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ABSTRACT

COHOMOLOGY OF INFINITE GROUPS REALIZING
FUSION SYSTEMS

Muhammed Said Gündoğan

Ph.D. in Mathematics

Advisor: Ergün Yalçın

September 2019

Given a fusion system F defined on a p-group S, there exist infinite group

models, constructed by Leary and Stancu, and Robinson, that realize F . We

study these models when F is a fusion system of a finite group G. If the fusion

system is given by a finite group, then it is known that the cohomology of the

fusion system and the Fp-cohomology of the group are the same. However, this

is not true in general when the group is infinite. For the fusion system F given

by finite group G, the first main result gives a formula for the difference between

the cohomology of an infinite group model π realizing the fusion F and the

cohomology of the fusion system. The second main result gives an infinite family

of examples for which the cohomology of the infinite group obtained by using the

Robinson model is different from the cohomology of the fusion system. The third

main result gives a new method for the realizing fusion system of a finite group

acting on a graph. We apply this method to the case where the group has p-rank

2, in which case the cohomology ring of the fusion system is isomorphic to the

cohomology of the group.

Keywords: Fusion Systems, Cohomology of Groups, Cohomology of Fusion Sys-

tems, Graph of Groups.
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ÖZET

FÜZYON SİSTEMLERİNİ GERÇEKLEYEN SONSUZ
GRUPLARIN KOHOMOLOJİSİ

Muhammed Said Gündoğan

Matematik, Doktora

Tez Danışmanı: Ergün Yalçın

Eylül 2019

S bir sonlu p-grup ve F de S üzerinde tanımlı bir füzyon sistemi olsun.

Leary-Stancu ve Robinson bu F füzyonunu gerçekleyen sonsuz grup modelleri

vermişlerdir. Biz bu modelleri füzyon sisteminin aslında sonlu bir G grubundan

gelmiş olduğu durumlarda çalıştık. Füzyon sistemi bir sonlu grup tarafından

verildiğinde, füzyon sisteminin kohomolojisi ile grubun Fp kohomolojisinin aynı

olduğu bilinmektedir. Fakat bu sonsuz gruplar için her zaman doğru değildir. İlk

ana sonuç, sonlu füzyonlar için füzyonu gerçekleyen sonsuz grubun kohomolojisi

ile füzyonun kohomolojisinin ilişkisini formüle etmek oldu. İkinci ana sonuçta bu

formüldeki farkın sıfır olmadığı duruma sonsuz bir aileyi örnek gösterdik. Üçüncü

ana sonuçta ise füzyonun p rankı 2 olan sonlu bir gruptan geldiği durumda yeni bir

model bulduk. Bu sonsuz grup modeli hem füzyonu gerçekliyor hem de kohomolo-

jisini tam olarak veriyor. Bu bölümde ortaya koyduğumuz yeni yöntem bir sonlu

grubun bir altgrup posetine yaptığı etkiyi kullanarak yeni füzyon gerçekleyen

sonsuz gruplar bulmak.

Anahtar sözcükler : Füzyon Sistemleri, Grup Kohomolojisi, Grup Grafları,

Füzyon Sistemlerinin Kohomolojisi.
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Chapter 1

Introduction

Let p be prime and G be a discrete group. Let S be a finite subgroup of G having

order a power of p. We say S is a Sylow p-subgroup of G if any p-subgroup of G

is a conjugate to a subgroup of S in G. By Sylow Theorems, if G is finite then

it has a Sylow p-subgroup. However, there are some infinite groups that do not

have any Sylow p-subgroups. For example, the group C3 ˚ C3 does not have any

Sylow 3-subgroups, where C3 is the cyclic group of order 3.

For discrete group G with Sylow p-subgroup S, we define the fusion system

on S given by G as the category with objects as all the subgroups of S and

morphisms given by conjugations of elements of G. We denote this by FSpGq.

An abstract fusion system defined on a p-subgroup S is a category with objects

as subgroups of S and morphisms that satisfies some conditions explained in

Definition 3.1.1. Given a fusion system F defined on a p-group S, if there exists

a group G with Sylow p-subgroup S such that F “ FSpGq, we say G realizes the

fusion F . Chapter 3.1 is devoted to the theory of the fusion systems.

Leary-Stancu [1] and Robinson [2] give infinite group models realizing fusion

systems. That means given a fusion system S, there are infinite groups realizing

the fusion F . However, we may not find a finite group realizing the fusion F . We

say F is a finite fusion if there exists a finite group G realizing F .
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Leary-Stancu and Robinson uses the method of graphs of groups to construct

infinite group models realizing fusion systems. The theory of graph of groups is

discussed in Chapter 2 which is the first preliminary chapter of the thesis.

Assume G is a finite group with Sylow p-subgroup S and F “ FSpGq. Let π be

an infinite group realizing the fusion F constructed via Robinson or Leary-Stancu

model. In this case, there is a homomorphism χ : π Ñ G that satisfies some

properties. We call such a homomorphism storing homomorphism (see Definition

3.3.3). This homomorphism is used to understand the relation between their

cohomology groups. These infinite group constructions and our new definition of

“storing homomorphism” are explained in Section 3.3.

The cohomology of the fusion system F is defined as the inverse limit

H˚
pFq :“ lim

PPF
H˚
pP ;Fpq

or, equivalently, as the F -stable elements in H˚pS;Fpq. For finite fusions, by a

theorem of Cartan-Eilenberg we have H˚pFq – H˚pG,Fpq where G is the finite

group realizing F . However, for infinite groups this isomorphism does not hold

in general.

Let G be a group with Sylow p-subgroup S. For a fusion system F defined

on S, we say that G realizes the fusion F and its cohomology if G realizes the

fusion and if H˚pFq – H˚pG;Fpq. The infinite group models of Robinson and

Leary-Stancu do not realize the cohomology of the fusion system F , in general.

Counterexamples were already known and we give an infinite family of examples

in Chapter 4. The question of whether there exists an infinite group model

realizing F and its cohomology given a fusion F is still open.

In Chapter 4, we present our main results about the cohomology of infinite

groups realizing fusion systems. Our first theorem is about explaining the differ-

ence between the cohomology of a given finite fusion system and the cohomology

of an infinite group model realizing the fusion.

We say H controls p-fusion in G if H ă G such that FSpGq “ FSpHq. We say

G is p-minimal if G has no proper subgroup H controlling p-fusion.

2



Main Theorem 1. Let F “ FSpGq be a fusion system of a finite group G.

Assume that G is p-minimal, and let π denote the infinite group realizing F
obtained by either the Leary-Stancu model or the Robinson model. Then there is

a group extension 1 Ñ F Ñ π Ñ GÑ 1 where F is a free group, and there is an

isomorphism of cohomology groups

H˚´1
pG; HompFab,Fpqq ‘H˚

pFq – H˚
pπ;Fpq

where Fab :“ F {rF, F s denotes the abelianization of F .

As we state in Theorem 6.1.10, Libman and Seeliger show that H˚pFq is a

direct summand of H˚pπ;Fpq but the difference kerpresπSq is not calculated. Here,

in the first main theorem, we calculate the difference for finite fusion systems.

We have an example of a fusion system where in the Leary-Stancu model, the

difference between the cohomology of the fusion system and the cohomology of

the infinite group realizing fusion system is not zero. Our second main theorem

gives infinitely many examples for the Robinson model where the difference in

the previous theorem is not zero.

Main Theorem 2. Let G “ GLpn, 2q for n ě 5. Let S be the Sylow 2-subgroup

consisting of upper triangular matrices in G. Let pG, Y q be the graph of groups

constructed according to Robinson model for F “ FSpGq. Then we have

H2
pFq fl H2

pπpG, Y q,F2q.

Since there are examples where Leary-Stancu model or Robinson model do

not realize the cohomology of the fusion, we try to find a new model that realizes

fusion and its cohomology. In Chapter 5, we give the method of obtaining infinite

group models realizing fusion systems by using subgroup posets. By using an

action of a group on its subgroup poset, we obtain a graph of groups which

has a fundamental group realizing the fusion under certain conditions. By using

this method we find a new model that realizes fusion and its cohomology for

finite fusion of p-rank 2 groups. Here, we say a group G has p-rank n, if n

3



is the maximum number such that there exists a subgroup of G isomorphic to

pCpq
n :“ Cp ˆ Cp ˆ Cp ˆ ¨ ¨ ¨ ˆ Cp

loooooooooooooomoooooooooooooon

n copies

. We denote this by rankppGq “ n.

Main Theorem 3. Assume G is a finite group with Sylow p-subgroup S and

rankppGq “ 2. Let X be the poset of elementary abelian subgroups of S. Then

Γ :“ π1pEG
Ś

GXq realizes the fusion of G on S, i.e. FSpΓq “ FSpGq. Moreover,

there is an isomorphism of Fp-cohomology groups H˚pΓ,Fpq – H˚pG,Fpq.

In Chapter 6, we introduce the theory of the linking systems, and give the proof

of the main theorem of the paper [3]. This theorem shows that the cohomology

of the fusion system is a direct summand of the Fp-cohomology of the infinite

group model realizing the fusion under some conditions on the model. Then, we

give a group theoretic proof of the fact that the Fp-cohomology of θpP q is zero for

dimensions i ě 2. This fact is used in our paper [4] to find a long exact sequence

from the spectral sequence associated with an extension of a category (see [4,

Theorem 1.3]).
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Chapter 2

Graph of Groups

The functor π1 : Top Ñ Grp sends a topological space X to its fundamental

group π1pXq. In the first definition of this chapter, we introduce the functor

Kp´, 1q : Grp Ñ Top that sends a group G to a topological space which has

fundamental group isomorphic to the group G. These two functors give a relation

between the category of groups and the category of topological spaces. In the

reference [5], the graph of groups considered as a topological method in group

theory where the relationship between the categories of groups and topological

spaces used. In this method, we take several groups indexed by a graph, and

glue their corresponding topological spaces, then we get a group by taking the

fundamental group of the last total space. After introducing this theory from [5],

we speak briefly of the algebraic construction of the same theory from [6].

2.1 KpG, 1q spaces

Definition 2.1.1. Let Y be a topological space. A covering space of Y is a

topological space X such that there is a continuous surjective map p : X Ñ Y

which satisfies that for any y P Y , there exists an open neighborhood U of y, such

that the preimage p´1pUq is a union of disjoint open sets in X, each of which is

5



mapped homeomorphically onto U by p.

A covering space is a universal covering space if it is simply connected.

Definition 2.1.2. Let G be a discrete group. A topological space Y is called a

K(G,1) space if it satisfies the following conditions:

(i) Y is connected.

(ii) π1Y “ G.

(iii) The universal cover X of Y is contractible.

The circle S1 is a KpZ, 1q because the line, the universal cover of S1, is con-

tractible, and S1 is connected with π1pS
1q “ Z. The infinite dimensional real

projective space RP8 is a KpZ{2Z, 1q.

Let G be a group. As shown in [7, page 89], the classifying space construction

for one object category G gives a CW-complex which is a KpG, 1q. Then, we

can always refer to a CW-complex KpG, 1q for any group G. Also, it is shown

that the homotopy type of a CW-complex KpG, 1q is uniquely determined by G.

Then we state the following result proven in [7].

Theorem 2.1.3. For any group G, there exists a CW-complex KpG, 1q which is

unique up to homotopy.

Remark 2.1.4. This theorem is crucial for the well-definedness of the funda-

mental group of a graph of groups. In the construction of the fundamental group

of a graph of groups, we glue CW-complex KpG, 1q spaces and take the funda-

mental group of the glued space. Since a CW-complex KpG, 1q space unique up

to homotopy, the total glued space has fundamental group independent of choice

of CW-complex KpG, 1q’s. These arguments are explained in the next section.

6



2.2 Graph of Groups

In this section, we introduce the theory of Graph of Groups from the references [7]

which has a short but well-explained introduction, and [5] which has a topological

approach for graph of groups. Also we have [6] for algebraic approach for the

theory that will be discussed later.

Definition 2.2.1. An abstract graph Γ consists of two sets EpΓq and V(Γ), called

the edges and vertices of Γ, an involution on EpΓq which sends e to ē, where e ‰ ē,

and a map B0 :EpΓq Ñ V(Γ).

We define B1e :“ B0ē and say that e is an edge from B0e to B1e.

Definition 2.2.2. A graph of groups pG, Y q consists of an abstract graph Y

(which will always be assumed to be connected) together with a function G as-

signing to each vertex v of Y a group Gv and to each edge e a group Ge, with

Gē “ Ge, and an injective homomorphism φe : Ge Ñ Gv when v “ B0peq.

From now on, we construct the theory of graph of groups topologically as it is

done in r5s. Then, we will speak briefly of the algebraic approach in [6].

Definition 2.2.3.

(i) A graph of topological spaces consists of an abstract graph Y together with a

function assigning to each vertex v of Y a topological space Xv and to each edge

e a topological space Xe , with Xē “ Xe, and a continuous map fe : Xe Ñ Xv,

for v “ B0peq, which is injective on homotopy groups.

(ii) A total space XpG, Y q corresponding to above graph of spaces is the quotient

of

ď

vPV pY q

Xv Y
ď

ePEpY q

pXe ˆ r0, 1sq

by the identifications

7



Xe ˆ r0, 1s Ñ Xē ˆ r0, 1s by px, tq ÞÑ px, 1´ tq

Xe ˆ t0u Ñ XB0e by px, 0q ÞÑ fepxq.

Here, if we start with CW-complexes and glue them via cellular maps, we will

obtain a CW-complex as a glued space.

Definition 2.2.4. Given a graph of groups pG, Y q with vertex groups Gv for a

vertex v and edge groups Ge for an edge e and injective homomorphisms φe :

Ge Ñ Gv. We construct the graph of topological spaces by assigning a vertex

v to a CW-complex KpGv, 1q and an edge e to a CW-complex KpGe, 1q with

injective cellular maps fe on edges so that they induce φe homomorphisms.

The fundamental group of the total space of this graph of spaces called the

fundamental group of the graph of groups which we denote by πpG, Y q.

Example 2.2.5. (Amalgamation) Consider a graph consisting of one edge with

two vertices. Let A and B be the vertex groups and C be the edge group with

two monomorphisms A Ðâ C ãÑ B. By Van Kampen theorem, the fundamental

group of the graph of groups gives the amalgamated product A ˚C B which is

the quotient of the free product A ˚ B by identifying two images of C under

monomorphism.

Example 2.2.6. (HNN product) Consider an abstract graph with one edge with

one vertex, i.e. the graph is just a loop. If the vertex group is A and edge group is

C and monomorphism the identity embedding C ãÑ A and φ : C ãÑ A, we obtain

an HNN product A˚C which is the group defined by xA, t | tct´1 “ φpcq, @c P Cy

as explained in [5].

The fundamental group of a graph of groups defined algebraically in [6]. Let

pG, Y q be a graph of groups. Take a spanning tree T in Y . For an edge e and

a P Ge, we denote the image of a in φe by ae. Let E be the free group with

generator set as EpY q. Define F pG, Y q as the quotient group of the free product

E ˚ p ˚
vPV pY q

Gvq

8



by the normal subgroup N , where N is the normal closure of the relations

eaee´1
“ aē and ē “ e´1

for all e P EpY q and a P Ge. The group πpG, Y, T q is defined as the quotient group

of F pG, Y q subject to the relations e “ 1 if e P EpY q. It is shown in [6, Proposition

20]), the group πpG, Y, T q is independent of the choice of the spanning tree T . So

we write πpG, Y q instead of πpG, Y, T q. This definition and the Definition 2.2.4

are equivalent as shown in [8, page 204].

Theorem 2.2.7. Let pG, Y q be a graph of groups. The total space of the corre-

sponding graph of spaces has a contractible universal covering. For any vertex

group Gv we have an injective homomorphism Gv Ñ πpG, Y q

Here, we always work with KpG, 1q-spaces which are CW-complexes in order

to construct theory carefully.

Proof. Consider the corresponding graph of spaces. We have KpGv, 1q space Xv

for a vertex v and KpGe, 1q space Xe for an edge e. Let X be the total space of

the corresponding graph of spaces. We will show that the universal cover rX is

contractible.

For any vertex v P Y , define Lv “ Xv

Ť

p
Ť

B0e“v

Xe ˆ r0, 1sq where we have

intersections Xv

Ş

pXe ˆ r0, 1sq “ Xe ˆ t0u as we glued in the definition of total

space.

Fix a vertex v0 and let Y0 be the universal cover of Lv0 . The universal cover

Y0 is contractible because it is a union of a universal cover ĂXv and copies of

universal covers ĂXe for edges satisfying B0peq “ v0 where we can contract the

copies ĂXeˆr0, 1s into ĂXv which is also contractible. Here, since the maps Ge Ñ Gv

are injective, we have deformation retraction from ĂXe ˆ r0, 1s to ĂXe ˆ t0u which

is a copy of ĂXv due to gluing.

We define X1 by adding Y0 to the spaces ĂXv’s for vertices satisfying B1peq “ v

for some edge e we considered in Y0. We define Y1 by adding X1 to spaces ĂXe for

9



edges e satisfying B0peq “ v for some vertex v we considered in the last step. We

have an obvious deformation retractions Y1 Ñ X1 Ñ Y0 Ñ ˚. Hence, Y1 is also

contractible.

Step by step, we can construct Yn which is also contractible. The space Y “
Ť

ně1

Yn is contractible and evenly covers the total space X. Hence, X has a

contractible universal cover.

Take any vertex v P Y . Consider the inclusion i : Xv Ñ X. Take any

loop γ : S1 Ñ Xv. Assume the loop α “ i ˝ γ is null-homotopic. Then the

lift rα : r0, 1s Ñ rX is also null-homotopic in the universal cover rX. The lift is

contained in one of the copies of the ĂXv in rX (see [5, page 166] for more details).

Since rα is null-homotopic in one of the copies of ĂXv, γ is null-homotopic in Xv.

Hence, the map i induces injective homomorphism in homotopy groups. In other

words, the induced homomorphism i˚ : Gv Ñ πpG, Y q is injective.

2.3 Groups Acting on Graphs

In this section we mention how a group action on a graph gives a graph of groups

structure. Here, we only consider group actions without inversions that means if

an element of the group fixes a vertex of an edge then it fixes the edge. In other

words g ¨ e “ ē is forbidden for g P G and e P EpY q. These actions are also called

cellular actions. In fact, given a non-cellular group action on a graph, we can

obtain a cellular action by applying a barycentric subdivision.

Lemma 2.3.1. Let Γ be a quotient graph of a graph Z. For any tree T in Γ there

exists a lift T 1 in Z such that T 1 is also a tree which is isomorphic to T .

Proof. Take any vertex v1 in T and any lift of w1 in Z. Then consider all the

incident edges of the vertex v1. We take the lifts of theses edges so that the

lifts are incident to w1. Then we continue in this way. For any edge e in T , we

10



consider a lift of e such that e1 incident to the current construction of the graph.

This construction gives a connected lift T 1 of the tree T . Here, T 1 must be a

tree because otherwise any loop in T 1 gives an image loop in T . Note that, the

construction of the lift T 1 of T gives an isomorphism between them.

Theorem 2.3.2 (Scott-Wall [5]). Let G be the fundamental group of a graph of

groups pG, Y q. Let rX be the universal cover of the total space X of the graph

of groups as we constructed in Theorem 2.2.7. We consider the standard G-

action on rX. There exists a tree Z with a cellular G-action such that we have an

isomorphism of graphs f : Z{GÑ Y and a G-equivariant map h : rX Ñ Z.

Proof. In the proof of Theorem 2.2.7, we constructed the universal cover rX of the

total space X of the graph of groups pG, Y q. Since πpG, Y q is the fundamental

group of X, by definition, πpG, Y q acts on the universal cover rX. The space rX

consists of copies of ĂXv’s and ĂXe ˆ r0, 1s’s.

Let F : rX ˆ r0, 1s Ñ rX be the deformation retract obtained by the contrac-

tions of ĂXv’s and ĂXe’s. The restriction of F to a copy of ĂXv for a vertex v is

the contraction of ĂXv and the restriction of F to a copy of a ĂXe ˆ r0, 1s is the

deformation retract of ĂXe ˆ r0, 1s to r0, 1s. Hence, we obtain a homotopy from

rX to a graph Z where we have vertices in Z for each copy of ĂXv’s in rX and we

have edges in Z for each copy of ĂXe in rX. Since rX is contractible, Z is also

contractible which means it is a tree.

The πpG, Y q-action on rX induces πpG, Y q-action on the tree Z where the

homotopy respects this action. Then we obtain a πpG, Y q-equivariant map

h : rX Ñ Z.

In the proof of the last theorem, the construction of an action on a tree from the

graph of groups pG, Y q is called the corresponding πpG, Y q-action on a tree. The

next theorem says that we can restore the graph of groups from its corresponding

pπpG, Y qq-action on a tree up to conjugate monomorphisms.

Theorem 2.3.3 (Scott-Wall [5]). With the notations and hypothesis in Theorem

2.3.2, from G-action on Z, we can obtain a graph of groups pG 1, Z{Gq such that

11



the corresponding vertex and edge groups of the graph of groups are isomorphic

and the monomorphisms may differ by a conjugation with an element g P G.

Proof. Now, we construct a graph of groups from the G “ πpG, Y q-action on Z.

First, we choose a maximal tree T in the quotient graph Γ :“ Z{G. From the

Lemma 2.3.1, we can take a lift T 1 of T in Z so that T 1 is isomorphic to T . Since

T and T 1 are isomorphic trees, we can use stabilizers of lifts of vertices and edges

as vertex and edge groups. For a vertex v P T , we assign the stabilizer of the lift

of the vertex in T 1 (i.e. for v P T we have vertex group Gv which is the stabilizer

of v1 P T where v1 is the lift of v in T 1). Similarly, for an edge e P T , we assign

edge group Ge which the stabilizer of e1 P T 1 where e1 is the lift of e in T 1. The

stabilizer of an edge e1 P T 1 is a subgroup of the stabilizers of the end points of

e1. Then we have obvious monomorphisms from edges to vertices in T .

Now, we have a graph of group structure on T . Then, we need to extend this

structure to Γ. We have vertex groups for all vertices v P Γ. So we add edge

groups and monomorphisms for edges e P Γ ´ T . Take any e P Γ ´ T with end

points v and w. There exists a unique lift e1 of the edge e such that e1 has end

point v1 where v1 is the lift of v satisfying v1 P T 1. The other end point of e1 is g ¨w1

for some g P G where w1 is the lift of w in T 1. Then the stabilizer Ge :“ Stabpe1q

of e1 is a subgroup of Stabpv1q “ Gv and Stabpgw1q “ gStabpw1qg´1 “ gGwg
´1.

Then we assign Ge as edge group for e P Γ and monomorphisms φe1 : Ge ãÑ Gv as

inclusion and φe2 : Ge Ñ Gw by sending x ÞÑ g´1xg. By completing this process

for all e P Γ´ T , we obtain a new graph of groups pG 1,Γq.

For an edge (or vertex) x P Y , we have one G-orbit of ĂXx in rX which corre-

sponds one G-orbit in Z. Then, we have exactly one edge (or vertex) in Γ “ Z{G,

constructing the desired isomorphism Y Ñ Γ. Moreover, for an edge group (or

vertex group) Gx in pG, Y q, we have G-orbits of ĂXx in rX which corresponds a

G-orbit where any point has stabilizer isomorphic to Gx. Then, the map Y Ñ Γ

sends x to an edge (or vertex) having edge group (or vertex group) isomorphic to

Gx. Since the construction of monomorphisms in pG 1,Γq depend on the choice of

maximal tree in Γ, they may differ by a conjugation by an element of g P G.
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In the proof of the last theorem, the construction of graph of groups ppGq1, Z{Gq

from a G-action on a tree Z is called the graph of groups obtained from the G-

action on the tree Z.

Example 2.3.4. Let G “ A ˚C B be as in Example 2.2.5. Then G acts a tree Z

induced by the G-action on ĂXG as we see in the proof of Theorem 2.3.2. Then the

vertices of Z corresponds to KpA, 1q-complexes and KpB, 1q-complexes. These

spaces having stabilizers isomorphic to A and B respectively under the action of

G. This gives that the vertices of Z having stabilizers A or B. Similarly, we can

deduce that the edges of Z having stabilizers isomorphic to C.

Now, take any path starting from the reference point of a copy of KpA, 1q-

complex to the reference point of KpA, 1q-complex in the universal cover ĂXG of

the total space of the graph of groups. After dividing by G-action this path must

become a loop. This shows that all these KpA, 1q-complexes are in the same

orbit under the G-action on ĂXG. Then, passing to Z, the tree Z has two vertex

orbits under the G-action which are those having stabilizer A and those having

stabilizer B. Similarly, Z has one edge orbit under the G-action which having

stabilizer C.

For the generalization of the construction of a graph of groups for a G-action

on a tree to all graphs, we have the following result

Proposition 2.3.5 (page 84 in [9]). Let G acts on a graph X. For the construc-

tion of the graph of groups pG, Y q for this action, we have πpG, Y q “ πpEGˆGXq.

Here, we can consider EG as the universal cover of a CW-complex KpG, 1q

space.

Proof. Here, Y “ X{G from the construction. Let U be a CW-complex KpG, 1q

space with universal cover rU – EG. For a subgroup H ă G, we have that rU{H is

a KpH, 1q space having CW-complex structure. Define the map f : rU ˆX Ñ X

by forgetting the first coordinate. We induce the map f̄ : rU ˆG X Ñ X{G “ Y

in quotient spaces. Here, for any vertex v P Y we have f̄´1pvq “ rU{Gv which
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is a KpGv, 1q. Here, Gv is the stabilizer of a lift of v, or equivalent the vertex

group corresponding to v in the above construction. Similarly, we have KpGe, 1q

spaces for edges glued with vertices. Hence, rU ˆGX is a realization of the graph

of groups pG, Y q. That means πpG, Y q “ πprU ˆG Xq.

From now on, we construct the theory of graph of groups in a topological way

as [5] does. This theory can be constructed in an algebraic approach as it is done

in [6]. Now we speak briefly of the theory in [6]. We start a group G acting on a

graph X. We construct a graph of groups pG, Y q as we explain in Construction

1. Then we construct the tree T “ rXpG, Y, T q as explained in [6, page 51]. Then

we have the following theorem.

Theorem 2.3.6 (Serre, [6]). With the above notation and hypothesis, the follow-

ing properties are equivalent

i-) X is a tree.

ii-) ψ : rX Ñ X is an isomorphism.

iii-) πpG, Y, T q φ
ÝÑ G is an isomorphism.

Proof. See [6, page 55].

With our topological notations and hypothesis used in this chapter, the same

theorem can be stated. Assume G acts on a connected graph X without inver-

sion. Let Y :“ G{X and pG, Y q be the graph of groups constructed from that

action. We consider the corresponding action of πpG, Y q on a tree T . We have a

surjective map of graphs ψ : T Ñ X and a surjective homomorphism of groups

φ : πpG, Y q Ñ G so that the following are equivalent

i-) X is a tree.

ii-) ψ : T Ñ X is an isomorphism.

14



iii-) πpG, Y q φ
ÝÑ G is an isomorphism.

Here, we point a topological approach for the proof of Theorem 2.3.6. From

Proposition 2.3.5, we have πpG, Y q “ πpEG ˆG Xq. Define f : EG ˆ X Ñ EG

by annihilating X. Since f is G-map, we can induce f̄ : EG ˆG X Ñ BG by

dividing via G-action. f̄ induces in homotopy groups φ : πpEG ˆG Xq Ñ G or

equivalently, φ : πpG, Y q Ñ G. Since any loop in BG has a non-trivial preimage

loop in EG ˆG X under f̄ . We can say φ is surjective. As we explained before,

we construct T by using the universal cover of the total space EG ˆG X of the

graph of groups πpG, Y q. Then, the surjective map from the universal cover to

the cover EG ˆG X gives that surjective map ψ : T Ñ X. For (i) ðñ (ii) ,

since T is a tree and T
ψ
ÝÑ X induced from a covering, X is tree if and only if

ψ is an isomorphism. For (i) ðñ (iii) , from Theorem 2.3.2, we know that

X{G “ Y is isomorphic to T {πpG, Y q. If X is tree then T is isomorphic to X

and the surjective homomorphism πpG, Y q φ
ÝÑ G must be an isomorphism. And,

if πpG, Y q φ
ÝÑ G is isomorphism then T must be isomorphic to X.

Now we have a corollary of Theorem 2.3.6 on the subgroups of πpG,Yq.

Corollary 2.3.7. Let pG, Y q be a graph of groups with vertex groups Gv’s and

edge groups Ge’s. If H ă πpG, Y q, then H is the fundamental group of a graph

of groups with vertex groups as subgroups of conjugates Gv’s and edge groups as

subgroups of conjugates of Ge’s.

Proof. We construct the πpG, Y q-action on a tree Z. Since H is a subgroup of

πpG, Y q, H acts on tree Z with stabilizers as conjugates of subgroups of vertex

and edge groups of pG, Y q. From Theorem 2.3.6, H-action on Z gives a graph of

groups pH, Y0q where vertex groups are subgroups of conjugates of Gv’s and edge

groups are subgroups of conjugates of Ge’s with πpH, Y0q – H.

Then, we have a useful corollary of the previous corollary.

Corollary 2.3.8. Let H be a subgroup of πpG, Y q. If H intersects trivially with

all the vertex groups of pG, Y q, then H is free.
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Proof. If H intersects trivially with all the vertex and edge groups of pG, Y q then

the vertex and edge groups of the corresponding graph of groups of H are all

trivial. Then, H is the fundamental group of a graph. Hence, H is free.
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2.4 Cohomology of a Graph of Groups

In this section, we obtain homological results using group actions on trees.

Given a CW-complex X, we write C˚pXq for cellular chain complex of X. If X

is a graph, then CnpXq “ 0 for n ě 2. A graph is called a tree if it is connected

and has no loops.

Lemma 2.4.1. [6, page 126] For the chain complex of a tree X, we have an exact

sequence

0 Ñ C1pXq
d
ÝÑ C0pXq

ε
ÝÑ ZÑ 0.

Moreover, if a group G acts on X cellulary, the exact sequence above is an exact

sequence of ZG-modules.

Proof. Let E and V denote the egde and vertex sets of X, respectively. C1pXq

consists of the elements of the form
n
ř

i“1

niei where ei P E.

Now, we fix an orientation for edges of the graph X. In other words, for any

edge e the two vertices of it distinguished to be initial and final which are denoted

by B0peq and B1peq, respectively. By the way, we have two functions B0 and B1

from E to V . We assume these maps satisfy dpeq “ B1e´ B0e.

Assume d is not injective, then there exists a sum
n
ř

i“1

niei P ker d. Then,

0 “ dp
n
ÿ

i“1

nieiq “
n
ÿ

i“1

nidpeiq “
n
ÿ

i“1

nipB1ei ´ B0eiq

Then there exists ei1 such that B0ei1 “ B1e1 or B1ei1 “ B1e1 because of the cancel-

lations on the sum over vertices of these all edges. Without loss of generality, we

can assume B0ei1 “ B1e1. Similarly, without loss of generality, there exists ei2 such

that B0ei2 “ B1ei1 ... In this process, it is not important whether B0eik “ B1eik´1

or B1eik “ B1eik´1
. In any case, at the end our sequence e1ei1ei2 . . . ein will give

a cycle. Since there are finitely many terms on the sum
n
ř

i“1

nipB1ei ´ B0eiq, the

process will end up with a loop at a step we find ein such that it ends with the
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starting of e1(i.e. B1ein “ B0e1). Then the loop e1ei1ei2 . . . ein contradicts with

the assumption that X is a tree. To see the surjection of ε, take any vertex v and

any integer n, ε sends nv to n.

We only left with the exactness at C0pXq. Take any generator v2´ v1 of ker ε.

Since X is connected there exists a path e1e2 . . . en starting at v1 ending at v2 (i.e.

B0e1 “ v1, B1ei “ B0ei`1 and B1en “ v2. Hence, dp
n
ř

i“1

eiq “
n
ř

i“1

pB1ei´B0eiq “ v2´v1.

So, Im d “ ker ε concludes the proof of the first part.

The G-action on X induces actions on CipXq and make them ZG-modules.

The trivial G-action on Z makes it to be a trivial module. Since the actions on

CipXq and Z commutes with the maps d and ε, these maps become ZG-module

maps.

Theorem 2.4.2 (Serre, [6]). Let a group G acts on a tree X. Let Gv and opvq

denote the stabilizer and orbit of a vertex v, respectively. Similarly, Ge and opeq

denote the stabilizer and orbit of an edge e. And we denote orbit representative

set of vertices and edges by OV and OE respectively. For each G-modulo M , we

have a long exact cohomology sequence

¨ ¨ ¨ Ñ H i
pG,Zq Ñ

ź

vPOV

H i
pGv,Zq Ñ

ź

ePOE

H i
pGe,Zq Ñ H i`1

pG,Zq Ñ ¨ ¨ ¨ .

Proof. We have short exact sequence of ZG-modules,

0 Ñ C1pXq
d
ÝÑ C0pXq

ε
ÝÑ ZÑ 0.

Applying HomZGp´,Zq functor, we obtain long exact sequence in cohomology.

0 Ñ HomZGpZ,Zq Ñ HomZGpC0pXq,Zq Ñ HomZGpC1pXq,Zq Ñ

Ext1
ZGpZ,Zq Ñ Ext1

ZGpC0pXq,Zq Ñ Ext1
ZGpC1pXq,Zq Ñ ¨ ¨ ¨

Using orbit stabilizer theorem we get,

C1pXq “
ź

ePOE

Zopeq

“
ź

ePOE

ZrG{Ges.
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Similarly,

C0pXq “
ź

vPOV

Zopvq

“
ź

vPOV

ZrG{Gvs.

In Ext-groups we obtain,

ExtiZGpC0pXq,Zq “ ExtiZGp
ź

vPOV

ZrG{Gvs,Zq

“
ź

vPOV

ExtiZGpZrG{Gvs,Zq

“
ź

vPOV

H i
pGv,Zq.

where the last equality comes from the Eckmann-Shapiro Lemma (see [10] pg.47).

Similarly,

ExtiZGpC1pXq,Zq “ ExtiZGp
ź

ePOE

ZrG{Ges,Zq

“
ź

ePOE

ExtiZGpZrG{Ges,Zq

“
ź

ePOE

H i
pGe,Zq.

Substituting these in the long exact sequence and writing ExtiZGpZ,Zq “
H ipG,Zq gives that

0 Ñ HomZGpZ,Zq Ñ HomZGpC0pXq,Zq Ñ HomZGpC1pXq,Zq Ñ

H1
pG,Zq Ñ

ź

vPOV

H1
pGv,Zq Ñ

ź

ePOE

H1
pGe,Zq Ñ

H2
pG,Zq Ñ

ź

vPOV

H2
pGv,Zq Ñ

ź

ePOE

H2
pGe,Zq Ñ ¨ ¨ ¨

Here, we have

HomZGpZ,Zq “ H0
pG,Zq “ Z

Since a ZG-module homomorphism from C0pXq to Z is determined by G-orbit

representatives,

HomZGpC0pXq,Zq “
ź

vPOV

H0
pGv,Zq “

ź

vPOV

Z.
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Similarly,

HomZGpC1pXq,Zq “
ź

ePOE

H0
pGe,Zq “

ź

ePOE

Z.

With this theorem we can find a long exact sequence for the fundamental group

of graph of groups by considering the standard action of πpG, Y q on the tree Z

explained in Theorem 2.3.2. In this action, the Gv groups appear as stabilizer

groups of vertices of Z and Ge’s appear stabilizer groups of edges of Z. Then the

theorem gives a long exact sequence relating πpG, Y q with vertex and edge groups

homologically. For the simplest case, we can obtain Mayer-Vietoris sequence as

shown in the next example.

Example 2.4.3. Let G “ A ˚C B be an amalgamation of groups as in Example

2.3.4. Then corresponding action on tree has one edge orbit having stabilizer

group isomorphic to C and two vertex orbit having stabilizer groups isomorphic

to A and B. Then from the Theorem 2.4.2, we have

0 Ñ H0pG,Zq Ñ H0pA,Zq‘H0pB,Zq Ñ H0pC,Zq Ñ H1pG,Zq Ñ H1pA,Zq‘
H1pB,Zq Ñ H1pC,Zq Ñ H2pG,Zq Ñ H2pA,Zq ‘ H2pB,Zq Ñ H2pC,Zq Ñ ¨ ¨ ¨

which is the Mayer-Vietoris sequence for gluing a KpA, 1q-complex and a KpB, 1q-

complex along a KpC, 1q-complex to obtain a KpG, 1q-complex.
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Chapter 3

Graph of Groups and Realizing

Fusion Systems

In the first section of this chapter we present required theory of the fusion systems

mostly from the reference [11]. In the second section of this chapter, we give

infinite group models realizing fusion systems due to Robinson and Leary-Stancu.

In the third section, we construct these infinite group models for a fusion given

by a finite group G. We introduce the notion of storing homomorphism from the

fundamental group of a graph of groups to the group G. Later, we will use this

homomorphism to relate the cohomologies of these groups.

3.1 Fusion Systems

In this section, we give some needed background for the theory of fusion systems,

mostly from the reference [11].

We say S is a Sylow p-subgroup of a group G if for any p-subgroup Q of G

there exist a g P G such that gQg´1 P S. By Sylow theorems, it is known that

any finite group has at least one Sylow p-subgroup. However, it is not true for
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infinite groups in general. For example, the free product C3 ˚ C3 has no Sylow

3-subgroup.

Let S be a Sylow p-subgroup of a finite group G. A finite group fusion system

FSpGq is a category having objects as subgroups of S and morphisms are the

conjugations by elements in G. By forgetting G, we can define an abstract fusion

system on a finite p-group S with certain properties, as shown in the following

definition.

Definition 3.1.1. Let S be a finite p-group. A fusion system F on S is a category

has objects as subgroups of S and the morphism set FpP,Qq consists of injective

homomorphisms with following properties

i-) For any s P S and P ď S, the conjugation map cs : P Ñ S is contained in

FpP, Sq

ii-) For any φ : P Ñ Q in F , the corresponding isomorphism φ : P Ñ φpP q is

contained in FpP, φpP qq

iii-) For any group isomorphism β : P Ñ Q in FpP,Qq, the inverse map β´1 is in

FpQ,P q.

We say a fusion system F is finite if F “ FSpGq for some finite group G.

Most of the theorems and ideas of proofs in the theory fusion systems can

be done by mimicking their versions in group theory. For example, assume that

we have a group G and a p-subgroup P of G, we take a Sylow p-subgroup of

G which contains a Sylow p-subgroup of NGpP q. The corresponding argument

in the theory of fusion systems is “assume F “ FS and P ă S, we take an

F -conjugate Q ă S such that |NSpQq| is maximal along F -conjugates of P”.

Similar arguments in this theory motivates the following definition.

Definition 3.1.2. Let F be a fusion system on S. A subgroup P of S is said to

be fully F-normalized if for any Q that is F -conjugate to P , we have

|NSpP q| ě |NSpQq|.
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Obviously, for any P P F , there exists a fully F -normalized Q which is F -

conjugate to P .

Definition 3.1.3. Let F be a fusion system on S. We say F is saturated if

i-) AutSpSq is a Sylow p-subgroup of AutFpSq

ii-) For any φ : P Ñ S in F , if φpP q is fully F -normalized, then φ extends to a

morphism φ̄ : Nφ Ñ S where Nφ :“ tg P NSpP q|Dh P NSpφpP qq with φpgpg´1q “

hφppqh´1 @p P P u

It can be easily shown that any finite fusion system is saturated. By a finite

fusion system, we mean the fusion system can be realized by a finite group (i.e.

F “ FSpGq for some finite G).

Definition 3.1.4. Let P be a non-trivial p-subgroup of G. Then

i-) P is p-centric if ZpP q is Sylow p-subgroup of CGpP q.

ii-) P is p-radical if P “ OppNGpP qq.

Here, OppXq denotes the largest normal p-subgroup of X.

Definition 3.1.5. Let F be a fusion system on S. Then

i-) P is F-centric if for everyQ which is F -conjugate to P , we have CSpQq “ ZpQq.

ii-) P is F-radical if OppAutFpP qq “ InnpP q .

Here, being F -centric is a generalization of being p-centric. Although being

p-radical does not imply being F -radical, in general, the next lemma shows that

they are equivalent to p-centric groups.

Lemma 3.1.6. Let F “ FSpGq and P be a subgroup of S. Then,
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i-) P is p-centric if and only if it is F-centric.

ii-) P is F-centric and F-radical then it is p-radical and p-centric.

Proof. For i-), assume P is p-centric. Take any Q with Q “ gPg´1 for some g P G.

The automorphism cg of G sends P to Q and g´1Sg to S. Then, |Cg´1SgpP q| “

|CSpQq|. Since P is p-centric |Cg´1SgpP q| ď |ZpP q|. Then, |CSpQq| ď |ZpQq|.

Hence, CSpQq “ ZpQq, proving P is F -centric.

For the converse, assume P is F -centric. Let X be any Sylow p-subgroup of

CGpP q. Take g P G such that X contained in g´1Sg. The automorphism cg sends

P to Q, and X to gXg´1, and CGpP q to CGpQq, and g´1Sg to S. Since P is

F -centric, CSpQq “ ZpQq. Then,

gXg´1
ă CSpQq “ ZpQq “ gZpP qg´1

So, X is a subgroup of ZpP q. Hence, X “ ZpP q because X is a Sylow p-subgroup

of CGpP q, completing the first part.

For ii-), assume P is F -centric and F -radical. We have AutFpP q –

NGpP q{CGpP q and InnFpP q – PCGpP q{CGpP q. Q “ OppNGpP qq. Since P

normal in NGpP q, P ă Q. The subgroup QCGpP q is normal in NGpP q because Q

and CGpP q are normal in NGpP q. By correspondence, QCGpP q{CGpP q is normal

in NGpP q{CGpP q. So we must have P “ Q otherwise the maximum normal

p-subgroup of NGpP q{CGpP q would be greater than PCGpP q{CGpP q. Hence, P

is p-centric and p-radical.

From [12], we have an example shows that the converse of the second statement

of the last lemma is not true in general. We take the dihedral group

G “ D24 “ xa, b|a
12
“ b2

“ 1 and bab “ a´1
y

and its Sylow 2-subgroup S “ xa3, by. Let F “ FSpGq and P “ xa3y. Then P is

p-centric because ZpP q “ xa3y is a Sylow 2-subgroup of CGpP q “ xay . P is p-

radical as OppNGpP qq “ OppGq “ P . However, AutFpP q consists of two elements
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the identity and the conjugation by b whereas InnpP q has only one element, the

identity. Since OP pAutFpP q ‰ InnpP q, P is not F -radical.

3.1.1 Alperin Fusion Theorem

Alperin fusion theorem states that automorphisms of some family of subgroups

of S generate the whole fusion F “ FS. We will use this theorem for realizing

fusion systems. For example, if a group G contains S as a Sylow p-subgroup

and elements that realize the generators of the fusion system F then we can say

F Ă FSpGq.

Definition 3.1.7. Let F “ FS. A subgroup P of S is F-essential if P is F -

centric and OutFpQq “ AutFpP q{InnpP q contains a strongly p-embedded sub-

group.

Here, we say M is a strongly p-embedded subgroup of G if M contains a Sylow

p-subgroup of G and MXM g is a p1-group for all g P G\M . In this case, since for

any p-subgroup P of G, there exists g P G such that P X P g is trivial, G has no

normal p-subgroup (i.e. OppGq “ 1). That shows an F -essential subgroup must

be F -centric and F -radical.

Definition 3.1.8. Let F be a fusion system on a finite p-subgroup S. A family

F of subgroups of S is a conjugation family for F if F “ xAutFpUq|U P F y.

Theorem 3.1.9 (Alperin Fusion Theorem). Let F “ FS be a saturated fu-

sion system. Then, C “ tP |P is fully F-normalized essential subgroup of Su is

a conjugation family.

Proof. See page 122 in [11].

Remark 3.1.10. Obviously, any family containing C is a conjugation fam-

ily. Since essential subgroups are F -centric and F -radical, the family C cr “

tP |P is fully F -normalized F -centric F -radical subgroup of Su is a conjugation

family. Also C p “ tP |P is a p-centric p-radical subgroup of Su is a conjugation

family because C p Ą C cr Ą C .
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3.1.2 Model Theorem

The model theorem states for some fusion systems there exist a finite model group

realizing the fusion which is unique up to some condition. In this case, we will

say “let take the model group of F” to refer to this model theorem.

Definition 3.1.11. Let F “ FS and P ă S. We say P is normal in F if for any

morphism φ : QÑ R in F there exists a morphism φ̄ : QP Ñ QR such that the

restriction φ̄|P is an automorphism of P and φ̄|Q “ φ.

Definition 3.1.12. Let F “ FS be saturated. If there exists Q C S which is

F -centric and normal in F , we say F is constrained.

Theorem 3.1.13 (Broto-Castellana-Grodal-Levi-Oliver, [13]). Let F “ FS be

saturated and constrained. Then there exists unique finite group G with S as a

Sylow p-subgroup so that

i-) F “ FSpGq

ii-) Op1pGq “ 1

iii-) CGpOppGqq ď OppGq

We say G is the model for F .

Corollary 3.1.14. Let F “ FS be a saturated fusion system. If F “ xAutFpSqy,

then the finite model group for F exists.

Proof. S is F -centric because CSpSq “ ZpSq. S is normal in F because any

morphism in F can be extended to S. Since F is constrained saturated fusion

system the model theorem applies.
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3.2 Realizing Fusion Systems

For an abstract fusion system F on a p-group S, we say that G realizes the fusion

F if S is a Sylow p-subgroup of G and F “ FSpGq. Since there are abstract fusion

systems which cannot be realizable by finite groups, the theory of realization of

fusion systems includes infinite group models. In this case, the natural question

is that can we realize an abstract fusion system by using infinite groups. In 2007,

Robinson [2] write an infinite group model realizing an arbitrary abstract fusion

system. At the same year, Leary and Stancu [1] published a different infinite

group model realizing a given abstract fusion system. These models explained

below in terms of graph groups. However, for these models, we lose the property

that the Fp cohomology of the fusion system is the Fp cohomology of the finite

group it realizers. We cannot say this for these models. So finding an infinite

group model realizing an abstract fusion system with cohomology fits the fusion

systems cohomology is an open problem. Related to this, we quote a theorem

from [3] having a relation with the cohomology of the infinite group and the

cohomology of fusion for some special infinite group models.

Theorem 3.2.1 (Leary-Stancu, [1]). Let F be a fusion system on a p-group S

generated by morphisms fi : Pi Ñ Qi for 1 ď i ď r, where Pi’s and Qi’s are

subgroups of S.

We define a graph of groups pG, Y q so that Y is a graph having only one vertex

v and edges e1, e1, e2, e2, ..., er, er. We have vertex group Gv :“ S and edges groups

Gei “ Gei :“ Pi and the morphisms φei : Pi ãÑ S are inclusion and the morphisms

φei : Pi Ñ S are fi composed with inclusion into S monomorphisms.

Then the fundamental group of the graph of groups realizes the fusion system,

that is

F “ FSpπpG, Y qq.

Example 3.2.2. Let F “ FSpGq where G :“ S3 and S “ C3 is the Sylow 3-

subgroup of G. The fusion F can be generated by the nontrivial automorphism

of S. According to Leary-Stancu model, our graph of groups has vertex group as

S and the edge group S with two monomorphisms the identity and the nontrivial
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automorphism of S. Then, the infinite group π “ πpG, Y q “ C3 ¸ Z realizes F
(i.e. FSpπq “ F)

Theorem 3.2.3 (Robinson, [2]). Let F be a fusion system on a p-group S gen-

erated by the images FSipGiq under injective group homomorphisms fi : Si ãÑ S

for 1 ď i ď r.

We define a graph of groups pG, Y q so that Y has vertices v0, v1, v2, ..., vr and

edges ei, ei between v0 and vi for 1 ď i ď r. The vertex groups are Gv0 :“ S and

Gvi “ Gi for 1 ď i ď r. The edge groups are Gei “ Gei :“ Si and monomorphisms

φei : Si ãÑ S, φei : Si ãÑ Gi are inclusions.

Then the fundamental group of the graph of groups realizes the fusion system

that is

F “ FSpπpG, Y qq.

Since this construction does not determine the subfusions that generate F
and the realizations of these subfusions are not unique, there are many ways to

construct an infinite group realizing F according to the Robinson model. By

using Alperin Fusion theorem, the family of subfusions, where each subfusion is

generated by automorphisms of some fully F -normalized, F -centric and F -radical

subgroup of F , generates F . This makes the choice of subfusions FSipGiq unique.

We can also make unique the choice of realizations of these subfusions by using

the model theorem. This unique construction stated in the next example which

is the most famous way of constructing infinite group for realizing a saturated

fusion system according to Robinson model.

Example 3.2.4. Let F “ FS be saturated. Let R1, R2, ..., Rk be fully F -

normalized, F -centric and F -radical subgroups of S. Let Fi “ FRi be the

fusion system on Ri generated by the AutFpRiq. Then, by Alperin theorem

F1,F2, ...,Fk generates F . From Corollary 3.1.14, there is a unique model Li

for Fi. Now we construct the Robinson model by taking generators as FRipLiq .

Here, Li’s are the vertex groups and Ri’s are the edge groups. More explicitly,

π “ πpG, Y q “ S ˚R1 L1 ˚R2 L2 ¨ ¨ ¨ ˚Rk Lk.
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Here, we can also choose Ri’s as the fully F -normalized essential subgroups of

S.

3.3 Realizing Finite Fusions and Storing Homo-

morphism

In this section, we focus on finite fusions and their realizations. Now, we mimic

Example 3.2.4, by changing Li’s.

Example 3.3.1. Let F “ FSpGq where G is finite. We take fully F -normalized

F -centric F -radical subgroups R1, R2, ..., Rk as we do in Example 3.2.4. We

define Ni “ NGpRiq. Since FRipNiq’s generate F by Alperin Fusion theorem. We

construct the Robinson model on these groups. Our infinite group is

π “ πpG, Y q “ S ˚R1 N1 ˚R2 N2, ¨ ¨ ¨ ˚Rk Nk

realizing F .

In fact, we can make the π “ πpG, Y q much smaller by changing Ri with the

larger subgroups NSipNiq. Since FNSpRiqpNiq’s generates F , the infinite group

π “ πpG, Y q “ S ˚NSpR1q N1 ˚NSpR2q N2 ¨ ¨ ¨ ˚NSpRkq Nk realizes F (i.e. FSpπq “ F).

The group here is a quotient of the group in previous example.

Now, we state a bit different version of the Robinson model.

Example 3.3.2. Let F “ FSpGq where G is finite. We take fully F -normalized

F -centric F -radical subgroups R1, R2, ..., Rk as we do in previous examples (or

we can choose the essential ones from them as we can do in previous examples).

We construct a graph of groups pG, Y q by taking Y as the complete graph with

k vertices so that

i-) Gvi “ NGpRiq are vertex groups
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ii-) the edge groups between vi and vj are equal to NGpRiq XNGpRjq.

From proposition 3.3 in [3], we can say S is the Sylow p-subgroup G. By

Alperin Fusion theorem, FSpπq Ą FSpGq because FSpπq contains all fusion of

F -normalized essentials which generate FSpGq. Also FSpπq Ă FSpGq because

any fusion in FSpπq comes from FSpGq. Hence,

FSpπq “ F .

Definition 3.3.3. Let pG, Y q be a graph of groups and G be a finite group.

We say χ is a storing homomorphism of pG, Y q if χ is a homomorphism χ :

πpG, Y q Ñ G such that for any vertex or edge group Gv and its inclusion map

ie : Gv Ñ πpG, Y q we have that the composition χ ˝ ie : Gv Ñ G is injective.

If the storing homomorphism χ is surjective, we say G is a store of pG, Y q.

Note that this definition is more than saying all vertex and edge groups are

subgroups of G because it also requires these groups to have the same intersection

properties in G as they have in Γ.

Here, the map χ has kernel non-intersecting any vertex or edge groups. Then

kerχ is a free subgroup of Γ.

Proposition 3.3.4. For the models constructed in Example 3.3.1, Example 3.3.2

and Theorem 3.2.1 the storing homomorphism always exists. Moreover, the kernel

of storing homomorphism is free and when the storing homomorphism is surjective

we have an exact sequence of groups

1 Ñ F Ñ π
χ
ÝÑ GÑ 1

where F :“ kerpχq is free.

Proof. Take any finite group G with Sylow p-subgroup S. Let F “ FSpGq.

First, we construct the Leary-Stancu model. Let fi : Pi Ñ Qi’s generate

F . Then, πLS “ă S, t1, t2, ¨ ¨ ¨ , tk|cti “ fi ą is the infinite group realizing F
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according to Leary-Stancu. Define χ : πR Ñ G by sending s ÞÑ s for s P S and

ti ÞÑ gi where gi P G such that cgi “ fi. χ is storing homomorphism because it is

identity on the vertex group S.

Second, we construct the Robinson model as in Example 3.3.1. Define χ :

πR Ñ G by sending the vertex groups NGpRiq to their original copies in G. χ is

well-defined because for any edge groups, the two different restrictions of χ are

the same. χ is storing because it sends each vertex groups injectively.

Third, we consider Example 3.3.2. Define χ : πR1 Ñ G by sending the edge and

vertex groups to their original copies in G. Similarly, χ is storing homomorphism.

In each of the cases, kerpχq is a subgroup of πpG, Y q such that it has a trivial

intersection with any vertex group of pG, Y q. Then, by Corollary 2.3.8, F :“

kerpχq is free.
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Chapter 4

Cohomology of Infinite Groups

Realizing Fusion Systems

In the previous chapter, we state several examples of infinite group models real-

izing fusion system. From now on, we focus on the cohomology of fusion systems.

We start with the definition of stable elements from the reference [14].

Let G be a group with subgroup H and A be a coefficient ring. An element

a in H˚pH;Aq is called G-stable if we have resxHx
´1

xHx´1
Ş

Hpc
˚
xpaqq “ resHxHx´1

Ş

Hpaq

where c˚x : H˚pH;Aq Ñ H˚pxHx´1q is the isomorphism induced by conjugation

map cx : xHx´1 Ñ H defined by cxpuq “ x´1ux. We extend this notion to fusion

systems. Let F be a fusion system on S. We say a P H˚pSq is F-stable if for

any isomorphism P
φ
ÝÑ Q in F , we have φ˚presSQpaqq “ resSP paq where φ˚ is the

isomorphism induced by φ.

The cohomology of the fusion system F “ FS defined as the inverse limit

H˚
pF ;Fpq :“ lim

PPF
H˚
pP ;Fpq

or, equivalently, as the F -stable elements of H˚pS;Fpq. Usually, we denote H˚pFq
instead of H˚pF ;Fpq. By writing commuting diagrams, one can easily show that

the condition of being G-stable is the same as the F -stability condition. So we

have a version of Cartan-Eilenberg Theorem
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Theorem 4.0.1 (Cartan Eilenberg). Let G be a finite group with Sylow p-

subgroup S. If F “ FSpGq, then

H˚
pFq – H˚

pG,Fpq.

Proof. See [15, Theorem III.10.3].

From the previous section, we can realize any fusion by an infinite group.

However, this infinite group may not realize the cohomology of the fusion system

(in the sense of the last theorem) as the examples in the second section of the

next chapter. The open question is

Open Question 4.0.2. Given a saturated fusion system F “ FS, is there any

infinite group model π realizing F such that

H˚
pFq “ H˚

pπ;Fpq.

Although we could not find the answer this question, we study the difference

of H˚pFq and H˚pπ;Fpq. In Theorem 6.1.10, it is shown that H˚pFq is a direct

summand ofH˚pπ;Fpq but the difference were unknown. For finite fusion systems,

we calculate the difference in the next section for some infinite group models.

This chapter includes our main theorems. In Section 4.1, we write H˚pFq as

a direct summand of H˚pπ,Fpq for finite fusion F and some conditions on the

infinite group model realizing F .

For both of the Leary Stancu and Robinson models, we have counterexamples

that show that these models do not realize cohomology of the fusion. Moreover,

in Section 4.2, we find infinitely many counterexamples for the Robinson model.
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4.1 Homology of Graph of Groups Constructed

from Subgroups of a Finite Group

Lemma 4.1.1. Let G be a finite group and pG, Y q be a graph of groups so that

G is a store of pG, Y q. Then the storing homomorphism χ has free kernel F . So

it gives an exact sequence 1 Ñ F Ñ πpG, Y q Ñ GÑ 1. From the exact sequence,

we have a G-action on the abelianization Fab “ F {rF, F s.

Let πpG, Y q acts on a tree T . We consider the induced action of G – πpG, Y q{F
on the graph X “ T {F . This gives a G-action on H1pXq.

There is a ZG-module isomorphism between Fab and H1pXq.

Proof. Let Γ :“ πpG, Y q the fundamental group of the graph of groups.

Let π : T Ñ X be the projection map. Fix a vertex v P T . Let v̄ “ πpvq.

Define φ : F Ñ π1pX, v̄q by sending an f P F to πpppv, f ¨ vqq where f ¨ v is the

vertex in T obtained by Γ-action on T and ppv, f ¨ vq is the path from v to f ¨ v.

Here, π projects that path to a loop at v̄ (i.e. πpppv, f ¨ vqq P π1pX, v̄q ).

The map φ is well-defined because for any f P F there is a unique path from

v to f ¨ v in the tree and its projection is the loop φpfq P π1pX, v̄q.

Now, let show φ is a homomorphism. Take any f1, f2 P F . We have

φpf1f2q “ πpppv, f1f2vqq

“ πpppv, f1vq ˝ ppf1v, f1f2vqq

“ πpppv, f1vqqπpppf1v, f1f2vqq

“ φpf1qπpppv, f2vqq

“ φpf1qφpf2q

where the notation ˝ is for composing paths. Here, πpppf1v, f1f2vqq “

πpf1ppv, f2vqq “ πpppv, f2vqq because the projection π : T Ñ X “ T {F anni-

hilates the F -action.
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For any loop l P π1pX, v̄q there exists a unique lifted path starting at v in the

tree T by the path lifting theorem. This path has end point w P T such that

πpwq “ v̄. Then w “ fv for some f P F because v and w has same class in the

quotient X “ T {F . Here, there is a unique f P F satisfying w “ fv because F

freely acts on T . So for any loop l P π1pX, v̄q, we have a unique f P F such that

φpfq “ l. Then, φ is surjective and has no kernel. Hence, φ is an isomorphism.

Let φ̂ be induced isomorphism between the abelianization groups Fab and

pπ1pX, v̄qqab. We know that H1pXq – pπ1pX, v̄qqab. So we have a commutative

F π1pX, v̄q

Fab H1pXq

φ

j k

φ̂

where j and k are abelianization maps.

1 Ñ F
i
ÝÑ Γ

r
ÝÑ G Ñ 1 induces a G-action on Fab by conjugation and the

G-action on H1pXq is induced by the G-action on X.

Then we need to show that given any rf s P Fab and g P G we have that

φ̂pgrf sg´1
q “ gφ̂prf sq.

Take f P F such that jpfq “ rf s. Take γ P Γ such that rpγq “ g. Then

jpγfγ´1q “ grf sg´1. With the help of commutative diagram, we have

φ̂pgrf sg´1
q “ φ̂pjpγfγ´1

qq “ kpφpγfγ´1
qq

and

φ̂prf sq “ φ̂pjpfqq “ kpφpfqq.

To finish the proof, we work with φ and show that

gkpφpfqq “ kpφpγfγ´1
qq.
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We have

φpfq “ πpppv, fvqq

φpγfγ´1
q “ πpppv, γfγ´1vqq

“ πpppv, γvq ˝ ppγv, γfvq ˝ ppγfv, γfγ´1vqq (4.1)

As F E Γ, γfγ´1 P F . Since π annihilates F action, we obtain

πpppγfv, γfγ´1vqq “ πpγfγ´1ppγv, vqq “ πpppγv, vqq.

Substituting this in equation 4.1, we get

φpγfγ´1
q “ πpppv, γvq ˝ ppγv, γfvq ˝ ppγv, vqq.

Moving to homology,

kpφpγfγ´1
qq “ kpπpppv, γvq ˝ ppγv, γfvq ˝ ppγv, vqq

“ kpπpppv, γvqqq ` kpπpppγv, γfvqqq ` kpπpppγv, vqqq

“ kpπpppγv, γfvqqq.

where kpπpppv, γvqqq “ ´kpπpppγv, vqq as we work in H1pXq.

Here, the path from γv to γfv goes to a loop at gv̄ which is g times a

loop at v̄, working in homology. Writing formally, we have kpπpppγv, γfvqqq “

gkpπpppv, fvqqq. Which gives

gkpφpfqq “ kpφpγfγ´1
qq.

That is equivalent to φ̂pgrf sg´1q “ gφ̂prf sq, proving φ̂ is G-module isomorphism

between Fab and H1pXq.

Theorem 4.1.2. Let G be a finite group and pG, Y q be a graph of groups so that

G is a store of pG, Y q . Assume pG, Y q has a vertex Gv such that the composition

Gv Ñ πpG, Y q Ñ G sends a Sylow p-subgroup of Gv to a Sylow p-subgroup of G

isomorphically. For a field R of characteristic p, there is an isomorphism

H˚´1
pG;Fab bRq ‘H

˚
pG;Rq – H˚

pπpG, Y q;Rq.

where F is the kernel of storing homomorphism.
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Proof. Let Γ :“ πpG, Y q. χ, the store homomorphism, gives an exact sequence

1 Ñ F Ñ Γ Ñ GÑ 1 where F :“ kerχ is a free group. We consider the standard

Γ-action on the tree T . G “ Γ{F acts on X “ T {F , inducing the previous action.

Write cellular chain complex for X,

0 Ñ C1 Ñ C0 Ñ 0.

Since X is connected we have an exact sequence of RG-modules C1 Ñ C0 Ñ ZÑ
0, using that G acts on X cellularly. Applying HomRGp´, Rq functor, we obtain

exact sequence 0 Ñ HomRGpZ, Rq Ñ HomRGpC0, Rq Ñ HomRGpC1, Rq.

From the cochain complex

0 Ñ HomRpZ, Rq Ñ HomRpC0, Rq Ñ HomRpC1, Rq,

we have

H1
pX,Rq “ HomRpC1, rq{ImpHomRpC0, Rqq.

So we complete the exact sequence,

0 Ñ RÑ C0 Ñ C1 Ñ 0

Considering G-action on Ci simplices, we have

HomRpC0, Rq “
ź

vPOV

RrG{Gvs, and

HomRpC1, Rq “
ź

ePOE

RrG{Ges,

where OE and OV are orbit representative sets for edges and vertices respectively.

Substituting in the last exact sequence, we get

0 Ñ RÑ
ź

vPOV

RrG{Gvs Ñ
ź

ePOE

RrG{Ges Ñ H1
pX;Rq Ñ 0 (4.2)

Since Γ has Sylow p-subgroup S, there exists Gv containing S. Then the map

RÑ
ś

vPOV

RrG{Gvs splits because we can write splitting over RrG{Gvs as |rG{Gvs|

is not divisible by p. We divide the exact sequence in 4.2 by defining

K :“ Imp
ź

vPOV

RrG{Gvs Ñ
ź

ePOE

RrG{Gesq “ kerp
ź

ePOE

RrG{Ges Ñ H1
pX;Rqq.
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For the four-term exact sequence above, we use the idea stated in [16]. So we

have 2 exact sequences

0 Ñ RÑ
ź

vPOV

RrG{Gvs Ñ K Ñ 0 (4.3)

0 Ñ K Ñ
ź

ePOE

RrG{Ges Ñ H1
pX;Rq Ñ 0. (4.4)

From above we have that 4.3 splits, and by Shapiro’s lemma, it gives an iso-

morphism
ź

vPOV

H˚
pGv;Rq – H˚

pG;Kq ‘H˚
pG;Rq. (4.5)

The exact sequence 4.4 gives a long exact sequence in cohomology

¨ ¨ ¨H˚´1pG;Kq Ñ H˚´1pG,
ś

ePOE

RrG{Gesq Ñ H˚´1pG,H1pX;Rqq Ñ

H˚pG;Kq Ñ H˚pG,
ś

ePOE

RrG{Gesq Ñ H˚pG,H1pX;Rqq Ñ ¨ ¨ ¨

By coninduction and adding H˚pG;Rq for consecutive terms, we have

¨ ¨ ¨H˚´1pG;Kq Ñ
ś

ePOE

H˚´1pGe, Rq Ñ H˚pG;Rq ‘H˚´1pG,H1pX;Rqq Ñ

H˚pG;Rq ‘H˚pG;Kq Ñ
ś

ePOE

H˚pGe, Rq Ñ H˚pG,H1pX;Rqq Ñ ¨ ¨ ¨ .

Using Equation 4.5, we have

¨ ¨ ¨H˚´1pG;Kq Ñ
ś

ePOE

H˚´1pGe, Rq Ñ H˚pG;Rq ‘H˚´1pG,H1pX;Rqq Ñ

H˚pG;
ś

vPOV

RrG{Gvsq Ñ
ś

ePOE

H˚pGe, Rq Ñ H˚pG,H1pX;Rqq Ñ ¨ ¨ ¨

Also we have a long exact sequence for Γ by Theorem 2.4.2,

¨ ¨ ¨H˚´1pG;Kq Ñ
ś

ePOE

H˚´1pGe, Rq Ñ H˚pΓ;Rq Ñ H˚pG;
ś

vPOV

RrG{Gvsq Ñ

ś

ePOE

H˚pGe, Rq Ñ H˚pG,H1pX;Rqq Ñ ¨ ¨ ¨

By using a five lemma,

H˚´1
pG,H1

pX;Rqq ‘H˚
pG,Rq – H˚

pΓ, Rq.
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By using Lemma 4.1.1, we have

H˚´1
pG,Fab bRq ‘H

˚
pG,Rq – H˚

pΓ, Rq.

Corollary 4.1.3. Let Γ :“ πpG, Y q. For the restriction map ResΓ
S : H˚pΓ, Rq Ñ

H˚pS,Rq we have

kerResΓ
S – H˚´1

pG,Fab bRq.

Proof. From the Theorem 6.1.10 we have

H˚
pΓ, Rq – H˚

pG,Rq ‘ kerResΓ
S.

Using the Theorem 4.1.2, we obtain

kerResΓ
S – H˚´1

pG,Fab bRq.

The next example shows that Leary-Stancu model does not realize cohomology

of the fusion, in general.

Example 4.1.4. Let G “ S3 “ xa, b|b3 “ a2 “ 1, aba “ b2y with Sylow 3-

subgroup S “ xby – C3 and F “ FSpGq. The Leary Stancu model for F is the

infinite group

π “ xb, t|b3
“ 1, tbt´1

“ b2
– C3 ¸ Z

The storing homomorphism χ : π Ñ G sends t ÞÑ a and b ÞÑ b. So it is

surjective and F “ kerpχq “ xt2y. Take R “ F3 and use Theorem 4.1.2. Since G

acts on F trivially we have

Hn´1
pS3,F3q ‘H

n
pS3,F3q – Hn

pπ,F3q.

So, H˚pπ;F3q fl H˚pS3;F3q in this case.
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4.2 An Infinite Family of Examples

As we mention in Chapter 2, the Robinson model stated in Theorem 3.2.3 real-

izes fusion system but its cohomology does not fit with the cohomology of the

fusion system, in general. As a counter-example, in [17], it is shown that for

the fusion system of F 2-local finite group of G “ C3
2 ¸ GLp3, 2q and the corre-

sponding Robinson model group πR we have H˚pπRq ‰ H˚pFq. In this section,

we show that, for any fusion system created by GLpn, 2q, the cohomology of the

corresponding Robinson model group does not fits the cohomology of the fusion

system for n ą 4. Then, we have infinitely many examples that realizing fusion

system by Robinson model does not give a realization of the cohomology of a

given fusion system.

To construct Robinson model on the Sylow 2-subgroup of GLpn, 2q, we must

understand its Sylow 2-subgroup and its F -radical and F -centric subgroups. So

we quote some known results.

We have a special case of Borel-Tits theorem having proof in [18] pg. 231.

Theorem 4.2.1 (Borel-Tits). If G “ GLpn, pq then a p-subgroup U is equal to

OppNGpUqq if and only if NGpUq is parabolic and U is its unipotent radical.

Here, we need to understand the parabolics of GLpn, 2q. A good source is

Chapter 6 and Chapter 12 of [19] which are devoted to Borel subgroups and

parabolic subgroups. We quote some results for GLpn, 2q.

Let S be the upper triangular matrices in G :“ GLpn, 2q. Since the order of

S is 2pn´1qpn´2q{2 , |G : S| is odd. Then S is a Sylow p-subgroup of G. As we see

in the proof of Theorem 6.4 in [19], we also have that S is a Borel subgroup of

G. That gives NGpSq “ S, by using the Theorem 6.12 in [19].

Corollary 4.2.2. The subgroup of upper triangular matrices S in G “ GLpn, 2q

is a Sylow 2-subgroup. Let F “ FSpGq. Then a 2-subgroup U is F-centric, F-

radical and fully F-normalized if and only if NGpUq is parabolic containing S and

U is its unipotent radical.
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Proof. The first sentence explained above. What is left is the if only if statement.

Let us first prove the right direction. Assume 2-subgroup U is F -centric, F -

radical and fully F -normalized. From Theorem 4.2.1, NGpUq is parabolic and U

is its unipotent radical. Since NGpUq is parabolic, NGpUq Ą B for some Borel

subgroup B. Since Borel subgroups are conjugate, there exists g P G such that

S “ gBg´1. Let P “ gUg´1. Then NGpP q “ gNGpUqg
´1 Ą gBg´1 “ S. Since

U is fully F -normalized, we have |NSpUq| ě |NSpP q|. So NSpP q “ S gives that

NSpUq “ S which means NGpUq contains S as desired.

For the other direction, assume U is 2-subgroup so that NGpUq is parabolic

containing S and U is its unipotent radical. From Theorem 4.2.1, U is p-radical.

As it is shown in [20, page 755], we have C 1GpP q “ 1. So, U is p-radical. Since

NSpUq “ S, U is fully F -normalized. Since any unipotent radical of a parabolic

group is F -centralized as shown in Lemma 4.2.3.

Lemma 4.2.3. Let S be the group of upper triangular matrices in G “ GLpn, 2q

and F “ FSpGq. Then any unipotent radical U of a parabolic group P containing

S is F-centralized.

Proof. If V is F -centric and V Ă U , then U is also F -centric. We know that the

maximal parabolics corresponds to the minimal unipotent radicals. Then, it is

enough to prove that the statement holds for all maximal parabolic P containing

S. Take any maximal parabolic subgroup containing S which is the form (as

mentioned in [21] )

Pm “

«

GLpm, 2q Mm,n´mpF2q

0 GLpm´ n, 2q

ff

with unipotent radical

Um “

«

Im Mm,n´mpF2q

0 In´m

ff

.

Take any s P S centralizing Um, then for any m P Um, we have sm “ ms. Let

s “

«

a b

0 c

ff

.
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Then for any M PMm,n´mpF2q, we have

«

a b

0 c

ff«

Im M

0 In´m

ff

“

«

Im M

0 In´m

ff«

a b

0 c

ff

.

This gives

aM “Mc (4.6)

for any M PMm,n´mpF2q.

Fix any 1 ď i ď m and 1 ď j ď m ´ n. Choosing M having all entries 0 but

the pi, jqth entry is 1, the equation 4.6 gives that cj,j “ ai,i, cj,k “ 0 for k ‰ j

and al,i “ 0 for k ‰ i. By doing the argument for all possible pi, jq pairs, we get

that a and c are diagonal matrices having all the same diagonal entries. Since

s P S, detpsq ‰ 0. Then a and b are non-zero matrices. Working in F2, we must

have that a “ Im and b “ In´m. That means s P Um for any s P centralizing Um.

Hence,

CSpUmq “ ZpUmq

or equivalently Um is F -centralized.

Here, we can mention the Robinson model for the fusion system of

FSpGLpn, 2qq because we know what are the F -centric, F -radical and fully F -

normalized subgroups of the fusion system. In the following theorem, we construct

the Robinson model by using these subgroups.

Theorem 4.2.4. Let G “ GLpn, 2q for n ě 5. Let S be the Sylow 2-subgroup

consisting of upper triangular matrices in G. Let pG, Y q be the graph of groups of

Robinson model constructed for F “ FSpGq. Then we have

H2
pFq ‰ H2

pπpG, Y q,F2q.

Proof. We know that H2pFq “ H2pGLpn, 2q,F2q. From [22] table 6.1.3, we have

that H2pGLpn, 2qq “ 0 for n ě 5. Then it is enough to prove that

H2
pπpG, Y q,F2q ‰ 0.
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From the Alperin Fusion Theorem, the fusion system is generated by the nor-

malizer of S and the normalizers of F -radical, F -centric and fully F -normalized

subgroups of S. From Corollary 4.2.2, we say that the fusion system is generated

by the fusion systems of FSpPiq for 0 ď i ď k where P0 “ S and P1, P2, ..., Pk are

parabolic subgroups containing S. Note that the Sylow 2-subgroup of Pi’s are S

because Pi “ NGpUiq ě NSpUiq “ S as shown in the proof of Corollary 4.2.2.

The graph of groups has vertex groups P0, P1, P2..., Pk and has k many edge

groups all are S. From Theorem 2.4.2, we have a long exact sequence

¨ ¨ ¨ Ñ
ź

0ďiďk

H1
pPi;F2q

f
ÝÑ

k
ź

1

H1
pS;F2q

g
ÝÑ H2

pπpG, Y q;F2q Ñ ¨ ¨ ¨ (4.7)

For any i, we have |H1pPi;F2q| ď |H
1pS;F2q| because S is a Sylow 2-subgroup

of Pi. Without lose of generality, we assume that P1, P2, ..Pn´1 are maximal

parabolic subgroups such that, for 1 ď m ď n´ 1, we have

Pm “

«

GLpm, 2q Mm,n´mpF2q

0 GLpm´ n, 2q

ff

.

Then we have that P1 – Pm´1 – Cn´1
2 ¸GLpn´ 1, 2q. We have

H1
pCn´1

2 ¸GLpn´ 1, 2q;F2q “ HompCn´1
2 ¸GLpn´ 1, 2q, C2q.

Take any φ P HompCn´1
2 ¸GLpn´ 1, 2q, C2q. Consider the restriction of φ to

GLpn´1, 2q is a homomorphism from a simple group to C2. Then φ must be zero

on GLpn´ 1, 2q. If φ is non-zero, we have φpaq “ 1 for some a P Cn´1
2 . Take any

b P Cn´1
2 ´t0,´au. Since GLpn´1, 2q acts on Cn´1

2 by conjugation so that it sends

any nonzero element to any nonzero element, we have that φpaq “ φpbq “ φpa`bq.

Hence a contradiction. So we must have

HompCn´1
2 ¸GLpn´ 1, 2q, C2q “ 0.

Then we get

H1
pP1;F2q “ H1

pPn´1;F2q “ 0 (4.8)
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In the long exact sequence 4.7, we have that

ˇ

ˇ

ˇ

ˇ

ˇ

ź

0ďiďk

H1
pPi;F2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

1

H1
pS;F2q

ˇ

ˇ

ˇ

ˇ

ˇ

because in the left-hand side two terms are 0 as shown above and for each other

terms in the left we have |H1pPi;F2q| ď |H
1pS;F2q|. Then, f cannot be surjective.

Since ker g “ Imf , ker g is not the whole of
k
ś

1

H1pS;F2q. Then g has a nonzero

image. Hence,

H2
pπpG, Y q;F2q ‰ 0.
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Chapter 5

Using Posets to Generate Infinite

Group Models Realizing Fusion

Systems

We do not know any infinite group model realizing fusion and its cohomology.

Making the open question easier, we try to find an infinite group model realizing

fusion and its cohomology for finite fusions. Because of this, we start with the

fusion system of a finite group and try to find a desired infinite group realization.

Let G be a finite group acting on a graph X cellularly. As shown in Chapter

2.3, we can obtain a graph of groups pG, Y q from this action. In the first section of

this chapter, we show that, under some conditions we put for the G-action on X,

the infinite group πpG, Y q “ πpEGˆGXq realizes the fusion and its cohomology.

In the second section of this chapter we give the first example of this theorem.

We show that when G has p-rank 2 and X is the realization of the elementary

abelian poset of G where G act on by conjugation, the infinite group πpG, Y q “
πpEGˆGXq realizes the fusion. At the end of this chapter, we consider a known

model as an example of the first theorem of this chapter.
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5.1 From Posets to Graph of Groups

We denote the classifying space of G by BG with contractible universal cover

EG. We assume all the spaces in this thesis are CW-complexes in order to have

well-defined structures as we note in Remark 2.1.4. So BG is a KpG, 1q-space.

By aG-graph, we mean a graph with aG-action on it such thatG acts cellularly

without inversion. If X is a G-graph, we can talk about the Borel construction

EGˆGX. For a G-graph X, we say X is G-connected if the quotient graph X{G

is connected. In this section, we work on 1-dimensional G-connected graphs.

When X is a G-poset, by the Borel construction EG ˆG X, we mean the 1-

dimensional graph realization of X with a G-action. If X is a poset consisting of

subgroups of G, then G-action is the conjugation. For example, if G is a finite

group and X is the poset of elementary abelian subgroups of G, then we consider

the corresponding 1-dimensional G-graph in the notation EGˆG X.

Theorem 5.1.1. Let G be a finite group with Sylow p-subgroup S. Assume G

acts on a connected graph X so that S fixes at least one vertex and H1pX;Fpq
is projective FpG-module. If the embedding of S into Γ :“ π1pEG

Ś

GXq is a

Sylow p-subgroup so that FSpΓq “ FSpGq then we determine the cohomology of

the fusion system by

H˚
pFq “ H˚

pΓ;Fpq.

Proof. Define f : EG
Ś

X Ñ X by sending pa, xq ÞÑ x. We consider a G-action

on EG
Ś

X by gpa, xq “ pg´1a, gxq. Then the homotopy equivalence f preserves

G-actions. f induces a continuous map

g : EGˆG X Ñ X{G

by dividing G-action. Consider the graph Y :“ X{G. Define Xv “ g´1pvq for

any vertex of Y . Define Xe “ g´1peq for any edge e in Y .

Fix any edge e and vertex v so that v belongs to e. The deformation retract

from Xe to Xe X Xv gives a continuous map fe : Xe Ñ Xv which is injective

on homotopy groups. Define a graph of groups pG, Y q so that the vertex groups
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are Gv : πpXvq and the edge groups are Ge :“ πpXeq and the monomorpisms

φe : Ge Ñ Gv are induced by the fe maps.

For a vertex v P Y , let v̄ be a lift in X. Consider f´1porbpv̄qq, the preimage

of the G-orbit of v̄ under the map f . The space f´1porbpv̄qq contains |orbpv̄q|

copies of EG. Then g´1pvq “ f´1porbpv̄qq{G is homotopic to EG{stabpv̄q where

stabpv̄q is the stabilizer of v̄. Since the contractible space EG is the universal

cover of EG{stabpv̄q, Xv is a classifying space of stabpv̄q. Then the fundamental

group of the graph of groups pG, Y q is Γ “ EG ˆG X. The graph of groups has

vertex groups Gv isomorphic to stabpv̄q and edge groups isomorphic to stabilizers

of their lifts.

Consider the map s : EG ˆX Ñ EG defined by sending pa, xq Ñ a. Similar

to above, we divide by G-action. We obtain an induced map t : EG ˆG X Ñ

BG which is surjective. Then we obtain a surjective homomorphism χ from

πpEGˆG Xq – πpGY q to πpBGq “ G. In fact,

χ : πpG, Y q Ñ G

is a storing homomorphism because t is injective on Xv and Xe spaces. Then

from the proof of Theorem 4.1.2, we have

H˚´1
pG,H1

pX;Fpqq ‘H˚
pG,Fpq – H˚

pΓ;Fpq

because the graph X can be considered as a T {F appears in the proof where

F :“ kerpχq and T is obtained by developing πpG, Y q-action on a tree. Since

H1pX;Fpq is projective G-module, we have H˚´1pG,H1pX;Fpqq “ 0. Also, we

have H˚pFq – H˚pG,Fpq because G is finite and F “ FSpGq. Hence,

H˚
pFq – H˚

pΓ;Fpq.

Remark 5.1.2. As we see in the proof of the last theorem, for a G-poset X,

we consider EG ˆG X as a fundamental group of some graph of groups. By the

way, we are able to prove many statements in the borel product language by

translating them into the language of the theory of graph of groups. Most of the

proof of this chapter has that idea.
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Sometimes infinite groups do not have Sylow p-subgroups. For example, the

amalgam π “ C2 ˚C2 has no Sylow 2-subgroup. To talk about fusion systems and

realization by infinite groups, we first step we need to prove is that infinite group

does have Sylow p-subgroup. The next proposition is very useful to prove a given

infinite group has a Sylow p-subgroup when the infinite group is the fundamental

group of some graph of groups.

Proposition 5.1.3 (Libman-Seeliger [3]). Let pG, Y q be a graph of groups and

suppose that

i-) The groups Gv and Ge contain Sylow p-subgroups Pv and Pe for every vertex

v in Y and edge e in Y .

ii-) There exists a vertex v0 such that for any other vertex u of Y there exists a

path(directed, without loops) y1, y2, ..., yn from v0 to u such that for any i the map

Gyi
aÞÑayi
ÝÝÝÝÑ GB1pyiq carries Pyi onto a Sylow p-subgroup GB1pyiq.

Then, S :“ Pv0 is a Sylow p-subgroup of π “ πpG, Y q.

In the sense of Remark 5.1.2, we translate the last proposition into the language

of Borel construction spaces which we need for this chapter.

Corollary 5.1.4. Let G be finite group with Sylow p-subgroup S and X be a

G-connected G-graph. If there exists v0 P X such that

i-) S fixes v0

ii-) for any vertex v P X there exists a path(directed without loops) y1, y2, ..., yn

from v to gv0 for some g P G such that for any i “ 1, 2, ..., n the inclusion of the

stabilizer StabGpyiq to the stabilizer StabGpB1pyiqq carries a Sylow p-subgroup of

StabGpyiq onto a Sylow p-subgroup of StabGpB1pyiqq.

Then, πpEGˆG Xq has a Sylow p-subgroup isomorphic to S.

Proof. We consider the corresponding graph of groups pG, Y q as we do in the
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proof of Theorem 5.1.1. We have π “ πpG, Y q where Y “ X{G and pG, Y q has

vertex groups Gv for v P Y so that Gv “ StabGprvq where rv P X is a lift of v.

Now, we use Proposition 5.1.3 to conclude the proof.

5.2 Poset of Elementary Abelian Subgroups

In this section, we prove that the infinite group model Γ :“ π1pEG
Ś

GXq realizes

the fusion of G on S, where X be the poset of elementary abelian subgroups of S.

Moreover, it gives exactly the same Fp cohomology. Here, we work with p-rank

2 groups. By p-rank, we mean the maximum number n so that the group has an

elementary abelian p-subgroup CpˆCp ¨ ¨ ¨ˆCp of rank n. We denote by rankppGq.

For a finite group G and its Sylow p-subgroup S, we have rankppGq “ rankppSq .

In this section, we will need the next theorem from theory posets.

Theorem 5.2.1 (Quillen [23]). Let X, Y be posets and f, g : X Ñ Y be poset

maps. If for any x P X we have fpxq ď gpxq, then |f | – |g|.

Now we start by writing a theorem for the fusion of Γ and we will continue its

homology calculations.

Proposition 5.2.2. Assume G is a finite group with a Sylow p-subgroup S and

rankppGq “ 2. Let X be the poset of elementary abelian subgroups of S. Then

Γ :“ π1pEG
Ś

GXq realizes the fusion of G on S(i.e. FSpΓq “ FSpGq).

Proof. Let Ci’s and Ei’s be the elementary abelian subgroups of S of order p and

p2, respectively.

Without loss of generality, we can assume C1 Ă ZpSq because ZpSq (non-trivial

p-group) contains a subgroup of order p.

1-) Let us write Γ as the fundamental group of the graph of groups. From the

poset X, we choose one Ci in each G-orbit such that NSpCiq is Sylow in NGpCiq

and one Ei in each G-orbit such that NSpEiq is Sylow in NGpEiq.
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C1

E1 ¨ ¨ ¨ En

C2 ¨ ¨ ¨ Cr Cx Cy Cz

Figure 5.1: Quotient Poset X{G

NGpC1q

NGpE1q ¨ ¨ ¨ NGpEnq

NGpC2q ¨ ¨ ¨ NGpCrq NGpCxq NGpCyq NGpCzq

Figure 5.2: Graph of Groups

Now our graph of groups consists of the graph obtained by the quotient X{G

and vertex groups NGpCiq’s and NGpEiq’s for the indices as chosen above for

vertices of X{G, and edge groups formed by the intersection of vertex groups.

Since C1 Ă ZpSq, we have C1 Ă Ei for all i because otherwise the group C1Ei

would be an elementary abelian group of order p3, yielding a contradiction with

rankppGq “ 2. Also, we have that for i ‰ 1, any group Ci contained in a unique

elementary abelian subgroup Ej :“ C1Ci for some j. Hence, the graph of groups

has a shape in the figure.

2-) Γ has a Sylow p-subgroup isomorphic to S.

The vertex group associated to C1 is NGpC1q. Since C1 Ă ZpSq, we have

S Ă NGpC1q. We argue that the Sylow p-subgroup of this vertex is a Sylow

p-subgroup of Γ. Here, we use the Proposition 3.3 in [3] in order to show Γ has

a Sylow p-subgroup isomorphic to S. We take that vertex as a reference vertex

group mentioned in the proposition.
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Now, take a vertex Ej. We have an edge between C1 and Ej so that the edge

group and monomorphisms as follows:

NGpC1q Ðâ pNGpC1q
č

NGpEjqq ãÑ NGpEjq.

NGpEiq has Sylow NSpEiq by the choice we have done before. Since

pNGpC1q
Ş

NGpEjqq contains NSpEiq as a Sylow p-subgroup, we say that the

edge carries its Sylow onto Sylow subgroup of NGpEjq.

Second, we consider the Ci vertices for i ‰ 1. We have some Ej containing Ci

and the reach C1 from Ci along Ej via two edges. In fact, we have Ej “ C1ˆCi.

So the path from Ci to C1 has shape:

NGpC1q Ðâ pNGpC1q
č

NGpEjqq ãÑ NGpEjq Ðâ pNGpC1ˆCiq
č

NGpCiqq ãÑ NGpCiq

Here, from previous paragraph we have that the first edge carries its Sylow sub-

group onto Sylow subgroup of NGpEjq. For second edge we have NGpC1ˆCiq has

Sylow NSpC1 ˆ Ciq “ NSpCiq because C1 Ă ZpSq implies that S normalizes C1

. Hence, the second edge also carries its Sylow onto Sylow subgroup of NGpCiq.

By the Proposition 3.3 in [3], we say Γ has a Sylow p-subgroup isomorphic to S.

3-) FSpΓq Ą FSpGq. Clearly, these categories have the same objects. We need

to show that for any morphism f in FSpGq we have that f is a morphism in

FSpΓq. Take any P,Q P objpFSpGqq and f P MorFSpGqpP,Qq. Since we have

finite group fusion, f corresponds a conjugation morphism for some g P G. Take

any C conjugation family. Then there exists P “ P0, P1, P2, ..., Pn “ Q subgroups

of S and Q1, Q2, ..., Qn P C and gi P NGpQiq such that

i-) gngn´1...g1 “ g

ii-) gipPi´1qg
´1
i “ Pi for i P t1, 2, ..., nu

iii-) Pi´1 and Pi are contained in Qi.

It is enough to show the conjugation cg1 : P0 Ñ P1 is contained in FSpΓq.

The others can be done similarly. Since Q1 is p-group, the center ZpQ1q is
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not trivial. Then Ω1pZpQ1qq ‰ 1 where, for a p-group A, Ω1pAq denotes the

elements of A of order p. Since g1 normalizes Q1 and Ω1pZpQ1qq characteristic

in Q1, we have that g1 normalizes Ω1pZpQ1qq, that is, g1 P NGpΩ1pZpQ1qqq.

Also, Q1 Ă NGpΩ1pZpQ1qqq because characteristic groups are normal. Hence,

NGpΩ1pZpQ1qqq contains the action cg1 : P0 Ñ P1. Since Ω1pZpQ1qq elementary

abelian p-subgroup of S, it is included in the poset of elementary abelian p-groups.

So NGpΩ1pZpQ1qqq appears as a vertex group in our graph of groups. Then Γ

contains the action cg1 : P0 Ñ P1.

4-) FSpΓq Ă FSpGq.

Take any g P Γ such that P,Q Ă S and gPg´1 “ Q. We know that there

exists vertex groups A1, A2, ..., Ar in Γ and some gi P Ai such that g “ g1g2g3...gr

is the unique reduced word representation of g. Now, consider the corresponding

action of Γ on a tree. We have a path between S and gS which can be deducted

by writing g “ g1g2...gr.

S

A1

g1S

g1A2

g1g2S

g1g2A3

g1g2g3S

g1g2...gr´1Ar

g1g2...grS “ gS
¨ ¨ ¨

Since Q Ă S, Q fixes the vertex S in the tree. Also, Q “ gPg´1 fixes gS. As

Q fixes initial and final vertices of the path, Q fixes all vertices in the path. Here,

Q fixes g1g2...giS implies that g1g2...giQpg1g2...giq
´1 Ă S. Then for each step we

have

— g1g2...giQpg1g2...giq
´1 and g1g2...gi`1Qpg1g2...gi`1q

´1 contained in S and,

— The conjugation action of gi`1 corresponds to conjugation action of some ele-

ment in G.

Since each step realized by an action in FSpGq, the total action cg : P Ñ Q in

FSpΓq corresponds an action in FSpGq. Hence, FSpΓq Ă FSpGq, concluding the

proof of FSpΓq “ FSpGq.
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Lemma 5.2.3. Let G be a finite group and P be a p-subgroup of G. We consider

that P acts on AppGq, the poset of nontrivial elementary abelian p-subgroups in

G. Then the fixed point space |AppGq|
P is contractible.

Proof. Let SppGq be the poset of all non-trivial p-subgroups of G.

Denote SppGqP to be the fixed elements of the poset SppGq under the action

of P . AppGq
P defined similarly.

Define f : AppGq
P Ñ SppGqP by sending E P AppGq

P ÞÑ E P SppGqP .

For any Q P SppGq, we have f |Q “ tE P AppGq
P | E ď Qu “ AppQq

P .

To show |AppQq
P | is contractible, we consider the following poset maps.

id : AppQq
P Ñ AppQq

P by sending E ÞÑ E,

g : AppQq
P Ñ AppQq

P by sending E ÞÑ EZ,

c : AppQq
P Ñ AppQq

P by sending E ÞÑ Z where Z is an elementary abelian

p-subgroup of the center of Q.

By using Theorem 5.2.1, we get id – g and c – g. So the identity is homotopic

to a constant map. Hence, |f |Q| “ |AppQq
P | is contractible.

Since for any Q P SppGq, |f |Q| is contractible, we say f is homotopy equivalence

(i.e. |AppGq|
P “ |SppGq|P ).

So, the rest is to show SppGqP is contractible. For Q P SppGqP , we have that

P normalizes Q (i.e. P ď NGpQq). Then PQ forms a p-group in SppGqP . To

show contractibility, we again define homotopic poset maps.

id2 : SppGqP Ñ SppGqP by sending Q ÞÑ Q,

h : SppGqP Ñ SppGqP by sending Q ÞÑ PQ,
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c2 : SppGqP Ñ SppGqP by sending Q ÞÑ P .

Here, we have id2 – h – c2 by Theorem 5.2.1. Since the identity is homotopic

to a constant map, we say |SppGqP | is contractible.

Proposition 5.2.4.
Ť

1‰HďS

p|AppGq|q
H is contractible.

Proof. Let P be the poset with elements p|AppGq|q
H for H non-trivial subgroup

of S and relation as the inclusion. Since the poset has a minimal element, we

say it is contractible. From Lemma 5.2.3, we have that the sets in the poset are

contractible. So the union is contractible.

Proposition 5.2.5. Let X “ |AppGq|. Then H1pX,Fpq is a projective FpG-

module.

Proof. Let C1 Ñ C0 be the chain complex of X. Let Di Ă Ci such that D1 Ñ D0

corresponds to the chain complex of
Ť

1‰HďS

XH .

Then Ci “ Di‘Pi where Pi’s are free FpS-modules because S has a free action

on the set X ´
Ť

1‰HďS

XH .

Now we have a short exact sequence

0 Ñ Pi Ñ Ci Ñ Di Ñ 0 for i P t1, 2u.

And the corresponding long exact sequence is

0 Ñ H1pP q Ñ H1pCq Ñ H1pDq Ñ H0pP q Ñ H0pCq Ñ H0pDq Ñ 0.

By Proposition 5.2.4, D is acyclic. Writing H1pDq “ 0 in the long exact sequence,

we get H1pP q – H1pCq. So we have the following short exact sequence

0 Ñ H1pCq Ñ P1 Ñ P0 Ñ 0.

The sequence splits because Pi’s are free FpS-module. Hence, H1pX,Fpq “ H1pCq

is a direct summand of P1, which means it is a projective FpS-module. Since S
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is a Sylow subgroup of G, we say that projective FpS-modules are projective

FpG-modules.

Theorem 5.2.6. Assume G is a finite group with a Sylow p-subgroup S and

rankppGq “ 2. Let X be the poset of elementary abelian subgroups of S. Then

Γ :“ π1pEG
Ś

GXq realizes the fusion of G on S(i.e. FSpΓq “ FSpGq). More-

over, their Fp-cohomologies also fits, i.e. H˚pΓ,Fpq “ H˚pG,Fpq.

Proof. We have the first part from Proposition 5.2.2. Let us show the cohomology

equivalence. We have from the proof of Theorem 4.1.2,

H˚´1
pG,H1

pX;Rqq ‘H˚
pG,Rq – H˚

pΓ, Rq.

H1pX,Fpq is a projective FpG-module as shown in Proposition 5.2.5. Then

H˚´1
pG,H1

pX;Rqq “ 0.

Hence we get

H˚
pΓ,Fpq – H˚

pG,Fpq.

5.3 Poset of p-radical p-centric p-subgroups of G

Let G be a finite group. In this section we work on the graph

X “ tP Ă G | P is p-radical p-centric p-subgroup of Gu.

We will show that π :“ π1pEG ˆG Xq realizes the fusion F “ FSpGq. Let

pG, Y q be the corresponding graph of groups. We take Y “ X{G and for v P Y ,

Gv “ StabGprvq “ NGpPrvq where rv P X. Then, pG, Y q is the same graph of groups

as we talk about in Example 3.3.2. Then, πpEG ˆG Xq “ πpG, Y q realizes the

fusion. By using Theorem 5.1.1, we get the next theorem.
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Theorem 5.3.1. Let G be a finite group with a Sylow p-subgroup S. If X is

the poset of p-radical p-centric p-subgroups of G, then π “ πpEGˆG Xq realizes

the fusion F “ FSpGq. Moreover, if H1pX;Fpq is projective G-module, then

H˚pπ;Fpq “ H˚pFq.
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Chapter 6

On the Signalizer Functors

The theory of signalizer functors and linking systems are developed to understand

the fusion systems and its topological properties better. In this Chapter, we give

some background on this theory. Then, we will state and prove the main theorem

of the paper [3]. This theorem shows that the Fp cohomology of an infinite group

realizing a fusion F is a direct sum of the cohomology of the fusion system and

the kernel of the restriction map under some conditions. Our first main theorem

gives a better result which gives a formula for the difference but it was only

for finite fusions. The theory and results in this chapter are developed for any

saturated fusion. At the end of this chapter, we give a group theoretical proof of

the proposition which is used in some results of our paper [4].

6.1 A Theorem of Libman-Seeliger

Definition 6.1.1. Let π be a group with Sylow p-subgroup S and F “ FSpπq.

The transporter system TSpπq is a category with objects as the subgroups of S

and morphism sets are TSpπqpP,Qq :“ NπpP,Qq “ tg P π|gPg
´1 ď Qu.X

Clearly, we have natural functor TSpπq Ñ FSpπq which is identity on objects
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and takes quotient by the action of CπpP q on the morphism sets. We usually

refer to this standard functor in this chapter by just writing TSpπq Ñ FSpπq.

Remark 6.1.2. By T c
S pπq, we mean the full subcategory of T c

S pπq whose objects

are F -centric subgroups of S. Similarly, F c is the full subcategory of F with

objects as all the F -centric subgroups of F .

Definition 6.1.3. An associated centric linking system L on a saturated fusion

system F “ FS is a category such that

i-) Obj(L) is the set of F -centric subgroups of F

ii-) It is equipped with a surjective functor π : L Ñ F c and an injective functor

δ : T c
S pSq Ñ L both induce identity on object sets.

iii-) The image of ZpP q under δ : NSpP q Ñ AutLpP q acts freely on LpP,Qq and

FpP,Qq – LpP,Qq{ZpP q

iv-) For any P,Q P F c, for any g P NSpP,Qq we have πpδpgqq is the conjugation

by g on P .

v-) For any f P LpP,Qq, for any g P P ď NSpP q “ AutT cS pP q the following square

commutes

P
f //

δP pgq

��

Q

δQpπpfqpgqq

��
P

f // Q.

Since centric linking systems defined on fusion systems and fusion systems

defined on finite p-groups, the triple pS,F ,Lq is called p-local finite group. More

formally,

Definition 6.1.4. A p-local finite group is a triple pS,F ,Lq of a saturated fusion

system on S together with an associated centric linking system.

Definition 6.1.5. Let F “ FSpπq. A signalizer functor on π is a functor θ :

T c
S Ñ Grp sending P ÞÑ θpP q for F -centric subgroup P such that
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i-) θpP q
Ş

ZpP q “ 1 and θpP qZpP q “ CπpP q

ii-) If gPg´1 ď Q, then θpQq ď gθpP qg´1.

Signalizer functors play a significant role in the p-local group theory. For

example, the next lemma states away of obtaining a centric linking system from

a signalizer functor.

Lemma 6.1.6. Let F “ FSpπq and θ be a signalizer functor on π. Then, the

category Lθ defined by LθpP,Qq “ NπpP,Qq{θpP q is a centric linking system.

Proof. We define ObjpLq :“ ObjpF cq. The functor π : L Ñ F c is the identity

on objects and for morphisms, π sends LpP,Qq “ NπpP,Qq{θpP q to F cpP,Qq

surjectively.

We define δ : T c
S pSq Ñ L so that it sends each object to its copy in L. For

P P T c
S , δP sends AutT cS pP q “ NSpP q to AutLpP q “ NπpP q{θpP q by sending x ÞÑ

xθpP q{θpP q. We need to show the kernel kerpδP q “ NSpP q
Ş

θpP q is trivial. Since

P is F -centric, NSpP q
Ş

CπpP q “ ZpP q. Since θpP q Ă CπpP q, NSpP q
Ş

θpP q Ă

NSpP q
Ş

CπpP q “ ZpP q but θpP q
Ş

ZpP q “ 1. Hence, kerpδP q “ 1. So we have

done with conditions (i) and (ii) in the definition of the centric linking system.

For (iii), δP pZpP qq “ CπpP q{θpP q acts on LpP,Qq “ NπpP,Qq{θpP q by com-

position, freely. LpP,Qq{θP pZpP qq – NπpP,Qq{CπpP,Qq – FpP,Qq

For (iv), πpδP pgqq “ πpxθpP q{θpP qq is the conjugation by g on P .

For (v), let f P LpP,Qq. There exists nθpP q P NπpP,Qq{θpP q such that f

sends x ÞÑ nxn´1. We need to show the square commutes

P
f //

δP pgq

��

Q

δQpπpfqpgqq

��
P

f // Q.
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where δP pgq is the conjugation by g and δQpπpfqpgqq “ δQpngn
´1q is the con-

jugation by ngn´1.

For x P P , we have δQpπpfqpgqq ˝ fpxq “ δQpπpfqpgqqpnxn
´1q “

ngn´1pnxn´1qpngn´1q´1 “ ngxg´1n´1 “ fpgxg´1q “ f ˝ δP pgqpxq concluding

the proof.

Definition 6.1.7. Let S be a p-group, F : BS Ñ X be a map. f gives rise

to a fusion system FSpfq on S whose objects are the subgroups of S and a

monomorphism φ : P Ñ Q P Fpfq if and only if the composition BP
Bφ
ÝÝÑ BS

f
ÝÑ

X is homotopic to the composition BP
Bi
ÝÑ BS

f
ÝÑ X.

For a map g : X Ñ Y , we have FSpfq Ď FSpg ˝ fq.

Definition 6.1.8. Let S be a p-group, X be a space and f : BS Ñ X be a

map. The category LSpfq has the same objects as F “ FSpfq with morphisms

LSpfqpP,Qq :“ tpφ, rHsq|φ P FpP,Qq and rHs is the homotopy class of a path in

H in mappBP,Xq from BP
Bφ
ÝÝÑ BS

f
ÝÑ X to BP

Bi
ÝÑ BS

f
ÝÑ Xu.

For inclusion homomorphisms, we use i and Bi always denotes a map inducing

inclusion on homotopy. For a homomorphism φ : P Ñ Q, we use Bφ : BP Ñ BQ

for a map inducing that homomorphism on homotopy. For paths k and l, by kl

we mean their composition path.

Lemma 6.1.9. Let S be a Sylow p-subgroup of π. Assume Bi : BS Ñ Bπ

induces the inclusion i : S ãÑ π. Then FSpBiq “ FSpπq and LSpBiq “ TSpπq.

Proof. First, let show FSpBiq Ď FSpπq. Take any φ : P Ñ Q P FSpBiq. Then,

the composition BP
Bi
ÝÑ BS

Bi
ÝÑ Bπ is homotopic to the composition BP

Bφ
ÝÝÑ

BS
Bi
ÝÑ Bπ. Let H : BP ˆ r0, 1s Ñ Bπ be that homotopy.

Fix x0 P BP . Let x1 :“ Hpx0, 0q. Without loss of generality, we can assume

x1 “ Bφpx0q. Then, Hpx0, 1q “ x1. Let ρ be the path given by ρ : r0, 1s Ñ Bπ

sending t ÞÑ Hpx0, tq. Since ρp0q “ ρp1q “ x1, ρ is a loop around x1 in Bπ.
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Now, for any loop l in BP , the image of l under BP
Bi
ÝÑ Bπ is homotopic to

the image of the loop l under the map BP
Bφ
ÝÝÑ Bπ. That homotopy sends l to

ρ´1lρ. This means φ : P Ñ Q sends p ÞÑ g´1pg where g P π corresponds ρ P Bπ.

Hence, φ P FSpπq. We have done with FSpBiq Ď FSpπq.

Second, FSpBiq Ě FSpπq is true for similar reasons. Take any cg : P Ñ Q

in FSpπq where g P π. Consider the loop ρ corresponding g P π. We construct

homotopy between the composition BP
Bi
ÝÑ BS

Bi
ÝÑ Bπ and the composition

BP
Bcg
ÝÝÑ BS

Bi
ÝÑ Bπ by moving everything around the loop ρ.

We continue with the second isomorphism. By definition, LSpBiqpP,Qq “
tpφ, rHsq|φ P FpP,Qq and rHs is the homotopy class of a path in H in

mappBP,Xq from BP
Bφ
ÝÝÑ BS

Bi
ÝÑ X to BP

Bi
ÝÑ BS

Bi
ÝÑ Xu

We define Ψ : TSpπq Ñ LSpBiq identity on objects and sending g P NπpP,Qq

to Ψpgq “ pcg, rHsq where cg : P Ñ Q is a conjugation and H is the homotopy

on Bπ shifting BP around the loop l corresponding g. Ψ is an isomorphism and

for any φ P FpP,Qq, there exist the number of the order of CπpP q pairs of the

form pφ, rHsq P LLSpBiqpP,Qq where each rHs corresponds a rotation around a

loop corresponding an element in CπpP q.

Theorem 6.1.10 (Libman-Seeliger, [3]). Fix a p-local finite group pS,F ,Lq and

let π be a group which contains S as a Sylow p-subgroup. Assume that F Ď FSpπq

and that D a map f : Bπ Ñ |L|^p whose restriction to BS Ď Bπ is homotopic to

the natural map θ : BS Ñ |L|^p .

Then we have

i-) F “ FSpπq

ii-) There exists signalizer functor Θ on π such that L “ Lθ

iii-) The map resπS : H˚pπ,Fpq Ñ H˚pS,Fpq splits and has image isomorphic to

H˚pF ;Fpq that gives

H˚
pπ;Fpq – H˚

pF ;Fpq ‘ kerpresπSq.
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Proof. For (i): From [24], we have FSpθq “ F . By the Lemma 6.1.9, we have

FSpπq “ FpBiq. Then, FSpπq “ FSpBiq Ď Fpf ˝ Biq “ Fpθq “ F . Hence,

F “ FSpπq.

For (ii): From [24], we have LcSpf ˝ Biq “ LcSpθq “ L because f ˝ Bi » θ.

From the Lemma 6.1.9, we have LcSpBiq “ T c
S pπq. From BS

Bi
ÝÑ Bπ

f
ÝÑ |L|^p , f

induces a functor LcSpBiq “ T c
S Ñ LcSpθq “ L such that the diagram commutes

T c
S pπq

ρ //

π

��

L
π

��
F c f F c.

We claim that ρ is surjective. Set T “ T c
S pπq. Consider LpP,Qq. Since the

composition ρ ˝ π surjects FpP,Qq, if ρ surjects ZpP q “ kerpLpP,Qq π
ÝÑ F cq then

ρ surjects LpP,Qq. For BiSP : BP Ñ BS, we will show that the composition

mappBP,BSqBiSP
Bi˚
ÝÝÑ mappBP,BπqBiπP

f˚
ÝÑ mappBP, |L|^p q (6.1)

is homotopy equivalence. From page 136 in [12], we have mappBP,BSqBiSP –

BCSpP q. Since P is F -centric, we have CSpP q “ ZpP q. So, mappBP,BSqBiSP –

BZpP q.

From part (c) of Theorem 4.4 in [24], mappBP, |L|^p qθ˝BiSP – BZpP q and we

know that mappBP, |L|^p qθ˝BiSP “ mappBP, |L|^p qf˝BiπP from f ˝ Bi “ θ. So we

get mappBP, |L|^p qf˝BiπP “ BZpP q. Hence, we get the first and third ones are

homotopic in equation 6.1. So the composition is homotopy equivalence.

Now, we know ρ carries ZpP q in NπpP q “ AutLpP q onto ZpP q in Aut LpP q.

Define signalizer functor as ΘpP q :“ kerpAutT pP q
ρ
ÝÑ AutLpP qq for F -centric P .

Writing AutT pP q “ NπpP q, we have commutative diagram with exact rows

1 // CπpP q //

��

NπpP q
π //

ρ

��

AutFpP q // 1

1 // ZpP q // AutLpP q
π // AutFpP q // 1

Since the diagram commutes, there is an isomorphism between the kernel of the

second and third rows because the third row is isomorphism. Hence the first

condition satisfied ΘpP q Ñ CπpP q Ñ ZpP q is exact.

62



Now take g P π such that gSg´1. We obtain a commutative diagram

1 // ΘpP q //

��

NπpP q //

x ÞÑgxg´1

��

AutLpP q //

φ ÞÑρpgqφρpgq´1

��

1

1 // ΘpgPg´1q // NπpgPg
´1q // AutLpgPg

´1q // 1

Since we have isomorphisms in third and fourth rows, we must have isomorphism

in the second row. So, gΘpP qg´1 “ ΘpgPg´1q.

To prove Θ is signalizer functor, we need to show that for P ď Q, we have

ΘpQq ď ΘpP q. Fix P ď Q. Let ê “ δpeq P LpP,Qq where e P NSpP,Qq gives

inclusion. Define AutLpQ, ÓP q :“ tφ P AutLpQq|Dφ
1 P AutLpP q such that φ ˝ ê “

ê ˝ φ1u and AutLpP, Ò
Qq :“ tφ1 P AutLpQq|Dφ P AutLpQq such that φ ˝ ê “ ê ˝ φ1u.

From Corollary 3.10 in [13], we have cancellation property. More formally we

have, φ1 ˝ ê “ φ2 ˝ ê ùñ φ1 “ φ2 and ê ˝ φ11 “ ê ˝ φ12 ùñ φ11 “ φ12.

So we can send φ P AutLpQq to the unique φ and vice versa similarly. So we

have an isomorphism

AutLpQ, ÓP q – AutLpP, Ò
Q
q.

Let N “ NπpQq
Ş

NπpP q. The preimage of AutLpQ, ÓP q under the map ρ :

NπpQq Ñ AutLpQq is N since if g is an element in the kernel we have g P

NπpQq and ρpgq P AutLpQ, ÓP q which implies that g P NπpP q. Hence, kerpN
ρQ
ÝÑ

AutLpQ, ÓP qq “ N X kerpρq “ N
Ş

ΘpQq “ ΘpQq. So we obtain a commutative

diagram

AutLpQ, ÓP qOO

–

��

N

ρQ
88

ρP

%%
AutLpP, Ò

Qq.

Here, ΘpP q
Ş

N “ kerpρP q “ kerpρQq “ ΘpQq. Hence, ΘpQq ď ΘpP q, con-

cluding the proof of that Θ is signalizer functor.

For (iii): take any φ P FpP,Qq. Since F “ FSpπq, Dg P π such that cg|P “ φ
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(Here, by cg|P we mean restriction to P of the conjugation by g map in π). Then

Bcg : Bπ Ñ Bπ is homotopic to the identity Bi : Bπ Ñ Bπ. Then the diagram

commutes up to homotopy

BP BS Bπ

BQ BS Bπ.

BiSP

Bφ

Bi

Bcg–id

BiSq Bi

Applying H˚p´;Fpq, we get that

H˚pBπ;Fpq H˚pBS;Fpq

H˚pBP ;Fpq H˚pBQ;Fpq

BiπS
˚

BiSP
˚

BiSQ
˚

φ˚

commutes for any φ P F .

Then the image of the map resπS “ BiπS
˚ contains only F -stable elements of

H˚pBS;Fpq that is

Bi˚pH˚
pBπ;Fpqq Ď H˚

pFq.

For the composition θ : BS Bπ |L|^p
BiπS f

, we have that

θ˚ : H˚p|L|^p ;Fpq Ñ H˚pFq Ď H˚pBS;Fpq is an isomorphism by the Theorem 5.8

in [24]. Here we use f˚ to obtain the splitting we need. We have the composition

θ˚ : H˚p|L|^p ;Fpq H˚pBπ;Fpq H˚pFqf˚ Bi˚

is isomorphism. Hence, resπS : H˚pπ,Fpq Ñ H˚pS,Fpq has image exactly H˚pFq
and splits by the map f˚ ˝ pθ˚q´1. Then, the splitting gives the decomposition

H˚
pπ;Fpq – H˚

pF ;Fpq ‘ kerpresπSq.
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6.2 Cohomology of Signalizer Groups

For an arbitrary fusion system the cohomology of the associated centric linking

system and the cohomology of π can be compared similarly using a spectral

sequence (see [15, Theorem VII.6.3]). This gives a long exact sequence described

in [4, Theorem 1.3]. The main ingredient for this is the fact that cohomology of

θpP q is zero for dimensions i ě 2 in mod p coefficients. Now, we prove this fact

using group theory.

Proposition 6.2.1. Let F “ FS be saturated. Assume π is an infinite group

realizing F obtained by Leary-Stancu model or Robinson model or any other model

given by graph of groups. Let θ be a signalizer functor on π such that L is a

quotient of the transporter system T c
S pπq. Then, for any P P F c and for any

i ě 2, we have HipθpP q;Fpq “ 0.

Proof. We have F “ FSpπq. Take any F -centric subgroup P of S. Assume for

a non-trivial finite p-group Q, we have Q ď θpP q. Since θpP q centralizes P , Q

centralizes P . So PQ is a p-subgroup of π. Since S is a Sylow p-subgroup of

π, there exists g P π such that gPQg´1 Ă S. For the groups P 1 :“ gPg´1 and

Q1 :“ gQg´1, we know that P 1 and Q1 are subgroups of S, and P 1 is F -centric,

and Q1 centralizes P 1. Then, we say Q1 Ď ZpP 1q. Hence, Q Ď ZpP q. However,

Q was a subset of θpP q which has a trivial intersection with ZpP q. So we get

a contradiction with the assumption that θpP q has non-trivial p-subgroup. The

result follows.
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