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We show that the synchronization of chaotic systems can be achieved by using the observer
design techniques which are widely used in the control of dynamical systems. We prove that
local synchronization is possible under relatively mild conditions and global synchronization
is possible if the chaotic system has some special structures, or can be transformed into some
special forms. We show that some existing synchronization schemes for chaotic systems are
related to the proposed observer-based synchronization scheme. We prove that the proposed
scheme is robust with respect to noise and parameter mismatch under some mild conditions.
We also give some examples including the Lorenz and Rossler systems and Chua's oscillator
which are known to exhibit chaotic behavior, and show that in these systems synchronization

by using observers is possible.

1. Introduction

The concept of synchronization of chaotic systems
may seem somewhat paradoxical since in such sys-
tems solutions starting from arbitrary close initial
conditions quickly diverge and become uncorre-
lated. However, it has recently been shown that
such synchronization is possible (see e.g. [Pecora &
Carroll, 1990; Cuomo & Oppenheim, 1993]). This
subject then received a great deal of attention
among scientists in many fields (see e.g. [Pecora &
Carroll, 1991; Chua et al., 1993a; Ogorzalek, 1993;
Kocarev et al., 1992; Cuomo et al., 1993], and the
references therein). One of the motivations for syn-
chronization is the possibility of sending messages
through chaotic systems for secure communication,
see e.g. [Cuomo et al., 1993; Halle et al., 1993;
Kocarev et al., 1992]. Such synchronized systems
usually consist of two parts: A generator of chaotic
signals (drive system) and a receiver (response
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system). The response system is usually a dupli-
cate of a part (or the whole) of the drive system.
A chaotic signal generated by the drive system may
be used as an input in the response system to syn-
chronize the common signals of both systems (see
e.g. [Pecora & Carroll, 1990]). After the synchro-
nization, one may add the message to the chaotic
signal used for synchronization, and under certain
conditions one may recover the message from the
signals of the response system (see e.g. [Cuomo
et al., 1993]). We note that once the chaotic
“drive” system is given, most of the synchroniza-
tion schemes proposed in the literature do not give
a systematic procedure to determine the “response”
system and the drive signal. Hence most of these
schemes depend on the choice of the drive system
and could not be easily generalized to an arbitrary
chaotic drive system.
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A related problem encountered in the systems
and control theory is the estimation of the states
of a dynamical system by using another system,
called an “observer”. The theory of the design of
observers, although not fully exploited, is a rela-
tively well-studied branch of system theory and is
widely used in the state feedback control of dynami-
cal systems (see e.g. [Kailath, 1980; Wonham, 1985;
Callier & Desoer, 1991; Vidyasagar, 1993]). In this
paper our aim is to show that this existing theory
of observers may naturally be used in the relatively
new field of synchronization of chaotic systems. In
this approach, once the drive system is given, the
response system could be chosen in the observer
form, and the drive signal should be chosen accord-
ingly so that the drive system satisfies certain con-
ditions. Under some relatively mild conditions, lo-
cal or global synchronization of drive and observer
systems may be guaranteed. Moreover, the syn-
chronization is achieved exponentially fast. Hence
this synchronization scheme offers a systematic pro-
cedure, independent of the choice of the drive sys-
tem. Moreover, the observer proposed in this pa-
per is robust with respect to noise and paramater
mismatch. The seemingly counter-intuitive idea of
robust synchronization of chaotic systems also be-
comes quite expected with this approach, since re-
gardless of whether the drive system is chaotic or
not, what is important is the error dynamics. By
an appropriate choice of the feedback gain, the error
dynamics can be made locally or globally exponen-
tially stable under some relatively mild conditions.
Robustness is then a consequence of exponential
stability.

This paper is organized as follows. In the next
section we present some basic material for the de-
sign of observers and show that local synchroniza-
tion is possible under certain conditions, which are
not very restrictive. We consider the Lorenz and
Rossler systems and show that for these systems,
local synchronization may be possible by using the
observers. We also show that some of the existing
schemes for synchronization (e.g. [Pecora & Carroll,
1990; Cuomo & Oppenheim, 1993]) are related to
the observer-based synchronization, and some tech-
niques (e.g. [Murali & Lakshmanan, 1994; Murali
et al., 1995]) are exactly the same as the observer-
based synchronization. In Sec. 3 we show that the
proposed observer is robust with respect to noise
and paramater mismatch. In Sec. 4 we consider
some special classes of chaotic systems and show
that in these cases the proposed observer, or a mod-

ified version, may be used to obtain global synchro-
nization results. We also show that some of the
chaotic systems (e.g. the Rossler system and Chua’s
oscillator) can be transformed into this form. In
Sec. 5 we present some numerical simulation results
and finally we give some concluding remarks.

2. Full Order Observer

We begin with the definition of observability for
a linear system, which plays an important role in
modern control theory. Consider the following lin-
ear system:

u= Au, y = Cu, (1)

where A € R™*", C € R™*"™ are constant matrices,
y is called the “output” of the system. The prob-
lem of observability is related to the computation
of initial condition u(0) € R™ by only observing the
output y(-) over an interval of time.

Definition. (Observability) Consider the system
described by (1). Two states up and u; are said
to be distinguishable if y(t, ug) # y(t, uy) for t > 0,
where y(t, u;) = Ce?tu;, is the output y(t) corre-
sponding to the initial condition u(0) = u;, 7 =0, 1.
The system given by (1) (or in short the pair (C, A4))
is said to be observable if all distinct states are
distinguishable (see e.g. [Callier & Desoer, 1991;
Kailath, 1980; Wonham, 1985; Vidyasagar, 1993]).
We next state the following well-known fact.

Theorem 1. Consider the system given by (1).
Then the following are equivalent:

(i) The pair (C, A) is observable.
(ii) The following rank condition is satisfied:

C

CA
rank

CAn—l

(iii) The following rank condition is satisfied:

rank(/\IC_A) =n, vaieC. (3)

(iv) For any polynomial p(A) = A" +a1 A" 14 +
p-1A+an, a; ER,1=1,2,..., n, there ez-
ists a constant matrizx K € R™*™ such that
det(A] — A+ KC) = p(A).



Proof. See e.g. [Kailath, 1980], p. 80, p. 136 and
[Wonham, 1985], p. 61. W

Consider the nonlinear system given below

w=A(p)u+g(u, p) +ht), y=Cu, (4)
where p € RP is a parameter vector, for a fixed
u € RP, A(p) € R™ ™ is a constant matrix, C €
R™*™ is a constant matrix, g : R® x R? — R"
is a differentiable function and A : R — R™ is a
known forcing function (or input). We assume that
the following Lipschitz conditions are satisfied:

NA(p1) = A(p2)ll < kil — p2ll,  pa, p2 € RP,
(5)
lg(ua, p) — g(ug, p)ll < k2llug — us|l, ®)
ul:t"?eRn’ ,UGRpa
lg(u, p1) = g(u, p)ll < ksllpa — p2l|, ™

ﬂal,,UvQERp, uERn!

for some positive ki, kg, k3 Lipschitz constants.
Here, |[v]} represents standard Euclidean norm in
R* for any positive integer k if v € R¥ and the
induced matrix norm if v € R***. We note that,
since all norms are equivalent in R¥, the norm used
in Egs. (5)-(7) is arbitrary. Nevertheless, we will
use the standard Euclidean norm throughout the
paper, unless otherwise specified.

Remark 1. In most of the cases, A(u) = S0_; At
for some constant matrices A; € R"™™ and p =
(pt---pP)T, i =1,..., p, where the superscript T
denotes transpose. Hence, in this case Eq. (5) is
satisfied for k; < max;{||A4:||}. The condition in
Eq. (6) might seem to be very restrictive. How-
ever, since we consider chaotic systems, the solu-
tions which are of interest to us are bounded. Let
the solutions be bounded in a convex and bounded
region B C R™ and let the parameter vector u be
bounded in a compact region M C RP. Then we

haiie
au ! 3“’, ’

where % and gﬁ represent the Jacobian of ¢ with
respect to the corresponding variables (see e.g.
[Marsden, 1974], p. 199). Hence, Egs. (5)—(7) may
be considered as a consequence of differentiability
and boundedness of solutions. We note that Eq. (6)

ks < sup sup
HEM ueEB

ks < sup sup
uEB peM
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is required for the convergence analysis of the ob-
server given below, whereas Egs. (5) and (7) are
required for the robustness analysis of the observer.
We also note that the input (or forcing) term A(t) is
not important for the convergence analysis, since it
cancels in the error equation. We simply included
this term so that forced chaotic oscillators can also
be put in our framework. We can also consider the
feedback control of chaotic systems in this frame-
work.

For the system given by (4), we choose the
following “observer” for synchronization:

a=A(p)a+g(t, p)+K(y —§)+ht), §=Ci,
(8)

where K € R™*™ is a gain matrix to be determined.
In this formulation, Eq. (4) represents the “drive”
system, and Eq. (8) represents the “response” sys-
tem. The output y of the drive system is used in the
response system and our aim is to choose the gain K
so that the solutions of the Eqs. (4) and (8) asymp-
totically synchronize, i.e. im;—, oo ||u(t) — @(t)]] = 0,
at least locally. The observer given by Eq. (8) is
known as the full order observer (see e.g. [Kailath,
1980]). Let us define the synchronization error as
e = u — 4. By using Eqs. (4) and (8) we obtain the
following error equation

¢=(A(w) - KC)e+g(u, p) — g(@, ). (9)
We first state the following well-known result.

Lemma 1. Consider the systems given by Eqs. (4)
and (8). Let the parameter vector p be fized, Eq. (6)
be satisfied. Let the pair (C, A(u)) be observable.
There exists a K such that if ko given by Eq. (6)
15 sufficiently small, then the error given by Eq. (9)
decays exponentially to zero, i.e. the following holds
for some M >0 and § > 0

le@®)|l < Me™®||e(0)]] - (10)

Proof. Since the pair (C, A(u)) is observable,
there exists a K such that A, = A(u) — KC is
stable. Hence, the following holds for some M > 0
and o > 0:

llet)l < Me™e¢. (11)
The solution of Eq. (9) can be given as:
t
eft) = eMe(0) + [ A g(u(r), p)
—g(a(r), p)ldr . (12)
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By taking norms in Eq. (12), using Egs. (6),

(11) and the Bellman—Gronwal inequality (see e.g.
[Callier & Desoer, 1991]), we obtain

le)ll < Me™(=ME (o)) (13)

Hence if o — Mkj >0, then Eq. (10) is satisfied with

6 = a— Mky. Moreover, § > 01if 0 < kg < o/M.

|

In the application of the observer theory given
above, the main difficulty is in the Lipschitz prop-
erty given by Eq. (6), which should be satisfied
globally. But if Eq. (6) is satisfied, then the ob-
server given by Eq. (8) works globally, i.e. for all
e(0) € R"™, provided that 0 < k2 < a/M. We may
relax this condition as follows, but then Eq. (10)
may hold locally, i.e. in a compact region for e(0).

Lemma 2. Consider the systems given by Egs. (4)
and (8). Let the parameter vector p be fized, Eq. (6)
be satisfied. Let the pair (C, A(p)) be observable.
Let the function g satisfy the following

. ag
g =%

L (14)

Then there exists a matriz K € R™™™ and a real
number r > 0 such that Eq. (10) holds if ||e(0)]| <7
and |Ju(t)|| <r, Vi > 0.

Proof. Choose a matrix K € R™™ such that A.=
A(p) — KC is stable. Hence A, satisfies Eq. (11) for
some M > 0 and a > 0. Now choose R > 0 so that
if ||u]] < R, then k2 < a/M. Note that because of
Eq. (14), such a R > 0 always exists, see Remark 1.
Let #(0) < r; and u(t) < ry, Vt > 0 for some 71 > 0.
By using Egs. (6), (8) and the Bellman-Gronwall
inequality, (see e.g. [Callier & Desoer, 1991]), it can
be proven that if r; > 0 is sufficiently small, then
la(t)]] < 7y for some r9 > 0, ¥Vt > 0. Moreover,
as r; — 0, we have r9 — 0 as well. Hence, by
using standard continuity arguments it then follows
that there exists a r > 0 satisfying R > 7 such
that if ||u(t)]] < r and ||e(0)|| < 7, then we have
li(t)|| < R, hence the Lipschitz constant ks given
by Eq. (6) remains valid V¢ > 0. It then follows
that (13) holds V¢t > 0. ®

Remark 2. Note that the condition given by
Eq. (14) is less stringent than the Lipschitz condi-
tion Eq. (6). In applications, the differential equa-
tion given by Eq. (4) is obtained by linearization

of a nonlinear system around an equilibrium point.
In such cases, the function g necessarily contains
at least second order terms, hence Eq. (14) is au-
tomatically satisfied. We also show later that this
condition is satisfied for the Lorenz and the Rossler
systems.

Remark 3. For a given pair (C, A(n)), for the ob-
server given by Eq. (8), the results of Lemma 1 and
2 hold when the matrix A, = A(u) — KC is stable.
For observable pairs, by Theorem 1 there always
exists a matrix K such that A, is stable. For some
pairs (C, A(p)) there may exist a matrix K such
that A. is stable, even if the pair is not observ-
able. Such pairs are called “detectable” (see e.g.
[Wonham, 1985]), and for such pairs the observer
given by Eq. (8) could still be used, and the results
of Lemmas 1 and 2 still hold. We will show later
that for the Lorenz system, this detectability condi-
tion is satisfied, hence the observer given by Eq. (8)
could be used for synchronization.

At this point we compare the proposed observer
given above with some proposed synchronization
schemes in the literature.

Example 1. (Lorenz system) Consider the Lorenz
system given below:

& = o(xy — x1),
Ty = —T1x3 + 1T — 22,
55:3 =I1xry — b:I.‘3 .

(15)

The parameters ¢ > 0, r > 0 and b > 0 are chosen
so that the system exhibits chaotic behavior.

We may write Eq. (15) in the form given by
Eq. (4) where u = (z; z2 z3)7,

—0 a 0 0
A= r» -1 0|, gu) = | —z123
0 0 =b T1x2
(16)

Tt follows easily that the selection of y = ¢; 21+ o3,

(i.e. C = (c1 0 ¢3)), or y = c122 + c2x3, (Le. C =
(0 ¢1 ¢2)), yields the pair (C, A) observable for al-
most all values of ¢; and ¢g, provided that c¢; # 0,
c3 # 0. For actual values, Eq. (2) should be checked.
For C = (c; ¢ 0) the pair (C, A) is not observ-
able but detectable, i.e. one can easily find matri-
ces of the form K = (k; ks 0)7 such that A — KC
is stable. In particular, the selection of y = x,
(ie. C = (100)), or y = z2, (ie. C = (010))



makes the pair (C, A) detectable, hence by an ap-
propriate choice of K, one can obtain a stable ma-
trix A — KC and use the observer given by Eq. (8)
for synchronization of chaos.

At this point we compare the observer given
by Eq. (8) with some synchronization schemes
proposed in [Pecora & Carroll, 1991; Cuomo &
Oppenheim, 1993]. Consider the following system:

i = o(22 — 1), (17)
Ty = —m&3 + 121 — 22, (18)
3 = 3189 — bis, (19)

In [Pecora & Carroll, 1991], Egs. (18) and (19)
are called the response system and in [Cuomo
& Oppenheim, 1993], Egs. (17)—-(19) are called
the response system, for the drive system given
by Eq. (15). Note that here z; is used as the
drive signal, hence according to our observer de-
sign technique, the output of Eq. (15) is y = 1.
By using Lyapunov theory, it can be shown that
limy oo [|u(t) — @(t)]] = 0, where u = (z1 z2 x3)T
and @ = (21 &2 #3)7 (see [Pecora & Carroll, 1991;
Cuomo & Oppenheim, 1993]. Note that Egs. (17)-
(19) could be written in the form

i = Ai+g(i) + KC(u— 1) + F(a)C(u—1), (20)

where A and g are given in Eq. (16), K = (0 7 0)7,
C =(100) and F(@) = (0 — &3 d2)T. Note that
A — KC is a stable matrix with this choice. Hence,
the response system given by Egs. (17)-(19), and
hence Eq. (20), are similar to the observer given by
Eq. (8) except for the last term in Eq. (20). With-
out this term, Lemma 1 and 2 may be used for local
synchronization. However, due to the special struc-
ture of this term, one can prove global (exponential)
convergence of the error. We note that in this case,
the synchronization error decays exponentially to
zero, i.e. Eq. (10) is satisfied.

Example 2. (One way coupling) Another synchro-
nization scheme proposed in the literature is the so-
called one-way coupling considered in [Murali and
Lakshmanan, 1994; Murali et al., 1995]. Here we
show that the synchronization scheme proposed in
these references is exactly the same as the observer-
based synchronization proposed in this paper. In
both references, same technique is applied to dif-
ferent chaotic systems. We consider the system
used in [Murali et al., 1995] because of its sim-
plicity. In [Murali et al., 1995], a simple second
order forced chaotic oscillator and the associated
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response systems given by the following equations
are considered:

Ty = T3 — gn(x1), (21)
9 = —PB(1+ v)zy — Bz + F sin wt, (22)
&) = &g — gn(d2) + e(x1 ~ 1), (23)

Zo = —B(1+v)is — BE1 + F sinwt, (24)

where instead of the notation of [Murali et al.,
1995], we used our notation in order not to cause
confusion, (see Eqgs. (3a) and (3b) in the cited ref-
erence). Here, Eqgs. (21)-(22) represent the drive
system and Egs. (23)-(24) represent the response
system. Equations (21) and (22) can be put into
the form given by Eq. (4) with u = (21 z2)7

t

=D _paan) 0= (7).

h(t) = (F siOn wt) ’

Since the signal z, used in the response sys-
tem, according to our formulation we have y = z,
i.e. C = (1 0). Note that the pair (C, A) is al-
ways observable in this case. By direct compari-
son, it follows easily that the response system given
by Egs. (23) and (24) has the same form given by
Eq. (8) with K = (¢ 0)T. It can easily be shown
that A — KC is a stable matrix if all the coeffi-
cients ¢, §, v are positive, hence Lemmas 1 and
2, whichever appropriate, could be applied. This
shows that the one-way coupling as used in this
reference is just an electronic circuit implementa-
tion of the observer given by Eq. (8), and the role
of the buffer op-amp and coupling resistor R, in
[Murali et al., 1995] and similarly in [Murali &
Lakshmanan, 1994} is just to implement the injec-
tion term K(y — ¢) in Eq. (8).

3. Robustness with Respect to
Noise and Parameter Mismatch

In this section we show that the observer given by
Eq. (8) is robust with respect to noise and parame-
ter mismatch. From Lemmas 1 and 2, it follows that
for the error dynamics given by Eq. (9), the equi-
librium point e = 0 is exponentially stable. Since
exponentially stable systems are robust with respect
to perturbations in the dynamics (see e.g. [Khalil,
1992]), we expect that the observer given by Eq. (8)
is also robust.
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We assume that the output y given in Eq. (4) is
corrupted by noise, the parameter vector x and the
forcing term h(t) in the observer given by Eq. (8)
are slightly different than the ones used in the drive
system given by Eq. (4). Hence, the observer equa-
tion in this nonideal case becomes:

&= A(u)a+ g(d, p') + K(y +n(t) —§) + R'(t),

9=Cu. (25)
Then by using Eqgs. (4) and (25), after some alge-
braic but simple arrangements we obtain the follow-
ing error dynamics:

é= (A(p) — KCe + [g(u, p) — g(it, p)]
+g(a, p) — g(@, u")} + [A(r) ~ A(u")]@
+ [R(t) = K’ (#)] = Kn(t) (26)

Note that, in Eq. (26), the dynamics with only the
first two terms in the right hand side represents
an exponentially stable system, (i.e. the case where
p =, n(t) =0 and h(t) = h'(t)). Hence, the last
four terms may be considered as a perturbation to
an exponentially stable dynamical system. We as-
sume that the difference between the forcing terms
is also bounded as follows:

IR (t) = K'(OI| < hopa

vi>0, (27)

for some hys > 0.

Theorem 2. Consider the systems given by
Egs. (4) and (25). Let Egs. (5)~(7) and (27) be
satisfied. Let the noise and the solutions of (25)
be bounded as ||n(t)|| < nar and ||a(t)|| < um for
some npy > 0 and ups > 0, V& > 0. Let the pair
(C, A(n)) be observable. If ky given by Eq. (6) is
sufficiently small, then there exists a K such that
the error given by Fq. (26) satisfies the following
inequality:

le(t)|| < Anps + Bllu — p'l| + Chyy + De™%¢
vt >0, (28)
for some A>0,B>0,C>0,6>0and D € R.

Moreover, A, B, C and ¢ do not depend on n(-),
h(-), p and u'.

Proof. Choose a matrix K so that A, = A(p)—-KC

is stable, hence Eq. (11) is satisfied. Assume that ko
is sufficiently small so that k2 < a/M. The solution

of Eq. (26) can be given as
e(t) = eete(0) + [ A g(ulr), )
~ g(atr), wldr + [ A g(atr), 1)
~ g a(r), wdr + [ eAClAG)
- A@la(rdr + [ A=)

— W()dr - fo A (e, (29)

By taking norms in Eq. (29), using Eq. (11) and
by simple integration we obtain:

lete(e)l < Mlle(O)] + = Trruprllnl + ksllAp]
+|IKlInas + ha](e*t — 1)

t
+ f Mky||e®™e(r)||dr , (30)
0

where Ap = p — p'. For simplicity, let us define
A= MHS(O)” )

M
By = —[kvunl|Apll + ksl| Apll + 1K Inag + had]
(31)

Then, by using a generalized form of Bellman-
Gronwal inequality [Callier & Desoer, 1991], we
obtain

le*te(t)|| < A1 +Bi(e*t—1)
t
+ [ MEs(Ay+By (" —1))eMk2(tr) g
0 .
(32)
After simple integration and multiplication by e~

we obtain
B
aB [ A

OtBl
le®ll< 257

a—Mks
Vi>0.

] (oM}t

(33)

By comparing (28) and (33) we see that the former
is satisfied with § = a — Mks > 0 and

_ M|K]| _ M(kyuy + k)
o—Mky’ a—Mky

_ M _ aB)
C_O.’—Mkz’ D_Al a'—ng’

where A; and B; are given by Eq. (31). ®



Remark 4. From (28), (31) and (33) it follows
that the effect of the initial error e(0) appears in
(28) only in the term De™% and since § > 0, it
follows that after sufficiently large time, this ef-
fect becomes negligible. Therefore, asymptotically,
(ie. for ¢ > T, where T > 0 is sufficiently large),
we may assume that only the first three terms are
effective in (28), (i.e. the terms multiplying A, B
and C). Note that the first three terms depend lin-
early on Ay, nps and hps. Hence, for small Ay, npyy
and hjps, asymptotically the error bound will also
be small. Theorem 2 requires that the Lipschitz
constant kg be sufficiently small (i.e. ks < a/M),
but then the result holds globally, i.e. for all e(0).
On the other hand, if Eq. (14) holds, then a similar
result may hold locally, see Lemma 2.

4. Global Results for Some
Special Cases

In this section we will apply the observer theory
given in the previous section to some class of sys-
tems and show that global synchronization results
may hold for the considered classes. For simplic-
ity, we suppress the dependence on the parameter
vector u throughout this section.

4.1. Systems in Lur’e form

We consider the class of systems having the struc-
ture shown in Fig. 1. Here L(s) represents the
transfer function of a linear time-invariant system
and n(-) : R — R represents a memoryless non-
linearity. This class of systems are called Lur’e
type systems and have been investigated by many
researchers (see e.g. [Vidyasagar, 1993]). It has
also been shown that a lot of systems in this type
exhibit chaotic behavior (see e.g. [Brockett, 1982;
Cook, 1986; Amrani & Atherton, 1989; Genesio &
Tesi, 1992]). Recently, in [Genesio & Tesi, 1992] a

(=0, 7 . y(t)

n(.)

Fig. 1. A basic feedback system (Lur’e system).
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conjecture for the existence of chaotic behavior in
this type of systems has been given.

Here we show that such a chaotic system can al-
ways be synchronized globally under some mild con-
ditions by modifying the observer given by Eq. (8).
To see that, assume that L(s) is a strictly proper
transfer function (i.e. limyy_.o0 |L(8)| = 0), and let
(A, B, C) be an observable realization of L(s),
ie. L(s) = C(sI — A)"'B. Such a realization is
always possible (see e.g. [Kailath, 1980]). Hence,
the system in Fig. 1 can be given by the following
equations:

% = Au — Bn(y),

y=Cu. (34)

For this system, we choose the following observer:
i=Al-Bn(y) +K(y~9), §=Ci. (35

where K € R" is chosen such that A, = A — KC
is stable. Since the pair (C, A) is observable, this
is always possible. From the Egs. (34) and (35), we
obtain the following error equation:

e=A.e.

Hence Eq. (10) holds globally. Note that here y
is the measurable output of the drive system given
by Eq. (34). The nonlinearity in Eq. (4) is in the
form g(u) = —Bn(y) in Eq. (34), hence can be
constructed from y. This is the rationale in us-
ing —Bn(y) in Eq. (35), instead of using —Bn(j)
[cf. Eqgs. (8) and (35)]. Note that the error equation
given above holds independent of the nonlinearity
n(-), hence the systems given by Eqs. (34) and (35)
synchronize exponentially fast, even if n(-) is not
Lipschitz (e.g. hysteresis-type nonlinearity). How-
ever, for the robustness of the observer, we still re-
quire Egs. (5)—(7). The results of the Theorem 2
hold, provided that the Egs. (5)—(7) are satisfied.
This could easily be proven by using the steps in
the proof of Theorem 2. B

4.2. Systems in Brunowsky
canonical form

In some cases, the local convergence result of the
Lemma 1 could be extended to global convergence
result, provided that the chaotic system given by
Eq. (4) has a special form. Assume that the system
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is in the form Eq. (4) with

01 0 0
0 0 1 0 0
A= : v glu)= 0 flu),
0 0 0 1 !
0 0 0 0
C=@1 0 - 0, (36)

where f : R®" — R is a differentiable function
and that g satisfies the Lipschitz property given
by Eq. (6). The form given by Eq. (36) is called
the Brunowsky canonical form, and is frequently
used in the control of nonlinear systems (see e.g.
[Vidyasagar, 1993; Ciccarella et al., 1993]). Since
the pair (C, A) is observable and g is Lipschitz, the
observer given by Eq. (8) could be used for global
convergence of error, provided that ky < a/M, see
Lemma 1. However, it was shown in [Ciccarella
et al., 1993] that for any k2 > 0, one can find
a feedback matrix K, such that Eq. (10) is sat-
isfied when the system is in Brunowsky canonical
form. Obviously this result still holds if the system
can be transformed into Brunowsky canonical form
by means of a diffeomorphic coordinate transforma-
tion. The details can be found in [Ciccarella et al.,
1993]. Here we give a procedure to select the desired
K, different than the one considered in [Ciccarella
et al., 1993].

For the design of the observer, choose A\; < 0
and A = YAy, A3 = Y2A1, ..., Ap = 4?1\, where

v > 1. Consider the following Vandermonde -
matrix:
PSP Vi 1
)\n—l /\‘-‘1—2 1
v=|" ? (37)
PUAE D TR |

It can easily be shown that the feedback matrix
K = (k1 kg --- kn)T can be appropriately chosen
so that

A, =A-KC=VAV, (38)

is satisfied, where A = diag(A1, Ag,..., An). Now
consider the error equation given by Eq. (9), whose

solution can be written as follows
e(t) = V1eMVe(0)

v [ NI Bf(ar) - fGatrlar

(39)
where B = (0 0 --- 1)7 and €A = diag(eM,
et ..., eM?). By taking the max. norm || - ||, (see

e.g. [Vidyasagar, 1993]), we obtain

lle)lloo < IV lloo 1V llooe™*“le(0) oo

t
+|v! IIoo/O Mk le(r) leodr
(40)

where we now assumed that Eq. (6) is satisfied with
the max. norm. Note that since in R"™ all norms
are equivalent, this only affects the Lipschitz con-
stant ky > 0. Also, in Eq. (40), we used the matrix
norm induced by the max. norm. By multiplying
both sides of Eq. (40) by e ™t using the Bellman-
Gronwall Lemma, we obtain

le()llso < IV oo IV [looe®1+521V 1)t (0) | oo
(41)

Now simple calculation shows that ||V~ = G(7)
for some rational function G(:), provided that
and |[Ai] are sufficiently large. Obviously once
v > 1 is chosen sufficiently big, then for any
a > 0 and ky > 0, one can choose A; so that
A+ k2|[V7 e < —a. Hence Eq. (10) is satis-
fied with M = [|V"!|]|V]lo and « given by the
inequality stated above.

Note that some chaotic systems are already in
the form given by Egs. (4) and (36), see e.g. [Tesi
et al., 1994; Alexeyev & Shalfeev, 1995], hence the
theory presented above can be directly applied for
such systems. Some systems may be transformed
into this form by a coordinate transformation z =
T(u) where T : R® — R™ is a diffeomorphism.
The details of finding such a transformation may
be found in [Ciccarella, 1993]. Here we emphasize
that for some systems this transformation may be
linear, i.e. T(u) = Tu for some invertible matrix
T € R™ ™ hence the required transformation is
quite simple. Now assume that the matrix A given



in Eq. (4) is in the following form:

*x a 0 0 .- 0
* o9 0 0
A= ,  (42)
* ok k% Qp—1
% % * % aen *

where the entries given by * are arbitrary, and
o; # 0fori =1,2,...,n—1. We also assume
that g has the form given in Eq. (36). Under these
conditions there exists a linear and invertible trans-
formation T € R™*™ such that after the transfor-
mation z = T, in the transformed variables the
system is given in the form Eqgs. (4) and (36). We
note that in this case the required transformation
has the form:

1 0 0 0o .- 0
* (a3] 0 0 : 0

T=| * * [e5Ke ) 0 . 0 s
* * * * Qg+ Qp—q

(43)

hence is always invertible. Hence, after this state
transformation, by using the procedure given above
global synchronization can be achieved. We sum-
marize these results in the following Corollary.

Corollary 1. Consider the system given by Eqs. (4)
and (36), where the matriz A is either in the form
given by Eq. (36) or by Eq. (42). Let the function f
in Eq. (36) satisfy the following Lipschitz condition
for some k > 0:

If(u1) = fluz)|| < kllur — uell,

Then there exists a K such that the systems given
by Egs. (4) and (8) synchronize globally and ezpo-
nentially fast, i.e. Eq. (10) holds.

Uy, Uy € R".

Example 3. (Rossler system) Consider the Rossler
system given below:

] =29 +azxy,
Ty = ~11 — I3, (44)
i3 =b— cx3 + xox3,
where the parameters ¢ > 0, b > 0 and ¢ > 0 are
chosen so that the system exhibits chaotic motion.
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This system may be written in the form given by
Eq. (4) where u = (z1 z2 z3)7,

a 1 0 0
A=|-1 0 -1], gu)= 0
0 0 -—c b+ za13

It can easily be shown that the selection of y =
e1x1+ 2z +c3xs, (l.e. C=(cy c2 c3)) yields the pair
(C, A) observable for almost all ¢1, ¢y and c3, pro-
vided that |e1]+ |ca] # 0. For actual values, Eq. (2)
should be checked. In particular, with the selec-
tion of y = z1 or y = z3, the corresponding pairs
(C, A) are observable, hence by choosing the feed-
back matrix K appropriately, the observer given by
Eq. (8) may achieve local synchronization. Note
that with the selection of y = x3, the correspond-
ing pair (C, A) is not even detectable, hence the
observer given by Eq. (8) could not be used for syn-
chronization with this output.

Consider the Rossler system given above. Note
that A given above is in the form given by Eq. (42).
By choosing the transformation:

21 = T,
29 = ar] + T2,
z3 = (a® = 1)z; + azy — 23,

the Rossler system can be transformed into the form
given by Eq. (4) and Eq. (36), where

f(2) = —ez1 + (ca—1)z2 + (a — ¢)z3 — az] — a2}

+ (a2 —1)z129 — @z123 + 2223 — b.

Since the function f given above is differentiable, it
follows that the Lipschitz condition Eq. (6) is sat-
isfied in any compact region. Since the Rossler sys-
tem exhibits chaotic behavior for certain values of
the parameters a, b and ¢, these chaotic solutions
are bounded by a compact region, and in this region
Eq. (6) is satisfied for some k3 > 0. An estimate of
ks can be found by using the Jacobian matrix, see
Remark 1. Hence by using the technique presented
above, an observer for which the synchronization
error satisfies Eq. (10) globally, can be designed.

Example 4. (Chua’s oscillator) We consider the
well-known Chua’s oscillator. This circuit is well
studied and is known to exhibit many forms of
chaotic behavior (see [Kennedy, 1993; Chua et al.,
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1993b]) and the references therein. The state equa-
tions for this circuit are given as

. 1
Iy = _Txl - Ixz s
1
T3 = —T1 — T2+ =23, (45)
Cy Cy Cy

. G G 1
T3y = amg - 51333 — af(:m) N

where 11 =13, 29 = v9, T3 = v1, G = %, see [Chua
et al., 1993b]. The nonlinear resistor (i.e. f(z3)) is
given by the characteristics ig = f(vg) where the
nonlinear function f : R — R is a three segment
piecewise linear function given as, (note that vgp =
z3), f(z3) = G223+0.5(G1 ~G2)(|z3+ E|—|z3— E|)
and G; < 0, G2 <0, E > 0 are some constants, for
details see e.g. [Chua et al., 1993b]. For this system,
we consider three possible outputs, y = z1, ¥y = z3
and y = z3, separately.

1. Assume that y = z; is used for synchronization
signal, (i.e. C = (1 0 0)). Note that the equations
given above are in the form given by Eq. (4), where
g(u)=—(00 l)TﬂC.L;f(xg). Note that g is also in the
form given by Eq. (36) and satisfies Eq. (6) globally;
in fact k2 = - max{|G1], |G2|}. Since the matrix
A for this system has the form given in Eq. (42),
by a linear transformation z = Tz, these equations
can be transformed into the form given by Eq. (4)
and Eq. (36). Since g satisfies Eq. (6) globally, by
using the technique given above, the synchroniza-
tion can be achieved globally, i.e. Eq. (10) holds for
any initial error e(0).

2. If y =z, (i.e. C = (01 0)), then the condition
in Eq. (2) implies that for this case the pair (C, A)
is observable if GL # RyC}, and under this con-
dition, the observer given by Eq. (8) may be used
for the local synchronization. Since the nonlinearity
is piecewise linear, Eq. (14) is not satisfied, hence
Lemma 2 cannot be used directly. But by exploiting
~ the structure of the equations and the nonlinearity,
the observer given by Eq. (8) could be used. To
see this, note that by using the linear part of the
nonlinearity f(z3), the last equation of the Chua’s
circuit given above can be rewritten as:

= Ex B G+ G
where fn(z3) = f(x3) — Gizs. With this new
formulation, the new pair (C, A) is observable if

1
T3 — afﬂ(x3) ’

(G + G1)L # RoC;. Moreover, since G + Gy < 0,
this condition is always satisfied with L > 0, C, > 0
and Ry > 0. The matrix A becomes unstable in
this case and we have f,(z3) = 0 when |z3] < E.
Hence Eq. (14) is satisfied locally with k2 = 0 in
(6). Hence by choosing a feedback gain matrix K
such that A— KC is stable, which is always possible
in this case, the observer given by Eq. (8) may be
used for local synchronization, and Lemma 2 may
be used.

3. If y = z3 is chosen as the output, (i.e. C =
(0 0 1)), then the Chua’s oscillator can be trans-
formed into Lur’e form (see [Genesio & Tesi, 1992]).
Hence, after reorganization of the equations, the
system can be put into the form given by Eq. (34).
It follows from Eq. (2) that the pair (C, A) is ob-
servable for G # 0, hence the observer given by
Eq. (35) can be used for global synchronization.
Note that in this case A is a stable matrix, hence
we could even choose K = 0. We note that this is
the synchronization scheme used in [Wu & Chua,
1993].

4.3. Forced oscillators

Consider the systems given by the following
equation:

g™ + F(z, &,..., 2™ V)= h(t), (46)
where z() represents the ith time derivative of z,
h(t) is a scalar forcing function. We assume that
F is a differentiable function of its arguments. This
class of systems covers a wide range of chaotic forced
oscillators such as Duffing equation, Van der Pol
oscillator, etc. By using the standard variables
Ty =12, Ty =%,...,2; =20 §=1,...,n, the
system given by Eq. (46) can be transformed into
the Brunowsky canonical form given by Egs. (4)
and (40). Hence by the techniques presented above,
global synchronization may be possible when we
choose y = z; as output.

5. Simulation Results

In this section we present some numerical simula-
tions of various chaotic systems.

In the first set of simulations, we considered the
chaotic system introduced in [Brockett, 1982]. The



system is in the Lur’e form in Fig. 1 with

1
L(s) = o—u
)= g 1255
~ky lyf <1
n(y) =< 2ky—3ksgny 1<y <3,
3k sgn y ly| > 3

with k = 1.8. Here, sgn denotes the signum func-
tion. This system can be put into the form given
by Eq. (34) with

0 1 0 0
A=|0 0 1|,B=|0}|,C=(100).
0 -125 -1 1

Flant and Observer States for the Brockett System

time

[¢] 5 10 15
time

Fig. 2. Synchronization in the Brockett system. The out-
put of the nonlinearity is calculated using the system output.

Gains are k; = -21-%, ko = %, ks = —%. Time in seconds.
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Here we have y = z; and f(y) = n(y). Note that
the matrix A is not stable since A = 0 is an eigen-
value, hence the feedback term K is necessary for
synchronization. Note that the pair (C, A) is ob-
servable. For the observer, we first considered the
observer given by Eq. (35) with the feedback gain
K = (2.9 0.55 —2.375)T. The simulation results
are shown in Fig. 2. We also considered the observer
given by Eq. (8) with the same feedback gain K, and
the results are given in Fig. 3. In both simulations,
we used the initial conditions in the drive system as
(1 =1 —0.1)T and in the observer as (=2 ~2 1),
Note that the initial error is ||e(0)]] = 4.383 in
this case, which is not particularly small. This

Plant and Observer States for the Brockett System

time

—=1F

-z}

% 5 10 15
time

Fig. 3. Synchronization in the Brockett system. The output

of the nonlinearity is calculated using the observer output.

Gains are k1 = 23, ky = 11, ks = —12. Time in seconds.
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example shows the importance of the feedback
term K.

In the second set of simulations we considered
the Rossler system given by Eq. (44) as the drive
system with parameters a = 0.2, b = 0.2 and
¢ = 5. For the output, we choose y = =z, i.e.
C = (1 0 0). For the observer, we considered the
observer given by Eq. (8) with the feedback gain
K = (10.2 17 —6)T. In the first simulation we as-
sumed the ideal conditions, (i.e. without measure-
ment noise and parameter mismatch) and the re-
sults are shown in Fig. 4. In the second simulation,
we assumed the measurement noise is not present

Plant and Observer Statas for the Rossler System

time

time

15

10} ---

g

% 5 10 15 20
time

Fig. 4. Synchronization in the Réssler system. Observer
has tl}e same parameters as those of the system, e = 4 = 0.2,

b=5b=02 ¢c=¢ =50 Gains are ky = %, ke = 17,
k3 = —6. Time in seconds.

but the parameters in the observer are changed to
a = 021, b = 0.19 and ¢ = 5.25. We used the
same feedback matrix K and the results are shown
in Fig. 5. Note that here we have ||Ayx| = 0.2503
and the largest change in the parameters is ap-
proximately 5%, which is not particularly small.
In the third simulation, we assumed that the pa-
rameters of the drive system and the observer are
the same, but the measurement is corrupted by a
bounded and uniformly distributed noise generated
by the computer. The noise magnitude is bounded
by 1073, We used the same feedback matrix K and
the results are shown in Fig. 6. As can be seen

Plant and Observer States for the Rossler Systemn

15
— %
10f o
R

-10

o 5 10 15 20
time
15

time

15

101

e S

o 5 t;I‘O 15 20
Fig. 5. Synchronization in the Rossler system. Observer
parameters differ from those of the system, a = 0.2, & = 0.21,
b=02b=019, ¢ =50, ¢ = 525. Gains are k1 = 2,
ko = 17, k3 = —6. Time in seconds.



from the simulations, the proposed observer is quite
robust with respect to parameter mismatch and the
measurement noise. It is not possible to show the
synchronization error in Fig. 6 because of the sig-
nal levels. The synchronization error has approxi-
mately the same bound as the noise, which is ex-
pected, and is shown in Fig. 7. In these simulations,
we used the initial conditions in the drive system as
(22 —2)T and in the observer as (—1 —3 3)7. Note
that the initial error is |e(0)|| = 7.68 in this case,
which is not particularly small. This example also
shows the importance of the feedback term K.

Plant and Observer States for the Rossler System

time

time

15 -

10¢

o

% 5 10 15 20
time

Fig. 6. Synchronization in the Rossler system. System out-
put is corrupted by a bounded noise of uniform distribution,
nt) <1073 a=02=a=025b=102=5b=02
¢ =50 =¢&=05.0. Gains are k; = %, ko = 17, k3 = —6.
Time in seconds.
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x 1 0-3 Error in states
5
e,
-»55 10 15 20
time
-3
5% 10
e
o "
—55 10 15 20
time
—3
5% 10 —_—
(=
[s] M
~5g 10 15 20

time

Fig. 7. Synchronization error in the Rossler system. System
output is corrupted by a bounded noise of uniform distribu-
tion, |n(t)| <1073, a=02=6=102,b=02=05 =02
¢ =50 =2¢&=>50. Gains are k1 = 5, ky = 17, k3 = —6.
Time in seconds.

In the last simulation, we considered Chua’s os-
cillator given by Eq. (45). In the simulations we
chose Rp = 0, which does not affect the chaotic be-
havior, but simplifies Eq. (45), [Chua et al., 1993b].
For actual values of the parameters to observe
chaotic behavior, see [Kennedy, 1993; Chua et al.,
1993b]. For these actual values, the parameters in
Eq. (45) may be too large, especially the Lipschitz
constant in Eq. (6) may be in the range of 106,
which causes problems in determining the observer.
To overcome this difficulty, we first scaled the time
and used T = ?%t as the new independent variable

and also scaled the variable z; by 1/G. After these
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changes, Eq. (45) now becomes:

i1 = —frs,
Ty =T1 — Te + T3,
T3 = axy —arz — & f(z3),

where a = 31 and 8 = . Following [Genesio &
Tesi, 1992], we choose the parameters as G1 = —0.8,
Gy =05 a=28 =11, FE=1and G = 0.7.
As is shown in [Genesio & Tesi, 1992], with these
parameters, the equations given above exhibit a

Plant and Obsarver States of the Chua Oscillator

—1F!
;

-2H

time

% 2 a 6 8 10
time

Fig. 8. Synchronization in the Chua’s oscillator. The out-
put of the nonlinearity is calculated using the observer output
which is corrupted by a bounded noise of uniform distribu-
tion, |n(t)] < 1072, and the observer parameters differ from
those of the system, a = & =8, 8 =11, ,6— 12.1. Gains are
ky = “9 y ke = E-l- , k3 =13, Tlme in seconds.

double scroll type chaotic behavior. For the feed-
back matrix, we choose K = (14.875 16.375 13)T
and the output is chosen as y = z3,i.e. C=(001).
Note that with this choice, A — KC' is a stable ma-
trix. In this case, the Chua oscillator is in the Lur’e
form given in Fig. 1, see [Genesio & Tesi, 1992], and
both the observer given by Eq. (35) or the standard
observer given by Eq. (8) could be used. We simu-
lated both cases and obtained good results. We re-
port only the results related to the observer given by
Eq. (8). We also assumed that the parameter § of

Error in states

time

0.2

o.1r

—-0.1
-0.2 - +
10 20 30 40 50
time
0.2— T —
g:c
0.1

—-0.11

=025 20 30 20 50
time

Fig. 9. Synchronization error in the Chua’s oscillator. The

output of the nonlinearity is calculated using the observer
output which is corrupted by a bounded noise of uniform
distribution, |n(t)| < 1072, and the observer parameters dif-
fer from those of the system, a = & = 8, g = 11, ﬁ = 12.1.
Gains are k) = 1]9 y ke = 131 , k3 = 13. Time in seconds.



the observer is changed to B = 12.1 and the param-
eter a is kept the same as in the drive system, i.e. as
% = 8. We also assumed that the measurement is
corrupted by a bounded and uniformly distributed

noise, and the bound on noise is 1073, The results .

are shown in Figs. 8 and 9. We see from Fig. 9 that
the errors are all bounded, only e; seems to be a
little bigger than the other error components. This
is basically due to the large change in the parameter
§ which is 10%. For smaller parameter changes, we
obtained smaller error. The reason to present these
particular simulation results is to show that the ob-
server presented here can tolerate relatively large
changes in the parameters, hence is quite robust.
Initial conditions are chosen as (0.1 0.1 0.1)7 in the
drive system and (=2 —2 —2)T in the response
system which implies that [|e(0)|| = 3.53, which is
not particularly small.

6. Conclusions

Most of the synchronized chaotic systems proposed
in the literature consist of two parts: A drive sys-
tem which generates the chaotic signals, and a re-
sponse system. Some signals called drive signals
are generated by the drive system and are used in
the response system to synchronize the common sig-
nals of both systems. In most of the cases, once
the drive system is given, the determination of the
response system and the drive signals are not sys-
tematic and one scheme proposed for a particular
drive system could not be easily generalized to an
arbitrary chaotic drive system.

In this paper we considered the observer-based
synchronization of chaotic systems. Observers are
widely used in systems and control theory to esti-
mate the states of a given system, hence may nat-
urally be used in the synchronization of chaotic sys-
tems. In this approach, once the chaotic drive
system is given in a form [see (4)], then the response
system could be chosen as an observer [see (8)], pro-
vided that the output corresponding to the selected
drive signal satisfies some conditions (i.e. observ-
ability or detectability, see Theorem 1, Remark 3).
These conditions are not very restrictive and are
satisfied by most of the chaotic systems (see
Lemma 2, Remark 2). Then we stated a general re-
sult on the local synchronization of the drive system
and the observer (see Lemma 1). We also stated a
global convergence result, provided that the system
could be transformed into a special form. We also
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showed that some of the existing schemes for the
synchronization of chaos are related to the observer
based synchronization proposed in this paper. We
also presented some numerical simulation results for
the Lorenz, Rossler systems and Chua’s oscillator,
which are known to exhibit many forms of chaotic
behavior.

We note that the form of the observer given
in this paper is not the only possible form. There
are many observer design techniques and some of
them may give better results in the synchronization
of chaotic systems. This point requires further re-
search and the results will be presented elsewhere.
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