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With sensor-based wearable technologies, high precision monitoring and recognition of human physical 
activities in real time is becoming more critical to support the daily living requirements of the elderly. 
The use of sensor technologies, including accelerometers (A), gyroscopes (G), and magnetometers (M) is 
mostly encountered in work focused on assistive technology, ambient intelligence, context-aware systems, 
gait and motion analysis, sports science, and fall detection. The classification performance of four sensor 
type combinations is investigated through the use of four machine learning algorithms: support vector 
machines (SVMs), Manhattan k-nearest neighbor classifier (M.k-NN), subspace linear discriminant analysis 
(SLDA), and ensemble bagged decision tree (EBDT). In this context, a large dataset containing 2520 tests 
performed by 14 volunteers containing 16 activities of daily living (ADLs) and 20 falls was employed. In 
binary (fall vs. ADL) and multi-class activity (36 activities) recognition, the highest classification accuracy 
rate was obtained by the SVM (99.96%) and M.k-NN (95.27%) classifiers, respectively, with the AM sensor 
type combination in both cases. We also made our dataset publicly available to lay the groundwork for 
new research.

© 2021 Published by Elsevier Inc.
1. Introduction

Because of demographic changes, developments in healthcare 
systems have gained momentum recently. One of the main reasons, 
according to the data of the World Health Organization (WHO), is 
the regularly increasing percentage of the elderly population in the 
world [1]. In 2019, 9% (688 million) of the world population is 65 
years or over. It is estimated that this ratio will reach nearly 12% 
(1 billion) in 2030 and 16% (1.6 billion) in 2050 [2]. In this con-
text, developing assistive technologies to support the daily lives of 
elderly and disabled people, increase their safety and autonomy, 
detect potentially dangerous events such as falls reliably have be-
come important and challenging research issues [3]. In addition 
to detecting fall events reliably, research has focused on monitor-
ing and recognizing ADLs to improve the quality-of-life of people 
in the fall risk groups. Falls are rare events that typically occur in 
between ADLs and are considered jointly with ADLs in many stud-
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ies. In this context, activity recognition systems can be used more 
effectively in applications such as social-physical interaction [4], 
factory working recognition [5], healthcare, sports science [6], en-
tertainment and interactive games space [7].

Various solutions to automated activity recognition and fall de-
tection have been proposed [8–12]. These can be classified into 
three main categories according to the type of sensor technology 
used. Ambient Sensor-Based (ASB), Wearable Sensor-Based (WSB), 
and Hybrid Sensor-Based (HSB) [11–14].

ASB technologies involve affixing sensors to doors, walls, floor, 
furniture, etc. to create smart environments that can recognize 
ADLs and detect falls [11,15,16]. The use of multiple sensor modal-
ities such as acoustic [17,18], infrared [19], vibration [20], and 
vision-based sensors [21,22] is beneficial. The main advantage of 
ASB technologies is that the user does not have to affix or carry 
any sensors or devices on their body that may be obtrusive. This 
may also eliminate problems related to incorrect placement of the 
sensors on the body or mixing them up, although some camera 
systems do require wearing/pasting on special tags or markers. 
Cameras can provide precise contextual information directly re-
lated to the activities [13]. Typically, multiple ambient sensors are 
placed at fixed locations in the environment which causes the sen-
sor distribution to be complex with low flexibility. Designing smart 
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environments may be a suitable choice when the user’s daily ac-
tivities are confined to certain parts of a building. However, when 
the activities take place both indoors and outdoors and involve 
going to different places (e.g., running errands, taking a walk, com-
muting), this approach may not be the best option. It imposes 
restrictions on the user’s mobility since the system operates only 
in the limited environment being monitored. Also, if the person is 
not within the field-of-view or the field of operation of the sensor, 
the sensor cannot function since it is fixed to a certain position 
in the environment [23,24]. Other people or pets in the environ-
ment may easily confuse these systems. Increasing the number of 
sensors brings additional infrastructure cost to those in need of 
activity monitoring and in the fall risk group. In addition, vision-
based technologies can provide unnecessary information and cause 
privacy invasion [21,25].

WSB technologies employ sensors that measure motion param-
eters such as acceleration, velocity, and orientation [11,12]. Sen-
sors developed using Micro-Electro-Mechanical Systems (MEMS) 
technology, with low cost (under 20 USD), small footprint (under 
5 mm), and high functionality (low power and low weight) are 
suitable for this purpose [26]. Among these sensors, accelerom-
eters, gyroscopes, magnetometers, and barometers are commonly 
used to examine the displacement of the whole body or the limbs, 
to observe instant fluctuations in one’s activity, and to detect the 
balance state of the body [27,28]. The most significant advantage 
of these technologies is their simple design and low installation 
cost. Therefore, it is not necessary to establish a communication 
network between the sensors as in the case of ASB technologies. 
WSB technologies can be used both indoors and outdoors to al-
low the user to move freely without the restriction of the sensor 
field-of-view [29,30]. Among the factors that increase the accuracy 
of activity recognition in these technologies are the use of ma-
chine/deep learning techniques [31,32] and the placement of mul-
tiple sensor units on different body parts (e.g., head, chest, waist, 
and limbs) [32,33]. The disadvantages of WSB systems are that 
users may forget, neglect, or be reluctant to wear them because 
of the weight and size of the equipment to be worn, especially if 
multiple sensor units are being used [34]. If the wearables are bat-
tery operated, batteries need to be recharged or replaced regularly. 
Also, the wearable system may not provide the contextual infor-
mation or suffer the problem of arbitrary data caused by activi-
ties [13]. In scenarios where wearables cannot be used (e.g., user 
having sensitive skin or being forgetful/unable to wear or charge 
the devices), ASB systems may be preferable. In addition, the tar-
geted device in this research is going to be light, compact, and 
inexpensive and its integration into accessories such as over-the-
clothes belt buckles is going to avoid problems related to sensitive 
skin.

An alternative approach is to use HSB technologies [11]. 
Microphone-accelerometer or infrared-microphone sensor pairs 
are typical examples of the sensor modalities used in this ap-
proach [35]. Despite the advantages that this technology provides 
for activity recognition and fall detection, it also entails some 
difficulties (e.g., real-time analysis, smart home integration, high 
processing power, data fusion, and sensor synchronization require-
ments) [13,36,37].

Although various devices developed for fall detection are com-
mercially available, their false alarm rates are high and it is not 
easy to test that these devices identify falls correctly. Among the 
reasons for this is that common activity sets are not used to assess 
the performance of the developed systems. There exist publicly 
available datasets as well as studies that acquire and use their own 
datasets (ADLs and falls) [38,39].

PAMAP2 dataset includes ADLs collected from nine elderly sub-
jects by placing a heart rate monitor and three inertial sensors 
on the chest, ankle, and arm [40]. The SBHAR dataset was ob-
2

tained by collecting six different activities from 30 subjects with 
a smartphone at the waist position and then updated by includ-
ing six postural transitions [41]. The mHealth dataset consists of 
12 daily activities collected from 10 subjects with ECG and three 
inertial sensors [42]. MobiAct includes a total of 16 activities in-
cluding 12 ADLs and four falls collected from 66 subjects using 
the accelerometer and gyroscope of a mobile phone carried in a 
trouser pocket [43].

The availability of a recently acquired publicly available dataset 
on fall and daily activities has accelerated the development 
of fall-classification systems. The multimodal UP-Fall Detection 
Dataset [44] comprises data acquired from 11 healthy subjects 
through the use of multiple wearable sensors, cameras, and 
context-aware sensors while the subjects perform six types of daily 
activities and five fall types. Consequently, “2019 Challenge UP — 
Multimodal Fall Detection” competition was organized [45]. This 
competition stirred considerable interest in fall-detection stud-
ies, examples of which are available in the recently published 
book [46].

Research conducted by Buber and Guvensan [47] involved eight 
types of ADLs (biking, running, walking, jumping, stairs up/down, 
standing, and sitting) collected from five volunteers using the 
built-in tri-axial accelerometer of a mobile phone placed in the 
front trouser pocket. A sampling frequency of 20 Hz was used, 
and activity recognition was performed with six classification algo-
rithms (k-NN, K -Star, Naïve Bayes, Bayes Net, Random Forest - RF, 
and J48) using 10-fold cross validation. The highest performance 
value of 94% accuracy was obtained with the k-NN algorithm.

Dernbach et al. [48] conducted a study to recognize simple 
and complex activities collected from 10 volunteers with the ac-
celerometer and gyroscope sensors of a mobile phone, where the 
position and the orientation of the mobile phone was left to the 
choice of the user. Sampling rate was set to 80 Hz. Simple activi-
ties (running, walking, sitting, biking, lying, standing, stairs up, and 
driving) are classified with 93% accuracy, while complex activities 
are classified with 50% accuracy.

Anjum and Ilyas [49] proposed an approach to recognize seven 
types of activities (stairs up/down, running, walking, driving, bik-
ing, and remaining inactive) collected from 10 volunteers by a 
smartphone carried in various positions. The sampling rate is set 
to 15 Hz. Among the SVM, k-NN, C4.5, Naïve Bayes classifiers that 
were used, C4.5 showed the highest performance with 95.2% accu-
racy.

Saputri et al. [50] considered six types of activities (running, 
walking, hopping, stairs up/down, and jogging) collected from 27 
subjects with a smartphone at 50 Hz sampling rate placed in the 
front pocket of the trousers. Artificial neural networks provided 
93% accuracy in activity recognition.

Bayat et al. [51] proposed a system for the recognition of six 
activity types (walking, stairs up/down, slow running, fast running, 
and aerobic dance) collected from four volunteers by a smart-
phone. The sampling rate of the system was 100 Hz. A classi-
fication accuracy of 91.15% was obtained with a combination of 
LogitBoost, Multilayer Sensor, and SVM algorithms.

Figueiredo et al. [52] proposed a threshold-based technique for 
detecting falls with acceleration data from volunteers performing 
falls (two volunteers) and ADLs (six volunteers). As a result, 100% 
sensitivity, 93% specificity, and 96.16% accuracy were achieved with 
SVMs using two-fold cross validation.

Zhao et al. [53] proposed another fall-detection system based 
on smartphone sensors named as “FallAlarm.” The activities con-
sidered within the scope of the research are running, walking, 
and standing stationary while the fall types were: forward, back-
ward, right, and left fall. Among the algorithms used in fall de-
tection, decision trees (DTs) performed better than SVM and Naïve
Bayes.
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Albert et al. [54] collected acceleration data for four days of ac-
tivity and fall-like events from 15 volunteers with the accelerom-
eter sensor of the phone set to 20 Hz sampling frequency. Falling 
and daily activities were classified by testing the cross-validation 
method and five different classification algorithms (Naïve Bayes, 
Regularized Logistic Regression (RLR), SVM, DTs, and k-NN).

Kansiz et al. [55] used the accelerometer of a smartphone 
to collect data on daily activities (jogging, jumping, walking, sit-
ting, standing, and stairs up/down) and falls (forward, backward, 
sideways, hard and soft falls). The sampling frequency of the ac-
celerometer was set to 20 Hz. Naïve Bayes, DT, and K -Star classifi-
cation algorithms were considered. It was reported that the highest 
classification rate was obtained with the K -Star using 10-fold cross 
validation.

Mehrang et al. [56] investigated activity recognition using a 
heart rate monitor and a wrist-worn tri-axial accelerometer. In 
this study, four different activity types (sitting, standing, perform-
ing household tasks, and stationary cycling) were performed by 20 
male volunteers. The sampling rate of the sensor was 25 Hz. RF 
and SVM were employed for activity classification with accuracies 
89.2% and 85.6% for leave-one-subject-out cross validation, respec-
tively.

Pavey et al. [57] considered four activity types (sedentary, sta-
tionary, walking, and running) collected from 21 volunteers with 
GENEActiv monitor (non-dominant wrist-worn tri-axial accelerom-
eter) at 30 Hz sampling rate. RF provided 80.1%, 95.7%, 91.7%, and 
93.7% accuracy for sedentary, stationary, walking, and running, re-
spectively.

Hsu et al. [58] developed an inertial system and an algo-
rithm that recognizes and classifies ADLs based on this system. 
In the proposed system, motion signals of 10 activity types (walk-
ing, running, upstairs, downstairs, stand up and squat, drinking, 
take elevator, still, sitting, lying) were collected with the inertial 
module attached to the wrists and ankles of 10 male volun-
teers. The sampling frequency of the modules was set to 100 Hz. 
After windowing the acquired data and performing feature ex-
traction and feature reduction using the nonparametric weighted 
feature extraction (NWFE) algorithm, activities were classified 
with the probabilistic neural network (PNN) algorithm with 90.5%
accuracy.

Sok et al. [59] proposed an approach for detecting changes in 
patient mobility in motor-impaired patients and informing clin-
icians. Data were collected for six activity types (lying, sitting, 
standing, walking, wheeling, and stair climbing) using the acti-
graph wGT3X tri-axial accelerometer module placed on the waist 
of 13 ambulator (9M/4F) participants with spinal cord injury. A 
classification accuracy of 88.9% was obtained using hidden Markov 
models (HMMs).

Li et al. [60] conducted a study to recognize baseline activi-
ties and transition activities from the signal flow obtained from 
the sensors. The framework of the study consists of the steps 
of window segmentation, feature construction, cluster analysis for 
action aggregation with K -Means, activity segmentation and clas-
sification, respectively. The proposed method was evaluated on the 
SBHARPT general dataset (containing the activity types: standing, 
sitting, lying, walking, walking upstairs, and walking downstairs) 
general dataset. Six different machine learning techniques (SVM, 
J48, RF, k-NN, MLP, NB) were used and the highest classification 
accuracy of 97.34% was achieved with the RF algorithm.

Chen et al. [61] propose a new approach for recognizing activi-
ties based on data obtained using smartphone sensors. In the algo-
rithm defined as Ensemble Extreme Learning Machine (EELM), the 
input weights of the base ELM are initialized using Gaussian Ran-
dom Projection (GRP). The proposed approach is evaluated on two 
different datasets consisting of six activity types (walking, walking 
upstairs, walking downstairs, sitting, standing, laying). When the 
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experimental results were examined, the EELM approach classified 
the activities in the two datasets with an accuracy of 97.35% [62]
and 98.88% [61], respectively.

Chelli and Patzold [63] propose a machine learning framework 
for the recognition of falls and ADLs. They use acceleration and 
angular velocity signals to recognize seven activity types (falling, 
walking, walking upstairs, walking downstairs, sitting, standing, 
and lying) in two general databases [62,64]. After time-domain 
and frequency-domain feature extraction from the acquired signals, 
they evaluate the activity classification performance with k-NN, 
ANN, Quadratic Support Vector Machine (QSVM), and Ensemble 
Bagged Tree (EBT) algorithms. With the proposed machine learn-
ing framework, k-NN, ANN, QSVM, and EBT algorithms classified 
activities with 85.8%, 91.8%, 96.1%, and 97.7% accuracy, respectively. 
Both QSVM and EBT achieved 100% classification accuracy in fall 
detection.

Hemmatpour et al. [65] investigated fall-detection and pre-
vention systems based on sensors (STMicro STM33DH tri-axial 
accelerometer and tri-axial gyroscope) integrated into a smart-
phone. The kinematic features of the fall data (only forward 
fall) are collected from the sensors with a sampling frequency 
of 10 Hz and the falls are classified using two machine learn-
ing algorithms (DT and SVM). The experimental analysis evalu-
ates fall detection, classification accuracy, and fall avoidance ability 
of 22 volunteers (19M/3F). The results show that the DT algo-
rithm offers the highest performance in fall detection with 83.9%
accuracy.

Hussain et al. [66] proposed a fall-detection approach based on 
machine learning. The proposed approach used SisFall [67], a pub-
licly available dataset for fall detection that contains 15 types of 
falls and 19 types of ADLs from 38 subjects. The wearable device, 
consisting of two accelerometers and a gyroscope, was placed on 
the waist of the volunteers and the sampling frequency was set to 
200 Hz. For fall detection, DT, Logistic Regression (LR), k-NN, and 
SVM with quadratic kernel function were evaluated. The highest 
accuracy of 99.98% was achieved with the SVM classifier.

On the upshot, it is important to establish benchmarking stan-
dards based on which all these studies can be fairly compared. 
The use of different classification algorithms in the recognition of 
falls and ADLs is another important issue for comparing the de-
veloped devices [63,68–70]. There exist studies to standardize the 
movements based on fall vs. ADL (non-fall) and to compare the 
performance of the different sensor types used [71]. In addition, 
depending on these standard motion sets, there are also studies 
to determine the optimal sensor placement for single sensor-based 
solutions [72,73].

A pertinent issue is the variety of the sensor type combina-
tions used (such as accelerometers, gyroscopes, magnetometers, 
and barometers) in different studies [29,70,71]. In recent stud-
ies, accelerometer data were supplemented by data collected from 
gyroscopes and magnetometers to improve the classification per-
formance [49,74]. There exist several studies in which a gyroscope 
is employed by itself or in combination with an accelerometer; 
for example, in fall detection [75], activity recognition [76], and 
gait analysis [77]. In [78], an accelerometer and gyroscope are 
used jointly to detect the intensity of physical activities. In [79], 
movements of Parkinson and epilepsy disease patients have been 
analyzed with the same combination. In [80], the effect of the 
stand-alone use of the magnetometer sensor is examined. Refer-
ence [81] describes a study focused on fall-direction classification 
using all three sensor types. In short, accelerometers are the pri-
mary sensors used in the majority of activity recognition and fall-
detection studies and most of the relevant information seems to 
stem from accelerometers. The need for employing additional sen-
sors depends on the variety and complexity of activities to be 
classified. If the activities are simple and limited in number, for in-
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stance, involving just moving and stopping, only an accelerometer 
may be sufficient to achieve the desired performance level. How-
ever, contextual signals may be required if a diverse set of complex 
activities are to be distinguished. This situation necessitates to test 
different sensor combinations in activity recognition.

Creating an open dataset according to well-established stan-
dards [38,71,82] and conducting research with this dataset allows 
the research to be comparable with those of others. In the pro-
cess of creating a dataset, parameters such as the spectrum of 
activities, variety of subjects, and the number of trials are impor-
tant. Table 1 presents the parameters and the results of related 
studies [43–61,63,65,66]. However, heterogeneity in the parame-
ters and the acquired data limits the comparison between different 
approaches. There is wide variability in the parameters such as the 
sampling rate, activity types, number of subjects, gender balance, 
and sensor configuration. We observe in Table 1 that apart from a 
small number of studies, the diversity of the subjects is low, the 
variety of the activities is limited, and there is no comprehensive 
information about the repetition of activities. Very high accuracies 
can be obtained when a limited number of easily distinguishable 
activities are performed by a small number of subjects. The same 
classification performance may not be achieved when unseen sub-
jects are included in the tests or the range of activities is expanded. 
Some studies focused only on ADLs and did not include falls, which 
are potentially dangerous events that may occur in between ADLs. 
None of the studies focused on the contribution of sensors to ac-
tivity recognition by operating individually or in combination with 
other sensors within the same study.

In this study, different sensor combinations were tested and the 
performance of each combination in recognizing falls and ADLs 
was evaluated through the use of four machine learning algo-
rithms. In addition, participation of equal number of male and 
female volunteers ensured gender balance and enabled more pre-
dictable and realistic results to be obtained.

The approach that we take in this work is a first step towards 
reducing sensor power consumption and producing sensors/algo-
rithms that can operate in real time through energy harvesting. 
As a result, the number of sensors in activity recognition devices, 
power consumption of the module, and the cost of the module can 
be reduced, and real-time signal processing is simplified. The tech-
nical challenge of the study is to bring all of the above-mentioned 
elements together in a single study and the difficulty of making 
a fair like-for-like comparison between the different techniques, 
especially given that this is a fall-detection study. Thus, technical 
contribution will be provided in the integration of computer-run 
algorithms with Internet of Things (IoT) technologies due to the 
high computational volume.

In this study, Simulated Falls and Daily Living Activities Data 
Set [29,83] acquired from sensor units worn on different body 
parts of the participants is used. The main motivation for the 
study is to investigate the classification performances of the sensor 
type combinations placed at the waist location which is deter-
mined to be the best sensor placement position in several stud-
ies [72,73]. Four machine learning classifiers are used for this 
purpose, namely, Support Vector Machine (SVM), Manhattan k-
Nearest Neighbor (M.k-NN), Subspace Linear Discriminant Analysis 
(SLDA), and Ensemble Bagged Decision Tree (EBDT) classifiers. Each 
method is applied to four sensor type combinations, which are, 
AGM (accelerometer - gyroscope - magnetometer), AG (accelerom-
eter - gyroscope), AM (accelerometer - magnetometer), and A (ac-
celerometer). With these four sensor type combinations and four 
machine learning techniques, a total of 4 × 4 = 16 different com-
binations are investigated. This study aims to determine the best 
sensor type combination as well as the superior machine learning 
algorithm. To our knowledge, this issue has not been addressed in 
existing studies. If the best sensor type combination is identified, 
4

fall and activity recognition devices can be developed accordingly 
to achieve more accurate classification results. We have addressed 
both the binary classification (fall vs. ADL) and the multi-class ac-
tivity recognition (36 activities) problems.

The rest of this article is organized as follows: In Section 2, 
the experimental set-up, preprocessing of the acquired data, and 
the machine learning algorithms used are described. In Section 3, 
we compare the activity recognition performances of the machine 
learning algorithms executed by combining the data obtained from 
different sensor types and discuss the results. In Section 4, we 
draw conclusions and provide directions for future research.

2. Material and methods

Fig. 1a shows the flowchart and the five basic stages of the 
study: (1) Preparation of an experimental set-up and the proce-
dure to record the activities of individuals, (2) Collecting data and 
selecting features, (3) Extraction of useful features from data col-
lected prior to classification, (4) Training the machine learning 
algorithms selected for activity recognition and fall detection, (5) 
After training, testing the model obtained and reporting the per-
formance results.

2.1. Experimental set-up

First, the sensor types to be used, their number, and configura-
tion (Fig. 1b) were determined and the experiments for ADLs and 
falls were designed.

In the experiments, Motion Trackers (MTw) development kit, 
manufactured by Xsens Technologies, was used [84]. The devel-
opment kit comprises hardware and software components. The 
equipment consists of two parts: six MTw sensor units and Awinda 
Station. Each MTw sensor unit has a tri-axial accelerometer that 
senses 3D acceleration (±120 m/s2), a tri-axial gyroscope that de-
tects 3D angular velocity (±1200◦/s), a tri-axial magnetometer that 
measures magnetic field in 3D (±1.5 Gauss), and a barometer that 
measures atmospheric pressure (300–1100 hPa), the last of which 
was not used in the experiments. The Awinda Station not only 
wirelessly collects data from all six MTw units but also charges 
the units. The MT Manager software package that comes with the 
MTw Development Kit enables the recording and visualization of 
data from the sensor units which are analyzed through a graph-
ical interface (Fig. 1b). All sensor units were calibrated, and the 
sampling frequency was set to 25 Hz. The selection of a suitable 
sampling rate is important in the recognition of activities and falls. 
According to [85], the frequency content of human activities ranges 
between 0 and 20 Hz and 98% of the amplitude with FFT (Fast 
Fourier Transform) is below 10 Hz. These facts indicate that a sam-
pling frequency of 25 Hz is suitable for our study to avoid extreme 
power consumption and undersampling.

ADLs and fall actions in our dataset [83] were performed ac-
cording to the experimental protocol proposed in [82], and the 
procedure for conducting experiments with human participants 
was approved by the Erciyes University Ethics Committee (Ap-
proval Number 2011/319). Experiments were conducted with 14 
volunteers (7M/7F). The age, weight, and height ranges of the fe-
male participants were 21.5 ± 2.5 years, 58.5 ± 11.5 kg, and 169.5 
± 12.5 cm, respectively. On the other hand, the corresponding val-
ues for the male participants were 24 ± 3 years, 67.5 ± 13.5 kg, 
and 172 ± 12 cm, respectively.

2.2. Data acquisition

In this study, we employ our previously acquired fall and ADL 
dataset comprising 2520 (14 volunteers × 36 activities × 5 repe-
titions) records collected from 14 volunteers [83]. The participants 
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91.15% Acc

SVM & threshold 
algorithms

SVM 96.19%

C 4.5 NB SVM C 4.5
100% Precision
75.8% Recall

C 4.5 NB RLR k-NN 
SVM

RLR:
Detection: 98% 
Classification: 
99.6%

J48 K -Star NB K -Star average re-
call: 0.88

RF SVM RF 89.2%
SVM 85.6%

RF Accuracy:
80.1% (sedentary)
95.7% (stationary)
91.7% (walking)
93.7% (running)

PNN 90.5% Acc

HMM 88.9% Acc

5

Table 1
Review of the methods and their performance results of the related works for falls and ADLs.

Reference Dataset Sensors Volunteers Activities Sampling Rate Locations

Reiss [40] PAMAP2 3×A (×2) 
3×G 3×M 
a heart rate 
monitor

9 18 ADL 100 Hz chest wrist arm

Anguita [41] SBHAR 3×A 3×G 30 6 ADL 50 Hz waist

Memiş [42] Mhealth 3×A 3×G 
3×M ECG

10 12 ADL 50 Hz chest right wrist 
left ankle

Vavoulas [43] MobiAct 3×A 3×G 66 4 fall 12 ADL 20 Hz trouser pocket

Buber [47] not published 3×A 5 7 ADL 20 Hz front pocket of 
trouser

Dernbach [48] not published 3×A 3×G 10 8 ADL 80 Hz user’s choice (po-
sition & orienta-
tion)

Anjum [49] not published 3×A 3×G 
GPS

10 7 ADL 15 Hz hand trouser 
pocket shirt pocket 
handbag

Saputri [50] not published 3×A 27 5 ADL 50 Hz front pocket of 
trouser

Bayat [51] not published 3×A 4 6 ADL 100 Hz hand

Figueiredo [52] not published 3×A 3×G 
3×O

8 10 fall 17 ADL 50 Hz 100 Hz trouser pocket or 
belt

Zhao [53] not published 3×A WiFi 
module

10 74 fall 3 ADL 32 Hz waist

Albert [54] not published 3×A 15 fall-like events
4 ADL

20 Hz belt: set position & 
orientation

Kansiz [55] not published 3×A 8 104 fall 6 ADL 20 Hz pocket

Mehrang [56] not published 3×A
a heart rate 
monitor

20 4 ADL 25 Hz wrist

Pavey [57] not published 3×A 21 4 ADL 30 Hz wrist

Hsu [58] not published 3×A 3×G 10 10 ADL 100 Hz wrist

Sok [59] not published 3×A 13 6 ADL - waist
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Classifier Performance

SVM, J48, RF, k-
NN, MLP, NB

RF 97.34% Acc

ANN, ELM, SVM, 
RF, LSTM, EELM

EELM 97.35% Acc

ANN, ELM, SVM, 
RF, LSTM, EELM

EELM 98.88% Acc

k-NN, ANN, QSVM, 
EBT

EBT 96.1% Acc 
(ADL), QSVM & 
EBT 100% Acc (fall)

k-NN, ANN, QSVM, 
EBT

EBT 96.1% Acc 
(ADLs), QSVM & 
EBT 100% Acc (fall)

DT 83.9% Acc

DT, LR, k-NN, SVM QSVM 99.98% Acc

, K -Star, k-NN: k-Nearest Neighbor, LR: Logistic Regression, 
achine, PNN: Probabilistic Neural Network, HMM: Hidden 
ll, pitch, yaw.

6

Table 1 (continued)

Reference Dataset Sensors Volunteers Activities Sampling Rate Locations

Li [60] SBHARPT 3×A 3×G 30 7 ADL 50 Hz waist

Chen [61] HARUS 3×A 3×G 30 6 ADL 50 Hz waist

not published 
dataset (collected 
with Huawei P20 
Pro)

- - 6 ADL - pants’ pocket, 
shirt’s pocket, and 
backpack.

Chelli [63] HARUS 3×A 3×G 30 1 fall 6 ADL 50 Hz waist

not published 
dataset (collected 
with SHIMMER 
sensor)

3×A 3×G 30 1 fall 6 ADL 100 Hz chest and thigh

Hemmatpour [65] not published 3×A 3×G 22 1 fall (forward) 10 Hz lower back of body 
near the real Cen-
ter of Mass

Hussain [66] SisFall 3×A (×2) 
3×G

14 fall 19 ADL 200 Hz waist

B-FT: Best-First Tree, RF: Random Forest, C4.5 DC (WEKA J48), ANN: Artificial Neural Network, C4.5 Decision Tree, DC: Decision Tree, DT: Decision Table, ID3 Decision Tree
RLR: Regularized Logistic Regression, BN: Bayesian Network, MLP: Multi-layer Perceptron, NB: Naïve Bayes, QDA: Quadratic Discriminant Analysis, SVM: Support Vector M
Markov Model, LSTM: Long Short Term Memory. In the sensors column, 3×A: tri-axial accelerometer, 3×G: tri-axial gyroscope, 3×M: tri-axial magnetometer, and 3×O: ro
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Fig. 1. a) Flowchart of activity recognition. b) The system consisting of MTw sensors and the Awinda station on the body, working phases, and signal acquisition.
performed fall (20 sets) and ADL (16 sets) movements, five repeti-
tions each. The tests were carried out with six sensor units, each 
with three tri-axial sensors (accelerometer, gyroscope, and magne-
tometer), affixed to different parts of the volunteers’ bodies (head, 
chest, waist, right wrist, right thigh, and right ankle). Movement 
types are provided in Table 2.

Many of the ADLs included in the dataset are a subset of real-
world ADLs that can easily be confused with falls. As ADLs/falls 
recorded in the laboratory and those occurring in a natural setting 
may differ, the mean and peak acceleration values of the recorded 
voluntary falls were compared with those in [86], where there 
were some involuntary falls by the elderly, and this comparison 
is presented in our previous study [29]. As a result, it was ob-
served that the experimental records collected in the study were 
consistent with the involuntary falls recorded in [86].

In 2014, we developed an automatic fall-detection system with 
wearable motion sensor units that can be attached to subjects’ 
bodies at six different positions [29].

According to the results obtained in our previous studies in 
which the MTw sensors were located at the same six positions on 
the body, we investigated the best sensor placement on the body 
parts for device ergonomics and to reduce the number of sensor 
units [72,73]. In both studies, it was observed that the sensor unit 
7

in the waist region attained the best activity/fall recognition per-
formance.

Each movement was recorded by the sensor unit at the waist 
region for a total of 15 s. The peak acceleration value (Amax) was 
detected based on the data collected from the accelerometer:

Amax =
√

A2
x + A2

y + A2
z (1)

To obtain the range of active movement, a two-second time inter-
val was considered before and after the peak acceleration, totaling 
to a four-second time window, and a total of 101 samples (2-sec 
× 25 Hz + 1 sample at the moment of maximum acceleration 
+ 2-sec × 25 Hz) were taken. The remaining records were not 
considered. Based on the 101 samples, a 101 × 9 matrix was con-
structed using the data from all three axes of the accelerometer, 
gyroscope, and magnetometer sensors. The structure of the result-
ing matrix is shown in Fig. 2.

2.3. Feature extraction

Extracted features consist of the minimum, maximum, mean, 
skewness, kurtosis value, five peaks and five frequency values of 
the discrete Fourier transform (DFT), and 11 values of the auto-
correlation function [37]. Note that the auto-correlation function 
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Table 2
List of the Activity Types (Falls and ADLs) Considered in the Study.

Experimental ADLs

# Label Description

1 Walking forward Walking straight forward
2 Walking backward The opposite of movement 1
3 Jogging slow running Slow running as athletes do to warm-up
4 Squatting and getting up Kneeling and getting up again
5 Bending Bending from the waist to be 90o

6 Bending and picking Bending 90o to pick up an object on the ground
7 Limping Walking as if one foot is flawed
8 Stumbling Attached to an object while walking forward to continue walking forward
9 Foot buckling Pressing the foot for a moment while walking forward and continue to walk forward
10 Coughing Volunteer coughing or sneezing
11 Sitting on the chair Volunteer sitting on the floor at the level and comfort of the chair (hard surface)
12 Sitting on the couch Volunteer sitting on a couch at the level and comfort of the sofa (soft surface)
13 Sitting in the air Vertical sitting of the volunteer in a squatting position
14 Sitting on the bed Volunteer sitting vertically on the bed level and comfort (soft surface)
15 Lying bed Lying vertically to bed
16 Getting up from bed Moving from lying down to sitting position

Experimental Falls

# Label Description

17 Front lying Fall forward to the floor
18 Falling forward with protection Falling forward with the hands protecting himself
19 Falling to knees forward Falling to knees
20 Falling forward on knees and then reaching out First, fall on knees and then fall to the floor
21 Rising quickly Rising quickly after falling to the ground
22 Slow stand-up Slowly standoff after falling to the ground
23 Right in front Moving to the right side after falling to the floor forward
24 Left-handed Move forward to the left after falling to the floor
25 Sitting backwards Sitting backward on the floor
26 Back lying Falling backwards onto the ground
27 Right-handed Right-handed after falling back to the right side
28 Left-handed Hand-backed after falling back to the left
29 Right-handed Falling onto the right arm
30 Right-to-side quick-rise Quickly after falling to the ground on the right arm
31 Side-left Falling to the ground on the left arm
32 Side-left quick rise Left-arm quickly fall after falling onto the floor
33 Falling out of bed Rolling down to the floor while lying in bed
34 Falling from the podium Slipping as you walk on the podium
35 Fainting Falling to the ground by fainting
36 Fainting wall During fainting, it hits the wall and slowly slips off the wall
evaluated at zero lag corresponds to the variance. This makes a to-
tal of 26 features for each recording which were calculated using 
the formulas given below. Thus, a total of 26 values were calcu-
lated for each column of the matrix which is represented by an 
N × 1 vector d = [d1, d2,..., dN ]T , where N = 101.

mean (d) : μ = 1

N

N∑
i=1

di (2)

variance (d) : σ 2 = 1

N

N∑
i=1

(di − μ)2 (3)

skewness(d) = 1

Nσ 3

N∑
i=1

(di − μ)3 (4)

kurtosis(d) = 1

Nσ 4

N∑
i=1

(di − μ)4 (5)

autocorrelation (d) :

Rss (�) = 1

N − �

N−�−1∑
i=0

(di − μ)(di−� − μ) (6)

� = 0,1, ..., N − 1

DFT (k) =
N−1∑

die
− j2πki

N k = 0,1, ..., N − 1 (7)

i=0

8

Table 3
Sensor Type Combinations. Y: Yes, N: No.

Combinations Accelerometer Gyroscope Magnetometer

A Y N N
AG Y Y N
AM Y N Y
AGM Y Y Y

In this study, four combinations of the sensor types available in 
the MTw sensor unit in the waist area are considered, as shown in 
Table 3, and the activity classification performance of the combi-
nations are investigated.

When all three axes of a sensor are taken into consideration, 
the length of the feature vectors extracted for each combination is 
234 (26 × 9) for AGM, 156 (26 × 6) for AG and AM, and 78 (26 
× 3) for A (Table 4).

2.4. Description of the machine learning algorithms

Machine learning algorithms process and interpret the input 
data to extract useful information. In this study, features were ex-
tracted based on raw data collected through the sensor units which 
are then used as input to the classifiers. When an algorithm rec-
ognizes an activity, the developed model associates the input data 
with the labeled activity.

We have implemented four state-of-the-art machine learning 
algorithms to recognize activities and compared the classification 
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Table 4
Features Extracted from the Data Combinations. Number of Extracted Features (NEF); Total Number of Extracted Features (TNEF).
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Fig. 2. Structure of the data matrix obtained as a result of preprocessing.

performances of these algorithms using specific metrics. These al-
gorithms are briefly described below.

2.4.1. Support Vector Machines (SVMs)
This is a supervised learning algorithm that aims to maximize 

the width between the support points determined based on the 
decision boundary [87]. The standard form of SVM is a linear clas-
sifier. However, SVM has been developed to make nonlinear classi-
fications by using the kernel method. In this study, the SVM model 
was tested with three different hyperparameters, namely, the spe-
cific kernel types used in the algorithm (‘linear’, ‘poly’, ‘rbf’, and 
‘sigmoid’), the value of the regulation parameter C (0.1, 0.3, 0.5, 0.7, 
0.9, 1.0, 1.3, 1.5, 1.7, 2.0), and the degree of the polynomial kernel 
function ‘poly’ (2, 3, 4, 5). SVM model shows the best performance 
for binary and multi-class activity recognition with C = 1, ‘linear’ 
kernel type with sensor type combination AM, and C = 0.1, ‘linear’ 
kernel type with sensor type combination AGM, respectively.

2.4.2. The Manhattan k-Nearest Neighbor Classifier (M.k-NN)
In the k-nearest neighbor algorithm, the object to be classified 

is assigned to the class of the nearest neighbor according to the 
feature values [88]. This is done by calculating the distance to as-
sign a new sample from the test data to similar samples clustered 
in the training data. Since the number of neighbors involved in the 
classification is indicated by the integer-valued parameter k, the al-
gorithm is called the k-nearest neighbor algorithm. Determining a 
suitable value for the k parameter is important for successful per-
formance of the algorithm. Employing small values of k increases 
the variance but reduces the stability of the results. If larger k val-
ues are used, increased bias and reduced sensitivity are obtained. 
In this study, Manhattan distance is used as the distance metric. ∑

The mathematical formula D (x, y) = m

i=1 |xi − yi | for calculating 
9
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the Manhattan distance between two feature vectors (x, y) in m-
dimensional space is the sum of the absolute distances between 
the elements of the two feature vectors in each dimension. The k
parameter values of 1,3,5,7,9,11,13,15 have been tested and the best 
result was obtained with the value of k = 1 in all sensor type com-
binations. Therefore, a test sample is assigned to the same class as 
its nearest neighbor.

2.4.3. Linear Discriminant Analysis (LDA)
Linear discriminant analysis (LDA) is a multi-variate statistical 

analysis method used to define and classify sample clusters. The 
LDA allows multiple continuous arguments to be separated linearly 
according to a categorically dependent variable considered as a 
data class. This ensures that the distance between classes increases 
as much as possible while minimizing the distance between mem-
bers of each class [89]. Initially, it was possible to use LDA only 
for binary classification, but with the advancements in computing 
power and technology, it is currently possible to classify more than 
two categories.

2.4.4. Decision Trees (DTs)
Decision Trees are hierarchical and nonparametric classifiers 

commonly used in data classification, also known as classification 
and regression trees [88]. A DT, like real tree, consists of roots, 
branches, and leaves. However, unlike a real tree, there are root 
node, leafy or leafless internal node, and leaf node parts where 
the DT gives the final classification results. After the model has 
been trained, starting from the root node, the data sequence is 
split in each hierarchy according to a classification rule (IF-THEN 
rule). Depending on the structure of the DT, the division can be 
binary, tertiary, or multiple. After performing the entire division 
process, the model classifies an activity as a fall or an ADL.

2.4.5. Ensemble classifiers
The main motivation to use an ensemble classifier, which is a 

combination of different classification algorithms, is to achieve im-
proved classification performance [88]. Different methods such as 
boosting, bagging, voting, and subspacing have been developed to 
use multiple classifiers at the same time.

DTs are known to suffer from the bias-variance trade-off. There 
is a large bias with simple trees and a large variance with complex 
trees. Ensemble methods combine several DTs to produce better 
predictive performance than utilizing a single DT. The main princi-
ple behind the ensemble model is that a group of weak learners’ 
function together to form a strong learner.

Bagging and boosting are the ensemble methods developed 
first. In these methods, many models are built in order to pre-
vent the classifier from memorizing data and reducing variance. 
In the bagging method, this involves taking a number of samples 
from the dataset to be used to train the models and training a 
model for each of these samples. The final prediction is obtained 
by averaging the predictions acquired from all trained models. In 
the boosting method, new models are obtained which learn to fix 
the prediction errors of the built models. Each of the built models 
makes predictions that can be weighted according to the sensitiv-
ity ratios, and the resulting predictions are combined to determine 
the final prediction. In both of these approaches, the final classi-
fier is determined as the one that collects the most votes from 
the DTs obtained during the sampling of many models. While the 
same type of models are built in bagging and boosting methods, 
different types of models are employed in the voting procedure. In 
addition, various statistical methods are used in the voting method 
to combine the predictions obtained from the models. Subspace 
learning techniques have a significant role, especially with the LDA 
scheme that engaged to determine a specific discriminant subspace 
10
of low dimension [90]. This method attempts to reduce the cor-
relation between estimators in an ensemble by training them on 
random samples of features instead of the entire feature set.

In this study, the following two ensemble classifiers are exam-
ined:

Subspace Linear Discriminant Analysis (SLDA): The parameters 
of this algorithm are the number of learners n = 10, 50, 100, 500, 
1000, 1500, subspace dimension = 2, and the number of features 
(max features) to draw from X input variables to train each base 
estimator (10, 20, 30, 40, 50). The best result was obtained with 
the parameter values n = 10, max features=50 for binary classifi-
cation and n = 500 and max features=50 for multi-class activity 
recognition, in both cases with the sensor type combination AM.

Ensemble Bagged Decision Tree (EBDT): Number of learners (n) 
of EBDT tried were also n = 10, 50, 100, 500, 1000, 1500. The best 
result was obtained with the value of n = 500 for binary classifica-
tion with sensor type combinations AGM, AM, and with n = 1500
for multi-class activity recognition with sensor type combination 
AGM.

2.5. Evaluating the performance of machine learning algorithms

Selection of the performance evaluation criteria is critical in 
assessing how well the machine learning algorithms classify. The 
selected metrics affect how the performances of the algorithms are 
evaluated and how comparisons are made. One of the best ways 
to evaluate the classification performance of the developed model 
is to classify data that have not been encountered before (unseen 
data), with known class labels.

In this study, Repeated Random Sub-Sampling (RRSS) cross-
validation technique was used to assess the classification perfor-
mance with less variability [91]. In this method, the data are ran-
domly partitioned into two independent clusters: a training set 
and a test set. The former is used to improve the model, while 
the latter is used to verify the accuracy of the model. The dataset 
can be partitioned into the training and test sets in different ways 
by the user. The random partitioning of the data can be repeated 
arbitrarily often. The final classification accuracy is calculated by 
averaging the accuracy value obtained at each repetition. In this 
study, the dataset is randomly split into m = 10 equal partitions 
and RRSS is applied. The training set consists of m − 1 partitions 
and the remaining partition is used as the test (validation) set. The 
random partitioning is repeated 10 times and the resulting accu-
racies are averaged out. Thus, every record gets a chance to be 
verified.

One of the most commonly used criteria for evaluating clas-
sification performance of algorithms is the accuracy performance 
metric which is a measure of the proportion of correct classifica-
tions in all cases examined. This criterion, which is a statistical 
quantity, is calculated by means of a confusion matrix, which also 
serves to assess performance. In binary classification, the accuracy 
criterion is calculated as follows:

Accuracy (Acc) = T p + Tn

T p + Tn + F p + Fn
× 100 (8)

In the equation, Tn indicates the negative samples that are cor-
rectly classified, T p represents the positive samples that are cor-
rectly classified, F p indicates the negative samples that are mis-
classified as positive, and Fn denotes the positive samples that 
are misclassified as negative. To summarize, the symbols in binary 
classification (fall/ADL) are:
T p : true positive; actually fall, classification correct
Tn: true negative; actually ADL, classification correct
F p : false positive; actually ADL, misclassification as a fall
Fn: false negative; actually fall, misclassification as an ADL
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Table 5
Comparison of the Binary (Fall/ADL) Classification Performance of the Four Machine Learning Algorithms with Data from Four Sensor Type Combinations.

(a) SVM

AGM AG AM A

Confusion Matrices

Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL

Actually Fall 1399 1 1399 1 1400 0 1399 1
Actually ADL 1 1119 2 1118 1 1119 1 1119

Acc (%) 99.92 99.88 99.96 99.92
Se (%) 99.92 99.92 100 99.92
Sp (%) 99.91 99.82 99.92 99.91

(b) EBDT

AGM AG AM A

Confusion Matrices

Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL

Actually Fall 1395 5 1392 8 1395 5 1393 7
Actually ADL 7 1113 9 1111 7 1113 6 1114

Acc (%) 99.52 99.32 99.52 99.48
Se (%) 99.64 99.42 99.64 99.50
Sp (%) 99.37 99.19 99.37 99.46

(c) SLDA

AGM AG AM A

Confusion Matrices

Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL

Actually Fall 1389 11 1386 14 1394 6 1390 10
Actually ADL 16 1104 17 1103 16 1104 15 1105

Acc (%) 98.92 98.76 99.12 99.00
Se (%) 99.21 99.00 99.57 99.28
Sp (%) 98.57 98.48 98.57 98.66

(d) M.k-NN

AGM AG AM A

Confusion Matrices

Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL Classified Fall Classified ADL

Actually Fall 1399 1 1398 2 1399 1 1398 2
Actually ADL 1 1119 3 1117 2 1118 1 1119

Acc (%) 99.92 99.80 99.88 99.88
Se (%) 99.92 99.85 99.92 99.85
Sp (%) 99.91 99.73 99.82 99.91
Besides the accuracy measure, other commonly used criteria for 
performance evaluation are sensitivity and specificity measures.

Sensitivity (Se) shows the proportion of correctly classified falls 
in all positive samples:

Sensitivity (Se) = T p

T p + Fn
× 100 (9)

Specificity (Sp) represents the proportion of correctly classified 
falls in all negative samples:

Speci f icity (Sp) = Tn

Tn + F p
× 100 (10)

3. Results and discussion

3.1. Confusion matrices

3.1.1. Confusion matrices with binary classification
ADLs and falls were classified through binary classification, 

employing four state-of-the-art machine learning algorithms and 
11
data from the four sensor type combinations. Accuracy, sensitiv-
ity, and specificity performance metrics were calculated to analyze 
the classification performance and the results are presented in 
Table 5. Among the four classifiers, the highest accuracy was ob-
tained with SVM. Accuracies for the AGM, AG, AM, and A sensor 
type combinations are 99.92%, 99.88%, 99.96%, 99.92%, respectively, 
the highest (99.96%) being obtained with the AM sensor type
combination.

3.1.2. Confusion matrices for the classification of multiple classes (36 
activities)

In the multi-class activity recognition problem, data belonging 
to 36 activities for each sensor type combination (AGM, AG, AM, 
A) were classified with the four machine learning algorithms and 
confusion matrices were obtained in order to observe the perfor-
mance of these algorithms for each activity. In Table 6, we present 
the performance of the M.k-NN on the AM data, reflected as a con-
fusion matrix for the 36 activities. The first column of the table 
lists the actual (true) activities while the first row indicates the 
classified activities. The values along the diagonal of the confusion 
matrix correspond to the number of correctly classified activities, 
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28 29 30 31 32 33 34 35 36

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0
0 67 3 0 0 0 0 0 0
0 2 68 0 0 0 0 0 0
0 0 0 68 1 0 0 0 0
0 0 0 4 66 0 0 0 0
1 0 0 0 0 68 0 0 1
0 0 0 0 0 0 68 0 0
0 0 0 0 0 0 1 69 0
0 0 0 0 0 0 0 0 70
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Table 6
Representation of the Classification Results of 36 Activities with Confusion Matrix on AM Data Format by Using M.k-NN Algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 57 0 0 0 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 65 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 1 1 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 0 0 0 0 0 57 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 69 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 4 9 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 1 0 0 0 0 0 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 2 0 0 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 66 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 3 0 0 0 2 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 62 0 0 0 4 1 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 67 0 2 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 1 61 4 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 2 60 1 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 5 63 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 69 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 67
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 7
Comparison of the Multi-Class (36 Activities) Activity Recognition Performance of the Four 
Machine Learning Algorithms with Data from Four Sensor Type Combinations.

AGM AG AM A

Classifier mean ± std (%)

SVM 93.49 ± 1.75 92.46 ± 1.83 91.98 ± 1.78 92.77 ± 1.28
EBDT 93.80 ± 1.20 93.69 ± 1.23 93.61 ± 1.39 93.05 ± 1.46
SLDA 83.41 ± 2.57 83.25 ± 2.44 85.07 ± 2.11 84.96 ± 1.85
M.k-NN 92.46 ± 1.53 89.99 ± 1.76 95.27 ± 1.41 93.96 ± 1.63
and the non-zero values on the off diagonals indicate the num-
ber of incorrectly classified activities. The link for the classification 
performance of the 36 activities for the other three algorithms is 
shared for researchers to review.

3.2. Performance ratios of classification

Accuracy values for each of the four sensor type combinations 
were calculated and examined and the classifier with the highest 
accuracy rate was identified for that particular sensor type com-
bination. The following mean and standard deviation (std) values 
were obtained based on 10 repetitions of RRSS (Table 7).

When the classification performances of the algorithms for the 
36 activities are examined in Table 7, using M.k-NN (where k = 1), 
accuracy rates obtained using AGM, AG, AM, and A sensor type 
combinations are 92.46%, 89.99%, 95.27%, and 93.96%, respectively. 
Note that the highest accuracy of 95.27% is obtained with the AM 
sensor type combination and the M.k-NN classifier.

3.3. Classifier decision processing time

In this study, preprocessing and classification operations were 
performed using Python version 3.6 on a laptop computer with 
2.60 GHz octa-core 64-bit Intel Core i7 processor, 16 GB of RAM, 
and 64-bit Microsoft Windows 10 Home operating system.

Tables 8 and 9 display the mean and the standard deviation 
values obtained over the 10 repetitions of the classification algo-
rithms, respectively. In these tables, we compare the calculation 
requirements of the four machine learning algorithms according to 
the sensor type combination for both binary and multi-class ac-
tivity recognition problems in terms of the training and test times 
required on the dataset. In terms of the training time, algorithms 
with the highest and lowest computation time in binary classifica-
tion are EBDT with the sensor type combination AG and M.k-NN 
with the sensor type combination A, respectively. In multi-class 
activity recognition, algorithms with the highest and lowest com-
putation time are EBDT with the sensor type combination AGM 
and M.k-NN with the sensor type combination A, respectively. In 
terms of the test time, algorithms with the highest and lowest 
computation time in binary classification are EBDT with the sen-
sor type combination A and both SVM and SLDA with the sensor 
type combination AM, respectively. In the multi-class problem, al-
gorithms with the highest and lowest computation time are SLDA 
with the sensor type combination AG and M.k-NN with the sensor 
type combination AM, respectively.
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3.3.1. Training Time

Table 8
Training Time of the Data Combinations for Binary and Multi-Class Activity Recog-
nition (36 Activities).

Binary Classification (Fall/ADL)

AGM AG AM A

Classifier mean ± std (sec)

SVM 0.636 ± 0.188 0.166 ± 0.128 0.092 ± 0.005 0.117 ± 0.091
EBDT 516.9 ± 78.07 599.5 ± 83.89 41.75 ± 18.17 580.4 ± 89.38
SLDA 0.358 ± 0.009 20.68 ± 2.832 0.351 ± 0.013 4.172 ± 3.842
M.k-NN 0.173 ± 0.008 0.261 ± 0.082 0.209 ± 0.059 0.057 ± 0.004

Multi-Class Activity Recognition (36 Activities)

AGM AG AM A

Classifier mean ± std (sec)

SVM 1.465 ± 0.801 0.505 ± 0.218 0.917 ± 0.587 0.597 ± 0.487
EBDT 1222 ± 100.3 292.2 ± 17.79 572.6 ± 29.01 237.9 ± 35.04
SLDA 13.86 ± 8.176 195.7 ± 63.39 68.97 ± 35.20 63.27 ± 15.67
M.k-NN 1.073 ± 0.112 0.631 ± 0.277 0.443 ± 0.190 0.183 ± 0.102

3.3.2. Testing Time

Table 9
Testing Time of the Data Combinations for Binary and Multi-Class Activity Recogni-
tion (36 Activities).

Binary Classification (Fall/ADL)

AGM AG AM A

Classifier mean ± std (sec)

SVM 0.062 ± 0.088 0.004 ± 0.001 0.003 ± 0.001 0.007 ± 0.001
EBDT 0.702 ± 0.677 1.054 ± 1.001 0.093 ± 0.088 1.575 ± 1.120
SLDA 0.004 ± 0.001 0.126 ± 0.084 0.003 ± 0.001 0.028 ± 0.049
M.k-NN 0.317 ± 0.009 0.327 ± 0.099 0.408 ± 0.191 0.107 ± 0.007

Multi-Class Activity Recognition (36 Activities)

AGM AG AM A

Classifier mean ± std (sec)

SVM 0.479 ± 0.265 0.143 ± 0.071 0.254 ± 0.158 0.133 ± 0.110
EBDT 1.004 ± 0.379 0.392 ± 0.171 0.531 ± 0.067 0.401 ± 0.193
SLDA 0.270 ± 0.163 2.945 ± 2.134 1.346 ± 0.821 0.909 ± 0.241
M.k-NN 1.950 ± 0.137 0.727 ± 0.354 0.063 ± 0.010 1.015 ± 0.402

4. Conclusions

In this study, the effects of four sensor type combinations of a 
sensor unit affixed to the waist region of the human body were 
analyzed using four state-of-the-art machine learning algorithms. 
According to the results of the analysis, when all sensor type com-
binations are evaluated, successful results are obtained in the clas-
sification of falls and ADLs.

When examined in terms of binary classification (fall vs. ADL), 
sensor type combinations, and classification algorithms, the sensor 
type A by itself attains a high classification rate in general. In addi-
tion, it is observed that better results are obtained with the sensor 
type combination AM in classification with SVMs. Due to these 
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high accuracy rates and small proportional differences in binary 
classification, we can state that it is difficult to draw a general con-
clusion about the effect of the sensor type combinations on binary 
classification. However, in the multi-class problem of classifying 
36 activities, we can see the effect of sensor type combinations 
on the classification performance based on the accuracy rates. As 
the number of sensor types included in the combinations is re-
duced, the classification accuracies become lower, as expected. A 
similar conclusion can be drawn for the training and testing time 
requirements of the machine learning algorithms in sensor type 
combinations.

The selected classifiers are considered successful in distinguish-
ing falls and ADLs with high levels of accuracy. New experiments 
and data collection procedures are planned for future studies to 
extend this study in different directions. Accuracy is expected to 
fall down as the amount and variability of the data increase. Al-
though the size of the dataset is not investigated in this study, 
it is necessary to enlarge it further to examine the stability of 
the model and the effects of the parameters. It can be done by 
identifying different attributes to increase the accuracy rates de-
grading with increasing data size. It is envisaged to be stored in 
a cloud-like environment to ensure that it is easily accessible by 
other researchers at any time to conduct further studies.

To improve the accuracy and stability of the model in future 
studies, changes can be made to the partitioning of the dataset 
to select training and test datasets differently and other cross-
validation techniques such as P -fold or leave-one-subject-out may 
be employed instead of RRSS.

Through this study, we examine the effect of different sensor 
type combinations. Thus, by reducing the number of sensors, we 
are taking the first step in the development of a system that is 
lighter, has a long battery life, and is less expensive, allowing the 
ease of wearability. In the future, we plan to examine which axes 
of which sensor types are essential for fall detection. In coopera-
tion with some companies, we aim to design a self-powered de-
vice with body-energy harvesting capability, easily integrated with 
other systems, and most importantly, with high sensitivity and 
lower cost. Thus, hardware design constraints will be minimized. 
In addition, in traditional methods, analyzing the raw data of each 
new dataset or sensor type and extracting the features suitable 
for the model will require signal processing and domain expertise. 
This is not a scalable approach. For this reason, in our ongoing 
study, the activity recognition performance of deep learning tech-
niques that can adapt to new dataset and sensor types quickly by 
automatically extracting features from raw data are being evalu-
ated to eliminate software-related limitations. In fall detection, it 
is crucial to reach emergency assistance directly by the systems 
communicating among themselves without the user having to do 
anything. As the movements can be predicted accurately, report-
ing methods can be used to provide the necessary information to 
other devices that the users in the fall risk group carry or to re-
mote points. This can be achieved by the communication of the 
sensor units through IoT technology [92,93].
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of Anadolu University, Eskişehir, Turkey, M.Sc. degree 
in biomedical engineering from Erciyes University, in 
2007, 2008, 2012, and 2015, respectively. He worked 
as a solution specialist for one year while pursuing his 
M.Sc. degree. He joined Gemerek Vocational School in 

Cumhuriyet University, Computer Technology Department, Sivas, Turkey as 
a lecturer in 2012 where he is currently employed at the same position. 
He has been working towards the Ph.D. degree in biomedical engineer-
ing since 2016. He worked as an R&D engineer and software supervisor in 
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