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Abstract—We consider packet erasure correction coding for
a streaming system where specific information needs to be
decoded by specific deadlines, in order to ensure uninterrupted
playback at the receiver. In our previous work [1], we gave
a capacity-achieving code construction for the case of a fixed
number of erasures. In this work, we consider a sliding window
erasure pattern where the number of erasures within windows
of size above some threshold is upper bounded by a fraction
of the window size, modeling a constraint on burstiness of the
channel. We lower bound the rates achievable by our previous
code construction as a fraction of the capacity region, which
approaches to one as the window size threshold and the initial
playout delay increase simultaneously.

I. INTRODUCTION

We consider the problem of coding for streaming data
over a packet erasure channel. For uninterrupted playback at
the receiver, specific packets need to be decoded by specific
deadlines. The code is designed to work under a set of possible
erasure patterns, the realization of which is unknown a priori
to the encoder.
In our previous work [1], by modeling this problem as

a network erasure correction problem, we characterized the
capacity region under z erasures with a priori unknown
locations. We also presented an intra-session coding scheme
that achieves the capacity region. The streaming problem is
modeled as an erasure correction problem on a network where
the receivers have a nested structure, i.e. the set of packets
received by each receiver contains the set of packets received
by its predecessor. Each link in the network represents a
unit time, and each receiver in the network corresponds to
a deadline and demands the packets which are to be decoded
by that deadline.
In this paper, we consider a sliding window erasure model,

which is characterized by two parameters, erasure rate p and a
window size threshold T . We consider erasure patterns where
the number of erasures in any window of size at least T
is upper bounded by a fraction p of the window size. Such
erasure patterns have a long term erasure rate bounded by p,
and do not contain erasure bursts of length greater than pT .
We consider the intra-session coding scheme of [1] under

the sliding window erasure model. We lower bound the ratio
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of the rate region of this coding scheme to the capacity region
by a function of p, T , and the initial playout delay m1. We
establish that this function approaches to one for m1 ! T !
1. Other than the code rate, the coding scheme is independent
of the parameters of the erasure model, and as such convenient
to adapt.
In other related work, Martinian et al. [2], [3] provide

constructions of streaming codes that minimize the delay
required to correct erasure bursts of given length.

II. MODEL AND PROBLEM DESCRIPTION

A. Sliding Window Erasure Model
This erasure model characterizes a class of possible erased

subsets. It models systems in which erasures occur with a long-
term rate p and excessively long erasure bursts are rare enough
that we do not code for them. For instance, if each erasure
occurs independently with probability p, the probability of a
long erasure burst decreases exponentially with length. This
motivates the following sliding window erasure model, which
upper bounds the number of successive erasures:
Definition 1: An erasure pattern is called a sliding window

erasure pattern for a given fraction p and threshold T ∈ Z+

if, for every t ≥ T , no more than tp out of any t consecutive
packets can be erased.
Note that under a sliding window erasure pattern with

parameters p and T , erasures occur with a long term rate less
than p, and the length of the erasure bursts are cotrolled by
the threshold T . The following definition classifies possible
unerased sets under the sliding window erasure model:
Definition 2: Let A = {a1, a2, . . . , an} be an ordered set.

A subset B of A is called (p, T )-unerased subset of A, if the
inequality

|B ∩ {ai+1, ai+2, . . . , ai+t}|≥ (1 − p)t (1)

is satisfied for all positive integer pairs (t, i) satisfying t ≥ T ,
and 0 ≤ i ≤ n − t.

B. Network erasure correction problem
Consider a streaming system where at each time step one

packet of unit size is transmitted, and the receiver needs to
decode specific independent messages {M1, M2, . . . , Mn} at
given time steps {m1, m2, . . . , mn} respectively. As described
in [1], this can be viewed as an erasure correction problem
on a 3-layer nested network with one source and n sinks
{t1, t2, . . . , tn}, constructed as follows and illustrated in Fig-
ure 1:



• I = {l1, l2, ..., lmn} is the set of middle layer links.
• The source is connected to all the links in I.
• Sink ti is connected to links l1, . . . , lmi .
• All links have unit capacity.
• Only the links in I can be erased.

Fig. 1. 3-layer nested-network topology with three sinks.

III. CODING SCHEME

A. Intra-Session Coding
An intra-session coding scheme is one in which no coding

occurs across information demanded by different receivers. For
a given intra-session coding scheme, let qj

i denote the amount
of information corresponding to message Mj transmitted on
the link li. A rate vector (u1, u2, . . . , un) is achievable under
an erasure pattern by this intrasession coding scheme if the
inequalities

∀j : 1 ≤ j ≤ n uj ≤
∑

i∈P∩{1,... ,mi}

qj
i , (2)

∀i : 1 ≤ i ≤ mn

n
∑

j=1

qj
i ≤ 1, (3)

are satisfied for every permissible unerased set P ⊆ I under
this erasure pattern. We assume that the packet size is large
enough to accomodate an appropriate generic or random linear
erasure code.

B. “As Uniform As Possible” Intra-Session Coding Scheme
In [1] we define the following intra-session coding scheme

which assigns the rate for each successive receiver as uni-
formly as possible subject to capacity constraints imposed
by assignments for previous receivers. This coding scheme
resembles the water-filling process, as we allocate the packets
of each receiver to the links in the upstream of the receiver
equally as long as the links are not saturated by the previ-
ous assignments. For a given rate vector (u1, u2, ..., un), we
define a corresponding lower triangular n × n rate allocation
matrix T , along with auxiliary variables ti,j !

∑i
k=j Tk,j ,

di,j !
∑j

k=1(mk − mk−1)Ti,k, and si, by Algorithm 1:
Note that Ti,si < Ti,si+1 = Ti,si+2 = ... = Ti,i.

Algorithm 1
T1,1 = u1

m1
, t1,1 = u1

m1
, d1,1 = u1, s1 = 0, m0 = 0

for i = 2 → n do
{allocation for sink i on links lmj−1+1, . . . , lmj}
di,0 = 0
j = 1
while 1 − ti−1,j < ui−di,j−1

mi−mj−1
do

Ti,j = 1 − ti−1,j

ti,j =
∑i

k=j Tk,j

di,j =
∑j

k=1(mk − mk−1)Ti,k

j ← j + 1
if j > i or ui ≤ di,j then
return error {rate vector is unallocable}

end if
end while
si = j − 1 {the uniform portion follows}
while j ≤ i do

Ti,j =
ui−di,si

mi−msi

ti,j =
∑i

k=j Tk,j

di,j =
∑j

k=1(mk − mk−1)Ti,k

j ← j + 1
end while

end for

Definition 3: A rate vector (u1, u2, ..., un) is called al-
locable if Algorithm 1 does not return any error and the
corresponding allocation matrix T is non-negative.
Definition 4: Given an allocable rate vector (u1, u2, ..., un),

the “as uniform as possible” intra-session coding scheme is
defined by the allocation

qj
i = Tj,k ∀i : mk−1 < i ≤ mk. (4)

Note that this coding scheme depends only on the rate vector
!u and the set of deadlines.
We observe that under the “as uniform as possible” intrases-

sion coding scheme the amount of information transmitted on
the middle layer of the network is monotone:
Lemma 1: If (u1, u2, ..., un) is allocable, then the corre-

sponding allocation matrix T satisfies:

Ti,j ≤ Ti,j+1 ∀i, j : 1 ≤ i ≤ n, 1 ≤ j < i

Proof: See the appendix.

IV. MAIN RESULT

We will verify the efficiency of the “as uniform as possible”
intra-session coding scheme defined in Section III-B. The fol-
lowing lemma states that under the sliding window erasure, the
amount of the information loss is controlled by the parameter
p for certain information allocations:
Lemma 2: Let A = {a1, a2, . . . , an} be an ordered set of

nonnegative real numbers with a1 ≥ a2 ≥ . . . ≥ an and
a1 = a2 = . . . = aT = a. Let ||X || denote the sum of
elements in an arbitrary finite set of real numbers X . Let B



be a (p, T )-unerased subset of A under some sliding window
erasure with parameters p and T . Then,

||B||≥ (1 − p)||A||.

Proof: See the appendix.
Note that the monotonicity of the numbers ai is crucial as

Lemma 1 states that the amount of the information allocated
for a certain message Mi on the middle layer of the network
is monotone under the “as uniform as possible” intrasession
coding scheme. The following lemma establishes that the
equally allocated part of a message has a length of at least
T under the “as uniform as possible” intrasession coding for
a constant multiple of a vector inside the capacity region of
the network under the erasure-free case. Hence, by Lemma 2,
the rate of the erased information for a particular message Mi

will not be greater than p.
Lemma 3: Let V = {(v1, v2, . . . , vn)|

∑k
i=1 vi ≤

mk ∀k : 1 ≤ k ≤ n}. Let !v ∈ V . The rate vector
1

1 + log(m1+T
m1

)
!v is achievable by the “as uniform as possible”

intra-session coding, in a such way that the corresponding
allocation q satisfies:

qi
mi−T+1 = qi

mi−T+2 = . . . = qi
mi

∀i : 1 ≤ i ≤ n. (5)

Proof: See the appendix.
Lemma 4 and Lemma 5 compares the capacity regions of

the “as uniform as possible” intrasession coding scheme and
any other coding scheme to an intermediate region V , which
is the capacity region under the erasure-free case:
Lemma 4: Let U be the erasure correction capacity region

under some sliding window erasure with parameters p and T .
Let V = {(v1, v2, . . . , vn)|

∑k
i=1 vi ≤ mk ∀k : 1 ≤ k ≤

n}. Then

U ⊂ (1 − p +
1

T
)V. (6)

Proof: See the appendix.
Lemma 5: Let W be the erasure correction capacity region

obtained by “as uniform as possible” intrasession coding under
sliding window erasure with parameters p and T . Let V =
{(v1, v2, . . . , vn)|

∑k
i=1 vi ≤ mk ∀k : 1 ≤ k ≤ n}. Then

(1 − p)
1

1 + log(m1+T
m1

)
V ⊂ W. (7)

Proof: See the appendix.
The following theorem states that the erasure correction

capacity region of the “as uniform as possible” intra-session
coding contains a constant multiple of that of any other coding
scheme:
Theorem 1: Let U be the erasure correction capacity region

under sliding window erasure with parameters p and T . LetW
be the erasure correction capacity region obtained by the “as
uniform as possible” intrasession coding under sliding window
erasure with parameters p and T . Then,

1 − p

(1 + log(m1+T
m1

))(1 − p + 1
T

)
U ⊂ W. (8)

Proof: Applying Lemma 4 and Lemma 5, we obtain (8).

Let λ = sup{x ∈ R : xU ⊂ W}. As λ is the ratio of the
two regions U and W , it measures how close the “as uniform
as possible” intrasession coding scheme to the optimal coding
scheme. Theorem 1 implies that

λ ≥
1 − p

(1 + log(m1+T
m1

))(1 − p + 1
T

)
.

Note that for T ! 1, and m1 ! T we have
1 − p

(1 + log(m1+T
m1

))(1 − p + 1
T )

≈ 1,

which implies that λ ≈ 1 for large values of T and large
values of m1 compared to T .

APPENDIX
Proof of Lemma 1: Let’s prove the following statements

simultaneously by induction:

Ti,j ≤ Ti,j+1 ∀i, j : 1 ≤ i ≤ n, 1 ≤ j < i,

ti,j ≥ ti,j+1 ∀i, j : 1 ≤ i ≤ n, 1 ≤ j < i.

}

(9)

The statements hold trivially for (i, j) = (1, 1). Let the
statements hold for all (i, j) before (k, l) in lexicographical
order. Let’s now verify in three cases that (9) is satisfied for
(i, j) = (k, l):
Case(1): l < sk:
By construction, we have:

Tk,l = 1 − tk−1,l, Tk,l+1 = 1 − tk−1,l+1,

tk,l =tk,l+1 = 1.

Clearly, tk,l ≤ tk,l+1. By induction hypothesis, we have
tk−1,l ≥ tk−1,l+1. Hence

Tk,l = 1 − tk−1,l ≤ 1 − tk−1,l+1 = Tk,l+1.

Case(2): l = sk:
By construction, we have:

Tk,l = 1 − tk−1,l <
uk − dk,l−1

mk − ml−1
, (10)

Tk,l+1 =
uk − dk,l

mk − ml
≤ 1 − tk−1,l+1. (11)

Hence,

tk,l = tk−1,l + Tk,l = 1 ≥ tk−1,l+1 + Tk,l+1 = tk,l+1.

From (11) we get:

Tk,l+1 =
uk − dk,l

mk − ml

=
uk − dk,l−1 − (ml − ml−1)Tk,l

mk − ml
. (12)



Using (10) we obtain:

Tk,l(mk − ml−1) < uk − dk,l−1. (13)

Combining (12) and (13) we get:

Tk,l+1 > Tk,l.

Case(3): l > sk:
By construction, we have:

Tk,l = Tk,l+1,

tk,l = Tk,l + tk−1,l, tk,l+1 = Tk,l+1 + tk−1,l+1.

By induction hypothesis, tk−1,l ≥ tk−1,l+1. Hence,

tk,l ≥ tk,l+1.

Proof of Lemma 2: Let B = {ak1
, ak2

, . . . , akm}, where
k1 < k2 < . . . < km. Let q = 1−p. Let s be the largest integer
satisfiying ks ≤ T . Let’s prove by induction that

ak1
+ ak2

+ . . . + akr ≥ q(a1 + a2 + . . . + a$ r
q %

)

+(r − q.
r

q
/)a$ r

q %+1 (14)

is satisfied for any r with m ≥ r ≥ s.
For r = s, we have

s
∑

i=1

aki = sa

= aq.
s

q
/ + (s − q.

s

q
/)a

≥ q(a1 + a2 + . . . + a$ s
q %

) + (s − q.
s

q
/)a$ s

q %+1.

Let (14) be satisfied for some r ≥ s. As kr+1 > T , and B
satisfies (1) we have

r = |B ∩ {a1, a2, . . . , akr+1−1}|≥ (1 − p)(kr+1 − 1)

= q(kr+1 − 1),

which is equivalent to

kr+1 ≤ 1 +
r

q
.

As kr+1 is an integer we have:

kr+1 ≤ 1 + .
r

q
/,

which implies

akr+1
≥ a$ r

q %+1. (15)

As ai is monotone, using (15) and the induction hypothesis
we get

r+1
∑

i=1

aki ≥q

$ r
q %

∑

i=1

ai + (r − q.
r

q
/)a$ r

q %+1 + akr+1

=q

$ r
q %

∑

i=1

ai + (r + 1 − q.
r

q
/)a$ r

q %+1

≥q

$ r
q %+1
∑

i=1

ai + (r + 1 − q.
r + 1

q
/)a$ r+1

q %+1,

which means that (14) is satisfied for r + 1. Hence we
established (14).
As B satisfies (1), we have

m = |B ∩ A| ≥ (1 − p)n = qn,

which implies

n ≤ .
m

q
/.

As (14) is satisfied for r = m, we have

||B|| =
m

∑

i=1

aki ≥ q(a1 + a2 + . . . + a$m
q %)

≥ q(a1 + a2 + . . . + an)

= q||A|| = (1 − p)||A||,

as desired.

Proof of Lemma 3: Let α = 1
1+log(

m1+T

m1
)
. As V is the

capacity region under erasure-free case and α < 1, α!v is
achievable by the “as uniform as possible” intra-session coding
under the erasure-free case.
Assume to the contrary that (5) is not satisfied for some k ∈
{1, 2, . . . , n}. Without loss of generality, we may assume that
k is the smallest such integer. Then we have

k
∑

i=1

qi
j = 1, ∀j : 1 ≤ j ≤ mk − T. (16)

Using (16), we get:

αmk ≥
k

∑

i=1

αvi =
mk
∑

j=1

k
∑

i=1

qi
j ≥

mk−T
∑

j=1

k
∑

i=1

qi
j = mk − T,

which implies:

mk ≤
T

1 − α
. (17)

Let’s first prove that

mk < m1 + 2T. (18)

Using (17), we get

mk ≤
T

1 − α
=

T

1 − 1
1+log(

m1+T

m1
)

=
T (1 + log(m1+T

m1
))

log(m1+T
m1

)
.



Hence it is enough to show that

T (1 + log(m1+T
m1

))

log(m1+T
m1

)
< m1 + 2T. (19)

Let x = T
m1
. Then, (19) is equivalent to:

g(x) = (1 +
1

x
) log(1 + x) > 1, (20)

which follows immediately by the fact that g′(x) > 0 and
limx→0 g(x) = 1.
Let t be the smallest integer satisfying mt ≥ mk − T + 1.
Hence,

mt−1 ≤ mk − T. (21)

Let s be the smallest integer satisfying
s+1
∑

i=1

αvi

mi
≥ 1. (22)

Let X = v1 + v2 + . . . + vt−1, Y = v1 + v2 + . . . + vs+1.
Using (22) we get:

1 ≤
s+1
∑

i=1

αvi

mi
< α +

$Y %−m1
∑

i=1

α

m1 + i
+
α(Y − .Y /)

Y

< α



1 +

$Y %−m1
∑

i=1

1

m1 + i
+

(Y − .Y /)

Y





< α

(

1 + log(
Y

m1
)

)

.

Hence,

Y > m1 + T. (23)

As ms+1 ≥ Y , (18), (21) and (23) implies:

ms+1 ≥ Y > m1 + T ≥ mk − T + 1 > mt−1,

which implies:

s + 1 ≥ t.

Let pi denote the length of the uniform block for i-th receiver.
Let r = mk −T + 1. By assumption, pk < T , which implies:

k−1
∑

i=t

qi
r +

αvk

T
> 1. (24)

As pi ≥ T for i ∈ {1, 2, . . . , k − 1}, and qi
r ≤ αvi/pi, (24)

implies:

1 <
k−1
∑

i=t

qi
r +

αvk

T
=

s
∑

i=t

αvi

mi
+

k−1
∑

i=s+1

qi
r +

αvk

T

≤
s

∑

i=t

αvi

mi
+ qs+1

r +
k−1
∑

i=s+2

αvi

pi
+
αvk

T

≤
s

∑

i=t

αvi

mi
+ qs+1

r +
k

∑

i=s+2

αvi

T
.

Let S =
∑s

i=t
αvi

mi
+ qs+1

r +
∑k

i=s+2
αvi

T . Let’s maximize S
under the condition (22). As increasing vs+2 and decreasing
vs+1 at the same amount increases S, we may assume that
equality is satisfied in (22), i.e.

s+1
∑

i=1

vi

mi
=

1

α
= 1 + log(

m1 + T

m1
). (25)

Hence

S =
s+1
∑

i=t

αvi

mi
+

k
∑

i=s+2

αvi

T
≥ 1. (26)

Let

h(v1, v2, . . . , vn) =
s+1
∑

i=t

vi

mi
+

k
∑

i=s+2

vi

T
.

Let’s prove that

h(v1, v2, . . . , vn) ≤
1

α
= 1 + log(

m1 + T

m1
), (27)

which will contradict (26). As

h(v1, v2, . . . , vn) ≤
s+1
∑

i=t

vi

mi
+

mk − Y

T
,

in order to verify (27), it is enough to show that
s+1
∑

i=t

vi

mi
+

mk − Y

T
≤

1

α
. (28)

Using (25), (28) is equivalent to:

T
t−1
∑

i=1

vi

mi
+ Y ≥ mk. (29)

Let

β =
t−1
∑

i=1

vi

mi
.

Then, clearly

X =
t−1
∑

i=1

vi ≥ m1

t−1
∑

i=1

vi

mi
= m1β, (30)

Y − X =
s+1
∑

i=t

vi ≥ mt

s+1
∑

i=t

vi

mi
= mt(

1

α
− β). (31)

We will consider two cases:
Case (1): mt ≥ m1 + T .
Using (30) and (31), we get:

T
t−1
∑

i=1

vi

mi
+ Y = Tβ + X + Y − X

≥ Tβ + m1β + (
1

α
− β)mt

≥ Tβ + m1β + (
1

α
− β)(m1 + T )

=
m1 + T

α
≥ m1 + 2T, (32)



where the last inequality is equivalent to log(1+t) ≥ t
t+1 after

setting t = T/m1, hence follows from the inequality (20).
As (32) implies (29), and (29) is equivalent to (27), we get a
contradiction.
Case (2): mt < m1 + T .
If β ≥ 1, as Y ≥ m1 + T , we have

T
t−1
∑

i=1

vi

mi
+ Y = Tβ + Y ≥ m1 + 2T ≥ mk,

which establishes (29). Hence we get a contradiction.
We may assume that β < 1. Using (23), we have Y > m1 +
T > mt. Hence

1

α
− β =

s+1
∑

i=t

vi

mi
≤

mt − X

mt
+ log(

Y

mt
),

which is equivalent to:

Y ≥ mte
1
α−β+ X

mt
−1. (33)

Using (30) and (33), we get:

T
t−1
∑

i=1

vi

mi
+ Y = Tβ + Y

≥ Tβ + mte
1
α−β+ X

mt
−1

≥ Tβ + mte
1
α−β+

m1β

mt
−1

= Tβ + mte
1+log(1+ T

m1
)−β+

m1β

mt
−1

= Tβ + mt(1 +
T

m1
)eβ(

m1
mt

−1). (34)

Let f(x) = Tx + mt(1 + T
m1

)ex(
m1
mt

−1). Then,

f ′(x) = T + mt(1 +
T

m1
)(

m1

mt
− 1)ex(

m1
mt

−1)

≥ T + mt(1 +
T

m1
)(

m1

mt
− 1)

= T + (1 +
T

m1
)(m1 − mt). (35)

If T + (1 + T
m1

)(m1 − mt) ≤ 0, using (34) and (35) we
get:

T
t−1
∑

i=1

vi

mi
+ Y

≥ f(β)

≥ f(0) + β[T + (1 +
T

m1
)(m1 − mt)]

= mt(1 +
T

m1
) + β[T + (1 +

T

m1
)(m1 − mt)]

≥ mt(1 +
T

m1
) + [T + (1 +

T

m1
)(m1 − mt)]

= m1 + 2T ≥ mk,

which establishes (29). Hence we get a contradiction.
If T +(1+ T

m1
)(m1 −mt) > 0, using (34) and (35) we get:

T
t−1
∑

i=1

vi

mi
+ Y ≥ f(β) ≥ f(0) = mt(1 +

T

m1
) ≥ mt + T

≥ mk,

which establishes (29), again we get a contradiction.

Proof of Lemma 4: As U ⊂ V , if p ≤ 1
T
, then clearly

U ⊂ (1 − p + 1
T )V .

Let p > 1
T
. Define q = 1 − p + 1

T
.

Define Z ⊂ I as

|Z ∩ {l1, l2, . . . , lk}| = .qk/ ∀k : 1 ≤ k ≤ mk.

As 0 ≤ q < 1, Z is well-defined and unique. Let’s prove that
Z is a (p, T )-unerased subset of I. Let t ≥ T and 0 ≤ i ≤
mn − t. We have:

|Z ∩ {li+1, ai+2, . . . , li+t}| = .q(i + t)/ − .qi/

> q(i + t) − qi − 1

= (1 − p +
1

T
)t − 1

≥ (1 − p)t,

as desired.
Let (u1, u2, . . . un) ∈ U . Applying cut-set bounds for Z , we
have:

k
∑

i=1

ui ≤ |Z ∩ {l1, l2, . . . , lmk
}| = .qmk/ ≤ qmk,

which implies that U ⊂ qV = (1 − p + 1
T )V , as desired.

Proof of Lemma 5: Let !v ∈ V . Let α = 1
1+log(

m1+T

m1
)
.

By Lemma 3, the rate vector α!v is achievable by the “as
uniform as possible” intra-session coding in a such way that
the corresponding allocation q satisfies:

qi
mi−T+1 = qi

mi−T+2 = . . . = qi
mi

∀i : 1 ≤ i ≤ n.

Let Qi = {qi
mi

, qi
mi−1, . . . , qi

1}. We know that qi
mi

≥
qi
mi−1 ≥ . . . ≥ qi

1. Let Q′
i be a (p, T )-unerased subset of

Qi. By Lemma 2:

||Q′
i||≥ (1 − p)||Qi|| = (1 − p)αvi.

Hence (1 − p)α!v∈ W , which establishes (7).
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