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Abstract—The level of taste liking is an important measure for a number of applications such as the prediction of long-term consumer

acceptance for different food and beverage products. Based on the fact that facial expressions are spontaneous, instant and

heterogeneous sources of information, this paper aims to automatically estimate the level of taste liking through facial expression

videos. Instead of using handcrafted features, the proposed approach deep learns the regional expression dynamics, and encodes

them to a Fisher vector for video representation. Regional Fisher vectors are then concatenated, and classified by linear SVM

classifiers. The aim is to reveal the hidden patterns of taste-elicited responses by exploiting expression dynamics such as the speed

and acceleration of facial movements. To this end, we have collected the first large-scale beverage tasting database in the literature.

The database has 2,970 videos of taste-induced facial expressions collected from 495 subjects. Our large-scale experiments on

this database show that the proposed approach achieves an accuracy of 70.37 percent for distinguishing between three levels of

taste-liking. Furthermore, we assess the human performance recruiting 45 participants, and show that humans are significantly less

reliable for estimating taste appreciation from facial expressions in comparison to the proposed method.

Index Terms—Taste liking, taste appreciation, facial expression dynamics, spontaneous expression, taste-induced expression

Ç

1 INTRODUCTION

FOOD is one of the primary necessities of life. Nowadays,
the quality of food (e.g., lower fat and sugar) is impor-

tant to prevent obesities and promote healthier ingredients.
To obtain different food composition (e.g., lower fat, sugar
and salt) with similar taste liking, the challenge is to mea-
sure the appreciation of food in an objective, spontaneous
and instant way. In general, the human face can be used as
a cue to determine if someone likes a particular taste or not
as it offers rich and spontaneous data in terms of facial
expressions. Previous studies show that the face reveals
appreciation or dislike while eating and drinking [1], [2].
Such spontaneous facial expressions can be used to measure
quality and intensity of the taste.

In contrast to above studies based on human observa-
tions, in this paper, the aim is to automatically recognize
taste-induced facial expressions for taste liking. Many stud-
ies in human facial analysis categorize facial expressions and
connect them to emotional states [3], [4]. In tasting, however,
facial expressions are not directly indicative of these inner
emotional states, but rather a spontaneous motor response to
flavor. Therefore, facial analysis for emotion classification
(e.g., Action Units) is not directly applicable to taste liking.
For instance, a person may display facial Action Units (AU)

that correspond to disgust expression (e.g., AU 15: lip corner
depressor, AU 9: nose wrinkler) when tasting lemon juice,
yet, this does not necessarily mean that he/she dislikes the
taste. Similarly, we cannot expect to observe a joy expression
(e.g., AU 12: lip corner puller) in response to every positive
taste. Beside the appearance of taste-induced facial expres-
sions, subtle dynamic information hidden in such expres-
sions is important. The aim is to discover this hidden
information by analyzing the expression dynamics such as
the acceleration and speed of the facial movements. In this
paper, the focus is on facial expressions for the estimation of
taste liking as they provide spontaneous, instant and hetero-
geneous human data.

We aim to automatically measure taste liking by means of
a holistic interpretation of facial expressions. Facial analysis
is done by considering the expression dynamics such as
acceleration and speed of regional facial movements. To this
end, inner facial movements are tracked in videos. Facial
regions are proposed corresponding to important parts of
faces to incorporate locality as pixels within these regions
move together. Per frame, deep-learned regional dynamics
are obtained using stacked denoising autoencoders, which
are then coded into a Fisher vector for video representation.
The regional Fisher vectors are concatenated and used as
input of an SVM classifier to classify taste liking. Overview
of the proposed approach is visualized in Fig. 1.

Unfortunately, no large-scale taste datasets of facial expres-
sions are available today. Therefore, to test and compare the
proposed method, a new large-scale taste database has been
collected containing spontaneous facial expressions while
drinking different types of beer. Such a database is amilestone
to automatically interpret taste-induced facial behavior in
real-life scenarios. To differentiate from using hand-crafted
features, deep learning is applied to obtain efficient feature
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representations. This is made possible by the enormous
amount of newly collected spontaneous facial expression
data. Although automatic face analysis has been used in
different computer vision applications, this is the first paper
on automatic taste liking tested on a large-scale database.

People are quite reliable and accurate in distinguishing
between emotional facial expressions, however, human
ability to predict taste appreciation from facial expressions
has not been investigated yet. To this end, we have recruited
45 participants, and assess human performance for this task
in comparison to the proposed method.

Our key contributions can be listed as follows: (1) First
time in the literature, we propose to learn a deep representa-
tion for per-frame dynamics of facial responses by jointly
encoding location, speed, and acceleration parameters of
densely sampled facial landmarks. (2) We introduce an
efficient temporal representation for taste-induced facial
expressions by combining the deep-learned per-frame
dynamics of each frame in a given video through Fisher vec-
tor encoding. (3) We propose the first automatic approach
for estimating the level of taste liking using facial expression
dynamics. (4) We have collected the first large-scale bever-
age tasting database in the literature. (5) We provide new
empirical findings on taste-elicited facial dynamics. (6) We
assess the human performance for estimating taste appreci-
ation from facial expressions. Finally, (7) we show that the
proposed method can also be used for other face analysis
tasks such as smile classification.

2 RELATED WORK

Taste of food and beverage products are extensively evalu-
ated to predict consumer acceptance, before market intro-
duction. Current methods for evaluating taste liking
depend almost entirely on self-report ratings that may bias
the participants to respond in a non-spontaneous, rational
way. Consequently, instant, objective and spontaneous

rating of the respondents about the product cannot be
measured by these methods. Facial expressions, however,
can reveal such likings.

Facial expressions are strong indicators of spontaneous
feelings and emotions, as well as displaying innate
responses to basic tastes. Many studies report that positive
facial expressions are elicited by liked (sweet) tastes, while
disliked (bitter) tastes induce negative expressions in neo-
nates [5], [6], [7]. Moreover, taste-elicited facial responses of
adults are shown to be similar to those found in new-
borns [1], [8]. Recent findings indicate that liking is associ-
ated with more subtle and neutral facial expressions, while
unpleasant tastes evoke more facial responses with higher
intensities [9], [10].

Although the scientific interest on taste-elicited facial
expression analysis is rapidly increasing, most studies use
manual coding of facial action units [11] to analyze the rela-
tions of facial responses with liking level and with basic
tastes such as bitter, salty, sour, sweet, and umami [1], [2],
[10]. A few recent works use automatically recognized facial
expressions for these tasks. Due to the limited accuracy of
automatic facial action unit estimation, detectors of basic
emotional expressions (e.g., anger, happiness, disgust, sad-
ness, fear, and surprise) are employed in such studies [9],
[12], [13]. Whilst the use of automatic analysis is promising,
[14] indicates that a large number of emotions are needed to
be measured to fully characterize the emotional response to
foods. Therefore, the use of a few carefully selected meas-
ures, such as basic emotional expressions, can be argued to
miss potentially valuable information.

Our approach is different from previous work because
our goal is to automatically measure taste liking using a
holistic, efficient representation based on deep learning for
the full interpretation of dynamic facial expressions. Fur-
thermore, none of the methods for taste-elicited facial
expression analysis exploit subtle dynamic patterns of
expressions such as speed and acceleration. In contrast to
all published material, in this paper, we use facial expres-
sion dynamics for estimating the level of taste liking, as well
as proposing the very first automatic approach for this task.

Temporal information is shown to be discriminative for
several face analysis tasks including facial AU detection [15],
emotional expression recognition [16], [17], spontaneity
detection [18], [19], facial age estimation [20], and kinship
verification [21], [22]. To this end, while some studies focus
on engineering descriptors to capture temporal dynamics
such as amplitude, speed, and acceleration of fiducial point
displacements [18], [19], [20], or to represent temporal
change in appearance [23], [24], others aim to learn changes
in facial shape and appearance during expressions using
temporal models such as hidden Markov models [16], [25].

Following the recent dramatic improvements in the field
of deep learning, newer approaches [15], [17], [26] have
shifted the focus to the deep architectures for temporal anal-
ysis of facial expressions. For instance, Jung et al. [26] mod-
els temporal appearance and shape of basic expressions
using a deep Convolutional Neural Network (CNN), and a
two-hidden-layer neural network, respectively. Yet, since
such networks require a fixed input dimensionality, the
duration of facial videos is downscaled to a fixed length.
Obtained frames are then fed to a CNN so as to use each

Fig. 1. Overview of the proposed approach: (a) Facial landmark tracking,
(b) extraction of facial dynamics (location, speed, and acceleration), (c)
deep learning of regional representations through stacked denoising
autoencoders, and (d) computation of regional Fisher vectors to repre-
sent videos.
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frame as a different input channel. Normalized coordinates
of the fiducial points in these frames are combined into a
single vector and fed to a feedforward network to model
facial shape. In [17], 3-dimensional (3D) CNNs are used for
learning regional changes in facial appearance during emo-
tional expressions. However, the size of spatio-temporal
blocks needs to be equal for 3D convolutions. Thus, the
method is applied to videos using a sliding window
approach. Once the whole video is processed, estimations
for all windows are fused to obtain the final prediction.

Jaiswal et al. [15] propose to jointly model temporal
change in appearance and shape through a combined
architecture of CNN and Bi-directional Long Short-Term
Memory Neural Network (BLSTM) [27] for facial AU rec-
ognition. To include shape information in the analysis,
regional binary masks are used together with texture
images. In order to capture dynamics of shape and appear-
ance changes, each frame of binary mask and texture
sequences is described not only by itself but also by its dif-
ference from adjacent frames in a neighborhood of two
frames, resulting a 5-frames temporal window representa-
tion. These frame-based shape and texture features are fed
to two parallel convolution blocks. Their responses are
fused, and followed by two additional convolution layers
and a fully connected layer. Once per-frame representations
are learned by the CNN, temporal dependencies in the
sequence of obtained features are modeled by a BLSTM.

All the aforementioned temporal models except BLSTMs
tend to learn characteristics of the temporal flow instead of
capturing dynamics. However, facial behavior is complex,
and temporally ordered facial responses cannot be expected
during tasting. Furthermore, downscaling the duration of
expressions to obtain a fixed-length representation causes
the loss of temporal dynamics information (e.g., speed and
acceleration). Relying on a fixed-length temporal window to
learn the dynamic characteristics, on the other hand, limits
the use of available temporal information. Although recur-
rent architectures such as long short-term memory neural
networks [27], [28], allow efficiently learning from varying-
length sequences as described above for facial AU recogni-
tion, they require substantial amount of data when the given
sequences include long lags and heavy noise between infor-
mative intervals. Unlike well-defined intervals of AUs and
emotional expressions, taste-elicited expressions are combi-
nations of facial responses which have not been fully discov-
ered/defined yet. Thus, indicative durations/frames of such
facial responses cannot be explicitly labeled to train temporal
models. In order to overcome such issues, this paper presents
the first attempt to deep learn per-frame dynamics of facial
responses in an unsupervised manner so as to reveal depen-
dencies between location, speed, and acceleration of dense
facial landmarks. Furthermore, we propose to encode per-
frame dynamics of a given tasting video to a Fisher vector to
model their pattern of co-occurrence for different apprecia-
tion levels. Since this paper aims to reveal the importance/
informativeness of inner-facial movement dynamics in the
analysis of taste-elicited expressions, appearance (facial tex-
ture) features are not employed in the proposedmethod.

Fisher vector representation and stacked denoising
autoencoders have been successfully employed for face
analysis in recent studies [29], [30], however, the use of

these approaches conceptually differ in the current study.
For instance, while [29] combines spatio-temporal informa-
tion obtained from different facial regions through Fisher
vector encoding, the current study uses Fisher vector repre-
sentation for temporal pooling of per-frame dynamics. Simi-
larly, while stacked denoising autoencoders are employed
to visually transform expressive face images to neutral ones
in [30] for more accurate face recognition, we use them to
learn an efficient spatio-temporal representation for each
frame in a facial video by modeling the non-linear relations
of location, speed, and acceleration parameters of facial
landmarks.

3 METHOD

Our approach aims to automatically estimate taste liking
through facial expressions. In this section, details of the pro-
posed method are given. The flow of the system can be given
as follows. Initially, facial landmark points and head pose are
tracked in videos. The tracked points are pose and scale nor-
malized. After normalization, speed, and acceleration of the
displacement of each facial landmark are computed. Land-
marks are grouped into four different facial regions, namely:
eyebrows/forehead, eyes, cheeks, and mouth. For each
region, location, speed, and acceleration of the points at each
frame of the videos are fed to a Stacked Denoising Autoen-
coder (SDAE) in order to learn efficient regional representa-
tions. The learned regional representations are computed for
each frame of the test video, and coded into a Fisher vector.
Concatenated regional Fisher vectors are used to train Sup-
port VectorMachine (SVM) classifiers to distinguish between
three levels of taste liking, i.e., disliking, neutral, and liking.

3.1 Facial Landmark Tracking

For a detailed analysis of the inner facial dynamics, we track
3D locations of 429 facial landmark points using a state-of-
the-art tracker recently proposed by Jeni et al. [31]. The
tracked 429 facial fiducial points on the eyebrows, forehead,
eyes, cheeks, and mouth are shown in Fig. 2. The tracker
employs a combined 3D supervised descent method [32],
where the shape model is defined by a 3D mesh and the 3D
vertex locations of the mesh [31]. A dense parameterized
shape model is registered to an image such that its land-
marks correspond to consistent locations on the face. The
accuracy and robustness of the method for 3D registration
and reconstruction from 2D video was validated in a series
of experiments in [31].

Fig. 2. Tracked facial landmarks, and the defined regions.
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Once the facial landmarks are tracked, similarity normal-
ized 3D shape representation is used for further analysis.
Similarity normalized representation is the set of vertex
locations after removing the global rigid transformations
such as translation, rotation and scale. Since the normalized
representation is frontal with respect to the camera, we
ignore the depth (Z) values of the facial points. To leverage
regional properties, tracked landmarks are grouped into
four facial regions, namely: eyebrows & forehead, eyes,
cheeks, and mouth as shown in Fig. 2. The time series of the
location of the points in region j (where, j 2 f1; 2; 3; 4g) for a
video is denoted as Lj, and denoised by using the 4253H-
twice smoothing method [33]. Facial movement dynamics
are discriminative for facial expression recognition as
shown in previous research [18], [19]. Therefore, speed V
and acceleration A sequences are computed as:

VðtÞ ¼ dL
dt

, (1)

AðtÞ ¼ d2L
dt2

¼ dV
dt

, (2)

and used together with the location sequence L of land-
marks for facial representation. Including speed and accel-
eration measures in the per-frame analysis does not only
allow capturing dynamic patterns of facial responses but
also provides temporal phase information. For instance,
while a lip corner puller (AU 12) displayed in a video frame
can be identified based on the landmark locations, without
using temporal information (displacement/speed) we can-
not determine whether the action unit just starts (onset) or it
almost ends (offset).

3.2 Learning Face Representation

The computation of location, speed, and acceleration meas-
ures for the facial representationmay be complex and redun-
dant due to tracking noise or correlated movements of the
facial points. Deep architectures can learn efficient feature
representations and are able to cope with high dimensional-
ity and redundancy of data. Since we do not have additional
information (i.e., class label) to learn per-frame facial repre-
sentation, an unsupervised approach is required. Deep
learners can progressively reveal low-dimensional, nonlin-
ear structures in an unsupervised manner [34]. To this end,
we employ the StackedDenoising Autoencoders [35] to learn
a transformation of raw features to an effective representa-
tion that is able to capture discriminative facial cues for clas-
sifying different levels of taste liking.

A deep autoencoder can be described as a neural net-
work with multiple hidden layers. Such a network is trained
to reconstruct its inputs, where hidden layers learn efficient
representations of the inputs. In SDAE, each hidden layer is
learned using a denoising autoencoder [36], which maps a
corrupted version ~x of input x 2 Rp to a latent representa-
tion y 2 Rq, and then maps it back to the original space to
obtain the reconstructed input z 2 Rp as follows:

z ¼ gðyÞ ¼ g
�
fð~xiÞ

�
, (3)

where f and g denote the encoding and decoding functions,
respectively. Then, the parameters Q of the denoising

autoencoder is optimized by minimizing the average recon-
struction error as:

Q� ¼ argmin
Q

1

N

XN
i¼1

‘ðxi; ziÞ

¼ argmin
Q

1

N

XN
i¼1

‘
�
xi; g

�
fð~xiÞ

��
,

(4)

where ‘ is a loss function, and in this study it is defined as
the squared error:

‘ðx; zÞ ¼ kx� zk2. (5)

xi is the ith training sample, and ~xi shows its corrupted ver-
sion. N indicates the total number of training samples. In
this way, the first hidden layer is trained to reconstruct the
input data. Then each of the hidden layers are trained to
reconstruct the states of the layer below, respectively. ~x is
obtained by randomly setting a fractionw of input vector x to
0. Transformation weights are initialized at random and
then optimized by stochastic gradient descent. Once the pre-
training is completed, the entire deep autoencoder is trained
to fine-tune all the parameters together to obtain optimal
reconstruction, using backpropagation of error derivatives.

For each facial region, a separate 4-layer architecture is
designed. To ensure a compact final representation, the num-
ber of units q at the 4th hidden layer of each network is set to

dd6e, where d denotes the feature dimensionality of the input

data. Let hj be the number of landmarks of the facial region j,

then dd6e ¼ hj, because 2D measures of the location, speed,

and acceleration are used as raw representation of the face at
each frame. The number of units for the first three hidden
layers, and other hyperparameters of SDAE are determined
by minimizing the validation error (during the training of
classification model; see Section 3.3). The list of the hyper-
parameters, and other considered values are given in Table 1.

To employ facial dynamics in the analysis, we use deriv-
atives of location coordinates (speed and acceleration) as
features. However, they are sensitive to noise in location
measures. Therefore, the sequence of location coordinates
are smoothed using the 4253H-twice method [33] before
extracting speed and acceleration features (as described in
Section 3.1). For further noise removal, each regional SDAE
is trained to reconstruct these smoothed measures (location,
speed, acceleration), using their raw version. Note that such
a smoothing step is not applied to the hidden layers.

3.3 Video Representation and Classification

When the SDAEs are trained, regional feature vectors for
each frame are encoded to the learned dd6e dimensional

TABLE 1
List of the Hyperparameters, and Considered Values

Hyperparameter Considered values

Number of hidden layers f2; 3; 4g
Number of units for the final hidden layer fdd6eg
Number of units for other hidden layers fdd4e; dd2e; d; d3d2 e; 2dg
Fixed learning rate f0:001; 0:01g
Number of epochs f30; 50g
Corruption noise level (w) f0:1; 0:2; 0:4g
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representation. By combining these frame based features,
the tasting videos can be described. However, since the
duration of the videos differs, a fixed-length feature vector
is required for representing videos. Although time series
can be classified by temporal models without having a
fixed-length representation, such models tend to learn char-
acteristics of the temporal flow. Yet, taste-induced facial
expressions display a complex behavior, and temporally
ordered facial responses cannot be expected during tasting.
To this end, an improved Fisher vector (IFV) coding is
employed to describe the videos [37]. The use of such a
representation aims to reveal pattern of co-occurrence of
facial responses instead of capturing their temporal order.

Using a Gaussian mixture model (GMM) with 64 Gauss-
ian distributions1, a 128dd6e dimensional IFV is computed for
each facial region per video. These Fisher vectors are nor-
malized by power normalization and l2-norm as described
in [37]. Computed regional (eyebrows & forehead, eyes,
cheeks, and mouth) Fisher vectors are then concatenated
and modeled by linear Support Vector Machines (SVMs).
We opt to use linear kernel for SVM since Fisher vectors can
be effectively modeled by linear models [37], [38]. Regulari-
zation parameter of SVM is optimized by minimizing the
validation error.

4 BEVERAGE TASTING DATABASE

In order to assess informativeness of facial responses for esti-
mating person-independent taste liking, a large-scale video
database of beer tasting (i.e., drinking) has been collected.
We opt for beers as stimuli due to the complexity of the tastes
incorporated (e.g., some combination of wet, bitter, sweet,
sour, carbonated, andmalty) in a single product [39].

502 respondents were recruited to evaluate six different
beers. Recruitment was according to the following criteria:
all respondents consumed beer or lager at least once a
week. 78 percent of the respondents were male, and
22 percent were female; 89 percent worked full-time and 11
percent part-time; 28 percent were in socio-economic group2

AB, 68 percent in C1 and 4 percent in C2DE. Age of the
respondents range from 21 to 60 (14 percent aged 21-24,
31 percent aged 25-34 and 55 percent aged 35-60).

Products were served at 5� 2�C according to a random-
ized design to minimize first sample bias. Samples were
served one at a time, 120ml per product, and respondents
did not have to consume all of the sample. For each sample,
respondents were first asked to follow the procedure sum-
marized below:

� Before tasting a beer, ensure you have thoroughly
cleansed your pallet with a piece of cracker and
some water. Be sure you do not have any of the
cracker left in your mouth.

� Sit up straight, facing forward and tuck your chair
into the booth.

� When you are ready to taste your sample hold up
the green piece of card in front of your face, have a
neutral expression on your face, and put the card
back down.

� Pick up your glass, making sure the 3-digit code is
facing the camera and not obscured by your hand.

� Take a sip of your drink but do not swallow right
away.

� Put the glass down, look into the camera and swal-
low the beer.

� Remain looking at the camera for a few seconds.
� Take a further couple of sips before proceeding with

the questionnaire.
� Complete the questionnaire by selecting a response

for each question as instructed.
Facial expressions during the entire session were captured

using a Logitech C920 high definitionwebcams frontally posi-
tioned to the face. Videos were recorded with a resolution of
1,280� 1,024 pixels at a rate of 15 frames per second under
controlled illumination conditions. Data were collected in
many booths in parallel, thus several computers (PCs) were
required. PCs provided by a third party were unable to
acquire videos with more than 15 frames per second. Each
subject has a recording of about one hour. The respondents
were requested to show a green card to the camera just before
starting each of the beer tasting. Green cards were automati-
cally detected, and one video segment for each beer was iden-
tified from the detection of green card until click bursts,
indicating the start of questionnaire responding after the beer
tasting. Afterwards, the frame just before the initial sip in
each video segment was manually annotated. Frames before
the initial sip were removed. Each beer was evaluated by
each participant by completing a questionnaire. The ques-
tionnaire comprised of an overall liking score on a 9-point
scale (“dislike extremely” to “like extremely”), as well as
other evaluations such as 5-point scale purchase intent
(“would definitely not buy” to “would definitely buy”).

Visual data for 7 subjects were lost due to recording
problems. Data from 495 subjects are used in our experi-
ments, yielding 2,970 videos of beer tasting (495 subjects �
6 beers) composed of about 700K frames. Overall liking
scores were linearly mapped from 9-point scale to 3-point
scale (indicating disliking, neutral state, and liking), and
used as class labels for distinguishing between different lev-
els of taste liking. Resulting database is composed of 743
disliking, 1,327 neutral, and 900 liking videos. Distribution
of the overall liking scores and the corresponding liking
classes are shown in Fig. 3. Since we don’t have the consent
of the participants, we are unable to share the database.

5 EXPERIMENTS & RESULTS

To evaluate the proposed approach and assess the discrimi-
native power of facial expression dynamics for taste liking,
we use our newly collected beer tasting database of 495 sub-
jects. The regularization parameter of SVMs, and hyper-
parameters of stacked denoising autoencoders (see Table 1)
are optimized on a seperate validation set. To this end, a
two level cross-validation scheme is used. While 10-fold
cross-validation is used for testing, remaining nine folds (at

1. The number of distributions in the Gaussian mixture model is
empirically set to 64 so as to keep the representation as compact as pos-
sible while providing a decent validation accuracy.

2. In terms socio-economic classification [40], group AB represents
higher and intermediate managerial, administrative, professional occu-
pations; group C1 indicates supervisory, clerical and junior managerial,
administrative, professional occupations; group C2DE consists of
skilled, semi-skilled and unskilled manual occupations, unemployed
and lowest grade occupations.
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each iteration) are three-fold cross-validated to optimize the
parameters. There is no subject overlap between folds in
the database. In the experiments, performance of three-class
classification (disliking, neutral, liking) is evaluated for
the estimation of taste-liking level. At each fold of cross-
validation, the number of training samples for each class is
equalized by randomly choosing n samples per class, where
n is the number of training samples of the class with mini-
mum sample-size. Folds and the randomly selected training
samples are kept same for all experiments.

5.1 Facial Regions

In this paper, we propose an approach that distinguishes
between different taste liking levels based on the dynamic
movement characteristics of facial regions. To assess the
informativeness of the facial regions, we evaluate the accu-
racy of the proposed approach using eyebrow & forehead,
eye, cheek, and mouth regions, individually. We then com-
pare these results with the combined use of regional repre-
sentations, and with the use of a global (holistic) face
representation. The global face representation is learned by
the same approach by encoding all facial features together.

As shown in Table 2, eyebrow& forehead region performs
best with a classification accuracy of 61.55 percent, and fol-
lowed by the eye region (60.20 percent). This finding shows
the importance of upper facial movements for detecting taste
preferences. The lowest correct classification rates are pro-
vided by cheek, and mouth regions, respectively. The use of
mouth region performs with an accuracy of 55.82 percent
which is 5.73 percent (absolute) less than that of eyebrow &
forehead region. These results may be explained by the fact
that movements of mouth and cheek regions are highly
affected by drinking and swallowing.

When we fuse regional descriptors, classification accu-
racy is increased to 70.37 percent, which is significantly

(8.82 percent higher, t ¼ �7:16, df ¼ 5938, p < 0:001) higher
than that of best performing facial region. Global face repre-
sentation achieves an accuracy of 67.44 percent, outperform-
ing individual use of regional descriptors. Yet, the accuracy
of the global approach is significantly (t ¼ 2:44, df ¼ 5938,
p ¼ 0:015) lower than that of the combined use of regional
descriptors. This finding can be explained by two reasons.
First, a 4-layer SDAE is employed to learn both global and
regional face representations using the same number of data
samples. While the global approach may learn relations
between regional dynamics, it has to deal with much higher
complexity in comparison to the regional approach. Second,
both regional and global descriptors are modeled using 64
Gaussian distributions during Fisher vector computation. As
a result, based on the higher complexity of global features,
regional video descriptors can better represent dynamic
characteristics.

5.2 Facial Dynamics

One of the main contributions of this paper is the exploita-
tion of per-frame dynamics of facial responses to capture
subtle temporal cues. In order to evaluate whether facial
dynamics provide useful information for classifying taste-
liking levels, we implement a modified version of the pro-
posed method by discarding speed and acceleration meas-
ures. Resulting method solely uses the facial landmark
locations to deep learn face representation. We compare the
accuracy of the modified method to that of the proposed
approach. Both individual facial regions and their combined
use are evaluated for comparison.

As shown in Fig. 4, discarding per-frame dynamics (i.e.,
speed and acceleration) significantly decreases (t ¼ 3:29,
df ¼ 5938, p < 0:001) the accuracy for all facial regions
and for their combined use. While the proposed method
achieves a classification accuracy of 70.37 percent, only
63 percent of the samples are correctly classified by the
sole use of landmark locations. In other words, combining
speed and acceleration information with landmark locations
provides a relative accuracy improvement of 10 percent.
For the individual regions, using facial dynamics achieves a
9 percent (relative) improvement on average.

One of the reasons behind these results is the fact that
Fisher vector encoding cannot capture temporal informa-
tion based on the displacement of points while modeling
the distribution of landmark locations (in a video) unless
speed and acceleration measures are used as additional

Fig. 3. Distribution of the overall liking scores and the corresponding lik-
ing classes in the beverage tasting database.

TABLE 2
Correct Classification Rates for Individual and Combined Use of
Regional Descriptors, and Using Global Face Representation

Region Disliking Neutral Liking Total

Eyebrow & Forehead 0.7227 0.5373 0.6422 0.6155
Eye 0.6635 0.5569 0.6178 0.6020
Cheek 0.6366 0.5102 0.5833 0.5640
Mouth 0.6393 0.5026 0.5733 0.5582

Combined 0.7927 0.6413 0.7222 0.7037
Global Face 0.7658 0.6240 0.6733 0.6744

Best results are boldfaced.

Fig. 4. Influence of facial dynamics on correct classification rates.
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inputs. Furthermore, the significant accuracy decrease due
to discarding speed and acceleration measures validates the
importance of including dynamic/temporal information in
frame-based representations.

Since the proposed method solely relies on displacement
measurements of the fiducial points, accurate shape normali-
zation of faces is vital for a reliable analysis of facial dynam-
ics. Note that even small/moderate variations in 3D head
pose may cause significant amount of noise in the displace-
ment measurements because the computation of change in
point locations requires exact alignment of consecutive face
images. Therefore, as described in Section 3.1, 3D facial track-
ing is employed for more accurate alignment through 3D
shape normalization. To assess the effectiveness of using 3D
tracking/normalization, we compare the accuracy of our
method with that of its modified version, where 2D coordi-
nates (of the same landmarks) are used for facial alignment,
discarding the normalization of yaw and pitch rotations.

As shown in Table 3, when we solely employ facial land-
mark locations for the analysis, accuracy with the use of 3D
shape normalization is only 1.89 percent higher than that of
using 2D normalization. Note that this is not a statistically
significant (t ¼ �1:50, df ¼ 5938, p > 0:05) improvement.
Yet, once we employ facial dynamics (including speed and
acceleration) for the classification, the use of 3D shape nor-
malization significantly outperforms (t ¼ �3:24, df ¼ 5938,
p ¼ 0:001) its 2D competitor with an accuracy improvement
of 3.91 percent. This finding can be explained by the fact
that displacement measures and their derivatives are more
sensitive to noise compared to the point locations. As a
result, even subtle misalignments between faces in consecu-
tive frames significantly affects the reliability of the speed
and acceleration measures, causing an accuracy decrease
when 2D normalization is used.

5.3 Hidden Layers

The proposed method uses 4-layer stacked denoising
autoencoders to learn regional descriptors. However, in
order to evaluate the effect of number of hidden layers, we
evaluate the use of two, three, and four hidden layers in the
network architecture, and compare the resulting correct
classification rates. The same hyperparameters are consid-
ered (see Table 1) for the optimization of each network.
Fig. 5 shows the obtained correct classification rates using
different number of hidden layers.

Classification accuracy is improved at each additional
layer for all regions as well as for their combined use.
Increasing the number of hidden layers from two to three
improves the classification accuracy of regional representa-
tions by 10 percent on average. The fourth layer can only

provide an improvement of 4 percent over the third layer.
For the combined use of regional descriptors, the accuracy
increase by the third and fourth layers, are 7, and 5 percent,
respectively. Obtained accuracy improvements confirm that
SDAE can gradually reveal nonlinear structure in the facial
data, and consequently learn a better representation for
regional dynamics.

Next, we analyze the number of units for each hidden
layer. Although the number of units are determined for
each of the 10 folds, separately, in most cases the same set of
values are chosen in our experiments. These configurations
of hidden units for different regions, and layers are given in
Table 4. Note that the number of units in the highest hidden
layer is set to one sixth of the input dimensionality (see
Section 3.2) for a compact representation.

5.4 Comparison to Other Methods

To the best of our knowledge, this is the first study propos-
ing an algorithm to automatically classify the level of taste
liking from facial videos. Therefore, we implement seven
different baselines using related methods to compare with
the proposed approach.

The first baseline is a modified version of the proposed
approach, where the stacked denoising autoencoders are
replaced by principle component analysis (PCA). For each
region, one sixth of the original dimensionality is obtained
using PCA. In the second method, a Fisher kernel is derived
by modeling location, speed, and acceleration features using
a hidden Markov model (HMM) as described in [41]. The
number of hidden units in HMM is determined by minimiz-
ing the validation error. 2, 5, and 10 hidden units are used as
candidate configurations.

TABLE 3
Correct Classification Rates for Location- and Dynamics-Based

Analysis with the Use of 2D and 3D Face Normalization

Method Disliking Neutral Liking Total

2D + Landmark Locations 0.6934 0.5702 0.6036 0.6111
3D + Landmark Locations 0.7121 0.5832 0.6313 0.6300

2D + Facial Dynamics 0.7532 0.6108 0.6710 0.6646
3D + Facial Dynamics 0.7927 0.6413 0.7222 0.7037

Best results are boldfaced.

Fig. 5. Correct classification rates for different number of hidden layers.

TABLE 4
Determined Number of Units at Each Hidden

Layer of 2-, 3-, 4-layer Architectures

Region 2-layer 3-layer 4-layer

Eyebrow
& Forehead

d3d2 e ! dd6e d ! 2d ! dd6e d3d2 e ! d3d2 e ! 2d ! dd6e
Eye dd2e ! dd6e d ! d3d2 e ! dd6e d ! 2d ! 2d ! dd6e
Cheek d ! dd6e dd2e ! dd4e ! dd6e d ! d ! d3d2 e ! dd6e
Mouth d ! dd6e dd2e ! dd2e ! dd6e dd2e ! d ! d ! dd6e

Values from left to right show the number of hidden units from initial layer to
higher layers. Note that d denotes the dimensionality of input features.
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As the third baseline, we use the improved trajectories
method [42] that achieves state-of-the-art results for action
recognition. Trajectories are computed for every 15 frames.
Extracted trajectory features, histograms of oriented gradient
(HOG), histograms of optical flow (HOF), and motion
boundary histograms (MBH) are combined, and fed to PCA
to reduce the feature dimensionality to half. Obtained princi-
ple components are then encoded to improved Fisher vector
representation using 128 Gaussian distributions.

In the fourth baseline, facial appearance in each frame is
described by HOG features. Initially, faces are normalized
with respect to roll rotation, resized, and cropped as to
obtain a 128� 128 pixels resolution. HOG features are
extracted from 2� 2 cells in 8� 8 equally sized blocks, and
9 bins are used to compute histograms. For a fair compari-
son, dimensionality of the HOG features is reduced to 210,
yielding a similar feature dimensionality with the proposed
approach. Videos are then represented by IFV using 128
Gaussian distributions.

The fifth baseline method analyzes each frame of the vid-
eos to detect 11 facial action units (AU) that are shown to
signal taste-related cues [1], [8]: AU1 (inner brow raiser),
AU2 (outer brow raiser), AU4 (brow lowerer), AU6 (cheek
raiser), AU9 (nose wrinkler), AU12 (lip corner puller),
AU15 (lip corner depressor), AU18 (lip puckerer), AU20 (lip
stretcher), AU23 (lip tightener), and AU26 (jaw drop). Then,
the estimated AU probabilities are encoded to improved
Fisher vector representation using 128 Gaussian distribu-
tions. To detect the AUs, we use the method proposed
in [43]. In this method, facial surface is divided into 27
regions using facial landmarks. Then, local binary patterns
(LBP) and local phase quantization (LPQ) features are
extracted from each region, and used together to train
SVMs as regional AU detectors. The computed posterior
probabilities for each region are fused using weighted SUM
rule. To estimate these posterior probabilities, sigmoids of
SVM output distances are used. Weights are determined by
the validation performance of the classifiers. To train detec-
tors for the indicated 11 AUs, we combine subsets of the
DISFA [44], Bosphorus [45], extended Cohn-Kanade [4],
and Affectiva-MIT [46] databases.

For the sixth and seventh baselines, we modify the CNN-
LSTM architecture proposed in [47]. In the sixth baseline,
CNN layers of [47] are removed and the sequences of facial
dynamics are fed to the 3 stacks of LSTMs. Since we do not
have per-frame annotations for taste liking in our database,

a single softmax classifier is placed on top of the last time
step of the stacked LSTMs. In the seventh baseline, while
the CNN and LSTM architectures of [47] are kept intact,
fusion of the outputs of CNNs and LSTMs are disabled and
one softmax classifier is connected to the last time step of
the stacked LSTMs. Normalized face images are used as
inputs to CNNs. The outputs of the CNNs are connected to
LSTMs so as to allow an end-to-end learning. For a fair com-
parison sixth and seventh baselines are trained from scratch
using our database. The same hyperparameters/settings
with [47] are used in these baselines.

All baseline methods are trained to distinguish between
three levels of taste liking: disliking, neutral, and liking.
While sixth and seventh baselines employ softmax classifier,
other baselines use linear SVM. As shown in Table 5, the pro-
posed approach significantly c outperforms all the baseline
methods with a correct classification rate of 70.37 percent.
AU-basedmethod (baseline 5) follows the proposed approach
with an accuracy of 62.73 percent. Although the AU-based
method provides the second best performance, the accuracy
of taste liking classification may drastically drop in case of
inaccurate estimation of AU probabilities.

Fusing facial appearance (HOG descriptors) in each
frame of a video through IFV encoding (baseline 4) provides
an accuracy of 61.62 percent. While appearance features can
capture subtle changes in a better way compared to shape
features (e.g., facial landmark locations), both our proposed
approach and its modified version (see Section 5.2) that dis-
cards speed and acceleration measures, outperform baseline
4. Based on this finding, we can confirm the informativeness
of deep-learned representations.

End-to-end modeling of facial image sequences using a
CNN-LSTM architecture (baseline 7) can correctly classify
only 61.29 percent of the videos. LSTM modeling of facial
dynamics (baseline 6) performs even worse with an accu-
racy of 58.62 percent. These results may suggest that taste-
liking levels are correlated with pattern of co-occurrence
of specific facial responses rather than temporal flow
of the responses. Another reason may be the large data
requirement of recurrent architectures for modeling
sequences with long lags and heavy noise between infor-
mative intervals.

The correct classification rate achieved by the improved
dense trajectories method (baseline 3) is only 59.02 percent.
This result can be explained by the fact that improved trajec-
tories do not leverage the knowledge of facial morphology

TABLE 5
Description of the Compared Methods, and Achieved Correct Classification Rates

Method Description Disliking Neutral Liking Total

Proposed Facial Dynamics + SDAE + IFV (64-GMM) 0.7927 0.6413 0.7222 0.7037
Baseline 1 Facial Dynamics + PCA + IFV (64-GMM) 0.6501 0.4748 0.5867 0.5525
Baseline 2 Facial Dynamics + Fisher Kernel 0.5464 0.3753 0.3589 0.4131
Baseline 3 Improved Trajectories + PCA + IFV (128-GMM) 0.6258 0.5667 0.5956 0.5902
Baseline 4 HOG Features + PCA + IFV (128-GMM) 0.6514 0.6127 0.5922 0.6162
Baseline 5 Facial AU Levels + IFV (128-GMM) 0.5303 0.7038 0.5944 0.6273
Baseline 6 Facial Dynamics + LSTM 0.6322 0.5616 0.5846 0.5862
Baseline 7 Face Images + CNN-LSTM 0.6301 0.6282 0.5760 0.6129

Number of samples 743 1,327 900 2,970

Note that the “Facial Dynamics” denotes the use of speed and acceleration measures together with landmark locations. Best results are boldfaced.
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in comparison to facial tracking methods. Consequently, it
performs 11.35 percent (absolute) worse than the proposed
method.

When the stacked denoising autoencoders are repla-
ced with PCA (baseline 1) in the proposed approach, a
15.12 percent accuracy decrease is observed. This finding
shows that SDAEs can learn very efficient and informative
descriptors for this task by revealing non-linear relations
between facial movements and their dynamics.

Fisher kernel representation (baseline 2) computed from
location, speed, and acceleration measures of landmarks,
performs worst in our experiment with an accuracy of
46.84 percent. This is an expected result since the dynamic
characteristics of taste-induced facial behavior is complex,
and taste-induced responses do not follow a specific tempo-
ral pattern.

When we analyze per-class accuracies, it is seen that all
methods except AU-based baseline provide higher accuracy
for disliking condition. This result is in line with the find-
ings of [9] and [10] indicating that unpleasant tastes evoke
more facial responses with higher intensities, which can be
better differentiated than pleasant tastes since liking is asso-
ciated with more subtle and neutral facial expressions.

5.5 Influence of Gender

In order to explore the gender-based differences in taste-
elicited facial dynamics, the correct classification rates
are obtained for each gender. While the accuracy is
73.08 percent for females, a correct classification rate of
69.58 percent is obtained for male participants. Conse-
quently, there is no significant (t ¼ 1:7181, df ¼ 2968,
p ¼ 0:0859) accuracy difference between male and female
subjects. Next, for each taste-liking level, we compute the
amount of features (in the final video representation) that
significantly (p < 0:05) differ between male an female sub-
jects. Our results show that gender significantly affect 34.48,
28.88, and 22.67 percent of the features during disliking,
neutral, and liking conditions, respectively.

Since the proposed video-level representation is not
directly interpretable in terms of facial dynamics, we extract
the point displacements for each region, and compute their
first principle components (through PCA). Using the first
principle component sequences of displacement, regional
mean displacements over each video are calculated. Notice
that mean displacement is equivalent to mean speed since
each video has been sampled at the same frame rate. Our
analysis of gender effects on these regional measures show
that mean expressiveness of eye and cheek regions are
significantly (p < 0:01) higher for females during disliking.
Yet, eyebrow & forehead region of males is significantly
(p < 0:01) more expressive than that of females during
disliking.

5.6 Influence of Age

To assess the influence of age on taste-elicited facial expres-
sion dynamics, we parse our results and analyze the correct
classification rates for different age groups. To this end, we
split the subjects into two groups based on their age as
young (21-34 years) and mid-aged (35-60 years), representing
45 and 55 percent of the participants, respectively. Obtained
results show that taste-liking levels of 69.13 percent of the

young group is correctly classified, while the accuracy
for mid-aged group is 71.38 percent. Yet, the accuracy dif-
ference between the age groups is not statistically signi-
ficant (t ¼ 1:3371, df ¼ 2968, p > 0:1813). Furthermore, we
calculate the amount of features (in the final video represen-
tation) that significantly (p < 0:05) differ between young
and mid-aged subjects, for each taste-liking level. As a
result, we find that age significantly affects 75.63 percent,
87.06, and 92.51 percent of the features during disliking,
neutral, and liking conditions, respectively.

To explore the effects of age on taste-elicited facial expres-
sions, we analyze the regional mean displacement measures
as in Section 5.5. Our results indicate that during liking,
mouth (p < 0:005) and eyebrow & forehead (p < 0:02)
regions of young subjects are significantly more expressive
than that of mid-aged group, while eye region of young sub-
jects displays significantly (p < 0:01) lower expressiveness.

5.7 Comparison to Human Accuracy

To comprehend general human knowledge and ability to
judge and classify taste appreciation of other individuals
from their facial expressions, we gathered human predic-
tions of taste-liking levels for a subset of beer tasting videos
in the collected database. To this end, we randomly selected
75 videos for each of disliking, neutral, and liking classes in
a way that each level of overall liking (9-point scale) had 25
samples. In total, 225 videos were used from 146 male and
42 female (gender distribution is similar that of whole data-
base), mainly Caucasian.

For the experiment, we recruited forty-five participants,
23 male and 22 female. Each participant was shown 15 vid-
eos, and asked to rate the perceived taste-liking level for
each video as liking, neutral, or disliking. None of the partici-
pants were experts on face analysis or took a special training
in facial expressions. The participants ranged in age from 23
to 56 years (mean: 30.2) andwere of 14 different nationalities,
i.e. British, Chinese, Costa Rican, Dutch, German, Greek,
Hungarian, Indian, Indonesian, Iranian, Portuguese, Roma-
nian, Serbian, and Turkish. Taste-liking level for each video
was predicted by three different participants. A different set
of videos were shown to each participant. In order to com-
pare the reliability of human prediction to that of the pro-
posed method, we have tested our method on the same
subset of 225 videos. We assess and compare the perfor-
mance of humans and ourmethod based on confusionmatri-
ces, total accuracy, and linear weighted Cohen’s k that is the
proportion of ordinal agreement above what would be
expected to occur by chance [48].

As shown in Table 6, our method performs better than
humans for each of the three liking classes. Total accuracy
of the proposed method reaches to 65.33 percent which is
significantly higher than human accuracy (13.48 percent
higher, t ¼ �3:50, df ¼ 898, p < 0:001). Yet, confusion pat-
terns of human and computer predictions are similar. For
instance, most confusion occurs between neutral and liking
classes, which is followed by the confusion of neutral and
disliking classes. While 34 percent of human predictions for
neutral and liking samples are confused with each other,
this rate is 26.67 percent for the proposed method. As
expected, the lowest confusion rate is observed between lik-
ing and disliking classes (i.e. 13.11 and 8.67 percent for
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human and computer predictions, respectively). Conse-
quently, the most accurate classification is achieved for dis-
liking class by both of human and computer predictions.

Based on weighted Cohen’s k, the predictions by differ-
ent participants have been found to be fairly consistent
(0:20 < k � 0:40). Weighted k for automatic predictions
(by our method), on the other hand, is 49.18 percent higher
(relative) and represents a moderate level of agreement
(0:40 < k � 0:60). These findings suggest that humans are
less accurate and less reliable for estimating taste apprecia-
tion from facial expressions in comparison to the proposed
method. It is important to note that these results are based
on knowledge and ability of a non-expert population. In
other words, participants had no expertise in facial expres-
sions at the time of the experiment.

5.8 Visual Analysis

Our proposed approach uses deep learning to compute
frame-based descriptors, and Fisher vector encoding for
video representation. Since these methods perform in an
unsupervised manner, no labels are required for the per-

frame liking levels. If such labels are provided, a better
understanding of taste-elicited facial expressions could be
obtained. And these labels could allow the implementation
of single image based approaches. To this end, we explore
the most discriminative frames (single images) for distin-
guishing between different liking levels.

Fisher vector encoding provides a fixed-length representa-
tion for varying-duration videos. As an extreme case, we can
even compute a Fisher vector for a single frame, and evaluate
it using themodels learned on the videos. In this way, we can
detect the frames that correspond to the highest scores com-
puted by SVMs for disliking, neutral, and liking classes.

Since the respondents in the collected database did not
allow us to publish their images, we have collected an addi-
tional small-scale database for visualization purposes. To
this end, we recorded six respondents’ (three female, three
male) facial responses during the tasting of four different
beers. Tasting durations for each beer are segmented in the
same way as described in Section 4. Consequently, we have
obtained four videos for each of the six subjects. For each
frame in this database, a Fisher vector is computed, and fed

TABLE 6
Confusion Matrices for Human Prediction and the Proposed Method

Human Prediction Proposed Method

Actual n Predicted Disliking Neutral Liking Disliking Neutral Liking

Disliking 0.6400 0.2178 0.1422 0.7333 0.1733 0.0933
Neutral 0.2844 0.3689 0.3467 0.1600 0.5600 0.2800
Liking 0.1200 0.3333 0.5467 0.0800 0.2533 0.6667

Total Accuracy: 0.5185 Total Accuracy: 0.6533
Weighted Cohen’s k: 0.366 Weighted Cohen’s k: 0.546

Correct classification rates for each class are boldfaced.

Fig. 6. Automatically extracted frames which correspond to the highest scores computed by SVMs for disliking (top row), neutral (middle row), and lik-
ing classes (bottom row).

160 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2020



to the three-class (disliking, neutral, and liking) SVM classi-
fier. Note that the stacked denoising autoencoders, Fisher
vector encoders, and SVM models are all trained on the
database of 495-subjects. Then, for each subject, three frames
are extracted which correspond to the highest scores for dis-
liking, neutral, and liking classes, as shown in Fig. 6.

Extracted frames show interesting facial expression pat-
terns. Disliking-related frames mostly display lowered eye-
brows, lowered eyelids, and stretched lips, as well as
having raised upper lips. Almost all liking-related frames
show lip sucking, and some of them have raised eyebrows.
Finally, frames corresponding to the highest score for the
neutral class, show perfect neutral faces. These facial
expression responses are similar to the taste-related facial
actions reported by previous studies [1], [8]. Please note
that, the deep-learned descriptors also include speed and
acceleration information, but they are not visualized here.

5.9 Application to Smile Classification

To assess the generalization of the proposed method to
other face analysis tasks, we evaluate the method for spon-
taneous versus posed smile classification and compare its
accuracy to that of the state-of-the-art smile classification
systems proposed in the literature [19], [23], [25], [49], [50],
[51]. Task of spontaneous versus posed smile classification
is chosen for this experiment since effective modeling of
dynamics and/or spatio-temporal characteristics of smiles
are crucial in order to provide a reliable and accurate spon-
taneity analysis. In our experiment, we employ the UvA-
NEMO smile database [50] that has 1240 smile videos
(597 spontaneous, 643 posed) from 400 subjects (185 female,
215 male). Videos were recorded with a resolution of
1,920� 1,080 pixels at a rate of 50 frames per second.

As shown in Table 7, the proposed method provides an
accuracy of 91.77 percent and improves the state of the art.
Although the accuracy improvement over the work of
Wu et al. [49] (91.40 percent) is marginal, it is important
to note that the methods proposed by Wu et al. [49] and
Pfister et al. [23] exploit spatio-temporal appearance of face
(by extracting completed Local Binary Patterns from three
orthogonal planes descriptor [23] and its discriminative var-
iant [49] from a given smile video) instead of the sole use of
displacement dynamics of facial landmarks. Yet, such spa-
tio-temporal approaches could not perform better than the
proposed method. This finding suggests the importance of
deep-learned displacement dynamics for face analysis tasks.

6 CONCLUSIONS

In this paper, we have proposed the first approach for auto-
matic estimation of taste liking from facial expression vid-
eos. Instead of using handcrafted features, the proposed
approach deep learns regional facial dynamics per frame,
and encodes them to a Fisher vector per region to describe
videos. Regional Fisher vectors are then concatenated and
classified by linear SVM classifiers.

We have presented the first large-scale beverage tasting
database (2,970 videos of 495 subjects) in the literature for
detailed and precise analysis of taste-elicited spontaneous
facial expressions. On the collected database, the proposed
approach has achieved an accuracy of 70.37 percent for dis-
tinguishing between three levels of taste-liking (liking,
being neutral, and disliking), outperforming all other meth-
ods by more than 8.65 percent (absolute). The results have
indicated that the combined use of regional dynamics are
more discriminative than the global face representation for
this task. Relying on SVM scores, the most discriminative
facial responses of six young adults for taste-liking estima-
tion have been obtained, and shown to be similar to those
reported in previous studies.

Our experiments for distinguishing between spontane-
ous and posed enjoyment smiles have confirmed the gener-
alization power of the proposed method, suggesting that
deep learning can indeed provide efficient representations
of regional facial dynamics. Recruiting 45 participants, we
have evaluated the ability and reliability of humans for
estimating taste appreciation of others’ from their facial
expressions. Our findings have shown that humans are
significantly less reliable for this task in comparison to the
proposed method.
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