for any other vertex u of Y there exists a
path(directed, without loops) yi1,Ya, ..., Yn from vy to u such that for any i the map

Gy, LisliaN Go,(y) carries Py, onto a Sylow p-subgroup G, (y,)-

Then, S := P,, is a Sylow p-subgroup of 1 = w(G,Y).

In the sense of Remark 5.1.2, we translate the last proposition into the language

of Borel construction spaces which we need for this chapter.

Corollary 5.1.4. Let G be finite group with Sylow p-subgroup S and X be a
G-connected G-graph. If there exists vg € X such that

i-) S fizes vy

ii-) for any vertex v € X there exists a path(directed without loops) yi,Ya, -, Yn
from v to guy for some g € G such that for any i = 1,2, ...,n the inclusion of the
stabilizer Stabg(y;) to the stabilizer Stabg(01(y;)) carries a Sylow p-subgroup of
Stabg(y;) onto a Sylow p-subgroup of Stabe(01(y;)).

Then, 1(EG xg X) has a Sylow p-subgroup isomorphic to S.

Proof. We consider the corresponding graph of groups (G,Y) as we do in the
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proof of Theorem 5.1.1. We have 7 = 7(G,Y) where Y = X /G and (G,Y) has
vertex groups G, for v € Y so that G, = Stabg(?) where v € X is a lift of v.

Now, we use Proposition 5.1.3 to conclude the proof. O

5.2 Poset of Elementary Abelian Subgroups

In this section, we prove that the infinite group model I' := m (EG X , X) realizes
the fusion of G on S, where X be the poset of elementary abelian subgroups of S.
Moreover, it gives exactly the same [, cohomology. Here, we work with p-rank
2 groups. By p-rank, we mean the maximum number n so that the group has an
elementary abelian p-subgroup C, x C,, - - - x C}, of rank n. We denote by rank,(G).
For a finite group G and its Sylow p-subgroup S, we have rank,(G) = rank,(S5) .

In this section, we will need the next theorem from theory posets.

Theorem 5.2.1 (Quillen [23]). Let X,Y be posets and f,g : X — Y be poset
maps. If for any x € X we have f(x) < g(x), then |f| = |g|.

Now we start by writing a theorem for the fusion of I' and we will continue its

homology calculations.

Proposition 5.2.2. Assume G is a finite group with a Sylow p-subgroup S and
rank,(G) = 2. Let X be the poset of elementary abelian subgroups of S. Then
[':= m(EG X X) realizes the fusion of G on S(i.e. Fs(I') = Fs(Q)).

Proof. Let C;’s and E;’s be the elementary abelian subgroups of S of order p and

p?, respectively.

Without loss of generality, we can assume C; < Z(.S) because Z(.S) (non-trivial

p-group) contains a subgroup of order p.

1-) Let us write I' as the fundamental group of the graph of groups. From the
poset X, we choose one C; in each G-orbit such that Ng(C;) is Sylow in Ng(C;)
and one E; in each G-orbit such that Ng(E;) is Sylow in Ng(E;).
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Ne(Ch) Ne(Cy)  Ng(C.)  Ng(C,)  Ng(Ci)

Figure 5.2: Graph of Groups

Now our graph of groups consists of the graph obtained by the quotient X /G
and vertex groups Ng(C;)’s and Ng(E;)’s for the indices as chosen above for

vertices of X /G, and edge groups formed by the intersection of vertex groups.

Since Cy < Z(S), we have C < E; for all ¢ because otherwise the group C1 E
would be an elementary abelian group of order p?, yielding a contradiction with
rank,(G) = 2. Also, we have that for i # 1, any group C; contained in a unique
elementary abelian subgroup E; := CC; for some j. Hence, the graph of groups
has a shape in the figure.

2-) T has a Sylow p-subgroup isomorphic to S.

The vertex group associated to C; is Ng(Cp). Since Cy < Z(S), we have
S < Ng(C1). We argue that the Sylow p-subgroup of this vertex is a Sylow
p-subgroup of I'. Here, we use the Proposition 3.3 in [3] in order to show I' has
a Sylow p-subgroup isomorphic to S. We take that vertex as a reference vertex

group mentioned in the proposition.
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Now, take a vertex £;. We have an edge between C; and E; so that the edge

group and monomorphisms as follows:
Ne(C1) < (Na(C1) [ | Ne(E)) = Ne(E;).

N¢(E;) has Sylow Ng(E;) by the choice we have done before.  Since
(Ng(C1) (Y Ng(Ej)) contains Ng(E;) as a Sylow p-subgroup, we say that the
edge carries its Sylow onto Sylow subgroup of Ng(E;).

Second, we consider the C; vertices for ¢ # 1. We have some E; containing Cj
and the reach C; from C; along E; via two edges. In fact, we have E; = C; x C;.
So the path from C; to C has shape:

Na(Ch) < (Na(Ch) [ | Na(E))) = Na(Ej) < (Na(CixCh) (| Na(Ci)) < Na(Ch)

Here, from previous paragraph we have that the first edge carries its Sylow sub-
group onto Sylow subgroup of Ng(E;). For second edge we have N¢(Cy x C;) has
Sylow Ng(C; x C;) = Ng(C;) because Cy < Z(S) implies that S normalizes C}
. Hence, the second edge also carries its Sylow onto Sylow subgroup of Ng(C}).

By the Proposition 3.3 in [3], we say ' has a Sylow p-subgroup isomorphic to S.

3-) Fs(I') o Fs(G). Clearly, these categories have the same objects. We need
to show that for any morphism f in Fg(G) we have that f is a morphism in
Fs(I'). Take any P,Q € obj(Fs(G)) and f € Morry ) (P, Q). Since we have
finite group fusion, f corresponds a conjugation morphism for some g € GG. Take
any C' conjugation family. Then there exists P = Py, Py, P, ..., P, = () subgroups
of S and Q1,Qs, ...,Q, € C and g; € Ng(Q;) such that

i') Indn—-1---g1 = ¢
ii-) gi(Pi_1)g; ' = P forie {1,2,...,n}
ili-) P,_; and P; are contained in Q);.

It is enough to show the conjugation ¢, : Py — P; is contained in Fg(T').

The others can be done similarly. Since @)1 is p-group, the center Z((Q;) is
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not trivial. Then Q;(Z(Q1)) # 1 where, for a p-group A, Q;(A) denotes the
elements of A of order p. Since g; normalizes @)1 and Q,(Z(Q)1)) characteristic
in @1, we have that g; normalizes ,(Z(Q1)), that is, g1 € Ng(1(Z(Q1))).
Also, Q1 < Ng(21(Z(Q1))) because characteristic groups are normal. Hence,
Ne(€41(Z(Q1))) contains the action ¢, : Py — P;. Since €;(Z(Q1)) elementary
abelian p-subgroup of 9, it is included in the poset of elementary abelian p-groups.
So N¢(Q1(Z(Q1))) appears as a vertex group in our graph of groups. Then T’

contains the action ¢y, : Py — Py.
4-) Fs(I') = Fs(G).

Take any g € I' such that P,Q < S and gPg~' = (. We know that there
exists vertex groups Aj, As, ..., A, in I' and some g; € A; such that g = g19293...9,
is the unique reduced word representation of g. Now, consider the corresponding

action of I' on a tree. We have a path between S and ¢S which can be deducted
by writing g = ¢19>-..9;-

S 7S 91925 9192935 G192...9:5 = ¢S
NN SN S o /
A1 91A2 9192A3 9192"-97’—1147"

Since Q < S, @ fixes the vertex S in the tree. Also, Q = gPg~! fixes ¢gS. As
() fixes initial and final vertices of the path, () fixes all vertices in the path. Here,
Q fixes g1g...9;S implies that g1 gs...9;Q(g1g2...g;) ' = S. Then for each step we

have

— 9192--9iQ(9192---9:) " and g192...9i+1Q(g192.--gi1) " contained in S and,

— The conjugation action of g;1 corresponds to conjugation action of some ele-

ment in G.

Since each step realized by an action in Fg(G), the total action ¢, : P — @ in
Fs(T') corresponds an action in Fg(G). Hence, Fg(T') € Fs(G), concluding the
proof of Fg(T') = Fs(G).
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]

Lemma 5.2.3. Let G be a finite group and P be a p-subgroup of G. We consider
that P acts on A,(G), the poset of nontrivial elementary abelian p-subgroups in
G. Then the fized point space |A,(G)|" is contractible.

Proof. Let S,(G) be the poset of all non-trivial p-subgroups of G.

Denote S,(G)” to be the fixed elements of the poset S,(G) under the action
of P. A,(G)" defined similarly.

Define f: A,(G)F — S,(G)? by sending E € A,(G)" — E € S,(G)F.
For any Q € S,(G), we have f|g = {E € A,(G)" | E<Q} = A,(Q)".
To show |A,(Q)”] is contractible, we consider the following poset maps.
id : A,(Q)F — A,(Q)” by sending E — FE,

g:A(Q) — A,(Q)F by sending E — EZ,

c: A(Q)F — A,(Q)F by sending E — Z where Z is an elementary abelian
p-subgroup of the center of Q).

By using Theorem 5.2.1, we get id = g and ¢ = g. So the identity is homotopic
to a constant map. Hence, |f|g| = |4,(Q)"| is contractible.

Since for any @) € S,(G), | f|ol| is contractible, we say f is homotopy equivalence

(Le. [Ap(G)" =[S, (G)I7).

So, the rest is to show S,(G)? is contractible. For Q € S,(G)¥, we have that
P normalizes @ (i.e. P < Ng(Q)). Then PQ forms a p-group in S,(G)". To

show contractibility, we again define homotopic poset maps.
idy : S,(G)F — S,(G)” by sending Q — Q,

h:S,(G) — S,(G)" by sending Q — PQ,
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co 1 Sp(G)F — S,(G)F by sending Q — P.

Here, we have 1dy =~ h =~ ¢y by Theorem 5.2.1. Since the identity is homotopic

to a constant map, we say |S,(G)”| is contractible.

Proposition 5.2.4. |J (|A,(G)))¥ is contractible.
12H<S

Proof. Let P be the poset with elements (].A,(G)|)" for H non-trivial subgroup
of S and relation as the inclusion. Since the poset has a minimal element, we
say it is contractible. From Lemma 5.2.3, we have that the sets in the poset are

contractible. So the union is contractible. O]

Proposition 5.2.5. Let X = |A,(G)|. Then H(X,F,) is a projective F,G-

module.

Proof. Let C; — Cy be the chain complex of X. Let D; < C; such that D; — Dy

corresponds to the chain complex of | J X*.
1#£H<S

Then C; = D;® P, where F;’s are free F,S-modules because S has a free action

on the set X — | J X,
12H<S

Now we have a short exact sequence
0—->P—>C;,—>D;—0 forie{l,2}.
And the corresponding long exact sequence is
0 — H{(P) - H{(C) - H{(D) — Hyo(P) — Hy(C) — Ho(D) — 0.

By Proposition 5.2.4, D is acyclic. Writing H;(D) = 0 in the long exact sequence,
we get Hi(P) = H{(C). So we have the following short exact sequence

0—>H1(C)—>P1—>P0—>0

The sequence splits because P;’s are free F,S-module. Hence, H,(X,F,) = H,(C)

is a direct summand of P;, which means it is a projective F,S-module. Since S
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is a Sylow subgroup of G, we say that projective F,S-modules are projective
F,G-modules.

]

Theorem 5.2.6. Assume G is a finite group with a Sylow p-subgroup S and
rank,(G) = 2. Let X be the poset of elementary abelian subgroups of S. Then
I' == m(EG X 45 X) realizes the fusion of G on S(i.e. Fs(I') = Fs(G)). More-
over, their IF,-cohomologies also fits, i.e. H*(I',F,) = H*(G,F,).

Proof. We have the first part from Proposition 5.2.2. Let us show the cohomology

equivalence. We have from the proof of Theorem 4.1.2,
H* G, H(X;R)® H*(G,R) ~ H*(T, R).
H,(X,F,) is a projective F,G-module as shown in Proposition 5.2.5. Then
H*YG,H'(X;R)) = 0.

Hence we get

H*(T,F,) ~ H*(G,F,).

5.3 Poset of p-radical p-centric p-subgroups of G

Let G be a finite group. In this section we work on the graph
X = {P c G| P is p-radical p-centric p-subgroup of G}.

We will show that 7 := 7 (EG xg X) realizes the fusion F = Fg(G). Let
(G,Y) be the corresponding graph of groups. We take Y = X /G and for v € Y,
G, = Stabg(V) = Ng(P5) where v € X. Then, (G,Y) is the same graph of groups
as we talk about in Example 3.3.2. Then, 7(EG x¢ X) = 7(G,Y) realizes the

fusion. By using Theorem 5.1.1, we get the next theorem.
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Theorem 5.3.1. Let G be a finite group with a Sylow p-subgroup S. If X is
the poset of p-radical p-centric p-subgroups of G, then m = w(EG xg X) realizes
the fusion F = Fs(G). Moreover, if Hi(X;F,) is projective G-module, then
H*(m;F,) = H*(F).
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Chapter 6

On the Signalizer Functors

The theory of signalizer functors and linking systems are developed to understand
the fusion systems and its topological properties better. In this Chapter, we give
some background on this theory. Then, we will state and prove the main theorem
of the paper [3]. This theorem shows that the I, cohomology of an infinite group
realizing a fusion F is a direct sum of the cohomology of the fusion system and
the kernel of the restriction map under some conditions. Our first main theorem
gives a better result which gives a formula for the difference but it was only
for finite fusions. The theory and results in this chapter are developed for any
saturated fusion. At the end of this chapter, we give a group theoretical proof of

the proposition which is used in some results of our paper [4].

6.1 A Theorem of Libman-Seeliger

Definition 6.1.1. Let 7 be a group with Sylow p-subgroup S and F = Fg(m).
The transporter system Tg(m) is a category with objects as the subgroups of S
and morphism sets are Tg(7)(P, Q) := N,(P,Q) = {ge w|gPg™' < Q} X

Clearly, we have natural functor 7g(m) — Fs(m) which is identity on objects
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and takes quotient by the action of C,(P) on the morphism sets. We usually
refer to this standard functor in this chapter by just writing 7s(m) — Fs(7).

Remark 6.1.2. By 7§(7), we mean the full subcategory of 7§ () whose objects
are F-centric subgroups of S. Similarly, F¢ is the full subcategory of F with
objects as all the F-centric subgroups of F.

Definition 6.1.3. An associated centric linking system L on a saturated fusion

system JF = Fg is a category such that
i-) Obj(L) is the set of F-centric subgroups of F

ii-) It is equipped with a surjective functor 7 : £ — F¢ and an injective functor
d : T§(S) — L both induce identity on object sets.

ili-) The image of Z(P) under § : Ng(P) — Aut,(P) acts freely on £(P, Q) and
F(P,Q) = L(P,Q)/Z(P)

iv-) For any P,Q € F¢, for any g € Ng(P, Q) we have m(d(g)) is the conjugation
by g on P.

v-) For any f e L(P,Q), for any g € P < Ng(P) = Autye(P) the following square
commutes
P——

5p(g)l . Cj?

P——

5Q(m(f)(9))

Since centric linking systems defined on fusion systems and fusion systems
defined on finite p-groups, the triple (S, F, £) is called p-local finite group. More

formally,

Definition 6.1.4. A p-local finite group is a triple (S, F, L) of a saturated fusion

system on S together with an associated centric linking system.

Definition 6.1.5. Let F = Fg(m). A signalizer functor on 7 is a functor 6 :
T$ — Grp sending P — 6(P) for F-centric subgroup P such that
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i) 9(P)(Z(P) = 1 and 0(P)Z(P) = C,(P)

ii-) If gPg~!' < Q, then 0(Q) < g0(P)g ™.

Signalizer functors play a significant role in the p-local group theory. For
example, the next lemma states away of obtaining a centric linking system from

a signalizer functor.

Lemma 6.1.6. Let F = Fg(m) and 0 be a signalizer functor on w. Then, the
category Ly defined by Lo(P,Q) = N (P,Q)/0(P) is a centric linking system.

Proof. We define Obj(L) := Obj(F¢). The functor m : L — F¢ is the identity
on objects and for morphisms, 7 sends L(P,Q) = N,(P,Q)/6(P) to F°(P,Q)

surjectively.

We define § : T§(S) — L so that it sends each object to its copy in L. For
P eTg, 0p sends Autre(P) = Ns(P) to Autz(P) = N(P)/0(P) by sending x
x0(P)/0(P). We need to show the kernel ker(dp) = Ng(P) () 6(P) is trivial. Since
P is F-centric, Ng(P)(C.(P) = Z(P). Since §(P) < C(P), Ns(P)(0(P) <
Ng(P)(Cx(P) = Z(P) but §(P)()Z(P) = 1. Hence, ker(dp) = 1. So we have

done with conditions (i) and (ii) in the definition of the centric linking system.

For (iii), 0p(Z(P)) = C,(P)/0(P) acts on L(P,Q) = N(P,Q)/0(P) by com-
position, freely. L(P,Q)/0p(Z(P)) = N,(P,Q)/C(P,Q) = F(P,Q)

For (iv), m(0p(g)) = w(x0(P)/0(P)) is the conjugation by g on P.

For (v), let f € L(P,Q). There exists nf(P) € N,(P,Q)/0(P) such that f

sends x — nzn~'. We need to show the square commutes



where dp(g) is the conjugation by g and do(7(f)(g)) = dg(ngn?) is the con-
jugation by ngn~!.

For * € P, we have do(n(f)(9)) o f(z) = do(n(f)(9))(nan=t) =
ngn~t(nzn ') (ngn™')"! = ngzg~'nt = f(gzg™') = f o dp(g)(x) concluding
the proof. O

Definition 6.1.7. Let S be a p-group, F' : BS — X be a map. f gives rise
to a fusion system Fgs(f) on S whose objects are the subgroups of S and a
monomorphism ¢ : P — @ € F(f) if and only if the composition BP 2, s L
X is homotopic to the composition BP Biops L x.

For a map g : X — Y, we have Fs(f) < Fs(go f).

Definition 6.1.8. Let S be a p-group, X be a space and f : BS — X be a
map. The category Lg(f) has the same objects as F = Fg(f) with morphisms
Ls(f)(P,Q):={(p,[H])|¢ € F(P,Q) and [H] is the homotopy class of a path in
H in map(BP, X) from BP 2% BS L. X to BP 25 BS L x}.

For inclusion homomorphisms, we use ¢ and Bt always denotes a map inducing
inclusion on homotopy. For a homomorphism ¢ : P — @), we use B¢ : BP — B(Q)
for a map inducing that homomorphism on homotopy. For paths k£ and [, by ki

we mean their composition path.

Lemma 6.1.9. Let S be a Sylow p-subgroup of w. Assume Bi : BS — Bm
induces the inclusion i : S — w. Then Fg(Bi) = Fg(m) and Ls(Bi) = Ts(n).

Proof. First, let show Fg(Bi) € Fg(mw). Take any ¢ : P — @Q € Fg(Bi). Then,
the composition BP 5 BS S Bris homotopic to the composition BP RN
BS 25 Brr. Let H : BP % [0,1] — Br be that homotopy.

Fix zy € BP. Let xy := H(x0,0). Without loss of generality, we can assume
x1 = B¢(xg). Then, H(xg,1) = z1. Let p be the path given by p : [0,1] — B
sending ¢t — H(xg,t). Since p(0) = p(1) = x1, p is a loop around z; in Br.
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Now, for any loop [ in BP, the image of [ under BP B Bris homotopic to
the image of the loop [ under the map BP 5%, Br. That homotopy sends [ to
p~tlp. This means ¢ : P — @ sends p — ¢~ 'pg where g € 7 corresponds p € Br.
Hence, ¢ € Fg(m). We have done with Fg(Bi) < Fg().

Second, Fg(Bi) 2 Fg(m) is true for similar reasons. Take any ¢, : P — @
in Fg(m) where g € m. Consider the loop p corresponding g € m. We construct
homotopy between the composition BP B BS 24 Br and the composition

BP £ s B pr by moving everything around the loop p.

We continue with the second isomorphism. By definition, Lg(Bi)(P,Q) =
{(p,[H])|¢p € F(P,Q) and [H] is the homotopy class of a path in H in
map(BP, X) from BP £% BS 5 X to BP 25 BS £5 X}

We define ¥ : Tg(m) — Lg(Bi) identity on objects and sending g € N, (P, Q)
to ¥(g) = (cg, [H]) where ¢, : P — @ is a conjugation and H is the homotopy
on B shifting BP around the loop [ corresponding g. ¥ is an isomorphism and
for any ¢ € F(P,Q), there exist the number of the order of C,(P) pairs of the
form (¢, [H]) € LLs(Bi)(P, Q) where each [H] corresponds a rotation around a

loop corresponding an element in C(P). O

Theorem 6.1.10 (Libman-Seeliger, [3]). Fiz a p-local finite group (S, F, L) and
let ™ be a group which contains S as a Sylow p-subgroup. Assume that F < Fg(m)
and that 3 a map f : Bw — |L|) whose restriction to BS < B is homotopic to
the natural map 6 : BS — |L]).

Then we have
i—) .F = f"g(ﬂ')
ii-) There exists signalizer functor © on mw such that L = Ly

iii-) The map rest : H*(mw,F,) — H*(S,F,) splits and has image isomorphic to
H*(F;F,) that gives

H*(m;F,) = H*(F;F,) ® ker(resg).
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Proof. For (i): From [24], we have Fg(f) = F. By the Lemma 6.1.9, we have
Fs(m) = F(Bi). Then, Fg(m) = Fs(Bi) < F(f o Bi) = F(0) = F. Hence,
F = Fg(m).

For (ii): From [24], we have LE(f o Bi) = LL(0) = L because foBi~4.
From the Lemma 6.1.9, we have L{(Bi) = T&(w). From BS LNy TRER L],
induces a functor LE(Bi) = T — L&(0) = L such that the diagram commutes

Te(r) L L
1)

We claim that p is surjective. Set T = T&(w). Consider L£(P,Q). Since the
composition p o surjects F(P, Q), if p surjects Z(P) = ker(L(P, Q) = F¢) then
p surjects L(P,Q). For Bi : BP — BS, we will show that the composition

map(BP, BS) ;s —* map(BP, Br)piy, 7 map(BP, |L]}) (6.1)

is homotopy equivalence. From page 136 in [12], we have map(BP, BS) Bi§ =
BCg(P). Since P is F-centric, we have Cs(P) = Z(P). So, map(BP, BS)p;s =
BZ(P).

From part (c) of Theorem 4.4 in [24], map(BP, |L[})gopis = BZ(P) and we
know that map(BP, |L[})gops = map(BP, |L[})opi from fo Bi = 6. So we
get map(BP, [L])fopir, = BZ(P). Hence, we get the first and third ones are

homotopic in equation 6.1. So the composition is homotopy equivalence.

Now, we know p carries Z(P) in N,(P) = Aut.(P) onto Z(P) in Aut (P).
Define signalizer functor as ©(P) := ker(Auty(P) % Aut.(P)) for F-centric P.

Writing Autr(P) = N,(P), we have commutative diagram with exact rows

1 —> Cp(P) —= Np(P) —=> Aut#(P) —= 1
T
1 Z(P Autc(P)—>Aut; —>1

Since the diagram commutes, there is an isomorphism between the kernel of the
second and third rows because the third row is isomorphism. Hence the first
condition satisfied O(P) — Cr(P) — Z(P) is exact.
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Now take g € 7 such that ¢Sg~!. We obtain a commutative diagram

1 1

O(P) N(P) Aut.(P)
l lw—»gacgl lqﬁ'—»p(g)dw(g)l
1—=0O(gPg™ ') — N,(9Pg™") —= Autg(gPg™') —1

Since we have isomorphisms in third and fourth rows, we must have isomorphism
in the second row. So, gO(P)g~! = O(gPg™1).

To prove O is signalizer functor, we need to show that for P < @), we have
O(Q) < ©(P). Fix P < Q. Let ¢ = d(e) € L(P,Q) where e € Ng(P, Q) gives
inclusion. Define Aut,(Q, |p) := {¢ € Aut,(Q)|I¢’ € Aut,(P) such that ¢poé =
eo@'} and Auts(P,19) := {¢' € Aut,(Q)|3¢ € Aut,(Q) such that poé = éo¢'}.
From Corollary 3.10 in [13], we have cancellation property. More formally we

have, ¢1 0é = ¢p0é = ¢ = ¢ and é 0 ¢| = €0 ¢y = ¢} = ¢},.

So we can send ¢ € Aut,(Q) to the unique ¢ and vice versa similarly. So we

have an isomorphism

Autz(Q, |p) = Aut,(P,19).

Let N = N.(Q)()N:(P). The preimage of Aut.(Q,|p) under the map p :
N.(Q) — Autz(Q) is N since if g is an element in the kernel we have g €
N,(Q) and p(g) € Autz(Q, | p) which implies that g € N,(P). Hence, ker(N 22
Autz(Q, lp)) = N nker(p) = N O(Q) = O(Q). So we obtain a commutative
diagram

Autz(@Q, Lp)

=
IIe

AutL(P, TQ>

Here, O(P) (1N = ker(pp) = ker(pg) = O(Q). Hence, ©(Q) < O(P), con-

cluding the proof of that © is signalizer functor.

For (iii): take any ¢ € F(P, Q). Since F = Fg(m), g € 7 such that c4|p = ¢

63



(Here, by ¢,|p we mean restriction to P of the conjugation by g map in 7). Then

Bce, : B — B is homotopic to the identity Bi : Bm — Bm. Then the diagram

commutes up to homotopy

i3 ;
Bp 2*, pg _Bi, Bx

[z
Big Bi
BQ » BS Br.

~

Applying H*(—;F,), we get that

H*(Br:F,) s s H*(BS;F,)
Big*
H*(BP;F,) < - H*(BQ:F,)

commutes for any ¢ € F.

Then the image of the map resf = Bil* contains only F-stable elements of
H*(BS;F,) that is
Bi*(H*(Bm;F,)) < H*(F).

BiYg f

For the composition 6 : BS > B >
0%« H*(|L|};F,) — H*(F) < H*(BS;F,) is an isomorphism by the Theorem 5.8

in [24]. Here we use f* to obtain the splitting we need. We have the composition

L|} , we have that

6% : H(L|}:F,) —— H*(Bm;F,) -2 H*(F)

is isomorphism. Hence, res% : H*(m,F,) — H*(S,F,) has image exactly H*(F)
and splits by the map f* o (6*)~!. Then, the splitting gives the decomposition

H*(m;F,) = H*(F;F,) @ ker(resg).
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6.2 Cohomology of Signalizer Groups

For an arbitrary fusion system the cohomology of the associated centric linking
system and the cohomology of m can be compared similarly using a spectral
sequence (see [15, Theorem VII.6.3]). This gives a long exact sequence described
in [4, Theorem 1.3]. The main ingredient for this is the fact that cohomology of
O(P) is zero for dimensions i = 2 in mod p coefficients. Now, we prove this fact

using group theory.

Proposition 6.2.1. Let F = Fg be saturated. Assume m is an infinite group
realizing F obtained by Leary-Stancu model or Robinson model or any other model
giwen by graph of groups. Let 6 be a signalizer functor on m such that L is a
quotient of the transporter system TE(mw). Then, for any P € F¢ and for any
i =2, we have H;(6(P);F,) = 0.

Proof. We have F = Fg(m). Take any F-centric subgroup P of S. Assume for
a non-trivial finite p-group @, we have ) < 0(P). Since 0(P) centralizes P, @
centralizes P. So P() is a p-subgroup of m. Since S is a Sylow p-subgroup of
7, there exists g € 7 such that gPQg¢g ' = S. For the groups P’ := gPg~! and
Q' = gQg ', we know that P’ and Q' are subgroups of S, and P’ is F-centric,
and @’ centralizes P’. Then, we say Q)" < Z(P'). Hence, Q < Z(P). However,
@) was a subset of §(P) which has a trivial intersection with Z(P). So we get
a contradiction with the assumption that (P) has non-trivial p-subgroup. The

result follows. ]
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