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Two definitions of a fractional Fourier transform have been proposed previously. One is based on the

propagation of a wave field through a graded-index medium, and the other is based on rotating a

function's Wigner distribution. It is shown that both definitions are equivalent. An important result of

this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates

through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.
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1. Introduction

Recently, two distinct definitions of the fractional
Fourier transform have been given. In the first
onel-3 the fractional Fourier transform was defined
physically, based on propagation in quadratic graded-
index media (GRIN media). The ath fractional Fou-
rier transform of a function was defined as follows:
Let the original function be input from one side of a
quadratic GRIN medium, at z = 0. Then, the light
distribution observed at the plane z = zo corresponds
to the a equal to the (zo/L)th fractional Fourier
transform of the input fraction, where L - ('rr/2)
(nl/n 2 )1/2 is a characteristic distance. The a equal to
the first Fourier transform, observed at zo = L,
corresponds to the ordinary Fourier transform, by
design.

The second definition is based on the Wigner-
distribution function4 (WDF). Here one calculates
the fractional Fourier transform by finding the WDF
of the input image, rotating it by an angle a = a'r/2,
and performing the inverse Wigner transform.

Both definitions fulfill two natural postulates: (i)
The a equal to the first Fourier transform corre-
sponds to the ordinary Fourier transform. (ii) The
fractional operator is additive, i.e., the ath transform
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of the bth transform is equal to the (a + b)th trans-
form.

In this study we show that both definitions of the
fractional Fourier transform are equivalent. The
fact that two distinct definitions turn out to be
identical supports the claim as to the naturalness and
intrinsicalness of the definitions. To quote Minsky,
"Proof of the equivalence of two or more definitions
always has a compelling effect when the definitions
arise from different experiences and motivations." 5

We also arrive at the result that the effect of
propagation through GRIN media can be described as
a rotation of the Wigner distribution of the input
function. Thus this study answers two questions:

(1) How does the Wigner distribution of an input
function change while propagating through a GRIN
medium?

(2) Are the two fractional-Fourier-transform defi-
nitions fully equivalent?

In the following we show that the answer of the
first question is simply that the Wigner distribution
rotates uniformly with propagation distance. This
answer leads to the conclusion that both fractional-
Fourier-transform definitions are equivalent. Sec-
tion 2 gives some mathematical details about the
WDF. Sections 3 and 4 describe the two fractional-
Fourier-transform definitions, and Section 5 gives
the mathematical proof that both definitions are fully
equivalent. Section 6 is a discussion and conclusion.

The analyses presented in this paper are for one-
dimensional (1-D) input functions, for notational
convenience. However, all results can be extended
trivially to higher dimensions, as is shown in Ref. 4.
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2. About the Wigner-Distribution Function
The Wigner-distribution function6 (WDF) is a joint
space-frequency (or time-frequency) representation
of a signal. It describes the signal completely, display-
ing time and frequency information simultaneously.
Applications of the WDF can be found in optics7 8 and
in the representation of speech.9 The WDF of a 1-D
signal f(x) can be defined as

W(x, v) = f(x + x'/2)f*(x - x'/2)exp(-2'rrivx')dx'.

(1)

Using the conventional Fourier-transform operation,

f(v) = 9'{f(x)} = f f(x)exp(-2 rrivx)dx, (2)

we can write an equivalent form of the WDF defini-
tion as

W(x, v) = f f(v + v/2)f*(v - v'/2)exp(2,rriv'x)dv'.

(3)

Properties of the WDF can be found in Refs. 4 and
8. Here we mention three of them. First is the
effect of free-space propagation in the z direction on
the WDF. It was shown4 that such propagation
causes the WDF to be sheared in the x direction.
The second is the effect of passage through a thin
lens. This causes the WDF to be sheared in the v
direction. The third concerns the relation between
the WDF of an object and the WDF of the conven-
tional Fourier transform of the same object. From
Eqs. (1) and Eq. (3) one can notice that we get a r/2
rotation of the WDF. Another way to see this is to
combine the effects of free-space propagation and
passage through a thin lens in the form of a 2f optical
Fourier-transforming setup. First, we may perform
the x shearing associated with free-space propagation
along a distance f, then the v shearing associated with
passage through a lens with focal length f, and finally
another x shearing associated with another free-space
propagation along a distance f. The final result is a
rotation by ,r/2 of the original VDF. For a detailed
discussion of these consecutive operations with illus-
trated examples, see Ref. 4.

Consistent with our two postulates, we suggested1 -3
defining the fractional Fourier transform as the
change of the field caused by propagation along a
quadratic GRIN medium by a length proportional to
a. Such a medium has a refractive-index profile
given by1 0

n2(x) = n2[1 - (n2/n )x2], (4)

where n and n2 are the GRIN-medium parameters
and x is the 1-D coordinate. The eigenmodes of
quadratic GRIN media are the Hermite-Gaussian
(HG) functions, which form an orthogonal and com-
plete basis set. The mth member of this set is
expressed as

Pm(x) = Hm(Q)exp(- 2) (5)

where Hm is a Hermite polynomial of order m and is
a constant that is connected with the GRIN-medium
parameters. An extension to two lateral coordinates
x andy is straightforward, with Pm(X)Tn(y) as elemen-
tary functions. The lower-order HG polynomials
are

Ho(x) = 1,

H1(x) = 2x,

H2 (x) = 4X2 - 2. (6)

For a given wavelength X each HG mode propagates
through the GRIN medium with a different group
velocity and thus a different propagation constant,

k[l - 2 (n2)1/2( + 1)]1/2

k -(1/2( +ni 2 (m2)

with k = 2r/X. Any function f (x) can
in terms of the HG basis set as

f(x) = E Am.im(x),
m

(7)

be expressed

(8)

with

Am = f(x)"Im(x)/hmdX,

3. Fractional Fourier Transforms: Graded-index
Media Definition

In this section the GRIN definition of the fractional
Fourier transform is given. The reader can find
more details in Refs. 1-3. The ath Fourier trans-
form of a function f(x) is denoted as a{f(x)} As
was mentioned in the introduction, we require that
our definition satisfy two basic postulates. First,
5'f should be the usual Fourier transform. Our
second postulate requires that gra{bf = a+bf.

(9)

where hm = 2m!,Fer/l/2.
Now, the fractional Fourier transform of f(x) of

order a is defined as

.Fa{f(x) = I Am1Im(x)exp(i$maL)
m

= I AmPm(x)exp i k - (- )(m +
1 \ V

2)aL .

(10)
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L = (r/2)(nj/n 2 )1 /2 is the GRIN length that results
in the conventional Fourier transform. It was
shown1 that the above two postulates are satisfied by
this definition. In the same reference we also dis-
cussed and proved some of the properties of fractional
Fourier transforms, such as linearity, self-imaging
parameters, and intensity shift variance/invariance
(as with the common Fourier transform), and we
generalized to complex values of the order a (which
can be physically realized by attenuating or amplify-
ing media).

4. Fractional Fourier Transforms:
Wigner-Distribution-Function Definition

In Ref. 4 the fractional-Fourier-transform operation
is defined as a rotation of the WDF by an angle at =
arT/2. It is shown in this reference that the two
postulates of Section 3 are again fulfilled. It is
relevant to point out that the WDF of a 1-D function
is a two-dimensional function, and the rotation inter-
pretation is clear. In Ref. 4 the same rotation strat-
egy was generalized for two-dimensional signals, i.e.,
images whose WDF's are four-dimensional distribu-
tions. Since any rotation can be performed as three
shearing operations (x, v, and x shearings or v, x, and
v shearings), it was suggested4 that the system of Fig.
1 be used to perform the fractional Fourier transform
with optical means. The first lens performs the first
shearing, the propagation through free space is equiva-
lent to the second shearing, and the second lens is for
the third shearing. It was suggested that two param-
eters be used, Q and R (see Fig. 1), with

f = f1/Q, z = f1 R, (11)

where fi is an arbitrary length, f is the lenses' focal
length, and z is the distance between the lenses. For
a fractional-Fourier-transform order, a, Q and R
should be chosen as

Q = tan(ua/2), R = sin(a), (12)

5. Equivalence Proof

In this section we prove that both fractional-Fourier-
transform definitions are equivalent. The strategy
of the following proof is to calculate the action of the
optical configuration of Fig. 1 and to show that it is
equivalent to propagation through a GRIN medium
of a certain length. In this section the operator 7
denotes the WDF-based fractional-Fourier-transform
operator. Therefore for the WDF fractional-Fourier-
transform definition, because at this moment we
cannot be sure whether it is the same operation as Y
we rename it temporarily as ' instead of 7 and the
final result is that . = 

According to the WDF fractional-Fourier-trans-
form definition, by analyzing the optical configura-
tion of Fig. 1, we can write

ga[f(x)] = cl exp[-ir(Q 1) X] Jf x)

x exp - iw(Q - R) x2]

x exp(-i2w dxod (14)

Cl is constant. f (xo) can be written as a superposi-
tion of the HG function set [see Eq. (8)]:

(15)f(xo) = A.T(x),
n

where the An are calculated by use of Eq. (9). Let us
substitute Eq. (15) into Eq. (14) while using T = Q -
1/R:

g'af(x) = Cl exp(-iwrT A f I AnIn(XO)

xexp(-irT Of - i27 A dxo
with

(13)

f

r 

yi

= AnaPn(X).

First, we calculate gaqPn(x) using mathematical
induction. We start by hypothesizing that, consis-
tent with the propagation of the eigenmodes of GRIN
media,

, Tn(X) = C2 exp[i(n + 1)+c]I'(x)

In this expression, C2 and Xc are constants. This
induction hypothesis is shown in hold for n = 0 and
n = 1. Then is shown that its truth for n - 1 and n
implies its truth for n + 1. This ensures that it is
true for all n. First, we check the validity of the
hypothesis for n = 0. The zero-order HG function is

z=R

Fig. 1. Setup for performing a two-dimensional fractional Fourier
transform according to the WDF definition.
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From Eq. (14) one gets

gat(x) = C1 exp(-iTrT A)

xf exp(- i'rT X2 - i2rr dxo-
Xf1 Xf 1R/dxo1

(19)

Using the known relation11

exp(-p2x2 + qx)dx = p exp( q2 J
Il-ac ~ ~ P p~p2 

We assume

arg(C2) = -arg[( L ) +2'

r Tr
=ag1 .T 2

(O2 Xfi

(25)

From Eqs. (17) and (24) one can notice that these
choices agree for the special case of n = 0.

Now for the n = 1 HG order,
(20) 2 2'x e x21(x) expt - / (26)

Using a relation similar to Eq. (20) we can prove that

,'all(X) = C2 exp(i2.)PV1(x),
(21)

we get

ak(X) = C1 exp(-irrT Xf)

_ _ _ , ) 1X A
ex(~ X2f2R2)( 1 r2)(2 1 f

/ I2 A2f2

(27)

exactly following Eq. (17).
So far we have demonstrated that Eq. (17) holds for

the n = 0 and n = 1 cases. Let us now assume that
Eq. (17) holds for n - 1 and prove it for n + 1:

a' an+(x) = C2 exp[i(n + 2)'k1'Vn+1 (X),

where _ _ _- = ,
'Pl()= Hn11~ ex -

(28)

IT 1/2
x 1 T

- + Tr f
(22)

In order to adjust the last equation to the form of Eq.
(17), we choose w so as to satisfy

x 2flR 2

° A + T 2R2 = 1 (23)

Now Eq. (22) looks the same as

g apo(X) = C, exp(-irrT +
Xf 1

x2 x2

irT T-- 
Xf, (I)/

Tr 1/2

X 1 Tl-+ ir v/
C f' (~ 1 ir T )]1/2C1 jo(x). (24)

One can notice that the field distribution of Eq. (24)
is exactly the same as that of Eq. (18). As for the
coefficients C1 and C2, we need not demonstrate their
equality explicitly since this is required anyway by the
conservation of energy. The important parameters
are the argument of C2 and 4c appearing in Eq. (17).

(29)

Substituting the last equation into Eq. (14), one gets

gflayn+1(X) = C, exp(-i'r -) JHn+i( )

(X Tx XXo
X exp 0- Vir 0- i2'rr -fRdxo.

( W2 Xf, AfiR) 

(30)

A known property of the Hermite polynomials is12

Hn+,(x) = 2xHn(x) - 2nHn-(x).

On the basis of this property we get

ga'yn+l(X) = Gl(x) + G2(X),

with

Gl(x) = Co exp(-irr T

/ 2X exp -, - L,7rk2

(31)

(32)

f2xH( )
1 2 aX)
Txo xx 0

i2iT Idxo,X Xf 1R

G2(x) = C1 exp(-iw A) f (-2n)HX 2 1(- )
_Xo Tx2 xx 

-- 0--i X i d 0°X ep W - 1Ax f, i2rXf 1R d (33)
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The induction assumption for n - 1 leads to

Gl(x) = C2(-2n)Hn-i( L) exp( - (- )exp(in(C). (34)

Now for G2(x), in Eq. (33) we can recognize a first-
order Fourier-transform integral; thus

G2(x) = C1 exp(-iTr
Tx 2

7 f)

or

'aP+,(x) = exp[i(n + 2)4C]C2 exp(- )

x 2x4Hn44) _ 2nHn-,( )]

(41)

With Eq. (31) one getsI2 V 2I V 2 X x0~ TX 0
X 5 xHny - ,exp - 2 -i ft (35)

A well-known property of the conventional Fourier
transform is

d
ST{xg(x)} = j- v 5{g(x)}. (36)

With the relation v = x/(f ), the use of the Eq. (36),
and the induction assumption for n, Eq. (35) becomes

aTnll(X) = C2 exp[i(n + 2)cC]Yn+1(x). (42)

Since Eqs. (28) and (42) are exactly the same, the
proof based on the induction technique is complete,
and we can conclude that = 

So far we have derived the phase coefficient at the
output of the system shown in Fig. 1 when a single
HG order is presented as the input. The result is
shown in Eq. (17). Let us now compare this result
with the GRIN-media definition of the fractional
Fourier transform. For an input function f(x) the
output of the configuration shown in Fig. 1 is

IC2 Hn( Q)exp(- )
x exp (iTr - )exp[i(n + 1)4+c]}-

Performing the differentiation d/dx and using' 3

d 
dx Hn(x) = 2nHn-,(x),

we get

2/ Xf,
G2(X) = i j- exp[i(n + 1)+C]C2

* 2 xH2 -exp - -½2 k~ Xf

(Vx ( x2 1

x 2nHnj-)exp - 2) * (39)

Now, Eq. (39) is substituted into Eq. (32). Using
the explicit expression of (ct [see Eq. (25)], we get

a'n11(X) = - 2i exp[i(n + 1)-k]C2 exPk--)

X | 2xexp 4H0 ) )

+ -n-l( V ) (( - Ift (40

.9af(x) = IX An exp[i(n + 1)4c]J'(x)-
n

(43)

From Eq. (23) and the relation T = Q - 1/R it can be
(37) proved that

exp(i4C) = cos(+) - i sin(+) = exp(-i-), (44)

where 4 = aIr/2. It can be seen that the GRIN
(38) fractional-Fourier-transform definition, Eq. (10), has

exactly the same structure as Eq. (17) with

(45)

thus the two definitions are equivalent.

6. Discussion and Conclusion

In this section we highlight certain consequences of
this equivalence. First, this implies that we have
two equivalent ways of optically performing the frac-
tional-Fourier-transform operation: we can use ei-
ther a GRIN medium or the bulk system of Fig. 1.
The GRIN-medium-based system can be considered
to be more compact; however, available GRIN media
have a limited space-bandwidth product.

Another implication of this equivalence is the fact
that propagation through quadratic GRIN media
results in a rotation of the Wigner-distribution func-
tion. This is because the bulk-optics system of Fig. 1
is fully equivalent to a GRIN medium of length aL.
Until now, GRIN media have been handled mostly as
ray-optics elements, mainly' 0 because of the lack of
simple interpretations of its effect on the wave func-
tion of light passing through it. With the Wigner-
distribution function we have a powerful tool for
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analyzing and designing systems with GRIN-media
devices.

Additional insight into the rotation of the Wigner
distribution can be gained by examination of the
ray-optics analog of Wigner space, which is a particu-
lar type of phase space. We refer to the ray-optics
analog of the Wigner space as the ray-optics phase
space. Let a particular paraxial ray be characterized
by its radial distance r and slope s, both with respect
to the optical axis at a particular axial position z.
Then, the effect of passing through any optical system
on this ray can be described by a movement in r-s
space, which is our ray-optics phase space. For
instance, free-space propagation corresponds to a
horizontal displacement, whereas focusing by a lens
corresponds to a vertical displacement. This ray-
optics phase space is analogous to Wigner space
because of the correspondence between spatial fre-
quency and the angle made with the optical axis.

Let us now consider a bundle of rays with a uniform
spread of r and s (represented by a rectangular region
in r-s space) and consider how this ray bundle is
transformed as it passes through a quadratic GRIN
medium. It is known that r and s obey the following
equations in such media 0:

r(z + Az) = r(z)cos(ITAz/2L) - s(z)sin(7rAz/2L),

s(z + Az) = r(z)sin(iTrAz/2L) + s(z)cos(rAz/2L),

(46)

from which we can conclude that the region represent-
ing any given bundle of rays in phase space is rotated
uniformly as we go from z = 0 to z = L. Thus, just as
the Wigner distribution does, the ray-optics phase-
space distribution also rotates uniformly upon propa-
gation through GRIN media.

In conclusion, propagation through quadratic GRIN
media corresponds to rotation of the phase-space
distributions. We have shown that this is true for
two specific phase-space representations: the Wigner
representation and the ray-optics phase-space repre-
sentation.'

We make a final remark about the applicability:
the fractional Fourier transform is a generalization of
the standard Fourier transform. The standard Fou-
rier transform is heavily involved in optical applica-
tions, as the term Fourier optics implies. Hence it
seems reasonable to expect optical applications when
the new transform penetrates optics. Several direc-
tions are suggested in Ref. 2.

We dedicate this paper to the friendship of the
German, Israeli, and Turkish peoples.
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