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1. Introduction

An Enriques surface is a complex analytic surface E with π1(E) = Z2 and having a K 3-surface X as its universal cover.
An Enriques surface is called real if it is supplied with an anti-holomorphic involution conj, called complex conjugation. The
real part of a real surface E is the fixed point set ER = Fix conj. A topological type of real surfaces is a class of surfaces with
homeomorphic real parts. A real Enriques surface E is a smooth 4-manifold, its real part ER is either empty or a closed
2-manifold with finitely many components, each being either S = S2, or S g = �g(S1 × S1), or V p = �pRP

2.
Let E be a real Enriques surface and p : X → E its universal covering. Denote by τ : X → X the deck translation

of p, called the Enriques involution. There are exactly two liftings t(1), t(2) : X → X of conj to X , which are both anti-
holomorphic involutions. They commute with each other and with τ , and their composition is τ . For both i = 1,2, the
real parts X (i)

R
= Fix t(i) , and their images E(i)

R
= p(X (i)

R
) (called the halves of ER) are disjoint, E(i)

R
consists of whole com-

ponents of ER , and ER = E(1)
R

� E(2)
R

. This decomposition is a deformation invariant of pair (E, conj). We use the notation

ER = {half E(1)
R

} � {half E(2)
R

} for the half decomposition. To describe the topological types of the real part the concept
of topological Morse simplification, i.e., Morse transformation of the topological type which decreases the total Betti num-
ber, is used. A topological Morse simplification is either removing a spherical component (S → ∅) or contracting a handle
(S g+1 → S g or V p+2 → V p). The complex deformation type of surfaces being fixed (e.g., K 3 or Enriques), a topological type
is called extremal if it cannot be obtained from another one (in the same complex deformation type) by a topological Morse
simplification.

The classification of real Enriques surfaces up to deformation was given by A. Degtyarev, I. Itenberg and V. Kharlamov
in [3], where one can find a complete list of deformation classes, the invariants necessary to distinguish them, and de-
tailed explanations of the invariants. It turns out that the deformation class of a real Enriques surface is determined by the
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topology of its complex conjugation involution. Deformation classification can be regarded as the study of the set of con-
nected components (i.e., π0) of the moduli space. In this paper, we pose the question about its fundamental group (i.e., π1).
More precisely, we study the canonical representation of the fundamental group of a connected component of the moduli
space in the group G of permutations of the components of the real part of the corresponding surfaces. In other words,
we discuss the monodromy groups of real Enriques surfaces, i.e., the subgroups of G realized by ‘auto-deformations’ and/or
automorphisms of the surfaces.

The similar question for various families of K 3-surfaces has been extensively covered in the literature. Thus, the mon-
odromy groups have been studied for nonsingular plane sextics by Itenberg [10] and for nonsingular surfaces of degree four
in RP

3 by Kharlamov [11–13] and Moriceau [16].
A real Enriques surface is said to be of hyperbolic, parabolic, or elliptic type if the minimal Euler characteristic of the

components of ER is negative, zero, or positive, respectively. In the deformation classification, hyperbolic and parabolic cases
are treated geometrically (based on Donaldson’s trick [7]) whereas the elliptic cases are treated arithmetically (calculations
using the global Torelli theorem for K 3-surfaces cf. [1]). There also is a crucial difference between the approaches to surfaces
of hyperbolic and parabolic types. In the former case, natural complex models of complex DPN-pairs are constructed, and a
real structure descends to the model by naturality. In the latter case, it is difficult to study complex DPN-pairs systematically
and real models of real DPN-pairs are constructed from the very beginning. We study the surfaces of hyperbolic types in this
work. Thus, we deal with an equivariant version of Donaldson’s trick for Enriques surfaces modified by A. Degtyarev and
V. Kharlamov [3], which transforms a real Enriques surface to a real rational surface with a nonsingular real anti-bicanonical
curve on it. We analyze this construction and adopt it to the study of the monodromy groups. In particular, we discuss the
conditions necessary for an additional automorphism of the rational surface to define an automorphism of the resulting
real Enriques surface. The principal result of the paper can be roughly stated as follows (for the exact statements see
Theorems 5.1, 5.3 and 5.5): For a real Enriques surface of hyperbolic type, with some exceptions listed explicitly in each statement,
any permutation of homeomorphic components of each half of ER can be realized by deformations and/or automorphisms.

The exceptions deserve a separate discussion. In most cases, the nonrealizable permutations are prohibited by a purely
topological invariant, the so-called Pontrjagin–Viro form (see [2] and remarks following the relevant statements). There
are, however, a few surfaces, those with E(1)

R
= V 3 � · · · , for which the Pontrjagin–Viro form is not well defined but the

spherical components of E(1)
R

cannot be permuted. The question whether these permutations are realizable by equivariant
auto-homeomorphisms of the surface remains open. Same question for parabolic and elliptic cases is a subject of a future
study as it seems to require completely different means.

Organization of the paper is as follows: In Section 2, we recall some rational surfaces, curves on them, and a few results
related to their classification up to rigid isotopy. In Section 3, we describe (modified) Donaldson’s trick and the resulting
correspondence theorem, the construction backwards, and recall some results concerning specific families of real Enriques
surfaces of hyperbolic type. In Section 4, a few necessary conditions for lifting automorphisms are discussed. In Section 5,
the main result is stated and proved in three theorems.

2. Some surfaces and curves on them

2.1. DPN-pairs

A nonsingular algebraic surface admitting a nonempty nonsingular anti-bicanonical curve (i.e., curve in the class |−2K |),
is called a DPN-surface. Most DPN-surfaces are rational.

A pair (Y , B), where Y is a DPN-surface and B ∈ |−2K | is a nonsingular curve, is called a DPN-pair. A DPN-pair (Y , B) is
called unnodal if Y is unnodal (does not contain a (−2)-curve), rational if Y is rational, and real if both Y and B are real.
The degree of a rational DPN-pair (Y , B) is the degree of Y , i.e., K 2.

If (Y , B) is a rational DPN-pair, the double covering X of Y ramified along B is a K 3-surface. A DPN-surface contains
finitely many (−4)-curves. A rational DPN-surface Y of degree d that has r (−4)-curves is called a (g, r)-surface, where
g = d + r + 1. In fact g � 1 and any nonsingular curve B ∈ |−2KY | is one of the following topological types (see [3]):

1. B ∼= S g � r S if g > 1;
2. B ∼= S1 � r S or r S if g = 1 and r > 0;
3. B ∼= 2S1 or S1 if g = 1 and r = 0.

Let Y be a real surface with H1(Y ) = 0. An admissible branch curve on Y is a nonsingular real curve B ⊂ Y such that
[B] = 0 in H2(Y ), the real part BR is empty and B is not linked with YR . An admissible DPN-pair is a real rational DPN-pair
(Y , B) with B an admissible branch curve.

Donaldson’s trick (see Section 3.1) establishes a one-to-one correspondence between the set of deformation classes of
real Enriques surfaces with distinguished nonempty half (i.e., pairs (E, E(1)

R
) with E(1)

R
�= ∅) and the set of deformation

classes of admissible DPN-pairs (Y , B). Inverse Donaldson’s trick (see Section 3.2) establishes a surjective map from the set
of deformation classes of unnodal admissible DPN-pairs to the set of deformation classes of real Enriques surfaces with
distinguished nonempty half.
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2.2. Del Pezzo and geometrically ruled rational surfaces

A Del Pezzo surface Y is a surface such that K 2
Y > 0 and D · KY � 0 for any effective divisor D on Y . An unnodal Del Pezzo

surface Y is a surface whose anticanonical divisor is ample, or equivalently, a Del Pezzo surface without (−2)-curves.
We use the notation Σa , a � 0, for the geometrically ruled rational surface (i.e., relatively minimal conic bundle over P

1)
that has a section of square (−a), which is called the exceptional section. The classes of the exceptional section E0 and of
a generic section is denoted by e0 and e∞ , respectively, so that e2

0 = −a, e2∞ = a, and e0 · e∞ = 0. The class of the fiber
(generatrix) will be denoted by l; one has l2 = 0 and l · e0 = l · e∞ = 1. Any irreducible curve in Σa with a � 1, either is E0
or belongs to |xl + ye∞|, x, y � 0. If a = 0 then e0 = e∞ . Thus, if l1 denotes e0 = e∞ and l2 denotes l then any irreducible
curve in Σ0 belongs to |xl1 + yl2|, x, y � 0.

2.3. Rigid isotopies

Recall that an isotopy is a homotopy from one embedding of a manifold M into a manifold N to another embedding
such that, at every time, it is an embedding. An isotopy in the class of nonsingular (or, more generally, equisingular, in
some appropriate sense) embeddings of analytic varieties is called rigid. Below we are mainly dealing with rigid isotopies
of nonsingular curves on rational surfaces. Clearly, such an isotopy is merely a path in the space of nonsingular curves.

An obvious rigid isotopy invariant of a real curve C on a real surface Z is its real scheme, i.e., the topological type of the
pair (ZR, CR).

The deformation classification of real Enriques surfaces and hence the monodromy problem of those leads to a variety
of auxiliary classification problems for curves on surfaces and surfaces in projective spaces. Below we give a brief account
of the related results and recall the basic definitions and facts about them. Details and further references can be found, e.g.,
in [3].

2.4. Curves in P
2
R

The real point set CR of a nonsingular curve C in P
2
R

is a collection of circles A embedded in P
2
R

, two- or one-sidedly. In
the former case the component is called an oval. Any oval divides P

2
R

into two parts; the interior of the oval, homeomorphic
to a disk and the exterior of the oval, homeomorphic to the Möbius band. The relation to be in the interior of defines a
partial order on the set of ovals, and the collection A equipped with this partial order determines the real scheme of C .
The following notation is used to describe real schemes: If a real scheme has a single component, it is denoted by 〈 J 〉,
if the component is one-sided, or by 〈1〉, if it is an oval. The empty real scheme is denoted by 〈0〉. If 〈A〉 stands for a
collection of ovals, the collection obtained from it by adding a new oval surrounding all the old ones is denoted by 〈1〈A〉〉.
If a real scheme splits into two subschemes 〈A1〉, 〈A2〉 so that no oval of 〈A1〉 (respectively, 〈A2〉) surrounds an oval of
〈A2〉 (respectively, 〈A1〉), it is denoted by 〈A1 �A2〉. If a real scheme contains n disjoint copies of 〈1〉 it is denoted by 〈n〉.

Theorem 2.1. ([14]) A nonsingular real quartic C in P
2 is determined up to rigid isotopy by its real scheme. There are six rigid isotopy

classes, with real schemes 〈α〉, α = 0, . . . ,4 and 〈1〈1〉〉.

Lemma 2.2. ([3]) Let C be a nonsingular real quartic with the real scheme 〈α〉, α = 2,3,4 in P
2 . Then any permutation of the ovals

of C can be realized by a rigid isotopy.

2.5. Cubic sections on a quadratic cone

Let U ∈ |ne∞| be a nonsingular real curve in Σ2 with its standard real structure ((Σ2)R = S1). Each connected compo-
nent of UR is either an oval or homologous to (E0)R . The latters, together with (E0)R , divide (Σ2)R into several connected
components Z1, . . . , Zk . Fixing an orientation of the real part of a real generatrix of Σ2 determines an order of the compo-
nents Zi , and the real scheme of U can be described via 〈C1| · · · |Ck〉, where | stands for a component homologous to (E0)R
and Ci encodes the arrangement of the ovals in Zi (similar to the case of plane curves), for each i ∈ {1,2, . . . ,k}.

Theorem 2.3. ([3]) A nonsingular real curve U ∈ |3e∞| on Σ2 is determined up to rigid isotopy by its real scheme. There are 11 rigid
isotopy classes, with real schemes 〈α|0〉, 1 � α � 4, 〈0|α〉, 1 � α � 4, 〈0|0〉, 〈1|1〉, and 〈|||〉.

Remark 2.4. By analyzing the proof of Theorem 2.3, one can easily see that the curves with real schemes 〈α|0〉 and 〈0|α〉,
1 � α � 4, are isomorphic up to a real automorphism of Σ2. Furthermore, a stronger statement holds: any two pairs (U , O ),
where the real scheme of U is 〈α|0〉 with 0 � α � 3 and O is a distinguished oval of U , are rigidly isotopic. For an alternative
proof of Theorem 2.3 and the last assertion, one can use the theory of the trigonal curves, see [4].
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2.6. Regular complete intersections of two real quadrics in P
4
R

The following is a special case of the rigid isotopy classification of regular complete intersections of two quadrics in P
n
R

,
due to S. Lopez de Medrano [15].

Theorem 2.5. ([15]) A regular complete intersection Y of two real quadrics in P
4
R

is determined up to rigid isotopy by its real part YR .
There are seven rigid isotopy classes, with YR = V 6 , V 4 , V 2 , S1 , 2S, S, or ∅.

2.7. Real root schemes

Let Z = Σk , k � 0, with the standard real structure. Since we use Σ2 and Σ4 in this paper we will consider only the
cases k = 2n. For k = 2n + 1 and further details, see [3]. Consider a real curve U ∈ |2e∞ + pl|, p � 0, and a real curve
Q = E0 ∪ F , where E0 is the exceptional section and F ∈ |e∞| is a generic real section of Z . The complement ZR \ QR

consists of two connected orientable components. Fix one of them and let Z− denote its closure. Fix an orientation of
FR ⊂ ∂ Z− . Assume that U does not contain any generatrix of Z , is transversal to F and UR lies entirely in Z− . Fix an
auxiliary real generatrix L of Z transversal to U ∪ E0. Consider a real coordinate system (x, y) in the affine part Z \ (E0 ∪ L)

whose x-axis is F . Choose the positive direction of the y-axis so that the upper half-plane lies in Z− . In these coordinates
U has equation a(x)y2 +b(x)y + c(x) = 0, where a,b, and c are real polynomials of degree p, p +k, and p + 2k, respectively.
Let � = b2 − 4ac and let μ(x) and ν(x) denote the multiplicity of a point x ∈ F in a and �, respectively. Consider the sets

AR = {
x ∈ FR

∣∣ μ(x) � 1
}
, A = {

x ∈ F
∣∣ μ(x) � 1

}
,

DR = {
x ∈ FR

∣∣ �(x) � 0
}
, Dr = {

x ∈ F
∣∣ ν(x) � r

}
, r � 1, D = D2 ∪DR.

The multiplicity functions μ and ν are invariant under complex conjugation. Identify F with the base B ∼= P
1 of the ruling

of Z . Thus, BR receives an orientation, A and D can be regarded as subsets of B , and, μ and ν are functions defined on B .
The root marking of (U , Q ) is the triple (B,D,A) equipped with the complex conjugation in B and the following structures:

1. the orientation of BR;
2. the multiplicity functions μ and ν .

An isotopy of root markings is an equivariant isotopy of triples (B,D,A) followed by a continuous change of the orientation
of BR , μ, and ν restricted to D. A root scheme is an equivalence class of root markings up to isotopy. The real root marking
of (U , Q ) is the triple (BR,DR,AR) equipped with (1) and (2) above. A real root scheme is an equivalence class of real root
markings up to isotopy.

Theorem 2.6. ([3]) Let Z = Σ4 (with the standard real structure), let U ∈ |2e∞| be a nonsingular real curve on Z , let F ∈ |e∞| be a
generic real section transversal to U , and let E0 be the exceptional section. If UR belongs to the closure of one of the two components
of ZR \ ((E0)R ∪ FR), then, up to rigid isotopy and automorphism of Z , the pair (U , F ) is determined by its real root scheme or,
equivalently, by the real scheme of U . The latter consists either of a = 0, . . . ,4 ovals (i.e., components bounding disks) or of two
components isotopic to FR .

2.8. Suitable pairs

Let U ∈ |2e∞ + 2l| be a reduced (does not contain any multiple component) real curve on Σ2 with the standard real
structure. Assume that U is nonsingular outside of E0 and does not contain E0 as a component. Then U and E0 intersect
with multiplicity 2. So U either intersects E0 transversally at two points, or is tangent to it at one point, or has a single
singular point of type Ar−2, r � 3, on E0; the grade of U is said to be 1, 2, or r, respectively. A curve U as above is called
suitable if either its grade is even or grade is odd and the two branches of U at E0 are conjugate to each other. A pair (U , F )

is called a suitable pair if U is a suitable curve and F ∈ |e∞| a nonsingular real section transversal to U such that UR belongs
to the closure of a single connected component of (Σ2)R \ ((E0)R ∪ FR). The grade of a suitable pair (U , F ) is the grade of U .
The condition that UR should belong to the closure of a single connected component of (Σ2)R \ ((E0)R ∪ FR) guarantees
that the real DPN-double (Y , B) (i.e., the resolution of singularities of the double covering of Σ2 branched over U , where
the rational components of B correspond to E0 and the irrational component of B corresponds to F ) of (Σ2; U , E0 ∪ F ),
where (U , F ) is a suitable pair, corresponds to a real Enriques surface by inverse Donaldson’s trick.

All the pairs (U , F ) satisfying the hypothesis of the following theorem are suitable.

Theorem 2.7. ([3]) Let Z = Σ2 (with the standard real structure), let U ∈ |2e∞ + 2l| be a reduced real curve on Z , nonsingular outside
the exceptional section E0 and not containing E0 as a component, and let F ∈ |e∞| be a generic real section transversal to U . If UR

belongs to the closure of a single connected component of ZR \ ((E0)R ∪ FR), then, up to rigid isotopy and automorphism of Z , the pair
(U , F ) is determined by its real root scheme or, equivalently, by the type of the singular point of U (if any) and the topology of the pair
(ZR, UR ∪ (E0)R).
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Table 1
Real root schemes of some curves U ∈ |2e∞ + pl| on Σ2k .

Real root scheme {E(1)
R

} � {E(2)
R

}
{(V 4 � S) � (∅)} � {(2S) � (2S)}
{(V 3 � V 1) � (∅)} � {(2S) � (2S)}
{(V 3 � S) � (∅)} � {(V 1 � S) � (2S)}
{(V 3 � S) � (V 1)} � {(2S) � (S)}
{(V 3 � S) � (S)} � {(V 1 � S) � (S)}
{(V 3 � V 1 � S) � (S)} � {(S) � (S)}

Comments: The first column indicates the real root schemes of pairs (U , F ) and the second column
indicates the quarter decomposition of the real part ER of the real Enriques surfaces obtained from
(Σ2k; U , E0 ∪ F ). For the first row p = 0 and k = 2 and for the others p = 2 and k = 1. In the schemes,
• represents a real root of � and ◦ represents a real root of a (necessary 2-fold), that corresponds to
the real intersection point of U and E0. The number over a ◦-vertex indicates the multiplicity of the
corresponding root in � (when greater than 1). The segments correspond to ovals of UR . Only
extremal root schemes are listed; the others are obtained by removing one or several segments .

In Table 1, we list the extremal real root schemes of some pairs (U , F ) mentioned in Theorem 2.6 and Theorem 2.7 that
are used in the proof of the main result. The complete lists can be found in [3].

Remark 2.8. Each real root marking gives rise to a connected family of pairs (U , Q ) such that there is a bijection between
the ovals of each curve U and the segments of the real root marking. Recall that these curves are defined by explicit
equations. Then both Theorems 2.6 and 2.7 can be refined as follows:

1. Each isotopy of real root markings is followed by a rigid isotopy of curves that is consistent with the bijection between
ovals and segments.

2. Any symmetry of a real root marking (not necessarily preserving the orientation of BR) is induced by an automorphism
of Σ2k , k � 0, preserving appropriate pairs (U , F ) and consistent with the bijection between ovals and segments.

3. Reduction to DPN-pairs

3.1. Donaldson’s trick

The equivariant version of Donaldson’s trick employs the hyper-Kähler structure to change the complex structure of the
covering K 3-surface X so that t(1) is holomorphic, and t(2) and τ are anti-holomorphic. Furthermore, Y = X/t(1) is a real
rational surface, where the real structure is the common descent of τ and t(2) , and B ∼= Fix t(1) is a nonsingular curve on Y .
As a result, the problem about real Enriques surfaces is reduced to the study of certain auxiliary objects, like real plane
quartics, space cubics, intersections of two quadrics in P

4
R

, etc.

Theorem 3.1. ([5]) Donaldson’s construction establishes a one-to-one correspondence between the set of deformation classes of real
Enriques surfaces with distinguished nonempty half (i.e., pairs (E, E(1)

R
) with E(1)

R
�= ∅) and the set of deformation classes of pairs

(Y , B), where Y is a real rational surface and B ⊂ Y is a nonsingular real curve such that

1. B is anti-bicanonical,
2. the real point set of B is empty, and
3. B is not linked with the real point set YR of Y .

One has E(2)
R

= YR and E(1)
R

= B/t(2) .

(A real curve B ⊂ Y with BR = ∅ is said to be not linked with YR if for any path γ : [0,1] → Y \ B with γ (0), γ (1) ∈ YR ,
the loop γ −1 · conjY γ is Z/2-homologous to zero in Y \ B .)

In the above theorem, the first condition on B guarantees that the double covering X of Y branched over B is a K 3-
surface; and the other two conditions ensure the existence of a fixed point free lift of the real structure on Y to X , see [5].
The statement deals with deformation classes rather than individual surfaces because the construction involves a certain
choice (that of an invariant Kähler class).

3.2. Inverse Donaldson’s trick

Since we want to construct deformation families of real Enriques surfaces with particular properties, we are using Don-
aldson’s construction backwards. Strictly speaking, Donaldson’s trick is not invertible. However, it establishes a bijection
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between the sets of deformation classes (see Theorem 3.1); thus, at the level of deformation classes one can speak about
‘inverse Donaldson’s trick’.

Before explaining the construction, recall some properties of K 3-surfaces. Let a be a holomorphic involution of a K 3-
surface X equipped with the complex structure defined by a holomorphic form ω. Then there are three possibilities for the
fixed point set Fix a of a:

1. it may be empty, or
2. it may consist of isolated points, or
3. it may consist of curves.

The following is straightforward:

1. if dimC Fix a = 0, then a∗ω = ω,
2. if dimC Fix a = ±1, then a∗ω = −ω.

Let conj be a real structure on X . Then conj∗ω = λω̄ for some λ ∈ C
∗ . Clearly, w can be chosen (uniquely up to real

factor) so that conj∗ω = ω̄. We always assume this choice and we denote by Reω and Imω the real part (ω + ω̄)/2 and the
imaginary part (ω − ω̄)/2 of ω, respectively.

Let Y be a real rational surface with a nonsingular anti-bicanonical real curve B ⊂ Y such that BR = ∅ and B is not
linked with the real point set YR of Y . Let X be the (real) double covering K 3-surface branched over B , p̃ : X → Y the
covering projection and φ : X → X the deck translation of p̃. Then φ is a holomorphic involution with nonempty fixed point
set. There exist two liftings c(1), c(2) : X → X of the real structure conj : Y → Y to X , which are both anti-holomorphic
involutions. They commute with each other and with φ, and their composition is φ. Because of the requirements on B , at
least one of these involutions is fixed point free. Assume that it is c(1) .

Pick a holomorphic 2-form μ with the real and imaginary parts Reμ, Imμ, respectively, and a fundamental Kähler
form ν . Due to the Calabi–Yau theorem, there exists a unique Kähler–Einstein metric with fundamental class [ν], see [9].
After normalizing μ so that Reμ2 = Imμ2 = ν2 = 2 Vol X , we get three complex structures on X given by the forms:

μ = Reμ + i Imμ, μ̃ = ν + i Reμ, and Imμ + iν.

Let X̃ be the surface X equipped with the complex structure defined by μ̃. Since c(1) is an anti-holomorphic involution
of X , the holomorphic form μ and the fundamental Kähler form ν can be chosen so that (c(1))∗μ = −μ̄ and (c(1))∗ν = −ν .
Then (c(1))∗μ̃ = −μ̃ and, hence, c(1) is holomorphic on X̃ . Since φ is a holomorphic involution of X commuting with c(1) ,
φ∗μ = −μ and ν can be chosen φ∗-invariant so that φ∗μ̃ = ¯̃μ, i.e., the involution φ is anti-holomorphic on X̃ . Then
E = X̃/c(1) is a real Enriques surface (the real structure being common descent of φ and c(2)) and the projection p : X̃ → E
is a real double covering. Hence we have YR = E(2)

R
and B/c(2) = E(1)

R
.

3.3. The case of Del Pezzo surfaces

The deformation classification of real Enriques surfaces with a distinguished half E(1)
R

= Vd+2, d � 1 is reduced to that of
real unnodal Del Pezzo surfaces of degree d, d � 1, with a nonsingular anti-bicanonical curve B ∼= S g , g � 2.

Theorem 3.2. ([3]) There is a natural surjective map from the set of deformation classes of real unnodal Del Pezzo surfaces Y of degree d,
d � 1, onto the set of deformation classes of real Enriques surfaces with E(1)

R
= Vd+2 , d � 1. Under this correspondence YR = E(2)

R
and

Y / conj = E/ conj.

Remark 3.3. In fact, the correspondence is bijective.

Proof of Theorem 3.2 reduces, mainly, to showing that a generic deformation of unnodal Del Pezzo surfaces Yt can
be extended to a deformation of pairs (Yt , Bt), where Bt ⊂ Yt are real anti-bicanonical curves satisfying the hypotheses
of Theorem 3.1. This gives a deformation of the covering K 3-surfaces. Then it remains to choose a continuous family of
invariant Kähler metrics, and inverse Donaldson’s trick applies. Thus, the following stronger result holds.

Theorem 3.4. A generic deformation of real unnodal Del Pezzo surfaces Y of degree d, d � 1, defines a deformation of real Enriques
surfaces with E(1)

R
= Vd+2 , d � 1, obtained from Y by inverse Donaldson’s trick.

3.4. The case of (2, r) surfaces

The deformation classification of real Enriques surfaces with disconnected E(1)
R

= V 3 � · · · is reduced to that of real (2, r)-
surfaces, r � 1 with a real nonsingular anti-bicanonical curve B ∼= S2 � r S and, hence, to the rigid isotopy classification of
suitable pairs.
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Lemma 3.5. ([3]) There is a natural surjective map from the set of rigid isotopy classes of suitable pairs of grade r onto the set of
deformation classes of real Enriques surfaces with E(1)

R
= V 3 � r

2 S, if r is even, or E(1)
R

= V 3 � V 1 � r−1
2 S, if r is odd.

Proof of the above lemma is based on showing that a generic rigid isotopy of suitable pairs (Us, Fs) defines a deformation
of the DPN-doubles (Ys, Bs) of (Σ2; Us, E0 ∪ Fs), so a deformation of the covering K 3-surfaces. Then it remains to choose a
continuous family of invariant Kähler metrics, to obtain a deformation of the corresponding real Enriques surfaces obtained
by inverse Donaldson’s trick which implies the following stronger result.

Theorem 3.6. A generic rigid isotopy of suitable pairs (U , F ) of grade r defines a deformation of the real Enriques surfaces with
E(1)
R

= V 3 � r
2 S, if r is even, or E(1)

R
= V 3 � V 1 � r−1

2 S, if r is odd.

4. Lifting involutions

Let Z be a simply connected surface and π : Y → Z a branched double covering with the branch divisor C . Then any
involution a : Z → Z preserving C as a divisor admits two lifts to Y , which commute with each other and with the deck
translation of the covering. If Fix a �= ∅, then both lifts are also involutions. Any fixed point of a in Z \ C has two pullbacks
on Y . One of the lifts fixes these two points and the other one permutes them.

In this section we will use the notation of Section 3.2.

Lemma 4.1. Let Z be a real quadric cone in P
3 , let C ⊂ Z be a nonsingular real cubic section disjoint from the vertex, and let a : Z → Z

be an involution preserving C and such that Fix a ∩ C �= ∅. Then a lifts to four distinct involutions on the covering K 3-surface X and
at least one of the four lifts defines an automorphism of an appropriate real Enriques surface obtained from X by inverse Donaldson’s
trick.

Proof. According to the models of Del Pezzo surfaces [6], the double covering of Z branched at the vertex and over C is a
real unnodal Del Pezzo surface Y of degree d = 1. The pullback p̃ ∈ Y of any point p ∈ Fix a ∩ C is a fixed point of any lift
of a to Y . Let p′ ∈ Fix a \ C be in a small neighborhood of p. Then p′ has two pullbacks p1 and p2 in Y . Let a1 be the lift of
a to Y that permutes p1 and p2. Then p̃ is an isolated fixed point of a1. (Note that we do not assert that all fixed points
of a1 are isolated.) Pick an a1-invariant admissible branch curve B ⊂ Y with p̃ /∈ B . Denote by X the double covering of Y
branched over B and by a2, the lift of a1 to X that fixes the two pullbacks of p̃. Then the pullbacks of p̃ are isolated fixed
points of a2. Since X is a K 3-surface, Fix a2 consists of isolated points only, and (a2)

∗μ = μ. We can choose for ν a generic
fundamental Kähler form preserved by φ, c(1) , c(2) , and a2. Then we have (a2)

∗μ̃ = μ̃, i.e., a2 is also holomorphic on X̃ .
With the projection p : X̃ → E , a2 defines an automorphism ã of E . �
Lemma 4.2. Let Y be a real unnodal Del Pezzo surface of degree d = 2 with YR = 2V 1 and let Γ be the deck translation involution of
the double covering Y → P

2 whose branch locus is a nonsingular quartic C with CR = ∅. Then Γ lifts to two distinct involutions on
the covering K 3-surface X, and one of the lifts defines an automorphism of an appropriate real Enriques surface obtained from X by
inverse Donaldson’s trick.

Proof. Pick a Γ -invariant admissible branch curve B ⊂ Y and denote by X the double covering K 3-surface of Y branched
over B . Due to the adjunction formula, FixΓ ∩ B �= ∅. Hence, as in the previous case, we can choose a lift a of Γ to X
having isolated fixed points. Since X is a K 3-surface, Fix a consists of isolated points only, and a∗μ = μ. We can choose
for ν a generic fundamental form preserved by φ, c(1) , c(2) , and a. Then we have a∗μ̃ = μ̃, i.e., a is also holomorphic on X̃ .
With the projection p : X̃ → E , a defines an automorphism ã of E . �
Lemma 4.3. Let Z = Σ4 (with the standard real structure), and U ∈ |2e∞| a nonsingular real curve. Let a : Z → Z be an involution
preserving U and such that Fix a ∩ U �= ∅. Then a lifts to four distinct involutions on the covering K 3-surface X and at least one of the
four lifts defines an automorphism of an appropriate real Enriques surface obtained from X by inverse Donaldson’s trick.

Proof. For a nonsingular real curve F ∈ |e∞| in Z , if UR is contained in a connected component of ZR\((E0)R� FR) then the
DPN-double (Y , B) of (Z; U , E0 ∪ F ) is as follows: Y is a real unnodal (3,2)-surface, and, B is an admissible branch curve
with two rational components which are conjugate to each other and [B] = 0 in H2(X) where X is the covering K 3-surface
of Y branched over B (see [3]). Any point p ∈ Fix a ∩ U has a unique pullback p̃ ∈ Y which is a fixed point of both lifts of
a to Y . Any point p′ ∈ Fix a \ U , in a small neighborhood of p, has two pullbacks p1 and p2 in Y . If a1 is the lift of a to Y
that permutes p1 and p2 then p̃ is an isolated fixed point of a1. Choose F ∈ |e∞| and the point p ∈ Fix a ∩ U in such a way
that B is a1-invariant and p̃ /∈ B . Let X be the double covering of Y branched over B and let a2 be the lift of a1 to X that
fixes the two pullbacks of p̃. Then the pullbacks of p̃ are isolated fixed points of a2. Since X is a K 3-surface, Fix a2 consists
of isolated points only, and (a2)

∗μ = μ. The result follows by making the same choices as in the proof of Lemma 4.1. �



S. Erdoğan Demir / Topology and its Applications 159 (2012) 2580–2591 2587
Lemma 4.4. Let Z = Σ2 (with the standard real structure), let U ∈ |2e∞ + 2l| be a suitable curve on Z , and let a : Z → Z be an
involution preserving U such that Fix a ∩ U �=∅. Then a lifts to four distinct involutions on the covering K 3-surface X and at least one
of the four lifts defines an automorphism of an appropriate real Enriques surface obtained from X by inverse Donaldson’s trick.

Proof. For a nonsingular real section F ∈ |e∞| in Z , if (U , F ) is a suitable pair then the DPN-double of (Z; U , E0 ∪ F ) is
(Y , B) where Y is a (2, r)-surface and B is an admissible branch curve on Y (see [3]). Thus, for any such curve F , we can
make choices of the points p ∈ Fix a ∩ U and p′ ∈ Fix a \ U , and the lift a1 of a to Y in the same way that we did in the
proof of Lemma 4.3 so that p̃ ∈ Y will be an isolated fixed point of a1. Choose F ∈ |e∞| and the point p ∈ Fix a ∩ U in such
a way that B is a1-invariant and does not contain p̃. Then the result follows by making the same choices as in the proof of
Lemma 4.3. �
5. Main results

Theorem 5.1. With one exception, any permutation of homeomorphic components of the half E(2)
R

of a real Enriques surface with a

distinguished half E(1)
R

= Vd+2 , d � 1, can be realized by deformations and automorphisms. In the exceptional case ER = {V 3}� {V 1 �
4S}, the realized group is Z2 ×Z2 ⊂ S4 .

Remark 5.2. In the exceptional case, the Pontrjagin–Viro form (see [2]) is well defined. It defines a decomposition of ER

into quarters, which is a topological invariant. The decomposition of E(2)
R

is (V 1 � 2S)� (2S). Obviously, one cannot permute
the spheres belonging to different quarters (even topologically), and Theorem 5.1 states that a permutation of the spherical
components can be realized if and only if it preserves the quarter decomposition.

Proof of Theorem 5.1. The deformation classification of real Enriques surfaces with a distinguished half E(1)
R

= Vd+2, d � 1
is reduced to that of real unnodal Del Pezzo surfaces of degree d, d � 1, with a nonsingular anti-bicanonical curve B ∼= S g ,
g � 2 (see [6] for the models of Del Pezzo surfaces). It always suffices to construct a particular surface (within each defor-
mation class) that has a desired automorphism or ‘auto-deformation’. We proceed case by case. Among the extremal types
listed in [3], we need to consider only the following types (as in the other cases there are no homeomorphic components)
and all their derivatives (E(1)

R
, ·) obtained from the extremal ones by sequences of topological Morse simplifications of E(2)

R
:

1. E(1)
R

= V 3; E(2)
R

= V 1 � 4S;

2. E(1)
R

= V 4; E(2)
R

= 2V 1;

3. E(1)
R

= V 4; E(2)
R

= 4S;

4. E(1)
R

= V 6; E(2)
R

= 2S .

Case 1: Here we consider the 3 subcases:

ER = {V 3} � {V 1 � i S}, i = 2,3,4.

The corresponding surface Y obtained by Donaldson’s trick (see Section 3.1) is a real unnodal Del Pezzo surface of degree 1
with YR = V 1 � i S , i = 2,3,4. According to the models of Del Pezzo surfaces, the anti-bicanonical system |−2K | maps Y
onto an irreducible singular quadric (cone) Z in P

3. This map ϕ : Y → Z is of degree 2 and its branch locus consists of the
vertex V of Z and a nonsingular cubic section C disjoint from V whose real part CR consists of i ovals and a component
noncontractible in ZR \ {V }. The real part YR is the double covering of the domain D consisting of i disks bounded by
the ovals of CR and of the part of ZR bounded by the noncontractible component of CR and V . The map ϕ lifts to a
degree 2 map ϕ̃ : Y → Z = Σ2 ⊂ P

3 × P
1 (Σ2 with standard real structure). The branch set of ϕ̃ is the union of E0 and a

real nonsingular curve C ′ ∈ |3e∞|. Rigid isotopy class of C is induced by that of C ′ . From Theorem 2.3 and Remark 2.4, for
each i = 2,3 and 4, there is one rigid isotopy class of C up to isomorphism.

Clearly, a rigid isotopy of C in Z defines a deformation of Y , and an auto-involution of Z , preserving C and having
nonempty fixed point set, lifts to an involution on Y . Thus, in view of Theorem 3.4 and Lemma 4.1, it suffices to realize
certain permutations of the ovals of a particular curve (in each rigid isotopy class) C by rigid isotopies and/or involutive
automorphisms of Z (in the latter case taking care that the fixed point set of the involution intersects C ).

For each i = 2,3 and 4, let C = Z ∩ S , where Z and S in P
3 are constructed (due to S. Finashin, see [8]) as follows: Let Z

be the quadric cone that is the double covering of the plane branched over L3 and L4 if i = 2, L1 and L3 if i = 3, and, L1 and
L2 if i = 4 (see Fig. 1). Let S be the cubic surface that is the pullback of the cubic curve, which is symmetric with respect
to the line L, and is obtained by a perturbation of the lines P , Q and R (dotted lines, see Fig. 1). For i = 2, the symmetry
of the cone with respect to the yz-plane permutes the ovals of C . For i = 3, it suffices to permute one pair of ovals, see
Remark 2.4, and the symmetry of the cone with respect to the yz-plane does permute the opposite ovals of C . For i = 4,
the symmetries of the cone with respect to the yz-plane and xz-plane permutes the opposite ovals of C . Fixed point set of
each symmetry intersects C . Thus, we obtain the groups S2, S3 and Z2 ×Z2 ⊂ S4 for i = 2,3 and 4, respectively. For i = 4,
the fact that other permutations cannot be realized is explained in Remark 5.2.
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Fig. 1. Elements of the construction of a quadric cone Z ⊂ P
3 and a symmetric cubic section C ⊂ Z (left), and an example of the maximal case (right).

In cases 2 and 3 below, the corresponding surface Y obtained by Donaldson’s trick is a real unnodal Del Pezzo surface
of degree 2. According to the models of Del Pezzo surfaces, the anti-canonical system of Y defines a (real) degree 2 map
Y → P

2 whose branch locus is a nonsingular quartic C .
Case 2: Here YR = 2V 1. According to Theorem 2.1, CR = ∅ and YR is the trivial double covering of P

2
R

∼= V 1. The
deck translation involution Γ of the covering permutes the two projective planes. According to Lemma 4.2, Γ defines an
automorphism of an appropriate real Enriques surface and the resulting automorphism realizes the permutation of the two
copies of V 1 in E(2)

R
.

Case 3: In this case, YR = i S , i = 2,3,4. According to Theorem 2.1, CR consists of i ovals for each i = 2,3,4, and YR is
the double covering of the orientable part of P

2
R

\ CR branched over CR . According to Lemma 2.2, any permutation of the
ovals of C can be realized by a rigid isotopy. The latter defines a deformation of Y and, via inverse Donaldson’s trick,
a deformation of an appropriate real Enriques surface that realizes the corresponding permutation of the spheres of ER

(2) .
Case 4: The corresponding surface Y obtained by Donaldson’s trick is a real unnodal Del Pezzo surface of degree 4 with

YR = 2S . According to the models of Del Pezzo surfaces, the anti-canonical system |−K | embeds Y into P
4 as a surface

of degree 4. Unnodal Del Pezzo surfaces of degree 4 are regular intersections of two quadrics in P
4. From Theorem 2.5,

all such surfaces in P
4 with real part 2S are rigidly isotopic. Thus, we can take for Y the intersection of the 3-sphere

{x2 + y2 + z2 + t2 = 2u2} and the cylinder {x2 + y2 + z2 = u2}, where [x : y : z : t : u] are homogeneous coordinates in P
4.

Rotating the cylinder about the tu-plane through an angle π realizes the desired permutation of the spheres. �
Theorem 5.3. With one exception, any permutation of homeomorphic components of both halves of a real Enriques surface with a
disconnected half E(1)

R
= Vd � · · · , d � 4, can be realized by deformations and automorphisms. In the exceptional case ER = {V 4 �

S} � {4S}, the realized group is D8 ⊂ S4 .

Remark 5.4. In the exceptional case, the Pontrjagin–Viro form is well defined. The quarter decomposition of E(2)
R

is
(2S) � (2S). A permutation of the spherical components is not realizable if it doesn’t preserve the quarter decomposi-
tion. Theorem 5.3 states that a permutation of the components can be realized if and only if it preserves the quarter
decomposition.

Proof of Theorem 5.3. The problem reduces to a question about appropriate (g, r)-surfaces, g � 3 and r � 1 (see [3] for the
models of (g, r)-surfaces). We construct a particular surface (within each deformation class) that has a desired automor-
phism or ‘auto-deformation’. Among the extremal types listed in [3], we need to consider only the following types (as in
the other cases there are no homeomorphic components) and all their derivatives (E(1)

R
, ·) obtained from the extremal ones

by sequences of topological Morse simplifications of E(2)
R

:

1. E(1)
R

= V 4 � 2V 1; E(2)
R

= ∅;

2. E(1)
R

= V 4 � S; E(2)
R

= 4S .

Case 1: In this case, homeomorphic components are in E(1)
R

= B/t(2) so we need to deal with B . By Donaldson’s trick,
we obtain a DPN-pair (Y , B), where Y is a real (3,2)-surface with empty real part and B ∼= S3 � 2S is an admissible branch
curve on Y such that the rational components of B are real. According to the models of (3,2)-surfaces, Y blows down
to Σ0 = P

1 × P
1 with the real structure c0 × c1, where c0 is the usual complex conjugation and c1 is the quaternionic

real structure (Fix c1 = ∅) on P
1. The image Q of B is the transversal union of smooth components C ′ , C ′′ and C ′′′ , where

C ′, C ′′ ∈ |l2| are two distinct real generatrices and C ′′′ ∈ |4l1 +2l2|. By Theorem 18.4.1 in [3], there is only one rigid homotopy
class of such curves Q ⊂ Σ0 and if Q ′ is rigidly homotopic to Q then the DPN-resolutions of the pairs (Σ0, Q ′) and (Σ0, Q )
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are deformation equivalent in the class of admissible DPN-pairs. By a rigid homotopy of real algebraic curves on Σ0, we
mean a path Q s of real curves on Σ0 such that the members of the path consist of a fixed number of smooth components
and have at most type A singular points. Thus, a generic rigid homotopy of Q s defines a deformation of the DPN-resolutions
(Ys, Bs) of the pairs (Σ0, Q s), thus, a deformation of the covering K 3-surfaces. Choosing a continuous family of invariant
Kähler metrics leads to a deformation of the corresponding real Enriques surfaces obtained from inverse Donaldson’s trick.

It suffices to connect Q with itself by a path that realizes the permutation of C ′ and C ′′ , and such that the members Q s
of the path split into sums C ′

s +C ′′
s +C ′′′

s of distinct real smooth irreducible curves such that C ′
s, C ′′

s ∈ |l2| and C ′′′
s ∈ |4l1 +2l2|.

Identify the real part of the base P
1
R

∼= S1 = R/2π . Let Q = A0 + Aπ + A, where Aα is the generatrix of Σ0 over α. Then,
the family {Q t} = {At + Aπ+t + A; t ∈ [0,π ]}, defines a path that realizes the permutation of the generatrices A0 and Aπ .

Case 2: Here we consider the 3 subcases:

ER = {V 4 � S} � {i S}, i = 2,3,4.

The corresponding DPN-pair resulting from Donaldson’s trick is (Y , B), where Y is a real (3,2)-surface with YR = i S , and
B ∼= S3 � 2S is an admissible branch curve such that rational components of B are conjugate and [B] = 0 in H2(X), where
X is the covering K3-surface. According to the models of (3,2)-surfaces, there is a real regular degree 2 map φ : Y → Z = Σ4
(with standard real structure, i.e., ZR = S1) branched over a nonsingular real curve U ∈ |2e∞|. The irrational component of B
is mapped to a real curve F ∈ |e∞| and each rational component is mapped isomorphically to the exceptional section E0
of Z . UR is contained in a connected component of ZR\((E0)R � FR). By Theorem 2.6, up to rigid isotopy and automorphism
of Z , the pair (U , F ) is determined by its real root scheme. By Theorem 18.4.2 in [3], the real DPN-double of (Z; U , E0 ∪ F )

is determined up to deformation in the class of admissible DPN-pairs by the real root scheme of the pair (U , F ). Thus,
a generic rigid isotopy of the pairs (Us, Fs) defines a deformation of the DPN-doubles (Ys, Bs) of (Z; Us, E0 ∪ Fs), so a
deformation of the covering K 3-surfaces. Choosing a continuous family of invariant Kähler metrics gives a deformation of
the corresponding real Enriques surfaces obtained from inverse Donaldson’s trick. Thus, in view of the above observation
and Lemma 4.3, it suffices to realize permutations of certain ovals of U by rigid isotopies of the pair (U , F ) and/or involutive
automorphisms of Z preserving U . In the latter case the set of fixed points should have nonempty intersection with U .

The real root scheme of (U , F ) is a disjoint union of i segments (cf. the first row of Table 1 for i = 4), and it has a
representative (real root marking) with the desired symmetry group (i.e., S2, S3 and D8 for i = 2,3 and 4, respectively),
generated by rotations and reflections of BR

∼= S1. By Remark 2.8, these symmetries realize permutation of the correspond-
ing ovals. Furthermore, the fixed point set of a reflection symmetry consists of two distinct points on S1, which correspond
to two distinct real generatrices of Z . Since U ∈ |2e∞|, U intersects the set of the fixed points of the induced involution and
one can apply Lemma 4.3. For i = 4, the reason, why other permutations are not allowed is explained in Remark 5.4. �
Theorem 5.5. For the real Enriques surfaces with disconnected E(1)

R
= V 3 � · · · , none of the permutations of the components of the half

E(1)
R

is realizable by deformations or automorphisms. With the exceptions listed below, any permutation of homeomorphic components

of the half E(2)
R

can be realized by deformations and automorphisms. The exceptional cases are:

1. surfaces with ER = {V 3 � V 1} � {4S}: the realized group is D8;
2. surfaces with ER = {V 3 � S} � {V 1 � 3S}: the realized group is S2;
3. surfaces with ER = {V 3 � V 1 � S} � {3S}: the realized group is S2;
4. surfaces with ER = {V 3 � 2S} � {V 1 � 2S}: the realized group is trivial.

Remark 5.6. In the exceptional cases, the Pontrjagin–Viro form is well defined. It defines the quarter decompositions as
follows:

1. ER = {(V 3 � V 1) � (∅)} � {(2S) � (2S)};
2. ER = {(V 3 � S) � (∅)} � {(V 1 � S) � (2S)};
3. ER = {(V 3 � S) � (V 1)} � {(2S) � (S)};
4. ER = {(V 3 � S) � (S)} � {(V 1 � S) � (S)}.

One cannot permute homeomorphic components without preserving the quarter decomposition. The above theorem states
that a permutation of homeomorphic components of E(2)

R
can be realized if and only if it preserves the quarter decomposi-

tion.

Proof of Theorem 5.5. For these surfaces, the DPN-pair resulting from Donaldson’s trick is (Y , B), where Y is a real unnodal
(2, r)-surface and B ∼= S2 � r S is an admissible branch curve on Y , r � 1. According to the models of (2, r)-surfaces ([3]), the
anti-bicanonical system of Y defines a surjective degree 2 map ϕ : Y → Z ′ ⊂ P

3. The branch locus of ϕ is a cubic section
through the vertex. The map ϕ lifts to a map ϕ̃ : Y → Z = Σ2 ⊂ P

3 × P
1 (with standard real structure) and the branch

locus of ϕ̃ is a curve U ∈ |2e∞ + 2l|. By ϕ̃ , the genus 2 component of B is mapped to a nonsingular real generic section
F ∈ |e∞| and the rational components of B are mapped to the exceptional section E0 in Z . The pair (U , F ) is a suitable
pair (see Section 2.8). The pullback ϕ̃−1(E0) consists of the fixed components of |−2K | ((−4)-curves on Y , i.e., the rational
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Fig. 2.

components of B) and, possibly, several (−1)-curves. Fig. 2 shows the Dynkin graph of this configuration of curves. It is a
linear tree with 2r − 1 vertices, where the two outermost ones, marked with Ẽ0, represent the components of the proper
transform of E0.

We start by proving the first part of the theorem. In view of Theorem 19.1 in [3], we only need to consider the real
Enriques surfaces with E(1)

R
= V 3 � mV 1 � nS , m = 0 or 1 and n = 2,3 or 4. By Donaldson’s trick we obtain real (2, r)-

surfaces with admissible branch curves B ∼= S2 � r S , where r = m + 2n (as E(1)
R

= B/t(2)). The Dynkin graph of the pullback
of the exceptional section E0 contains m+2n copies of (−4)-curves that correspond to the spherical components of B . Since
the map ϕ is anti-bicanonical, our model is canonical and both the Dynkin graph and the corresponding Coxeter diagram
on the covering K 3-surface are rigid. The only map that can realize a permutation of the spherical components of B is
the deck translation of the covering ϕ which changes the order of the curves in the Dynkin graph. But since the spherical
components permuted by the deck translation are identified by the map t(2) on the covering K 3-surface and E(1)

R
= B/t(2) ,

the result follows.
Proof of the second part is based on suitable pairs. Theorem 2.7 states that, up to rigid isotopy and automorphism of Z ,

a suitable pair (U , F ) is determined by its real root scheme. In view of Theorem 3.6 and Lemma 4.4, it is enough to realize
the permutations of certain ovals by rigid isotopies of the pair (U , F ) and/or involutive automorphisms of Z preserving U ,
where in the latter case the set of fixed points should intersect U . Proof is very similar to that of Theorem 5.3, case 2.
Among the extremal types listed in [3], we need to consider only the following types and all their derivatives (E(1)

R
, ·)

obtained from the extremal ones by sequences of topological Morse simplifications of E(2)
R

:

1. E(1)
R

= V 3 � V 1; E(2)
R

= 4S;

2. E(1)
R

= V 3 � S; E(2)
R

= V 1 � 3S;

3. E(1)
R

= V 3 � V 1 � S; E(2)
R

= 3S;

4. E(1)
R

= V 3 � 2S; E(2)
R

= V 1 � 2S;

5. E(1)
R

= V 3 � V 1 � 2S; E(2)
R

= 2S .

The extremal real root schemes of the pairs (U , F ) for these cases are listed in Table 1; the others are obtained by
removing several segments not containing a ◦-vertex. As in the proof of Theorem 5.3, one can realize each root scheme by
a sufficiently symmetric representative, constructing the desired groups of permutations of the ovals of U , see Remark 2.8.
In the case of automorphisms, induced by reflection symmetries, we observe that the fixed point set consists of a pair of
generatrices and intersects U ∈ |2e∞ + 2l|; hence, Lemma 4.4 applies. Remark 5.6 explains why other permutations are not
realizable. �
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