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For signature files we propose a new false drop estimation method for databases with varying
record lengths. Our approach provides more accurate estimation of the number of false drops
by considering the lengths of individual records instead of using the average number of terms per
record. In signature file processing, accurate estimation of the number of false drops is essential
to obtain a more accurate signature file and therefore to obtain a better (query) response time.
With a formal proof we show that under certain conditions the number of false drops estimated by
considering the average record length is less than or equal to the precise ‘expected’ estimation which
is based on the individual record lengths. The experiments with real data show that the proposed
method accurately estimates the number of false drops and the actual response time. Depending on
the space overhead, our approach obtains up to 33% and 20% response time improvements for the

conventional sequential and new efficient multiframe signature file methods, respectively.
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1. INTRODUCTION

The growing capacities of data storage devices enable
the storage of very large multimedia databases containing
formatted and unformatted data, such as text, voice and
image. The queries for such multimedia databases contain
many search conditions based on various media stored
in the database [1, 2] which causes an increase in the
number of query terms. Since signature files provide
compact representation for today’s large databases [3] they
are used to access both formatted and unformatted data
via search queries. In particular, conjunctive Boolean
queries with many terms can be evaluated efficiently by
using signature files [4–11]. We note that today’s databases
require multiterm queries since queries with one or an
inadequate number of terms do not provide the necessary
record selectivity.

In signature files, the content of arecord(the term ‘record’
is used to refer to any kind of data) is encoded into a bit string
called arecord signature. These record signatures are stored
in a separate file called thesignature file. Several signature
generation and signature file methods have been proposed
to obtain a desirable response time and space overhead.
A survey of these signature file methods can be found in
Faloutsos [5] and Aktug and Can [7]. In this study, we
disregard other signature generation schemes such as word
signatures [12] and consider only widely used superimposed

signatures and conjunctive queries. In the superimposed
signature file method, each attribute of a record (term) which
describes the record is hashed into a bit string of sizeF
by settingS bits to ‘1’ (on-bit) whereS � F . Record
signatures are obtained by superimposing (bitwiseORing)
the signatures of record terms.

To process a query with signature files, a signature is
produced in the same way as document signatures. This
query signature is compared with the record signatures.
If a record contains all of the query terms, i.e. if the
record matches the query, its signature will have on-bits in
the corresponding bit positions of all on-bits of the query
signature. Therefore, the records whose signatures contain
at least one ‘0’ bit (off-bit) in the corresponding positions
of on-bits of the query signature definitely do not match the
query.

In bit-sliced signature files (BSSF), to retrieve the
record signature bits corresponding to a bit position
without retrieving other bits, the signature file is vertically
partitioned and the bits of a vertical partition (a bit slice)
are stored sequentially [13]. For query evaluation, only the
bit slices corresponding to the on-bits of the query signature
are retrieved and bitwiseANDed. Thus, BSSF improves
performance by reducing the amount of data to be read and
processed.

Since signatures are approximate representations, some
records may pass the signature file processing phase
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12 S. KOCBERBER, F. CAN AND J. M. PATTON

although they do not match the query. Such records are
called false drop records and they must be accessed and
eliminated by using the actual query terms. Therefore, the
performance of a signature file method is affected by the
number of false drop records (FD). If FD can be estimated
accurately, signature file parameters, likeF and S, can be
optimized to obtain a better response time [6, 10, 11, 14].

For a given signature size (F) and the number of distinct
terms in a record (D) the false drop probability (f d) and
henceFD, is minimized when half of a record signature bits
are on-bits (we call this the optimality condition) [13, 15].
(In Christodoulakis and Faloutsos [15] the trade-off between
two mutually competing issues: (a) false drop minimization,
and (b) storage utilization efficiency maximization were
inspected in detail.) However, generally, databases used
in information retrieval (IR) contain records withvarying
lengths(we will use the phrase ‘varying record length’ to
mean that records may contain different numbers of distinct
terms). If the sameF andS values are used for all records
of a database, the signatures of the records with many
terms will contain more ‘1’s than the optimality condition
requires. This increasesFD and consequently reduces the
performance.

Christodoulakis and Faloutsos suggest dividing a record
into blocks that contain equal numbers of distinct terms
and producing a separate signature for each block [15].
However, the numbers of ‘1’s in block signatures expose
a normal distribution and there may be block signatures
containing non-optimal numbers of ‘1’s. Leng and Lee call
this the fixed size block (FSB) method and they propose the
fixed weight block (FWB) method as an alternative [16]. In
FWB, instead of controlling the number of terms in a block,
the numbers of ‘1’s in a block signature are controlled [16].

FSB and FWB obtain lower false drop probabilities
than the sequential signature files (SSF) that involve no
blocking [16, 17]. However, with blocking record level
search and retrieval operations become complex. For
example, the terms of a record that matches a multiterm
conjunctive query may be distributed into more than one
block. Therefore, for a multiterm query, to determine the
relevance of a record the matching status of all of its blocks
must be considered and this involves additional costs.

The FSB and FWB methods are extensions of SSF
and their use in practice involves similar difficulties if
the query terms are distributed into more than one block
of a matching record. Similar block assumption related
problems exist in various signature file methods. To alleviate
these problems, usually, block level matching or single
term queries are considered in false drop analysis and
performance estimations for signature files. This creates an
unrealistic environment since the records of an unformatted
database contain varying numbers of terms (i.e. require
different numbers of blocks) and user queries usually involve
more than one term in real IR applications.

To address the problems mentioned here we propose a
new false drop estimation approach, the individual false
drop estimation method (IFD), which considers databases
with varying record lengthsand multiterm queries without

dividing a record into blocks. In IFD, each record has a
false drop probability which is computed by considering the
number of distinct terms in the record. The expected number
of false drops for the database,FD, is computed by adding
the individual false drop probabilities of all records.

In signature files, the estimatedFD value is used in the
optimization of the signature file parameters. Therefore,
accurate estimation ofFD provides better estimation of
signature file parameters which in turn provides superior
performance that can be achieved in real applications.
The IFD concept is general purpose and can be used in
association with various signature file methods. In this
paper we provide two example cases for this purpose and
study the performance of IFD in the conventional sequential
signature file (SSF) method and a new vertical partitioning
environment, the multiframe signature file (MFSF) method,
that we introduced in our recent study [10, 11, 18]. For this
purpose we developed a test environment and implemented
the SSF and MFSF methods. We extended these methods
to use IFD and tested their performance with real data. The
experiments show that IFD improves the performance of the
inspected methods by reducing the observedFD and the
(query) response time. (Further experiments with similar
results involving a generalized frame sliced signature file
approach are reported in Kocberber [18].)

The organization of the paper is as follows. In Section 2,
the conventionalFD estimation method and the proposed
FD estimation method, IFD, are explained. Section 3
explains the test environment used in the experiments.
In Sections 4 and 5, we apply IFD to the SSF and
MFSF methods, respectively, and measure the performance
improvements obtained by IFD experimentally with real
data. Section 6 provides the conclusion. In the Appendix
we provide a formal proof which shows that under certain
conditions the number of false drop records (FD) estimated
by considering the average number of terms in the records
is less than or equal to theFD estimated by considering
individual D values of the records.

2. ESTIMATING THE NUMBER OF FALSE DROPS

Due to hashing and superimposition operations used in
obtaining signatures, the signature of a record that does not
satisfy all query terms may match the query signature. All
matching records, includingfalse drops, must be accessed
and compared with the query after processing the signature
file to make sure that they really contain the query terms.
Consequently, to estimate the response time, we need to
estimateFD accurately.

To better illustrate signature extraction, query processing
with superimposed signatures and the false drop (match)
concept, an example is provided in Figure 1. An intuitive
observation in Figure 1 is that the false match probability of
R2 is greater than the false match probability of R1 for the
same set of queries since the signature of R2 contains more
on-bits than the signature of R1. The false match probability
of an on-bit of a query signature increases as the number of
on-bits in a record signature increases. Note that a record
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OPTIMIZATION OF SIGNATURE FILE PARAMETERS 13

FIGURE 1. Signature extraction and query evaluation with superimposed signatures (F = 10, S = 3).

signature with only on-bits matches all queries irrespective
of the query terms. The ratio of on-bits to the number of
total bits in a record signature is calledon-bit density(op).
Parameters affecting the on-bit density are the length of the
record signature (F), the number of distinct terms in the
record (D) and the number of bits set to ‘1’ by each term
(S). Note that in our case the 1s of a term signature do
not overlap. There exists yet one more SSF (FSB) model
that allows the overlapping of the 1s at the term signature
level [15, 19].

Smaller S values provide lower on-bit densities in the
record signatures. On the other hand, reducingS also
reduces the number of on-bits in a query signature. A query
signature with fewer on-bits matches more record signatures
accidentally. As a result, while the on-bit density decreases
for decreasingS value, the false match probability of a
record signature and query signature (false drop probability)
may increase. (For easy reference the definitions of the
important symbols used in this paper and the meanings of the
frequently used method acronyms are provided in Table 1.)

2.1. Using average number of terms per record in
estimatingFD

A record signature qualifies a query accidentally if the record
does not contain some query terms and all on-bits of the
query signature were also set by the terms of the record.
Since there will be more on-bits in the query signatures
of queries with more terms, the false drop probability will
decrease for such queries. An exact formula was derived
in Roberts [13] to compute the false drop probability of a
particular record withD terms for at (t > 0) term query.
However, the following approximate formula can be used to
estimate the false drop probability of a record withD distinct
terms due to its simplicity [13].

f d(F, S, D, t) = (1 − (1 − S/F)D)W (Q)t (1)

where W (Q)t is the expected number of on-bits in the
signature of at term query (query weight) and it is computed
as follows:

W (Q)t = F · (1 − (1 − S/F)t ). (2)

These approximations are valid for largeF values and
relatively small values ofS, D and t and they give close
results to the exact formula [13].

The false drop probability,f d, for the whole database is
defined as

false drop probability= number of false matches (drops)

N − number of true matches
.

By assuming the number of true matches will be negligible,
FD is computed by multiplying the false match probability
of a record by the number of records in the database (N) as
follows [13]:

FD = N · f d. (3)

Since f d is computed for a specificD value, Equation (3)
can be used safely for the databases whose records contain
exactly D terms. In databases containing records with
varying numbers of distinct terms, an averagef d value is
obtained by using the average number of distinct terms per
record,Davg, instead ofD in Equation (1) [4, 6, 10, 11, 13,
14]. We call this approach theaverage false drop estimation
method(AFD).

The FSB [17] and FWB [18] methods solve the problem
caused by the variation inD values of the records by
dividing long records into blocks.

2.2. Proposed false drop estimation method: IFD

For databases with records having varying numbers of
distinct terms, each record may have a differentD and
consequently a differentf d value. Therefore, the ‘expected’
number of false drops for a database withN records can
be computed precisely by adding the individual false drop
probabilities of the records as follows:

FD =
N∑

r=1

f d of recordr =
N∑

r=1

(
1 −

(
1 − S

F

)Dr
)W (Q)t

(4)

whereDr is the number of distinct terms in ther th record.
The records containing equal numbers of distinct terms, i.e.
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14 S. KOCBERBER, F. CAN AND J. M. PATTON

TABLE 1. Definition of abbreviations.

A. Definition of important symbols (related method).

Symbol Definition

f Number of frames (MFSF)
f d Expected false drop probability
op Ratio of on-bits to the number of total bits in a record signature
p Number of partitions
t Number of query terms(1 ≤ t ≤ tmax)

tmax Maximum number of terms that can be observed in a query
CD Number of records containingD distinct terms
D Number of distinct terms in a record
Davg Average number of distinct terms in a record
Dmax Maximum number of distinct terms in a record
Dmin Minimum number of distinct terms in a record
Dr Number of distinct terms inr th record
F Size of a signature (bits)
Fi Size ofi th frame (bits) (MFSF)
FD Number of false drops
FDi Expected number of false drops ini th partition
IFD(i,D) Expected number of false drops for the records containingD distinct terms

after processingi bit slices
I P Improvement percentage
N Number of records in database
Pt Probability of submission of at term query
Psize Size of a record pointer (bytes)
RT Query response time
S Number of bits set to 1 for each term
Si Number of bits set to 1 by each term ini th frame (MFSF)
STD Standard deviation
TFDi Expected number of false drops after processingi bit slices (MFSF)
W (Q)t Expected number of on-bits in signature of at term query (query weight)

B. Meanings of frequently used method acronyms.

Acronym Meaning

AFD-MFSF Average false drop estimated multiframe signature file
AFD-SSF Average false drop estimated sequential signature file
BSSF Bit sliced signature file
IFD-MFSF Individual false drop estimated multiframe signature file
IFD-SSF Individual false drop estimated sequential signature file
MFSF Multiframe signature file
SSF Sequential signature file

with the sameD value, have the samef d value. Therefore,
Equation (4) is rewritten as follows:

FD =
Dmax∑
d=1

Cd ·
(

1 −
(

1 − S

F

)d
)W (Q)t

(5)

where Cd is the number of records containingd distinct
terms. Since the number of non-zeroCd values is always
less than or equal toN , Equation (5) is simpler and more
efficient than Equation (4).

Since individual f d values of the records are used in
computingFD, we call this method theindividual false drop
computation method(IFD). In Equation (5) we assume the
sameS and F values are used for all records. IfF and S

can be adjusted according to theDr values of the records, a
lower false drop probability may be obtained [18]. In such an
environment, each partition will have its ownF andS value
and the query processor must compute a different query
signature for each partition corresponding to a differentDr

value.

AFD and IFD are extreme cases forFD estimation. IFD
requires more information about the database instance than
AFD, but provides a more accurate estimation ofFD than
AFD. AFD can also be seen as the use of FSB with ‘average
document size’ blocks. The use of FWB in a similar
context is impossible, since IFD contradicts the definition
of FWB [16].

In PFD, the database is divided intop disjoint conceptual
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FIGURE 2. Example ofFD computations by using averageD and individualD values.

partitions according to the number of distinct terms in the
records. Each partition is considered as a separate signature
file and the average number of distinct terms in the partition
is used to estimateFD in this partition. If there is only one
partition, i.e. p = 1, PFD converges to AFD. If there are
Dmax partitions, i.e.p = Dmax, PFD converges to IFD. In
other words, PFD provides a generalized model that ranges
from AFD to IFD.

ExampleFD computations are provided in Figure 2. In
this example, theFD value computed by AFD is less than
theFD value computed by IFD. The formal proof provided
in the Appendix shows that under certain conditions the
FD value computed with AFD is less than or equal to
the FD value computed with IFD. These conditions, see
the Appendix for details, are (1)S = F ln 2/Davg and
(2) W (Q)t > 2max(x1,x2,...,xN ) where xr = Dr/Davg for
(1 ≤ r ≤ N). In practiceS should be rounded to an integer.
The experimental evidence provided in Sections 4.2 and 5.2
shows that in practical cases the distinction between IFD and
AFD remains valid even without satisfying the conditions
stated earlier. In Figure 2 althoughDavg values are the same
for both case I and II, differentFD values are obtained for
IFD. The difference between theFD values of AFD and IFD
increases for increasing (standard) deviation ofD values.

3. EXPERIMENTAL ENVIRONMENT AND
DESIGN

As shown in the Appendix, under certain conditions theFD
value estimated by AFD is less than or equal to theFD
value estimated by IFD for the same database instance and
signature file parameters. In Sections 4 and 5, we test the
performance of the IFD-based SSF and MFSF signature file
methods with real data to investigate the real life impacts of
IFD.

3.1. Experimental environment

In our experiments we used MARC records of the Bilkent
University library collection. The test database, BLISS-1,

TABLE 2. Parameter values for the experiments.

tmax = 5 maximum number of terms in a query
Bsize= 8192 size of a disk block (bytes)
Davg = 25.7 average number of distinct terms in a record
N =152,850 number of records in database
Psize= 4 size of a record pointer (bytes)
P B = 2048 number of record pointers in the record

pointer buffer
Tread= 5.77 time required to read a disk block

(milliseconds, ms)
Tscan= 4.5 average time required to match a record

with query (ms)
Tseek= 30 time required to position the read head of disk

to desired disk block (ms)

contains 152,850 MARC records with varying lengths which
is suitable to compare AFD and IFD. The smallest and
largest records after stop word elimination contain 1 and
166 distinct terms, respectively. Our stop word list contains
all single letters and about 100 additional entries ([18],
Appendix D). The average number and standard deviation
of distinct terms per record are, respectively, 25.7 and 11.12;
and the database contains 166,216 unique terms. We provide
the record length distribution of the test database BLISS-1 in
Figure 3 where the last bar represents the number of records
with more than 62 unique terms.

A personal computer is used in the experiments. The
test environment provides exclusive control of all resources
including the physical layout of the file on the disk medium.
Non-interrupting execution of user programs provides an
accurate measure of the response time and produces
consistent and reproducible results [20]. The experimental
environment is defined in more detail in Table 2.

The physical layout of a signature file on the disk affects
the time required to process the signature file. To obtain
consistent and reproducible response times, the record file
and the signature files are allocated fully contiguously on
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FIGURE 3. Distribution of record lengths of test database BLISS-1.

the disk. For MFSF, to obtain the positions of the records
for given record numbers (signature file processing phase
of MFSF produces a list of record numbers as the result),
a record pointer file is used. Each record pointer occupies
Psize bytes and onlyPB record pointers are kept in the main
memory. In SSF each record signature is followed by its
record pointer.

3.2. Experimental design

The performance of the inspected signature file methods is
measured in terms of observedresponse timeand observed
FD. Theresponse timeis defined as the time required to:

• process the signature file;
• access all records shortlisted as candidates to qualify

for the query, following the signature file processing
phase, if any;

• retrieve the qualifying records.

Different response time values may be obtained for
the queries containing the same number of query terms,
since queries may have different numbers of matching
records. In a given experimental environment, if different
file access methods use the same storage structure for the
record pointers and the records, all methods will require
the same amount of time to retrieve the true matches after
obtaining their record numbers. Independent of the number
of matching records, the signature file processing and the
false drop resolution phases must be performed, i.e. the
response time is biased with the time required to perform
these operations. Zero hit queries are the queries with no
matching records. If the response time of zero hit queries,
i.e. the time required to process the signature file plus the
time required to resolve all false drops, is minimized; the
response time of the queries containing the same number
of terms with matching records will also be minimized.
Therefore, we used zero hit queries in the experiments.

Search queries in real information retrieval systems
contain a varying number of terms and the number of query

TABLE 3. Pt values for LW, UD and HW query cases.

Query case P1 P2 P3 P4 P5

Low weight (LW) 0.30 0.25 0.20 0.15 0.10
Uniform distribution 0.20 0.20 0.20 0.20 0.20
(UD)
High weight (HW) 0.10 0.15 0.20 0.25 0.30

terms tends to increase for large databases. Therefore,
to obtain realistic results we tested the inspected methods
in multiterm query environments. We considered three
different query cases: low weight (LW), uniform distribution
(UD) and high weight (HW) queries. Each query may
contain up to five terms (tmax). The values ofPt (1 ≤ t ≤ 5),
where Pt denotes the probability of submitting at term
query, for these query cases are given in Table 3. For
the queries containing more than five terms we can assume
t = 5. Note that this is a pessimistic assumption sinceFD
decreases for increasing numbers of query terms.

We generated a query set containing 1000 zero hit queries
randomly by considering the occurrence probabilities of the
number of query terms for each query case. For example,
since the occurrence probability of a one term query is
0.10 in the HW query case, the HW query set contains
100 (0.10 · 1000) one term queries. The observedFD and
response time values are obtained by taking the average of
theFD and response time values obtained by each query in
the query sets.

4. USING IFD IN SEQUENTIAL SIGNATURE FILES

4.1. Concepts of sequential signature files (SSF):
AFD-SSF

The sequential signature file (SSF) method requires
retrieving the whole signature file for each query [15].
To minimize the number of seek operations to access the
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FIGURE 4. Graphical representations of estimatingFD with AFD and IFD for SSF.

actual records, the record pointers are stored along with
the signatures. Each record pointer holds the position of
the corresponding actual record and it occupies four bytes
(Psize).

Graphical representations of estimatingFD with AFD and
IFD for SSF are illustrated in Figure 4. A darker area
indicates a record with a higherD value (we assume that
both methods use the sameS value for all records).

The false match (drop) probability of a record signature
and a query signature becomes minimal and the storage
utilization efficiency becomes maximal when half of the
signature bits of a record are on-bits. For givenF and D
values, the value ofS that satisfies this optimality condition
is computed as follows ([15], Equation A8):

S = F · ln 2/D. (6)

For databases with varying record lengths, the value ofS
in Equation (6) is determined by usingDavg instead of
individual D values of the records. Note that the signatures
of the records withDr > Davg (1 ≤ r ≤ N) would contain
more on-bits than off-bits, i.e. the optimality condition may
not hold for all record signatures. (SimilarlyDr < Davg
would lead to less on-bits than off-bits.) We will refer to
this Davg-based method as the AFD sequential signature file
(AFD-SSF) method.

For a givenF value (space overhead), since the whole
signature file must be retrieved and processed for query
evaluation, the time required to process the SSF will be the
same for allS values. Therefore, minimizing the observed
FD will also minimize the response time for SSF.

4.2. IFD-based SSF and performance evaluation

In the IFD version of SSF, IFD-SSF, theS value, which
provides the minimumFD, is determined with Equation (5)

by a linear search in the domain of possibleS values. The
lower and upper bounds of the search space areF ·ln 2/Dmax
andF · ln 2/Dmin, respectively. Since the value ofS must be
an integer, the number of possibleS values will be small.

Note that IFD-SSF tries to find theS value that will give
the best performance by paying attention to the individualD
values; however, AFD-SSF uses theD value that will give
the best performance for the average record. Note that, in
IFD-SSF there is only oneS value which is used for the
whole signature file, i.e. for all partitions. The same is true
for the value ofF .

Although the signature file occupies less space than
the original records, for large databases the response
time of SSF is still very high. However, the SSF
approach may efficiently search small databases or small
subsets of a database. For example, the two-level access
method [4] partitions a signature file horizontally such
that the signatures of each partition fit into a disk block
and the signatures are stored sequentially in the disk
blocks. For query evaluation each qualifying disk block
is searched sequentially. Similar approaches also apply
to other horizontal signature partitioning methods such as
linear hashing with superimposed signatures (also known as
Quick Filter) [1, 21]. Therefore, we tested the performance
of AFD-SSF and IFD-SSF on a small database with 1000
records of BLISS-1. The expected (denoted by Exp) and the
observed (denoted by Obs) average false drop values of both
methods for variousF values are given in Table 4.

Table 4 shows that the expectedFD values of AFD are
always less than the observedFD values of this method.
Another important result is that the observedFD values of
IFD-SSF are always less than the observedFD values of
AFD-SSF. Finally, the expected and observed averageFD
values for IFD-SSF are very close for all query cases. This
shows that IFD estimatesFD more accurately than AFD.
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TABLE 4. Expected and observed average false drop (FD) values for AFD-SSF and IFD-SSF* (N = 1000).

LW query case UD query case HW query case

AFD-SSF IFD-SSF AFD-SSF IFD-SSF AFD-SSF IFD-SSF

F S Exp Obs S Exp Obs S Exp Obs S Exp Obs S Exp Obs S Exp Obs

200 5 8.10 12.76 4 11.83 11.98 5 5.42 8.62 4 8.61 8.13 5 2.75 4.76 4 4.73 4.33
300 8 1.29 4.07 5 3.38 3.28 8 0.86 2.80 5 2.31 2.19 8 0.43 1.62 5 1.24 1.18
400 10 0.21 1.59 6 1.11 1.04 10 0.14 1.13 6 0.76 0.65 10 0.07 0.67 6 0.40 0.34
500 13 0.03 0.96 7 0.44 0.43 13 0.02 0.64 7 0.30 0.28 13 0.01 0.43 6 0.15 0.13
600 15 0.01 0.54 7 0.19 0.18 15 0.00 0.38 7 0.13 0.11 15 0.00 0.23 7 0.07 0.05
700 18 0.00 0.40 7 0.09 0.09 18 0.00 0.27 7 0.06 0.05 18 0.00 0.16 7 0.03 0.03

* An expected value of 0.00 is due to rounding, actual values are greater than 0.

FIGURE 5. Observed response time againstF for AFD-SSF and IFD-SSF (N = 1000). (For the definition of query cases refer to Table 3.)

The observed response time values againstF are plotted
in Figure 5. In Figure 5d the improvement percentage
obtained by IFD-SSF over AFD-SSF in terms of observed
response time is plotted. The improvement percentage, IP,
for any two methods, sayA andB, is defined as

IP(A, B) = 100· (TR(A) − TR(B))/TR(A)

whereTR(A) andTR(B) are the response times obtained by
A and B, respectively. In other words,IP(A, B) indicates
the improvement obtained byB with respect toA.

The observedFD values, hence the time required to
resolve the false drop records, decrease for increasingF
values. Since the size of the signature file increases

for increasingF values, the time required to process the
signature file also increases. The decrease inFD becomes
negligible after a certainF value while the increase in
the time required to process the signature file increases
almost linearly. Therefore, the response time decreases
as F increases for smallF values and starts to increase
after a certainF value (for F values 400, 500 and 500
for HW, UD and LW query cases, respectively). We call
this point optimum F (space overhead) for a database
instance [18]. Since the observedFD diminishes more
rapidly for increasing query weights, the optimumF value
decreases as the query weight increases.

In text database environments using SSF with anF value
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FIGURE 6. Graphical representations of estimatingFD with AFD and IFD for MFSF.

greater than the optimum,F value is meaningless. Also,
the response time values for smallF values are very high.
Therefore, we can assume the IP values observed around
the optimumF values as the performance increased were
obtained by using IFD for SSF. The IP (AFD-SSF, IFD-SSF)
values obtained at optimumF values are 30%, 29% and 33%
for HW, UD and LW query cases, respectively. These results
indicate that our IFD approach outperforms the conventional
AFD approach in SSF.

5. USING IFD IN MULTI-FRAME SIGNATURE
FILES

5.1. Concepts of multiframe signature files (MFSF):
AFD-MFSF

MFSF is a new signature file method that outperforms
signature files with good performance (such as generalized
frame sliced signature files) [11, 18]. It is designed for
very large databases and considerably faster than SSF. As
discussed in Kocberber and Can [11] its performance is
competitive with inverted files.

In MFSF a signature file is conceptually divided intof
sub-signature files. Each sub-signature file is a bit-sliced
signature file (BSSF) [13] with its ownF andS parameters.
The bits of a signature file are distributed among thef sub-
signature files, (vertical) frames, such thatF = F1 + F2 +
. . . + F f (1 ≤ f ≤ F). Each term setsSr bits in ther th
frame andS = S1 + S2 + . . . + S f (1 ≤ Sr ≤ Fr , 1 ≤ r ≤
f ). Consequently, each frame may have a different on-bit
density (op value). Graphical representations of estimating
FD with AFD and IFD for MFSF are illustrated in Figure 6
(in MFSF the frames are ordered in increasingopvalues). A

darker area indicates more on-bits in that part of the record
signature.

In MFSF, the response time is minimized in a multiterm
query environment by employing a partial evaluation
strategy and by considering the submission probabilities
of the queries with different numbers of terms [18]. The
technique employs a stopping condition that tries to perform
signature file processing without using all on-bits of the
query signature, i.e. by partial evaluation.

The aim of the stopping condition is to reduce the number
of expected false drops to an optimum level that will also
provide the lowest response time within the framework of
MFSF [18]. The signature file processing continues as long
as processing the signature file decreases the response time
by decreasing the expected number of false drops. The
stopping condition of MFSF provided in Kocberber [18] is
as follows:

Tslice ≤ (TFDi − TFDi+1) · Tresolve (7)

whereTslice is the time required to read and process a bit
slice, TFDi is the number of expected false drops after
processingi bit slices andTresolve is the time required to
resolve a false drop record by accessing the actual record.
In formula (7), (TFDi − TFDi+1) gives the number of
expected false drops which will be eliminated if we process
the (i + 1)st bit slice after processingi bit slices. At the
stopping step the time required to process a bit slice becomes
greater than the time required to resolve these false drops by
accessing the actual records, i.e. the inequality is no longer
satisfied. Therefore, the signature file processing stops at
this step (Kocberber [18], Chapter 5; [11]).

In MFSF,FD is computed incrementally. In this method
all the records are initially assumed as false drops, i.e.
TFD0 = N . For (i + 1)st (i ≥ 0) bit slice processing, the
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TABLE 5. Expected (Exp) and observed (Obs) average false drop (FD) values for AFD-MFSF and IFD-MFSF (N =152,850, complete
BLISS-1 database).

LW query case UD query case HW query case

AFD-MFSF IFD-MFSF AFD-MFSF IFD-MFSF AFD-MFSF IFD-MFSF

F Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs

800 0.80 12.48 8.90 8.78 0.89 10.45 6.75 6.25 0.61 7.53 4.32 3.50
1000 0.60 5.37 3.43 3.40 0.64 4.82 2.79 2.45 0.47 3.11 2.26 2.59
1200 0.54 2.92 2.00 1.92 0.43 2.57 1.64 1.71 0.29 1.37 1.31 1.22
1400 0.43 2.15 1.02 1.19 0.30 1.50 1.07 1.03 0.35 1.45 0.72 0.55
1600 0.43 1.51 0.87 1.17 0.35 1.26 0.68 0.75 0.27 0.97 0.62 0.56
1800 0.37 1.31 0.66 0.72 0.30 1.02 0.64 0.72 0.21 0.60 0.49 0.53

expected number of false drops is computed as follows [18]:

TFDi+1 = TFDi · (1 − (1 − Sr/Fr )
Davg) (8)

wherer is the number of the frame that the(i + 1)st bit slice
is selected from. SinceFD is computed by usingDavg this
method is called AFD-MFSF.

5.2. IFD-based MFSF and performance evaluation

In the IFD version of MFSF, IFD-MFSF, we consider
individual D values of the records inFD estimation. The
initial number of false drops andFD after processing the
(i + 1)st (i ≥ 0) bit slice are computed by conceptually
grouping the records containing the same number of distinct
terms together as follows:

IFD(0,D) = CD for 1 ≤ D ≤ Dmax

TFD0 =
Dmax∑
D=1

IFD(0,D)

IFD(i+1,D) = IFD(i,D) · (1 − (1 − Sr /Fr )
D) for i ≥ 0

TFDi+1 =
Dmax∑
D=1

IFD(i+1,D) for i ≥ 0 (9)

where IFD(i,D) is the expected number of false drops for
the records containingD distinct terms after processingi
bit slices andr is the number of the frame the(i + 1)st
(i ≥ 0) bit slice is selected from. In IFD-based MFSF each
group of records with the sameD value is considered as an
interdependent separate MFSF file. The interdependence of
the partitions implies that the samef , Si andFi (1 ≤ i ≤ f )

values are used in all groups of records.
Since each term sets bit(s) in each frame, queries with

more terms have more query signature on-bits in the bit
locations corresponding to the lower on-bit density (lowop
value) record signature frames. Lowerop values eliminate
false drops more rapidly during query processing and the
stopping condition is reached in fewer evaluation steps.
This property provides better response times for increasing
numbers of query terms [11].

In MFSF-based query evaluation (both in AFD and IFD
versions) the query on-bits of the initial (lower on-bit
density) record signature frames are used first. The IFD-
MFSF approach provides lower on-bit densities in the record
signature frames that are first used in query processing and
therefore it has the potential of being better than AFD-
MFSF. As will be shown, this is the case indeed.

We used the heuristic search algorithm given in
Kocberber [18] and Kocberber and Can [11] to search the
optimum IFD-MFSF configuration, i.e. the values off (1 ≤
f ≤ F), Fr , and Sr (1 ≤ r ≤ f ), by using Equation
(9) for FD estimation. The algorithm starts with a random
configuration, i.e. with randomf (1 ≤ f ≤ F), Fi and
Si (1 ≤ i ≤ f ) values. A candidate configuration is
obtained by randomly selecting a frame amongf frames
and changing theSi value and theFi value of this frame.
If a smaller response time is obtained in one of the candidate
configurations, all frames are considered as untested. The
search for minimum response time continues until all frames
are tested for a candidate configuration without obtaining a
smaller response time. The same configuration, i.e. the same
Fi andSi (1 ≤ i ≤ f ) values, is used in all partitions.

The expected (Exp) and the observed (Obs) false drop,
FD, values for the BLISS-1 database (N = 152,850)
and variousF values are given in Table 5. SinceFD
values are estimated differently, the stopping conditions
of AFD-MFSF and IFD-MFSF may require processing of
different numbers of bit slices. Consequently, signature
file processing times may be different. Therefore, we also
provide the corresponding observed response time values in
Figure 7.

Like IFD-SSF, the observedFD values of IFD-MFSF are
always less than the observedFD values of AFD-MFSF.
Additionally, IFD-MFSF estimatesFD more precisely and
provides smaller observedFD values with shorter response
times. Therefore, the IFD-MFSF method outperforms the
AFD-MFSF method. As shown in Figure 7d, depending on
the space overhead, IFD-MFSF provides up to 20% response
time improvements over AFD-MFSF (since the observedFD
values are very high, we considered the space overheads
with F < 1000 as practically unusable and ignored the
higher response time improvements obtained for them).
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FIGURE 7. Observed response time againstF for AFD-MFSF and IFD-MFSF (N = 152,850). (For the definition of query cases refer to
Table 3.)

6. CONCLUSION

For signature files a new method, called the individual
false drop estimation method (IFD), is presented. The new
method provides an accurate estimation of the number of
false drops by considering individual numbers of distinct
terms of the records, instead of using the average number of
distinct record terms. In signature files the estimated number
of false drops is used in the optimization of the signature
file parameters that will give the minimum response time
in the specified context. The accurate estimation of false
drops provides the design of a signature file with a superior
performance.

Our approach can be used in multiterm query environ-
ments and with different signature file organization methods.
For this purpose we extended the conventional sequential
signature file (SSF) and multiframe signature file (MFSF)
methods to estimate the number of false drops with IFD
in various query environments. The experiments with real
data show that the proposed method estimates the number of
false drops accurately and improves the performance of both
methods significantly.

Interesting research possibilities include an analytical
solution for the optimal value ofS in IFD, implementation
and evaluation of various signature file methods by using
the concepts of IFD and IFD-based applications in memory
resident databases.

ACKNOWLEDGEMENTS

We greatly appreciate the constructive criticism provided
by the anonymous referees. Their suggestions have greatly
improved both the contents and presentation of the paper.

REFERENCES

[1] Zezula, P., Rabitti, F. and Tiberio, P. (1991) Dynamic
partitioning of signature files.ACM Trans. Inform. Syst., 9,
336–367.

[2] Lee, S.-Y., Yang, M.-C. and Chen, J.-W. (1992) Signature file
as a spatial filter for iconic image database.Visual Languages
Comput., 3, 373–397.

[3] Witten, I. H., Moffat, A. and Bell, T. C. (1994)Managing
Gigabytes: Compression and Indexing Documents and
Images. Van Nostrand Reinhold, New York.

[4] Sacks-Davis, R., Kent, A. and Ramamohanarao, K. (1987)
Performance of multikey access method based on descriptors
superimposed coding techniques.Inform. Syst., 10, 391–403.

[5] Faloutsos, C. (1992) Signature files. In Frakes, W. B. and
Baeza-Yates, R. (eds),Information Retrieval Data Structures
and Algorithms, pp. 44–65. Prentice Hall, Englewood Cliffs,
NJ.

[6] Lin, Z. and Faloutsos, C. (1992) Frame-sliced signature files.
IEEE Trans. Knowledge Data Eng., 4, 281–289.

THE COMPUTER JOURNAL, Vol. 42, No. 1, 1999



22 S. KOCBERBER, F. CAN AND J. M. PATTON

[7] Aktug, D. and Can, F. (1993) Signature files: An integrated
access method for formatted and unformatted databases.
Working Paper 93-006, Dept. of Systems Analysis, Miami
University, Oxford, OH.

[8] Dervos, D., Linardis P. and Manolopoulos, Y. (1994) Binary
ranking for the signature file method.Inform. Software
Technol., 36, 131–139.

[9] Ciaccia, P., Tiberio, P. and Zezula, P. (1996) Declustering of
key-based partitioned signature files.ACM Trans. Database
Syst., 21, 295–338.

[10] Kocberber, S. and Can, F. (1996) Partial evaluation of queries
for bit-sliced signature files.Inform. Process. Lett., 60, 305–
311.

[11] Kocberber, S. and Can, F. (1997) Vertical framing of
superimposed signature files using partial evaluation of
queries.Inform. Process. Management, 33, 353–376.

[12] Faloutsos, C. (1985) Access method for text.ACM Comput.
Surveys, 17, 49–74.

[13] Roberts, C.S. (1979) Partial-match retrieval via the method of
superimposed codes. InProc. IEEE, 67, 1624–1642.

[14] Lin, Z. and Faloutsos, C. (1988)Frame-sliced Signature
Files. Technical Report CS2146 and UMIACS-TR-88-88,
Computer Science Dept., University of Maryland.

[15] Christodoulakis, S. and Faloutsos, C. (1984) Design
considerations for a message file server.IEEE Trans. Software
Eng., 10, 201–210.

[16] Leng, C. W. R. and Lee, D. L. (1992) Optimal weight
assignment for signature generation.ACM Trans. Database
Syst., 17, 346–373.

[17] Faloutsos, C. (1988) Signature files: An integrated access
method for text and attributes, suitable for optical disk
storage.BIT, 28, 736–754.

[18] Kocberber, S. (1996)Partial Query Evaluation for Vertically
Partitioned Signature Files in Very Large Unformatted
Databases. Ph.D. Thesis, Dept. of Computer Eng. and
Information Science, Bilkent University, Ankara, Turkey.
Available on http://www.cs.bilkent.edu.tr/theses.html.

[19] Dervos, D., Manolopoulos, Y. and Linardis, P. (1998)
Comparison of signature file models with superimposed
coding.Inform. Process. Lett., 65, 101–106.

[20] Salzberg, B. J. (1988)File Structures: An Analytical
Approach. Prentice Hall, Englewood Cliffs, NJ.

[21] Aktug, D. and Can, F. (1993) Analysis of multiterm queries
in a dynamic signature file organization. InProc. 16th Ann.
Int. ACM-SIGIR Conf., ACM, New York, pp. 96–105.

[22] Winston, W. L. (1994)Operations Research, Applications
and Algorithms(3rd edn). Duxbury Press, Belmont, CA.

APPENDIX

THEOREM A.1. The number of false drop records (FD)
estimated by considering the average number of terms
(Davg) in the records is less than or equal to the FD
estimated by considering individualD values of the records
(Dr , where1 ≤ r ≤ N), for the value ofS that satisfies the
optimality condition

S = F ln 2

Davg

under conditions

W (Q)t > 2max(x1,x2,...,xN )

where

xr = Dr

Davg
r = 1, 2, . . . , N.

Note that the condition onW (Q)t may be quite restrictive
for databases having a large range of distinct terms per
record.

Proof. We want to show for all positive integersN that

N∑
r=1

[
1 −

[
1 − S

F

]Dr
]W (Q)t

≥ N

[
1 −

(
1 − S

F

)Davg
]W (Q)t

(A.1)

where

Davg =
N∑

r=1

Dr

N
(A.2)

S = F ln 2

Davg
(A.3)

W (Q)t > 2max(x1,x2,...,xN ) (A.4)

xr = Dr

Davg
. (A.5)

By substituting the approximation

1 −
(

1 − S

F

)D

≈ 1 − e−S D/F

in (A.1) we obtain

N∑
r=1

[
1 − e−S·Dr/F

]W (Q)t ≥ N
[
1 − e−S·Davg/F

]W (Q)t
.

Also (A.3) gives the ratio

S

F
= ln 2

Davg
.

Thus, we wish to show

N∑
r=1

[
1 − e− ln 2·Dr/Davg

]W (Q)t ≥ N[1 − e− ln 2]W (Q)t

or
N∑

r=1

[
1 −

(
1

2

)Dr /Davg
]W (Q)t

≥ N

2W (Q)t
.

To simplify notation we setW (Q)t = W . From (A.5)

N∑
r=1

xr =
N∑

r=1

Dr

Davg
= N.
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Thus, we can prove this result by showing that the minimum
of

N∑
r=1

[
1 −

(
1

2

)xr
]W

(A.6)

subjected to the constraint

N∑
r=1

xr = N (A.7)

is
N

2W
.

By showing that the function

f (x1, x2, . . . , xr ) =
N∑

r=1

[
1 −

(
1

2

)xr
]W

is convex and noting that the constraint (A.7) is linear inxr ,
any point(x1, x2, . . . , xN , λ) satisfying

∂L

∂x1
= 0,

∂L

∂x2
= 0, . . . ,

∂L

∂xN
= 0,

∂L

∂λ
= 0 (A.8)

whereL is the Lagrangian

L(x1, x2, . . . , xN , λ)

=
N∑

r=1

[
1 −

(
1

2

)xr
]W

− λ

( N∑
r=1

xr − N

)

will have (x1, x2, . . . , xN ) yielding an optimal solution to
(A.6) [22].

To show thatf is convex, we will show that its Hessian
matrix is positive definite. Taking the first and second partial
derivatives off with respect toxr ,

∂ f

∂xr
= W (ln 2)

[
1 −

(
1

2

)xr
]W−1(1

2

)xr

∂2 f

∂x2
r

= −W (ln 2)2
(

1

2

)xr
[
1 −

(
1

2

)xr
]W−1

+ W (W − 1)(ln 2)2
(

1

2

)2xr
[
1 −

(
1

2

)xr
]W−2

= W (ln 2)2
(

1

2

)xr
[
1−

(
1

2

)xr
]W−2 [

W

(
1

2

)xr

−1

]
.

Sincexr > 0 for r = 1, 2, . . . , N

1 −
(

1

2

)xr

> 0 r = 1, 2, . . . , N.

From (A.4), we have for eachr = 1, 2, . . . , N

W

(
1

2

)xr

≥ W

2max(x1,x2,...,xN )
> 1.

Thus

W

(
1

2

)xr

− 1 > 0 r = 1, 2, . . . , N.

Thus, forr = 1, 2, . . . , N

∂2 f

∂x2
r

> 0.

Also for i 6= j

∂2 f

∂xi∂x j
= 0 i, j = 1, 2, . . . , N.

Therefore, the Hessian matrix off is a diagonal matrix with
positive entries. This matrix is then positive definite which
makesf convex.

To find a point satisfying the system of equations (A.8),
the first partials of the Lagrangian with respect toxr are
computed and set to zero

∂L

∂xr
= ∂ f

∂xr
− λ

∂

∂xr

( N∑
r=1

xr − N

)

= W · ln 2

[
1 −

(
1

2

)xr
]W−1(1

2

)xr

− λ

for r = 1, 2, . . . , N . Then

∂L

∂xr
= 0 → λ = W · ln 2

[
1 −

(
1

2

)xr
]W−1(1

2

)xr

r = 1, 2, . . . , N.

Also
∂L

∂λ
= 0 →

N∑
r=1

xr = N.

Since f is symmetric with respect to its arguments, a point
(x1, x2, . . . , xN , λ) satisfying these(N +1) equations would
bex1 = x2 = . . . ,= xN = 1 and

λ = W · ln 2

[
1 − 1

2

]W−1(1

2

)
= W · ln 2

2W
.

Thus, the function

N∑
r=1

[
1 −

(
1

2

)Dr /Davg
]W

achieves its minimum value when

Dr

Davg
= xr = 1

for r = 1, 2, . . . , N . Then its minimum value would be

N∑
r=1

[
1 − 1

2

]W

=
N∑

r=1

(
1

2

)W

= N

2W
.

Hence
N∑

r=1

[
1 −

(
1

2

)Dr /Davg
]W

≥ N

2W

whenever conditions (A.3) and (A.4) hold. This completes
the proof.
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