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For signature files we propose a new false drop estimation method for databases with varying
record lengths. Our approach provides more accurate estimation of the number of false drops
by considering the lengths of individual records instead of using the average number of terms per
record. In signature file processing, accurate estimation of the number of false drops is essential
to obtain a more accurate signature file and therefore to obtain a better (query) response time.
With a formal proof we show that under certain conditions the number of false drops estimated by
considering the average record length is less than or equal to the precise ‘expected’ estimation which
is based on the individual record lengths. The experiments with real data show that the proposed
method accurately estimates the number of false drops and the actual response time. Depending on
the space overhead, our approach obtains up to 33% and 20% response time improvements for the
conventional sequential and new efficient multiframe signature file methods, respectively.

Received January 10, 1997; revised February 16, 1999

1. INTRODUCTION signatures and conjunctive queries. In the superimposed
signature file method, each attribute of a rectedr() which

The growing capacities of data storage devices enabbdescnpes the_ record is hashed into a bit string of $ize
the storage of very large multimedia databases containingPy SettingS bits to ‘1" (on-bit) whereS « F. Record
formatted and unformatted data, such as text, voice andSignatures are obtained by superimposing (bitv@éng)
image. The queries for such multimedia databases containt"€ Signatures of record terms.
many search conditions based on various media stored TO process a query with signature files, a signature is
in the database [1, 2] which causes an increase in theProduced in the same way as document signatures. This
number of query terms. Since signature files provide query signature is compared with the record signatures.
compact representation for today’s large databases [3] theylf @ record contains all of the query terms, ie. if the
are used to access both formatted and unformatted datd€cord matches the query, its signature will have on-bits in
via search queries. In particular, conjunctive Boolean the corresponding bit positions of all on-bits of the query
queries with many terms can be evaluated efficiently by signature. Therefore, the records whose signatures contain
using signature files [4-11]. We note that today’s databasesat least one ‘0" bit (off-bit) in the corresponding positions
require multiterm queries since queries with one or an Of on-bits of the query signature definitely do not match the
inadequate number of terms do not provide the necessaryduery.
record selectivity. In bit-sliced signature files (BSSF), to retrieve the
In signature files, the content ofecord(the term ‘record’  record signature bits corresponding to a bit position
is used to refer to any kind of data) is encoded into a bit string Without retrieving other bits, the signature file is vertically
called arecord signature These record signatures are stored partitioned and the bits of a vertical partition (a bit slice)
in a separate file called tiségnature file Several signature ~ are stored sequentially [13]. For query evaluation, only the
generation and signature file methods have been proposedit slices corresponding to the on-bits of the query signature
to obtain a desirable response time and space overheadare retrieved and bitwis@NDed. Thus, BSSF improves
A survey of these signature file methods can be found in performance by reducing the amount of data to be read and
Faloutsos [5] and Aktug and Can [7]. In this study, we processed.
disregard other signature generation schemes such as word Since signatures are approximate representations, some
signatures [12] and consider only widely used superimposedrecords may pass the signature file processing phase
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12 S. KOCBERBER F. CAN AND J. M. PATTON

although they do not match the query. Such records aredividing a record into blocks. In IFD, each record has a
called false droprecords and they must be accessed and false drop probability which is computed by considering the
eliminated by using the actual query terms. Therefore, the number of distinct terms in the record. The expected number
performance of a signature file method is affected by the of false drops for the databadeD, is computed by adding
number of false drop recordsD). If FD can be estimated the individual false drop probabilities of all records.
accurately, signature file parameters, likeand S, can be In signature files, the estimatéD value is used in the
optimized to obtain a better response time [6, 10, 11, 14].  optimization of the signature file parameters. Therefore,
For a given signature sizé§ and the number of distinct  accurate estimation ofD provides better estimation of
terms in a record@) the false drop probability f{d) and signature file parameters which in turn provides superior
henceFD, is minimized when half of a record signature bits performance that can be achieved in real applications.
are on-bits (we call this the optimality condition) [13, 15]. The IFD concept is general purpose and can be used in
(In Christodoulakis and Faloutsos [15] the trade-off between association with various signature file methods. In this
two mutually competing issues: (a) false drop minimization, paper we provide two example cases for this purpose and
and (b) storage utilization efficiency maximization were study the performance of IFD in the conventional sequential
inspected in detail.) However, generally, databases usedsignature file (SSF) method and a new vertical partitioning
in information retrieval (IR) contain records witrarying environment, the multiframe signature file (MFSF) method,
lengths(we will use the phrasevarying record lengthto that we introduced in our recent study [10, 11, 18]. For this
mean that records may contain different numbers of distinct purpose we developed a test environment and implemented
terms). If the samé& andS values are used for all records the SSF and MFSF methods. We extended these methods
of a database, the signatures of the records with manyto use IFD and tested their performance with real data. The
terms will contain more ‘1's than the optimality condition experiments show that IFD improves the performance of the
requires. This increasd=D and consequently reduces the inspected methods by reducing the obseri#&d and the
performance. (query) response time. (Further experiments with similar
Christodoulakis and Faloutsos suggest dividing a record results involving a generalized frame sliced signature file
into blocks that contain equal numbers of distinct terms approach are reported in Kocberber [18].)
and producing a separate signature for each block [15]. The organization of the paper is as follows. In Section 2,
However, the numbers of ‘1's in block signatures expose the conventionaFD estimation method and the proposed
a normal distribution and there may be block signatures FD estimation method, IFD, are explained. Section 3
containing non-optimal numbers of ‘1's. Leng and Lee call explains the test environment used in the experiments.
this the fixed size block (FSB) method and they propose theIn Sections 4 and 5, we apply IFD to the SSF and
fixed weight block (FWB) method as an alternative [16]. In  MFSF methods, respectively, and measure the performance
FWB, instead of controlling the number of terms in a block, improvements obtained by IFD experimentally with real
the numbers of ‘1's in a block signature are controlled [16]. data. Section 6 provides the conclusion. In the Appendix
FSB and FWB obtain lower false drop probabilities we provide a formal proof which shows that under certain
than the sequential signature files (SSF) that involve no conditions the number of false drop recor®j estimated
blocking [16, 17]. However, with blocking record level by considering the average number of terms in the records
search and retrieval operations become complex. Foris less than or equal to theED estimated by considering
example, the terms of a record that matches a multiterm individual D values of the records.
conjunctive query may be distributed into more than one
block. Therefore, for a multiterm query, to determine the 2. ESTIMATING THE NUMBER OF FALSE DROPS
relevance of a record the matching status of all of its blocks
must be considered and this involves additional costs. Due to hashing and superimposition operations used in
The FSB and FWB methods are extensions of SSF obtaining signatures, the signature of a record that does not
and their use in practice involves similar difficulties if satisfy all query terms may match the query signature. All
the query terms are distributed into more than one block matching records, includinfalse drops must be accessed
of a matching record. Similar block assumption related and compared with the query after processing the signature
problems exist in various signature file methods. To alleviate file to make sure that they really contain the query terms.
these problems, usually, block level matching or single Consequently, to estimate the response time, we need to
term queries are considered in false drop analysis andestimate=D accurately.
performance estimations for signature files. This creates an To better illustrate signature extraction, query processing
unrealistic environment since the records of an unformattedwith superimposed signatures and the false drop (match)
database contain varying numbers of terms (i.e. require concept, an example is provided in Figure 1. An intuitive
different numbers of blocks) and user queries usually involve observation in Figure 1 is that the false match probability of
more than one term in real IR applications. R2 is greater than the false match probability of R1 for the
To address the problems mentioned here we propose asame set of queries since the signature of R2 contains more
new false drop estimation approach, the individual false on-bits than the signature of R1. The false match probability
drop estimation method (IFD), which considers databasesof an on-bit of a query signature increases as the number of
with varying record lengthend multiterm queries without  on-bits in a record signature increases. Note that a record
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OPTIMIZATION OF SIGNATURE FILE PARAMETERS 13

Record 1 (R1) = { computer, information} Record 2 (R2) = { computer, information, signature}
Term Term Signature Term Term Signature
computer 0100010010 computer 0100010010
information 0000100101 information 0000100101

signature 1000101000
Signatureof R1 0100110111 Signatureof R2 1100111111
Query Query Signature  Result Query Query Signature Result
access 0100010001 False match| access 0100010001 False match
information 0000100101 True match | information 0000100101 True match
retrieval 1000101000 Nomatch |retrieval 1000101000 False match

FIGURE 1. Signature extraction and query evaluation with superimposed signakieesl(, S = 3).

signature with only on-bits matches all queries irrespective These approximations are valid for lardge values and

of the query terms. The ratio of on-bits to the number of relatively small values o5, D andt and they give close
total bits in a record signature is called-bit density(op). results to the exact formula [13].

Parameters affecting the on-bit density are the length of the The false drop probabilityf d, for the whole database is
record signatureR), the number of distinct terms in the defined as

record O) and the number of bits set to ‘1’ by each term

(S). Note that in our case the 1s of a term signature do false drop probability=
not overlap. There exists yet one more SSF (FSB) model

that allows the overlapping of the 1s at the term signature By assuming the number of true matches will be negligible,
level [15, 19]. FD is computed by multiplying the false match probability

Smaller S values provide lower on-bit densities in the of a record by the number of records in the datab&beals
record signatures. On the other hand, reducth@lso follows [13]:

reduces the number of on-bits in a query signature. A query

signature with fewer on-bits matches more record signatures FD = N. fd. )

accidentally. As a result, while the on-bit density decreases

for decreasingS value, the false match probability of a Since fd is computed for a specifid value, Equation (3)

record signature and query signatufage drop probability can be used safely for the databases whose records contain

may increase. (For easy reference the definitions of theexactly D terms. In databases containing records with

important symbols used in this paper and the meanings of thevarying numbers of distinct terms, an averafye value is

frequently used method acronyms are provided in Table 1.) obtained by using the average number of distinct terms per
record,Dayg, instead ofD in Equation (1) [4, 6, 10, 11, 13,

2.1. Using average number of terms per record in 14]. We call this approach treverage false drop estimation

estimating FD method(AFD).
The FSB [17] and FWB [18] methods solve the problem

Arecord signature qualifies a query accidentally if the record caused by the variation iD values of the records by
does not contain some query terms and all on-bits of the gjyiding long records into blocks.

query signature were also set by the terms of the record.
Since there will be more on-bits in the query signatures
of queries with more terms, the false drop probability will
decrease for such queries. An exact formula was derivedFor databases with records having varying numbers of
in Roberts [13] to compute the false drop probability of a distinct terms, each record may have a differéntand
particular record withD terms for at (t > 0) term query. consequently a differerftd value. Therefore, the ‘expected’
However, the following approximate formula can be used to number of false drops for a database withrecords can
estimate the false drop probability of a record witidistinct be computed precisely by adding the individual false drop

number of false matches (drops)
N — number of true matches

2.2. Proposed false drop estimation method: IFD

terms due to its simplicity [13]. probabilities of the records as follows:
fd(F, S, D,t) = (1— (1— S/F)P)WQx (1) N N 5\ Dr\ W(Qx
_ o FD =) fdofrecordr =) (1- (1——)
where W(Q); is the expected number of on-bits in the = | F
signature of & term query query weightand it is computed (4)

as follows:
¢ whereD; is the number of distinct terms in thi¢h record.
WQyx =F-(1-QQ-5/F). (2) The records containing equal numbers of distinct terms, i.e.

THE COMPUTERJOURNAL, Wol.42, No.1, 1999




14 S. KOCBERBER F. CAN AND J. M. PATTON

TABLE 1. Definition of abbreviations.
A. Definition of important symbols (related method).

Symbol Definition

f Number of frames (MFSF)

fd Expected false drop probability

op Ratio of on-bits to the number of total bits in a record signature

p Number of partitions

t Number of query termél <t < tmax)

tmax Maximum number of terms that can be observed in a query

Cp Number of records containinD distinct terms

D Number of distinct terms in a record

Davg Average number of distinct terms in a record

Dmax Maximum number of distinct terms in a record

Dmin Minimum number of distinct terms in a record

Dy Number of distinct terms inth record

F Size of a signature (bits)

Fi Size ofith frame (bits) (MFSF)

FD Number of false drops

FD; Expected number of false dropsiith partition

IFD i D) Expected number of false drops for the records contaiirdjstinct terms
after processing bit slices

I P Improvement percentage

N Number of records in database

P Probability of submission of aterm query

Psize Size of a record pointer (bytes)

RT Query response time

S Number of bits set to 1 for each term

S Number of bits set to 1 by each termiitn frame (MFSF)

STD Standard deviation

TFD; Expected number of false drops after processibi slices (MFSF)

W(Q)t Expected number of on-bits in signature dft@rm query (query weight)

B. Meanings of frequently used method acronyms.

Acronym Meaning

AFD-MFSF  Average false drop estimated multiframe signature file
AFD-SSF Average false drop estimated sequential signature file

BSSF Bit sliced signature file

IFD-MFSF  Individual false drop estimated multiframe signature file
IFD-SSF Individual false drop estimated sequential signature file
MFSF Multiframe signature file

SSF Sequential signature file

with the sameD value, have the samid value. Therefore,
Equation (4) is rewritten as follows:

Dmax s\d W(Q)t
FD:ZCd-<1—(1—E>) (5)
d=1

where Cq is the number of records containirmty distinct
terms. Since the number of non-zdtg values is always
less than or equal tdl, Equation (5) is simpler and more
efficient than Equation (4).

Since individual fd values of the records are used in
computing~D, we call this method thimdividual false drop
computation methodFD). In Equation (5) we assume the
sameS and F values are used for all records. Ff and S

can be adjusted according to tBe values of the records, a
lower false drop probability may be obtained [18]. In such an
environment, each partition will have its owwhandS value

and the query processor must compute a different query
signature for each partition corresponding to a diffefept
value.

AFD and IFD are extreme cases feD estimation. IFD
requires more information about the database instance than
AFD, but provides a more accurate estimation~af than
AFD. AFD can also be seen as the use of FSB with ‘average
document size’ blocks. The use of FWB in a similar
context is impossible, since IFD contradicts the definition
of FWB [16].

In PFD, the database is divided inpadisjoint conceptual

THE COMPUTER JOURNAL,
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OPTIMIZATION OF SIGNATURE FILE PARAMETERS 15

Casel: N=2,F=200,D;=25,D;=35,Davg=30,5=35, =1, Standard deviation of D =5
Case II: N=2, F =200, D; = 20, D; = 40, Dayg = 30, S=5, ¢ = 1, Standard deviation of D = 10

AFD* IFD: Case 1 IFD: Case 11
FD=2-(1-(1-%4°) | FD=(1-(1-%49)*)° + FD=(1-(1-%00)"")° +
FD =2-0.04266 35.5 405
FD - 0.0853 (1=(1=3200)) (A-(-%00™)

FD = 0.0227 +0.0701 FD = 0.0099 +0.1047
FD = 0.0928 FD =01146

.. _ . 0.0928-0.0853 _
Deviation for Case I =100 00853 - 8.79%

.. _ .0.1146-0.0853 _
Deviation for Case 1l =100 00853 C 3435%

* AFD computation is the same for both cases

FIGURE 2. Example ofFD computations by using avera@eand individualD values.

partitions according to the number of distinct terms in the
records. Each partition is considered as a separate signature
file and the average number of distinct terms in the partition ~tmax=5 maximum number of terms in a query

is used to estimatED in this partition. If there is only one Bsize= 8192 size of a disk block (bytes) _
partition, i.e.p = 1, PFD converges to AFD. If there are Davg =257 average number of distinct terms in a record
Dmax partitions, i.e.p = Dmax, PFD converges to IFD. In N =152,850  number of records in database

. . Psize=4 size of a record pointer (bytes)
other words, PFD provides a generalized model that ranges pp_ 5048 number of record pointers in the record

TABLE 2. Parameter values for the experiments.

from AFD to IFD. pointer buffer
ExampleFD computations are provided in Figure 2. In 1 ,=577 time required to read a disk block
this example, thé&D value computed by AFD is less than (milliseconds, ms)
the FD value computed by IFD. The formal proof provided  Tscan=4.5  average time required to match a record
in the Appendix shows that under certain conditions the with query (ms)
FD value computed with AFD is less than or equal to  Tseek=30 time required to position the read head of disk
the FD value computed with IFD. These conditions, see to desired disk block (ms)

the Appendix for details, are (13 = FIn2/Dayg and

(2) W(Q); > 2m@0wXe..XN) whereX, = Dy/Dayg for

(1 <r < N). In practiceS should be rounded to an integer.

The experimental evidence provided in Sections 4.2 and 5.2¢ontains 152,850 MARC records with varying lengths which

shows that in practical cases the distinction between IFD andijs suitable to compare AFD and IFD. The smallest and

AFD remains valid even without satisfying the conditions |argest records after stop word elimination contain 1 and
stated earlier. In Figure 2 althou@yg values are the same 166 distinct terms, respectively. Our stop word list contains
for both case I and Il, differerftD values are obtained for  a|| single letters and about 100 additional entries ([18],

IFD. The difference between tii values of AFD and IFD  Appendix D). The average number and standard deviation

increases for increasing (standard) deviatioDofalues. of distinct terms per record are, respectively, 25.7 and 11.12;
and the database contains 166,216 unique terms. We provide

3. EXPERIMENTAL ENVIRONMENT AND the record length distribution of the test database BLISS-1 in
DESIGN Figure 3 where the last bar represents the number of records

As shown in the Appendix, under certain conditions e with more than 62 unique terms. . .
value estimated by AFD is less than or equal to B2 A personal computer is used in the experiments. The

value estimated by IFD for the same database instance ancieSt environment provides exclusive control of all resources
signature file parameters. In Sections 4 and 5, we test themclugiing ine physical Iayout of the file on the disk mgdium.
performance of the IFD-based SSF and MFSF signature f”eNon-mterruptmg execution of user programs provides an

methods with real data to investigate the real life impacts of accurate measure of t_he response time and p_roduces
IED. consistent and reproducible results [20]. The experimental

environment is defined in more detail in Table 2.

The physical layout of a signature file on the disk affects
the time required to process the signature file. To obtain
In our experiments we used MARC records of the Bilkent consistent and reproducible response times, the record file
University library collection. The test database, BLISS-1, and the signature files are allocated fully contiguously on

3.1. Experimental environment

THE COMPUTERJOURNAL, Wol.42, No.1, 1999




16 S. KOCBERBER F. CAN AND J. M. PATTON

6000
2]
<
S 5000
9
L
g7, 4000
°
S 3000
3 |
g 2000 i h
> il s
Z. 1000 H i
o Lallll {11111 TTTTPPA_—
1 6 11 16 21 26 31 36 41 46 51 56 61
Number of Unique Terms/Record

FIGURE 3. Distribution of record lengths of test database BLISS-1.

the disk. For MFSF, to obtain the positions of the records
for given record numbers (signature file processing phase
of MFSF produces a list of record numbers as the result), =~ Query case Pb P2 P3P P

a record pointer file is used. Each record pointer occupies | g\ weight (LW) 030 025 020 0.15 0.10
Psize bytes and onlyPB record pointers are kept in the main Uniform distribution  0.20 0.20 0.20 0.20 0.20
memory. In SSF each record signature is followed by its (UD)

record pointer. High weight (HW) 0.10 0.15 0.20 0.25 0.30

TABLE 3. P; values for LW, UD and HW query cases.

3.2. Experimental design

The performance of the inspected signature file methods is
measured in terms of observeskponse timand observed
FD. Theresponse timés defined as the time required to:

terms tends to increase for large databases. Therefore,

to obtain realistic results we tested the inspected methods

in multiterm query environments. We considered three
process the signature file; different query cases: low weight (LW), uniform distribution
access all records shortlisted as candidates to qualify(UD) and high weight (HW) queries. Each query may
for the query, following the signature file processing contain up to five termd/ay). The values oP; (1 <t < 5),
phase, if any; where P; denotes the probability of submitting taterm

e retrieve the qualifying records. query, for these query cases are given in Table 3. For

Different response time values may be obtained for the queries containing more than five terms we can assume

the queries containing the same number of query terms,! = 5- Note that this is a pessimistic assumption siRte
since queries may have different numbers of matching d€Creases for increasing numbers of query terms. _
records. In a given experimental environment, if different VW& génerated a query set containing 1000 zero hit queries

file access methods use the same storage structure for th&2ndomly by considering the occurrence probabilities of the

record pointers and the records, all methods will require "Umber of query terms for each query case. For example,

the same amount of time to retrieve the true matches afterSiNCe the occurrence probability of a one term query is

obtaining their record numbers. Independent of the number0-10 in the HW query case, the HW query set contains

of matching records, the signature file processing and the 100 (010~ 1000) one term queries. The obser¥eld and

false drop resolution phases must be performed, i.e. thef®sponse time values are obtained by_taklng the average_of

response time is biased with the time required to perform theFD and response time values obtained by each query in

these operations. Zero hit queries are the queries with notne query sets.

matching records. If the response time of zero hit queries,

i.e. the time required to process the signature file plus the4. USING IFD IN SEQUENTIAL SIGNATURE FILES

fime requirgd o resolve al! false drqp_s, is minimized; the 4.1. Concepts of sequential signature files (SSF):

response time of the queries containing the same number AFD-SSF

of terms with matching records will also be minimized.

Therefore, we used zero hit queries in the experiments. The sequential signature file (SSF) method requires
Search queries in real information retrieval systems retrieving the whole signature file for each query [15].

contain a varying number of terms and the number of query To minimize the number of seek operations to access the
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IFD

FIGURE 4. Graphical representations of estimatiD with AFD and IFD for SSF.

actual records, the record pointers are stored along withby a linear search in the domain of possiflealues. The
the signatures. Each record pointer holds the position of lower and upper bounds of the search spacé&ah@2/Dmax
the corresponding actual record and it occupies four bytesandF - In 2/ Dmin, respectively. Since the value 8fmust be

(Psize)-

Graphical representations of estimatig with AFD and
IFD for SSF are illustrated in Figure 4. A darker area
indicates a record with a highd value (we assume that
both methods use the sarBevalue for all records).

The false match (drop) probability of a record signature

an integer, the number of possit8eralues will be small.

Note that IFD-SSF tries to find th® value that will give
the best performance by paying attention to the individual
values; however, AFD-SSF uses tBevalue that will give
the best performance for the average record. Note that, in
IFD-SSF there is only on& value which is used for the

and a query signature becomes minimal and the storageyhole signature file, i.e. for all partitions. The same is true

utilization efficiency becomes maximal when half of the
signature bits of a record are on-bits. For giverand D
values, the value db that satisfies this optimality condition
is computed as follows ([15], Equation A8):
S=F.In2/D. (6)

For databases with varying record lengths, the valus of
in Equation (6) is determined by usinDayg instead of
individual D values of the records. Note that the signatures
of the records wittDy > Dayg (1 <1 < N) would contain
more on-bits than off-bits, i.e. the optimality condition may
not hold for all record signatures. (Similarly; < Dayg
would lead to less on-bits than off-bits.) We will refer to
this Davg-based method as the AFD sequential signature file
(AFD-SSF) method.

For a givenF value (space overhead), since the whole

signature file must be retrieved and processed for query
evaluation, the time required to process the SSF will be the

same for allS values. Therefore, minimizing the observed
FD will also minimize the response time for SSF.

4.2. IFD-based SSF and performance evaluation

In the IFD version of SSF, IFD-SSF, th® value, which
provides the minimunkD, is determined with Equation (5)

for the value off.

Although the signature file occupies less space than
the original records, for large databases the response
time of SSF is still very high. However, the SSF
approach may efficiently search small databases or small
subsets of a database. For example, the two-level access
method [4] partitions a signature file horizontally such
that the signatures of each partition fit into a disk block
and the signatures are stored sequentially in the disk
blocks. For query evaluation each qualifying disk block
is searched sequentially. Similar approaches also apply
to other horizontal signature partitioning methods such as
linear hashing with superimposed signatures (also known as
Quick Filter) [1, 21]. Therefore, we tested the performance
of AFD-SSF and IFD-SSF on a small database with 1000
records of BLISS-1. The expected (denoted by Exp) and the
observed (denoted by Obs) average false drop values of both
methods for variou§ values are given in Table 4.

Table 4 shows that the expecte® values of AFD are
always less than the observ&® values of this method.
Another important result is that the observed values of
IFD-SSF are always less than the obser¥ &l values of
AFD-SSF. Finally, the expected and observed avefdge
values for IFD-SSF are very close for all query cases. This
shows that IFD estimatd=D more accurately than AFD.
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TABLE 4. Expected and observed average false drdp) (values for AFD-SSF and IFD-SSFN(= 1000).

LW query case UD query case HW query case

AFD-SSF IFD-SSF AFD-SSF IFD-SSF AFD-SSF IFD-SSF

F S Exp Obs S Exp Obs S Exp Obs S Exp Obs S Exp Obs S Exp Obs

200 5 810 12.76 4 11.83 11.98 5 542 8.62 4 8.61 8.13 5 275 476 4 473 4.33
300 8 1.29 4.07 5 3.38 3.28 8 086 280 5 231 219 8 0.43 1.62 5 124 118
400 10 0.21 1.59 6 111 1.04 10 0.14 113 6 076 0.65 10 0.07 0.67 6 040 034
500 13 0.03 0.96 7 0.44 0.43 13 0.02 0.64 7 030 0.28 13 0.01 043 6 015 0.13
600 15 0.01 0.54 7 0.19 0.18 15 0.00 0.38 7 013 0.11 15 0.00 0.23 7 007 0.05
700 18 0.00 0.40 7 0.09 0.09 18 0.00 0.27 7 0.06 0.05 18 0.00 0.16 7 0.03 0.03

* An expected value of 0.00 is due to rounding, actual values are greater than 0.

500 500
~—f—AFD-SSF —4—AFD-SSF
4001 ~X—IFD-SSF 400 wweigg—IFD-SSF
300 300 \
X
2001 "\-l/ 200 \'\/"%
100 T 100 —,
0 t t t t i 0+ } } } l {
200 300 400 500 600 700 200 300 400 500 600 700
Signature Size (F) Signature Size (F)
(@) LW query case (b) UD query case
500 =
e AFD-SSF
400 e IFD-SSF
300
> W
100 T
0 y y y t J 0+ } } } } l
2000300 400 500 600 700 200 300 400 500 600 700
Signature Size (F) Signature Size (F)
(c) HW query case (d) IP(AFD-SSF, IFD-SSF)

FIGURE 5. Observed response time agaifstor AFD-SSF and IFD-SSHY = 1000). (For the definition of query cases refer to Table 3.)

The observed response time values agdinate plotted for increasingF values, the time required to process the
in Figure 5. In Figure 5d the improvement percentage signature file also increases. The decreadelirbecomes
obtained by IFD-SSF over AFD-SSF in terms of observed negligible after a certairF value while the increase in
response time is plotted. The improvement percentage, IPthe time required to process the signature file increases
for any two methods, saf andB, is defined as almost linearly. Therefore, the response time decreases
as F increases for smalF values and starts to increase
after a certainF value (for F values 400, 500 and 500

whereTR(A) andTR(B) are the response times obtained by fo_r HW,_ ub ahd LW query cases, respectively). We call
A and B, respectively. In other wordd$P (A, B) indicates this point optimumF (space overhead) for a database
the improvement obtained 1§ with respect toA. instance [18]. Since the observé®d diminishes more

The observedED values, hence the time required to rapidly for increasing query weights, the optimutvalue

resolve the false drop records, decrease for increaBing decreases as the query weight increases.
values. Since the size of the signature file increases In text database environments using SSF with-avalue

IP(A, B) = 100- (TR(A) — TR(B))/TR(A)
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FIGURE 6. Graphical representations of estimatifip with AFD and IFD for MFSF.

greater than the optimunt; value is meaningless. Also, darker area indicates more on-bits in that part of the record
the response time values for smé&llvalues are very high.  signature.

Therefore, we can assume the IP values observed around In MFSF, the response time is minimized in a multiterm
the optimumF values as the performance increased were query environment by employing a partial evaluation
obtained by using IFD for SSF. The IP (AFD-SSF, IFD-SSF) strategy and by considering the submission probabilities
values obtained at optimufvalues are 30%, 29% and 33% of the queries with different numbers of terms [18]. The
for HW, UD and LW query cases, respectively. These results technique employs a stopping condition that tries to perform
indicate that our IFD approach outperforms the conventional signature file processing without using all on-bits of the
AFD approach in SSF. query signature, i.e. by partial evaluation.

The aim of the stopping condition is to reduce the number
of expected false drops to an optimum level that will also
provide the lowest response time within the framework of
MFSF [18]. The signature file processing continues as long
as processing the signature file decreases the response time
5.1. Concepts of multiframe signature files (MFSF): by de_creasing_ _the expected nur_nber_of false drops. '_I'he

AFD-MFSE stopping condition of MFSF provided in Kocbherber [18] is

as follows:

MFSF is a new signature file method that outperforms
signature files with good performance (such as generalized
frame sliced signature files) [11, 18]. It is designed for where Tgjice is the time required to read and process a bit
very large databases and considerably faster than SSF. Aslice, TFD; is the number of expected false drops after
discussed in Kocberber and Can [11] its performance is processing bit slices andTesolve is the time required to
competitive with inverted files. resolve a false drop record by accessing the actual record.

In MFSF a signature file is conceptually divided into In formula (7), (TFD; — TFDj4+1) gives the number of
sub-signature files. Each sub-signature file is a bit-sliced expected false drops which will be eliminated if we process
signature file (BSSF) [13] with its owR andS parameters.  the (i + 1)st bit slice after processingbit slices. At the

5. USING IFD IN MULTI-FRAME SIGNATURE
FILES

Tslice < (TFD; — TFDj41) - Tresolve (7)

The bits of a signature file are distributed among theub- stopping step the time required to process a bit slice becomes
signature files, (vertical) frames, such that= F1 + F> + greater than the time required to resolve these false drops by
...+ Ff (1 < f < F). Each term set§ bits in therth accessing the actual records, i.e. the inequality is no longer

frameandS=S54+S+...+S4 (1=<S <F,1<r < satisfied. Therefore, the signature file processing stops at
f). Consequently, each frame may have a different on-bit this step (Kocberber [18], Chapter 5; [11]).

density fp value). Graphical representations of estimating  In MFSF,FD is computed incrementally. In this method
FD with AFD and IFD for MFSF are illustrated in Figure 6 all the records are initially assumed as false drops, i.e.
(in MFSF the frames are ordered in increasimyalues). A TFDp = N. For (i + 1)st(i > 0) bit slice processing, the
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TABLE 5. Expected (Exp) and observed (Obs) average false d¥bp Yalues for AFD-MFSF and IFD-MFSH\ =152,850, complete

BLISS-1 database).

LW query case UD query case HW query case
AFD-MFSF IFD-MFSF AFD-MFSF IFD-MFSF AFD-MFSF IFD-MFSF

F Exp  Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs

800 0.80 1248 890 8.78 0.89 1045 6.75 6.25 0.61 7.53 432 3.50
1000 0.60 5.37 3.3 3.40 0.64 482 2.79 2.45 0.47 3.11 2.26 2.59
1200 0.54 2.92 2.00 1.92 0.43 257 164 1.71 0.29 1.37 131 1.22
1400 0.43 215 1.02 1.19 0.30 150 1.07 1.03 0.35 1.45 0.72 0.55
1600 0.43 151 0.87 1.17 0.35 126 068 0.75 0.27 0.97 0.62 0.56
1800 0.37 1.31 0.66 0.72 0.30 1.02 064 0.72 0.21 0.60 0.49 0.53

expected number of false drops is computed as follows [18]:

TFDi41 = TFD - (1 — (1 — §/F)Pav) (8)
wherer is the number of the frame that tiie+ 1)st bit slice
is selected from. SinceéD is computed by usin@ayg this
method is called AFD-MFSF.

5.2. IFD-based MFSF and performance evaluation

In the IFD version of MFSF, IFD-MFSF, we consider
individual D values of the records iRD estimation. The
initial number of false drops anBD after processing the
(i + st (i > 0) bit slice are computed by conceptually

In MFSF-based query evaluation (both in AFD and IFD
versions) the query on-bits of the initial (lower on-bit
density) record signature frames are used first. The IFD-
MFSF approach provides lower on-bit densities in the record
signature frames that are first used in query processing and
therefore it has the potential of being better than AFD-
MFSF. As will be shown, this is the case indeed.

We used the heuristic search algorithm given in
Kocberber [18] and Kocberber and Can [11] to search the
optimum IFD-MFSF configuration, i.e. the valuesfl <
f <F),F,andS (1 <r < f), by using Equation
(9) for FD estimation. The algorithm starts with a random
configuration, i.e. with randonf (1 < f < F), F and
S 1 < i < f)values. A candidate configuration is

grouping the records containing the same number of distinct Obtained by randomly selecting a frame amohdrames

terms together as follows:

IFD@o,py =Cp forl <D < Dmax
Dmax
TFDo = » _ IFD(o,p)
D=1
IFD(i+1.0) = IFD(.py- 1 — (1 — S /F)P) fori >0
Dmax

TFDj41 = Z IFD11.py fori >0 (9)
D=1

wherelFD p) is the expected number of false drops for
the records containin@® distinct terms after processirig
bit slices andr is the number of the frame th@ + 1)st

(i > 0) bit slice is selected from. In IFD-based MFSF each
group of records with the sani2 value is considered as an

and changing th& value and the~ value of this frame.
If a smaller response time is obtained in one of the candidate
configurations, all frames are considered as untested. The
search for minimum response time continues until all frames
are tested for a candidate configuration without obtaining a
smaller response time. The same configuration, i.e. the same
Fi andS (1 <i < f) values, is used in all partitions.

The expected (Exp) and the observed (Obs) false drop,
FD, values for the BLISS-1 databas®l (= 152850)
and variousF values are given in Table 5. SindeD
values are estimated differently, the stopping conditions
of AFD-MFSF and IFD-MFSF may require processing of
different numbers of bit slices. Consequently, signature
file processing times may be different. Therefore, we also
provide the corresponding observed response time values in
Figure 7.

interdependent separate MFSF file. The interdependence of Like IFD-SSF, the observeeD values of IFD-MFSF are

the partitions implies that the sanfe§ andF (1 <i < f)
values are used in all groups of records.

always less than the observé® values of AFD-MFSF.
Additionally, IFD-MFSF estimate§D more precisely and

Since each term sets bit(s) in each frame, queries with provides smaller observeeD values with shorter response
more terms have more query signature on-bits in the bit times. Therefore, the IFD-MFSF method outperforms the

locations corresponding to the lower on-bit density (low
value) record signature frames. Lowap values eliminate

AFD-MFSF method. As shown in Figure 7d, depending on
the space overhead, IFD-MFSF provides up to 20% response

false drops more rapidly during query processing and the time improvements over AFD-MFSF (since the observBd
stopping condition is reached in fewer evaluation steps. values are very high, we considered the space overheads
This property provides better response times for increasingwith F < 1000 as practically unusable and ignored the

numbers of query terms [11].

higher response time improvements obtained for them).
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FIGURE 7. Observed response time agaifsfor AFD-MFSF and IFD-MFSFN = 152 850). (For the definition of query cases refer to
Table 3.)
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(A.3)

(A.5)

By substituting the approximation

in (A.1) we obtain

Also (A.3) gives the ratio

APPENDIX 3 [1 s 'nZ-Dr/Davg]W(Q)t = N[1— e "2V
r=1
THEOREMA.1. The number of false drop records (FD) o
estimated by considering the average number of terms N Dr / Davg ] W(Qt
(Davg in the records is less than or equal to the FD Z 1_ <}> - N .
estimated by considering individuBl values of the records = 2 ~ 2WQu

(Dr, wherel < r < N), for the value ofS that satisfies the

optimality condition To simplify notation we se?V(Q); = W. From (A.5)

N
S:Fln2 ZXF:Z Dr - N

Dan r=1 r=1 Dan
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Thus, we can prove this result by showing that the minimum Thus

of
N X W
1 r
2:[1—-(—) } (A.6)
r=1 2
subjected to the constraint
N
Y x =N (A7)
r=1

N
2_W .

By showing that the function

N 1 Xr w
f(Xl,XZ,...,Xr):Z[1_<§) }

r=1

is convex and noting that the constraint (A.7) is lineax,n
any point(xy, X2, ..., XN, A) satisfying

oL
3X1_

oL

oL
0X2 -

T IXN

aL
— =0

= O’
oA

(A.8)

wherelL is the Lagrangian

L(x1, X2, ..

23

r=1

Sy XN A)

1\% W N
=) ] )
r=1
will have (X1, X2, .
(A.6) [22].
To show thatf is convex, we will show that its Hessian

matrix is positive definite. Taking the first and second partial
derivatives off with respect tox,,

.., XN) Yielding an optimal solution to

— =W(n2

2 cwnnfo- (] (2
= ~W(n2)? (%)X [1_ (%)XF}WI s
+ WW — 1)(In2)? (%>z [Vlv_zeﬂ _
— W(in2)? (%) [1‘@” _ [W <%>_1}

Sincex; > 0forr =1,2,..., N

92 f

2
Xy

1\
1- (—) >0 r=12,...,N.
2
From (A.4), we have foreaah=1,2,..., N
1\ w
w() W
2 2max(Xq, X2, ..., XN)

Xr

1
W(3) -1>0 r=12....N
Thus, forr =1,2,..., N
32 f
— > 0.
aX?
Also fori # j
32 f o
= i,j=1,2,...,N.
09X 0X;]

Therefore, the Hessian matrix éfis a diagonal matrix with
positive entries. This matrix is then positive definite which
makesf convex.

To find a point satisfying the system of equations (A.8),
the first partials of the Lagrangian with respectxoare
computed and set to zero

9 N
A— Xr — N
(%)

r=1

1xr W-1 1xr
=W-In2(1—-|(= — —A
2i-(3) ] (3)
forr=1,2,...,N. Then
L 1xr W-1 lxr
2 2

r=12,...,N.

)i

Xy O

L
8—:O—))L=W~In2
IXr

Also
oL

— =0—>
oA

N
Zxr = N.
r=1

Since f is symmetric with respect to its arguments, a point
(X1, X2, ..., XN, A) satisfying thes€N + 1) equations would
bex;=x2=...,=xy =1and

vl

Thus, the function

-0

achieves its minimum value when

W-In2
:ZT.

D
! - Xr - 1
Davg
forr =1,2,..., N. Then its minimum value would be
17 N /n\WN
y[-2) -26G) -
r=1 r=1
Hence
N 1\Pr/Pag TV
- (3) = o
r=1

whenever conditions (A.3) and (A.4) hold. This completes
the proof. O
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