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ABSTRACT 
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A series of mesostructured salt-silica-two surfactants (salt is [Zn(H2O)6](NO3)2, 

ZnX or [Cd(H2O)4](NO3)2, CdYand surfactants are cetyltrimethylammonium bromide 

(CTAB) and 10-lauryl ether, C12H25(OCH2CH2)10OH, C12EO10) thin films were 

synthesized by changing  the Zn(II) or Cd(II)/SiO2 mole ratios. The films were prepared 

through spin coating of a clear solution of all the ingredients (salt, CTAB, C12E10, silica 
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source (tetramethyl orthosilicate,TMOS, and water) and denoted  as meso-silica-ZnX-n 

and meso-silica-CdY-n, where n is Zn(II) or Cd(II)/SiO2 mole ratios. The synthesis 

conditions were optimized by using the meso-silica-ZnX-1.14 and meso-silica-CdY-1.14 

films and XRD, FT-IR spectroscopy, POM and SEM techniques. The stability of the 

films, especially in the high salt concentrations, was achieved above the melting point of 

salts. Slow calcination of the films, starting from the melting point of the salt to 450 
o
C 

has produced the mesoporous silica-metal oxide (ZnO and CdO) thin films, and denoted 

as meso-silica-ZnO-n and meso-silica-CdO-n, with n of 0.29, 0.57, 0.86, 1.14, and 1.43. 

The calcination process was monitored by measuring the FT-IR spectra and XRD 

patterns at different temperatures. Structural properties of the mesoporous films have 

been investigated using FT-IR spectroscopy, XRD, N2 sorption measurements, UV-Vis 

spectroscopy, SEM, TEM and EDS techniques. It has been found that the meso-silica-

ZnO-n and meso-silica-CdO-n films consist of nanocrystalline metal oxide nanoplates 

on the silica pore walls of the mesoporous framework. The formation of nanoplates of 

metal oxides was confirmed by etching the silica walls using diluted HF solution and by 

reacting with H2S and H2Se gases. The etching process produced CdO nanoplates 

without silica framework. The H2S and H2Se reactions with the CdO nanoplates or 

meso-silica-CdO have converted them to CdS and CdSe nanoplates or meso-silica-CdS 

and meso-silica-CdSe, respectively. Finally, a hypothetical surface coverage of metal 

oxide nanoplates has been calculated by combining the data of N2 sorption 

measurements, UV-Vis spectroscopy and TEM images and found that there is a full 

coverage of CdO and partial coverage of ZnO over silica walls in the meso-silica-CdO-n 

and meso-silica-ZnO-n thin films, respectively. 

 

Keywords: Mesoporous ZnO, Mesoporous CdO, Mesoporous silica, Thin Films, 

Lyotropic liquid crystals.  
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Bu çalışmada, bir seri mezoyapılı tuz-silika yüzeyaktif içeren (tuz 

[Zn(H2O)6](NO3)2, ZnX veya [Cd(H2O)4](NO3)2, CdY dir ve  yüzeyaktifler 

setiltirimethilamonyum bromür (CTAB) ve 10-löril eter,  C12H25(OCH2CH2)10OH, 

C12EO10 dur) ince film Zn(II)/SiO2 veya Cd(II)/SiO2 mol oranı değiştilerek sentezlendi. 

Filmler, spin kaplama yönetemi ile bütün girdileri (tuz, CTAB, C12E10, silika kaynağı 

(tetrametilortosilikat,TMOS, ve su) içeren şeffaf çözeltiler kullanılarak hazırlandı ve 

mezo-silika-ZnX-n ve mezo-silika-CdY-n (n Zn(II)/SiO2 ve Cd(II)/SiO2 mol oranıdır) 
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olarak isimlendirildi. Sentez koşulları,  mezo-silika-ZnX-1.14 ve mezo-silika-CdY-1.14 

filmleri kullanılarak ve  XRD, FT-IR, POM ve SEM teknikleri ile detaylı bir şekilde 

incelenerek optimize edildi.  Filmlerin kararlılığı, özellikle yüksek oranlarda, tuzların 

erime sıcaklığı üstünde tutulmasıyla sağlandı. Filmlerin yavaş ve tuzun erime 

noktasından 450 
o
C ye kadar ısıtılmaları mezogözenekli silika-metal oksit (ZnO ve CdO) 

ince filmlerini üretti ve elde edilen filmler mezo-silika-ZnO-n ve mezo-silika-CdO-n 

olarak adlandırıldı (n 0.29, 0.57, 0.86, 1.14, ve 1.43 olarak değiştirildi). Isıtma aşaması  

FT-IR tayfları ve XRD desenleri değişik sıcaklıklarda ölçülerek takip edildi. Elde edilen 

mezogözenekli filmlerin yapısal özellikleri  detaylı olarak FT-IR spektroskopi, XRD, N2 

sorpsiyon ölçümleri, UV-Vis spektroskopi, SEM, TEM ve EDS teknikleri ile incelendi. 

Mezo-silika-ZnO-n ve mezo-silika-CdO-n filmlerinin silika duvar  yüzeylerinin metal 

oksit nano-plakaları ile kaplandığı saptandı. Sentez esnasında metal oksit nano-

plakaların oluşumu silika duvarların seyreltik HF çözeltisiyle aşındırılarak ve filmlerin 

H2S ve H2Se gazları ile tepkimeye sokularak doğrulandı. Kimyasal aşındırma sonucu 

metal oksit nano-plakalar elde edildi. Ayrıca, mezogözenekli yapıdaki bütün metal oksit 

nano-plakaların H2S ve H2Se ile tepkimeleri sonucu metal sülfür ve metal selenür 

dönüştürüldüğü gösterildi. Son olarak, metal oksit plakaların silika duvarlarını kaplama 

yüzdesi varsayımsal olarak hesaplandı. Hesaplar sonucu, ZnO’in yüzeyin yarısını CdO 

ise tüm yüzeyi kapladığı saptandı. 

 

Anahtar Kelimeler: Mezogözenekli ZnO, Mezogözenekli CdO, 

Mezogözenekli silika, İnce Filmler, Liyotropik Sıvı Kristaller 
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1 INTRODUCTION 

In the last few decades, chemists, material scientists and engineers have focused 

on developing new and functional inorganic materials for various applications. The 

motivation behind these studies is that most chemical reactions and charge transfer 

processes occur on the surface of the solid materials. The nanoscale materials are high 

surface area materials. One synthesis approach to obtain high surface area materials is 

the synthesis of porous materials that can be classified according to their pore size: 

microporous (≤ 2 nm), mesoporous (2-50 nm) and macroporous materials (≥50 nm) (2).  

The most known examples of microporous materials are zeolites that have 

crystalline framework consisting of SiO4 and AlO4
- 

tetrahedral units, called 

aluminosilicates. (3) The tetrahedral arrangement of building units provides uniform and 

regular cages with small sized channels connecting each other. The cages generally have 

diameter of less than 14.2 Å and high surface area that makes them very important in 

many applications, such as chemical drying, shape selective separation,(4) shape 

selective heterogeneous catalysis,(5) and selective ion exchanger.(6) Despite usefulness 

in all of these applications, the microporosity in zeolites can have some drawbacks.(7) 

For example, the pores of zeolites are not accessible for the reactions if the reactants and 

products are larger than these pores. In addition, the pores of zeolites can be occluded by 

the products and this adversely affects the conversion efficiency of zeolitic catalysts. 

Therefore, in order to eliminate these kinds of drawbacks, materials having larger pores 

than traditional zeolites are needed. 

 

1.1 The Inception of Mesoporous Materials 

Mesoporous materials have pore size distributions between 2 nm and 50 nm that 

are suitable for attaining high surface area and eliminating the drawbacks of 

microporous materials. Silica is a good candidate as a framework for mesoporous 

materials due to its well-known chemistry, chemical stability, ability to be functionalized 

and biocompatibility. The first example of mesoporous silica materials were 

demonstrated by Japanese researchers in 1990.(8) Alkyltrimethylammonium–kanemite 
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complexes form three dimensional silica framework that resists to calcination process to 

remove the organic species, leading to mesoporous silica. Since the discovery of M41S 

family (MCM-41, MCM-48, and MCM-50)(9) that are synthesized using surfactants as a 

template, the templated siliceous periodic mesoporous materials have been extensively 

studied. Scientists had carried out comprehensive research to control the pore size, pore 

geometry, morphology and functionalization of pore walls of mesoporous silica 

powders. On the other hand, because of the limitations of use of mesoporous powders in 

many applications, many new synthesis protocols have been introduced to the literature 

to make mesoporous materials on a desired substrate as thin films. 

 

1.1.1 Mesoporous Silica Powders 

The general route to synthesize surfactant templated mesoporous silica powders 

is based on self-assembly of surfactant, above its critical micelle concentration (CMC), 

and silica precursors in an acidic or basic aqueous media. The type of surfactants 

(cationic, anionic or neutral), surfactant chain length and concentration, solvent and type 

of silica precursor are important in the control of morphology, pore size, surface area, 

pore volume and wall thickness of the mesoporous materials. 

The first examples of mesoporous silica, known as M41S family were reported 

by Mobil scientists in 1992.(9) In the M41S family, the initial composition of charged 

cationic surfactant (cetyltrimetyl ammonium bromide (CTAB)) and 

tetraethylorthoslicate (TEOS) in optimized pH were altered in order to determine the 

structure of the final material such as hexagonal MCM-41, cubic MCM-48, lamellar 

MCM-50 as indicated in Figure 1.1.1.(10) Among the M41S family, the most popular 

one is the MCM-41 with a 2-D hexagonal structure with cylindrical 2-D pores through 

the particles, and belongs to p6mm space group.(11) The pore size distribution is in the 

range of 4 to 6 nm with about 1 nm wall thickness leading to higher than 1000 m
2
g

-1
 

surface area.  
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Figure 1.1.1 Schematic representation of M41S family with different structures 1) 

bicontinuous cubic, 2) 2D hexagonal, and 3) Lamellar. . 

Other types of mesoporous ordered or disordered silica with different 

morphologies were further developed by changing surfactant type. SBA-n series were 

prepared by using cationic charged surfactant or nonionic surfactants in acidic 

media.(12-15) The SBA-15, which is the most important among the SBA-n family, has 

2-D hexagonal arrangement of pores, prepared using a triblock copolymer 

(EO20PO70EO20, P123).(16),(17) The pore size of SBA-15 is larger than that of MCM-

41. In addition, the wall thickness is so thick (around 20 nm) that it provides extra 

thermal stability.  Other members of SBA-n family, SBA-1 and SBA-6 have cubic, 

mesoporosity synthesized by using charged surfactants under acidic or basic 

conditions.(18, 19)  

1 2 

3 
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1.2 True Liquid Crystal Templating (TLCT) Method 

The mesoporous silica particles, like MCM-41 and SBA-15 are synthesized at 

surfactant concentrations above CMC. However, silica monolith with an ordered pore 

structure could not be synthesized in dilute conditions. Attard and coworkers introduced, 

for the first time, a novel method that uses liquid crystalline region of a surfactant and a 

silica precursor for the synthesis of silica monoliths.(20) They utilized the liquid 

crystalline phase of nonionic, oligo(ethylene oxide) surfactant of 

C16H33(OCH2CH2)8OH, (represented as C16EO8) in the presence of a silica precursor. 

The hydrolyzed silica precursor (tetramethylorthosilicate, TMOS) by acid was 

impregnated into liquid crystalline phase. After polymerization of hydrolyzed silica 

precursor and removal of surfactant, a crack-free mesoporous silica monolith with a 2D 

hexagonal pore structure can be obtained: that is a negative copy of liquid crystalline 

phase. This method is known as true liquid crystal templating method (TLCT) and is 

illustrated in the Figure 1.2.1. 

 

 

  

  

 

 

 Mesoporous silica monoliths with various structures can be obtained via TLCT 

by altering the liquid crystalline phase with different surfactants, compositions and 

additives.(21, 22) However, this method always produces thicker films or monoliths. 

H2O Silica Silica 

Figure 1.2.1: The illustration of true liquid crystalline templating method. The 

formation of liquid crystalline phase of surfactant (left),  inclusion of inorganic 

precursor to liquid crystal phase (middle), and polymerization of inorganic precursor 

to solid matrix and removal of surfactant (right). 
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Therefore a new approach is necessary to investigate the thin film technologies of 

mesoporous materials. There are many publications on the synthesis of mesoporous 

silica thin films. (23),(24) The most attractive and widely investigated method is the 

evaporation induced self-assembly (EISA) that is also applicable to other mesostructured 

metal oxides.(25) 

 

1.3 Evaporation Induced Self Assembly (EISA) Method 

In order to overcome the drawbacks of TLCT method, as mentioned above, 

Brinker and coworkers have introduced, for the first time, the EISA method providing 

rapid formation of self-assembly of surfactant and inorganic moiety with a prefect, 

oriented replica of liquid crystal template.(25) The self-assembly of surfactant and 

inorganic moiety occurs at the same time and this provides a homogenous distribution of 

surfactant and inorganic precursors. 

A typical phase diagram of a CnEOm-H2O is showed in Figure 1.3.1. Notice that 

the surfactant molecules at low concentration form homogenous solution in an aqueous 

media. Above the CMC, they start to aggregate and to create micelles by the help of 

attractive (hydrophobic) and repulsive (hydrophilic) domains of surfactant and water. 

Furthermore, at higher concentration of surfactant and adequate temperature, the liquid 

crystalline phase with different structures can be formed according to surfactant 

percentage and temperature, such as cubic, hexagonal and lamellar. (26)  
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Figure 1.3.1: The phase diagram of C12EO8 and water: bicontinuous cubic 

(V1), normal hexagonal (H1), micelle cubic (I), micelle (L1). (27) 

The assembly process starts in a homogenous solution of surfactant and 

inorganic precursor with large amount of easily volatile solvent having low viscosity. 

Generally, dip coating of this solution over a substrate produces monoliths (28, 29) or 

films.(30) The substrate, dipped into above solution is generally pulled upwards with 

constant rate;  the evaporation of volatile solvent starts in the upper parts of 

substrate.(31) After evaporation of the solvent, a homogenous liquid crystalline phase 

starts forming on the surface of the substrate with the concentration of surfactant over 

time, as illustrated in Figure 1.3.2. The inorganic precursor in the LLC mesophase 

polymerizes and eventually solidifies the film into an ordered organic-inorganic 

mesostructures, in the aging step. The mesoorder of this liquid crystalline phase depends 
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on the dip coating rate and initial concentration of surfactant and inorganic 

precursor.(25) The surfactant molecules can be removed from the structure by either 

calcination or washing with a proper solvent.  Moreover, the EISA process can also be 

operated by spin and spray coating methods.(32) In conclusion, the EISA process is a 

crucial and facile method for the synthesis of mesoporous silica, and also for some metal 

oxides thin films. 

 

 

Figure 1.3.2: The schematic representation of Evoparation Induced Self Assemly (EISA) 

process.(33) 

1.4 Mesoporous Transition Metal Oxides 

Perhaps, the most studied and well-understood known mesoporous material is 

mesoporous silica owing to easy and well-known sol-gel chemistry of silica. However, 

mesoporous other metal oxides are more attractive than mesoporous silica because of 

great interest on their applications, as heterogeneous catalysts, photovoltaic devices, 

sensing, photocatalysts and biological applications.(34-37) Yet, the synthesis of 

mesoporous metal oxides is quite difficult compared to mesoporous silica. The first 
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difficulty is the reactivity of metal oxide precursor that makes the control of the 

polymerization step of metal oxide precursor more difficult.(38) In addition, during the 

calcination process, the pores may collapse due to redox reactions, phase transformation 

and crystallization. Despite those difficulties, chemists have developed some synthesis 

protocols to synthesize mesoporous metal oxides. 

1.5 The EISA Process for Synthesis of Mesoporous Metal Oxides 

The EISA process is also a powerful method for the synthesis of mesoporous 

films and monoliths. The first examples of mesoporous metal oxides, such as TiO2, 

ZrO2, Nb2O5, Ta2O5, Al2O3, SnO2, WO3, HfO2, and mixed oxides SiAlOy, Al2TiOy, 

ZrTiOy, SiTiOy, and ZrW2Oy via EISA process, were demonstrated by Stucky and 

coworkers.(39, 40) Like the synthesis of mesoporous silica by EISA method, the 

mesoporous metal oxides were synthesized by using liquid crystalline templating from a 

dilute solution of surfactant and proper metal oxide precursor in a proper solvent. The 

EISA of surfactant and metal oxide precursor results a mesostructured solid upon 

evaporation of the solvent. Obtaining a stable metal oxide solution with a proper solvent 

is very important. The transition metal chlorides, MCl4, are stable in ethanol in the 

presence of hydrochloric acid, due to the formation of stable chloroalkoxy complexes of 

metals. Fortunately, less reactive metal oxide precursors, like metal alkoxides (M(OR4)), 

could be used to better control on the synthesis of mesoporous metal oxides.(41) Co-

assembly of metal complexes using pluronics, such as P123 (HO(CH2CH2O)26-

(CH(CH3)CH2O)70-(CH2CH2O)26H, EO26PO70EO26), and provides large pores with 

thicker metal oxide walls that can be crystallized upon calcination. Note that smaller 

surfactants cause the collapse ordered pore system upon calcination. The EISA process 

of mesoporous metal oxides is schematically represented in Figure 1.5.1. 

Slow condensation of metal oxide precursor in the solution is very important to 

obtain a mesostructured framework. Metal alkoxides, such Ti(OR)4, condenses itself into 

titania, TiO2, in an acidic and humid environment. For a better controlled condensation 

of metal oxide precursor, bidentate ligands have been used.  Bidente ligands such as 

carboxylate and nitrates are useful in the condensation and crystallization of the 

precursors owing to the formation of linkage among metal species.  
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The EISA method has been employed by several groups for the synthesis of 

various mesoporous metal oxides and mixed metal oxides.(42-48) Most of the 

synthesized mesoporous metal oxides and mixed metal oxides by EISA method are 

limited to early transition metals (Ti, Ta, Nb, Zr and etc.). Alkoxides of late transition 

metals (Fe, Ni, Co, Zn, Cd and etc.) with more d electrons are very reactive that makes 

the EISA method very difficult. The high reactivity results in an uncontrolled 

condensation and formation of bulk metal oxides. However, some transition metal 

oxides, such as Fe2O3 (49), CrOx(50) and NiO (51) have been synthesized via EISA 

method. In the synthesis of mesoporous Fe2O3 and CrOx , the metal precursors are their 

nitrate salts. The nitrate ion can coordinate to metal ion and also bridge two or more 

metal complexes in non-aqueous solution. This provides a slow condensation of metal 

precursor to metal oxide framework. However, the EISA method has some drawbacks in 

the synthesis of mesoporous transition metal oxides; i) since the gelation and 

Figure 1.5.1: The schematic representation of EISA for the synthesis of 

Mesoporous metal oxides; a) the EISA process and b) the stabilization of metal oxide 

precursor. 

b) The Stabilization of Transition Metal Oxide Precursor (TMO) Condensation 
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condensation step takes long such as 7- 14 days, it is not a facile method and ii) the 

crystalline walls are too thick (about 10 nm), causing a decrease in the surface area.  

1.6 Nano-casting of Metal Oxides 

Nano-casting method is a hard templating method, which is an alternative 

synthesis protocol for the synthesis of several mesoporous metal oxides with different 

pore topologies.(52-57) The nano-casting method has been applied for the synthesis of 

mesoporous metal oxides, as listed in Table 1.6.1. 

The type of hard template and pore 

topology for nano-casting 

Mesoporous Metal Oxides 

SBA-15, 2-D hexagonal silica (p6mm) CeO2(58-60) Co3O4(61-64), Cr2O3(58, 65-

67),Fe2O3(58), MnO2(68, 69),NiO(58) 

KIT-6, cubic (Ia3d) silica  

 

CeO2(59) (70), Cr2O3 (71) (66),  

Fe3O4 (72), In2O3 (73)  

SBA-16 cubic (Im3;m) silica  

 

Co3O4 (74) (58), 

 In2O3 (58) 

2D hexagonal (p6mm) carbon 

 

CuO (75), MgO (76), 

ZnO (77) 

 

Table 1.6-1: The summary of some mesoporous metal oxides via nano-casting 

The nano-casting synthesis protocol involves three steps: i) inclusion of proper 

metal oxide precursor into the pores of hard templates, ii) conversion of metal oxide 

precursor in the mesopores to metal oxide upon calcination under ambient conditions, 

and iii) removal of the hard template. Common hard templates for the nano-casting route 

are mesoporous silica (SBA-15 and SBA-16) and mesoporous carbon. Nanocasting 

process, through using mesoporous silica for the synthesis mesoporous metal oxide, 

results in inverse replica of the mesoporous silica hard template. This means that the 

pores of the hard template are filled with the metal oxide during the calcination step and 

then the silica walls are removed to form mesoporous metal oxides. In SBA-15, the pore 
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structure is 2-D hexagonal and pores are connected to each other with micro channels. 

Therefore, even after the removal of silica walls, the metal oxide rods are connected to 

each other via micro rods leading to continuous, bridged metal oxide rods. The SBA-16 

has a 3-D cubic pore topology that makes it more appropriate to obtain continuous 

mesoporous framework after removal of the silica template. Herein, the main trick for 

the synthesis of mesoporous metal oxide is the choice of mesoporous silica hard 

templates with thicker walls.   

 In order to obtain mesoporous metal oxide with true porous topology like in 

mesoporous silica, a better hard template is mesoporous carbon. The mesoporous carbon 

can be synthesized via nano-casting by using mesoporous silica (SBA-15). Therefore, 

the pores of mesoporous silica are filled with carbon, by decomposing carbon species in 

the pores, then the silica walls are etched out. This provides that the mesoporous metal 

oxides will have a true mesopore topology like in mesoporous silica after nano-casting 

step.  These two path ways of nano-casting using mesoporous carbon and silica to create 

mesoporous metal oxides are schematically represented in Figure 1.6.1. 
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A key factor in nano-casting method is impregnation of metal precursor into 

pores of mesoporous silica with an efficient filling.  The metal nitrate salt in a proper 

Mesoporous Silica 

SBA-15, SBA-16.. 

Path 1 

Mesoporous 

Carbon 

Mesoporous 

Metal Oxides 

Path 2 

Mesoporous 

Metal Oxides 

Figure 1.6.1: The schematic representation of two different paths of nano-casting for the 

synthesis of mesoporous metal oxides 
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solvent is mixed well with mesoporous silica and then the solvent is evaporated. 

However, the impregnation method does not always provide efficient inclusion of metal 

nitrates into of the mesoporous silica.  One strategy for an efficient pore filling uses 

mesoporous silica, in which the surfactant has been removed using microwaves.(78) The 

silanol groups on the surface of the pore can be kept during the calcination step and this 

enhances the filling rate of metal oxide precursor into pores in polar solvent. Another 

strategy for an efficient pore filling is functionalization of silanol groups with proper 

chelating ligands. Schüth and coworkers have used 2-dimensional hexagonal SBA-15 

silica that is functionalized with vinyl groups for the synthesis of mesoporous 

Co3O4.(79) Vinyl groups can complex with Co
2+

 cations and facilitate the successful 

impregnation of metal salts into pores of SBA-15. An amino functionalized SBA-15 has 

also been used for the synthesis of mesoporous Cr2O3 and WxOy by using acidic 

solutions of K2Cr2O7 and H3PW12O40, respectively.(65, 66, 80) Another effective 

strategy in the literature is usage of molten metal salts without a solvent(74) (metal 

nitrates generally melt at low temperatures). In all of these strategies, the repetitive 

loadings is necessary in order to increase loading of metal oxide precursor in the 

mesopores, however, this may cause undesired formation of bulk metal oxide outside of 

mesoporous silica.  

Despite the fact that a 100 % pore filling cannot be accomplished, after 

calcination process to convert metal oxide precursor to metal oxide, the metal oxides 

could not fill all the pores of mesoporous silica. There is a huge density difference 

between metal oxide precursors and metal oxides. This causes a large volume 

contraction. The general choice of metal oxide precursor for nanocasting method is 

metal nitrates. (19) that usually have low decomposition temperature. For example, the 

melting point of [Zn(NO3)2].6H2O is only 35.5 
o
C and its density is only 2.065 g/cm

3
 but 

the density of ZnO is quite high, 5.606 g/cm
3
. If one mole [Zn(NO3)2].6H2O is converted 

into one mole ZnO, the volume of zinc salt is decreased to its 10.1% . This means that 

the voids of mesoporous silica, totally filled with zinc nitrate hexahydrate, will only coat 

silica surface and only block 10.1% of the pore volume. Some other metal nitrates and 

their volume contraction are listed in Table 1.6.2. This enormous volume contraction of 

metal precursor is an important drawback for the synthesis of mesoporous metal oxides 
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through nanocasting method. Therefore, homogenous formation of mesoporous metal 

oxide over mesoporous silica may become impossible by using mesoporous silica or 

mesoporous carbon as a hard template. Furthermore, the multiple inclusions of metal 

oxide precursors into mesoporous silica to increase the degree of filling may not work 

well because of occlusion of the pores in the previous trials. 

 

Precursor Target material 
Percentage Of Volume 

Contraction (%) 

Fe(NO3)3  9H2O Fe2O3 93.66 

Cu(NO3)2  3H2O CuO 87.91 

Zn(NO3)2  6H2O ZnO 89.90 

Cd(NO3)2  6H2O CdO 87.99 

Co(NO3)2  6H2O Co3O4 93.46 

Mn(NO3)2  6H2O MnO2 89.23 

Cr(NO3)3  9H2O Cr2O3 93.44 

 

Table 1.6-2: The summary of some transition metal nitrates and their volume contraction 

After the conversion of metal oxide precursor to metal oxide, the removal of hard 

template, mesoporous silica or mesoporous carbon, is necessary to obtain mesoporous 

metal oxides. The silica walls can be etched by NaOH or HF solutions.(51, 53, 58, 72, 

74) If mesoporous carbon was used as a hard template, the carbon walls can be removed 

by calcination at 500-700 
o
C.(75) However, mesoporous carbon as a hard template may 

be an advantage for the synthesis of some mesoporous metal oxides, such ZnO(77) and 

MgO(81), compared to mesoporous silica. Because the HF or NaOH solution etches 
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these kinds of metal oxides due to their amphoteric character, and result a collapse of 

mesostructure.  

In addition, nanocasting method is more applicable for the synthesis of 

mesoporous metal oxide powders rather than thin films. For the heterogeneous catalysis, 

it is important to produce large scale mesoporous catalyst with a high surface area.(52, 

55) However, many applications, such photovoltaic applications, are based on thin film 

technologies.(82, 83) 

1.7 Solid State Grinding Method 

The nanocasting method for the synthesis of mesoporous metal oxides is quite 

time consuming and contains lots of steps (preparation of hard template, inclusion metal 

oxide precursor, condensation and template removal). Therefore, elimination of even 

one step, in nanocasting method, would be a great advantage for the synthesis of 

mesoporous metal oxides. In addition, the nanocasting method does not produce 

homogenous and continuous mesoporous frameworks. Wang and coworkers developed a 

novel method, in which a metal oxide precursor without a solvent is incorporated into 

the as-prepared mesoporous silica. Calcination results in a homogenous coating of pore 

surface with the metal oxides and removal of the surfactant.(84) This method has been 

employed to several metal oxides, such as MgO, CuO and ZnO. (84-88) In general, as-

prepared mesoporous silica is grinded together with a metal nitrate salt without a 

solvent; the metal nitrate salt is incorporated into as-prepared mesoporous silica without 

any extra drawing force. Presence of surfactants inside the pores prevents  the formation 

of nanorods ; instead formation of nanoparticles covering the surface of silica was 

enhanced. The schematic representation of solid state grinding method is shown in 

Figure 17.1. 
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The solid state grinding method is a less time consuming and a facile synthesis 

method compared to nanocasting method. However, the volume contraction problem 

still exists as in the nanocasting method and limits the surface coverage of the pores. In 

addition to this, loading of the metal oxide precursor, metal nitrate, is less than that in 

nanocasting method. To illustrate, this method has been employed to coat mesoporous 

SBA-15 with CuO with a coverage of only 15% of the surface of silica walls; authors of 

this work also mentioned that they observed pore blocking in some parts of mesoporous 

silica.(84) Therefore, a more efficient loading and conversion method is required to 

Silica Surfactant 

As-prepared mesoporous silica 

Silica Surfactant 

Metal Salt 

Metal salt-incorporated mesoporous 

silica 

Grinding 

Metal oxide coated mesoporous 

silica 

Silica 

Metal 

Oxides 

Figure 1.7.1: The schematic representation of solid state grinding method 
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enhance the metal oxide loading with a uniform distribution in the pores of mesoporous 

silica, specifically as thin films for advanced applications. 

1.8 Lyotropic Liquid Crystalline (LLC) Mesophases of Transition Metal Salts  

Liquid crystals are divided into two groups; thermotropic liquid crystals and 

lyotropic liquid crystals. While thermotropic liquid crystals are a kind of ordered 

assembly of molecules that shows a phase transformation with temperature change, the 

phase of lyotropic liquid crystals depends on a second component (solvent) and 

temperature. By using lyotropic liquid crystalline (LLC) templating method (know as 

true liquid crystalline templating, TLCT, method), different types of mesoporous 

materials have been synthesized as mentioned in the previous chapters. 

Dag et al. have introduced a new type of LLC mesophase in which the transition 

metal aqua complexes act as a solvent and form the LLC mesophases with 

oligo(ethylene oxide) surfactants (C12H25(CH2CH2O)10OH, C12E10).(89) Herein, they 

showed that the coordinated water molecules of the transition metal aqua complexes 

direct the self-assembly of surfactant molecules into hexagonal or cubic mesostructures 

with the help of hydrogen bonding (between ethylene oxide groups of the surfactant and 

coordinated water of aqua metal complex). The hexagonal LLC mesophase of 

[Zn(H2O)6](NO3)2 −C12EO10   is stable up to 70 w/w % (weight of salt over total weight 

percent) at RT. A schematic representation of this self-assembly in a hexagonal packing 

and its characteristic fan texture of hexagonal phase are shown in Figure 1.8.1.  
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Figure 1.8.1: a) A POM image of [Cd(H2O)4](NO3)2 in C12H25(CH2CH2O)10OH and b) a 

schematic representation of a hexagonal LLC phase, the small circles represent metal 

complexes and NO3
−
 ions.(89) 

 

 The thermal and structural properties and behaviors of this novel LLC phases 

have been investigated in detail using different surfactants and transition metal salts.(90-

94) One of the important improvements in the salt-surfactant LLC mesophases is the 

addition of a charged surfactant, CTAB or SDS together with C12EO10. This resulted an 

increase in the metal salt, [Zn(H2O)6](NO3)2, content, up to  8 metal ion/C12EO10 mole 

ratio.(94) The charged surfactants balance the surface charge of the salt species in the 

hydrophilic domains; as a result, stabilize the mesophase at very high metal ion/C12EO10 

mole ratios. The first phase diagram of [Zn(H2O)6](NO3)2 and C12EO10 system is shown 
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in Figure 1.8.2.(90) The new mesophase is stable below 0 
o
C. Moreover, they concluded 

that the zinc nitrate hexahydrate salt is in the molten phase in confined hydrophilic 

domains of the LLC mesophase and organize the surfactant molecules into mesophase. 

This discovery is an important step for both understanding the origin of the 

salt:surfactant LLC mesophases and designing new materials by using these phases. 

 

Figure 1.8.2: The phase diagram of [Zn(H2O)6](NO3)2 and C12EO10 system:  

bicontinuous cubic (V1), normal hexagonal (H1), micelle cubic (I), micelle (L1).(90) 

1.9 ZnO Nanoparticles and Mesoporous ZnO 

ZnO is a n-type and wide band gap semiconductor with band gap of 3.37 eV and 

an exciton (e-h pair) binding energy of 60 meV. These properties make ZnO unique in 

many applications as a piezoelectric materials, UV light-emitting diodes, lasers, 

photovoltaic solar cells, UV-photodetectors, gas-sensors, and varistors.(95-98) For many 

applications of ZnO that require high surface area, the synthesis of mesoporous ZnO is 



21 

 

also very important.(83, 99) To the best of our knowledge, only one example of 

mesoporous ZnO prepared by EISA method was demonstrated by Schüth and 

coworkers.(100, 101) They have used a special organometallic single-source precursor 

for the controllable condensation of ZnO precursor. The mesoporous ZnO has also been 

prepared through nanocasting method.(102) Generally, ZnO nanoparticles were 

embedded into mesoporous silica to obtain high surface area ZnO without particle 

aggregation through solid state grinding method,(103) templating chelating ligand (104) 

and functionalization of silica walls (105). However, all these methods do not ensure 

high loading of zinc oxide into mesoporous silica.  

In this thesis, we have developed a novel synthesis protocol for mesoporous 

silica–metal oxide (ZnO and CdO) thin films. In this method, two surfactants (a charged 

surfactant, CTAB and C12EO10) with a silica precursor, TMOS assemble together with 

an extensive amount of  zinc nitrate hexahydrate, [Zn(H2O)6](NO3)2, or cadmium nitrate 

tetrahydrate, [Cd(H2O)4](NO3)2, into a liquid crystalline mesophase. The confinement of 

the metal salt in mesophase makes the metal salt transform into its molten phase that acts 

as a solvent and organizes two surfactants into a hexagonal liquid crystalline phase. 

Then, this mesophase can be converted into mesoporous silica-metal oxide thin films 

upon calcination. We named this novel synthesis protocol as molten salt assisted self-

assembly (MASA) in which two solvents are used: a volatile solvent (water) which 

provides homogenous mixing of the ingredients into a clear solution and facilitate self-

assembly and a non-volatile solvent (metal nitrate salts at molten state) that stabilizes 

and keeps the mesophase after water evaporation enables for the formation of metal 

oxide. The MASA synthesis protocol has been investigated by using x-ray diffraction 

(XRD), Fourier transform infrared (FT-IR) spectroscopy, UV-Visible absorption 

spectroscopy, Transmission electron microscopy (TEM ), Energy dispersive x-ray 

spectroscopy (EDS), polarized optical microscopy (POM) and N2 sorption surface area 

analysis. 
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2 EXPERIMENTAL 

2.1 MATERIALS 

 The chemicals which are used throughout this investigation are: zinc nitrate 

hexahydrate [Zn(H2O)6](NO3)2 (%98 Aldrich) represented as ZnX, cadmium nitrate 

tetrahydrate  [Cd(H2O)4](NO3)2 (%98 Aldrich) represented as CdY, 

tetramethylorthosilicate  (TMOS) (%98 Aldrich), cetyltrimethylammonium bromide 

CTAB, 10-lauryl ether, C12H25(OCH2CH2)10OH, (C12EO10), and deionized water.  

2.2 SYNTHESIS 

2.2.1 Synthesis of Mesostructured- ZnX Salt-Silica Thin Films 

Dissolve a desired amount of ZnX (see Table 2.2.1), 0.291 g CTAB, and 0.500 g 

C12EO10 in 4.5 ml deionized water in a 25 ml vial by stirring on a magnetic stirrer for 1 

day. Then add 0.050 g concentrated HNO3 acid and 0.850 g TMOS to the above mixture 

and gently stir the mixture for another 5 min. A solution of  8.0 ZnX/C12EO10 or 1.14 

Zn(II)/SiO2 mole ratio contains 1.900 g ZnX, 0.291 g CTAB, 0.500 g  C12EO10, 4.500 g  

H2O, 0.050g  HNO3, and 0.850 g TMOS. Other compositions are given in Table 2.2.1. 

Put 1.0 ml of the above solution on a substrate (glass, silicon wafer and/or 

quartz) over a spin coater and spin it at 1200 rpm for 1.0 min. Make sure the solution 

completely covers the substrate to ensure full coverage after coating. Put the film 

sample immediately into an oven at 55 
o
C for aging 5 minutes. 

2.2.2 Fabrication of meso-silica-ZnO-n Thin films 

Calcine above thin film from 55 to 450 
o
C by 1 

o
C/min increments in a 

temperature controlled furnace. Remove the film from the furnace prior to slowly 

cooling the furnace. The film is abbreviated as meso-silica-CdO-n, where n is Zn/Si  

mole ratio.  
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Sample name 

The amounts of Chemicals (g) 

ZnX C12EO10 CTAB TMOS HNO3 H2O 

meso-silica-ZnO-

0.29 

0.475 0.500  0.291  1.900  0.050  4.500  

meso-silica-ZnO-

0.57 

0.950  0.500  0.291  1.900  0.050  4.500  

meso-silica-ZnO-

0.86 

1.425  0.500  0.291  1.900  0.050  4.500  

meso-silica-ZnO-

1.14 

1.900  0.500  0.291  1.900  0.050  4.500  

meso-silica-ZnO-

1.43 

2.375  0.500  0.291  1.900  0.050  4.500  

meso-silica-ZnO-

1.71 

2.850  0.500  0.291  1.900  0.050  4.500  

 

Table 2.2-1: The amounts of chemicals used in the preparation of meso-silica-ZnO-n 
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2.2.3  Synthesis of meso-silica-CdO-n Thin Films 

Dissolve a desired amount of [Cd(H2O)4](NO3)2 (see Table 2.2.2), 0.291 g 

CTAB, and 0.500 g C12EO10 in 4.5 ml deionized water in a 25 ml vial by stirring on a 

magnetic stirrer  for 1 day. Then add 0.050 g concentrated HNO3 acid and 0.850 g 

TMOS to the above mixture and gently stir the mixture for another 5 min. The sample 

with 8 CdY/C12EO10 or 1.14 Cd(II)/SiO2 mole ratio contains 1.970 g CdY, 0.291 g 

CTAB, 0.500 g  C12EO10, 4.500 g  H2O, 0.050g  HNO3, and 0.850 g TMOS. Other 

compositions are given in the Table 2.3.1. 

Put 1.0 ml of the above solution on a substrate (glass, silicon wafer and/or 

quartz) over a spin coater and spin the sample at 1200 rpm for 1.0 min. Make sure the 

solution completely covers the substrate to ensure full coverage after coating. Put the 

film sample immediately into an oven at 65 
o
C for aging. 

 

2.2.4 Fabrication of meso-silica-CdO-n Thin films 

Calcine above thin film from 65 to 450 
o
C by 1 

o
C/min increments in a 

temperature controlled furnace. Remove the film from the furnace prior to slowly 

cooling the furnace. The film is abbreviated as meso-silica-CdO-n, where n is Cd/Si  

mole ratio.  

2.2.5 Etching of meso-silica-CdO-n Thin Films 

The calcined films or the powders, scraped from the substrates, were etched in a 

4% HF solution in plastic vials. Centrifuge the solution to collect powder by decanting 

the liquid part into waste bottle. Add distilled water over the precipitate to wash out any 

remaining fluoride species. Centrifuge the mixture and remove the liquor and repeat the 

washing step 2 to 3 times. Then dry the powder in an oven.  
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Sample name 

The amounts of Chemicals (g) 

CdY C12EO10 CTAB TMOS HNO3 H2O 

meso-silica-CdO-

0.29 

0.492 0.500  0.291  1.900  0.050  4.500  

meso-silica-CdO-

0.57 

0.985  0.500  0.291  1.900  0.050  4.500  

meso-silica-CdO-

0.86 

1.478  0.500  0.291  1.900  0.050  4.500  

meso-silica-CdO-

1.14 

1.970  0.500  0.291  1.900  0.050  4.500  

meso-silica-CdO-

1.43 

2.460  0.500  0.291  1.900  0.050  4.500  

meso-silica-CdO-

1.71 

2.956 g 0.500 g 

0.291 

g 

1.900 g 

0.050 

g 

4.500 g 

 

Table 2.2-2: The amounts of chemicals used in the preparation of meso-silica-CdO-n 
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2.2.6 Synthesis of meso-silica-CdS-n Thin Films 

Place the calcined meso-silica-CdO-n thin film in a vacuum chamber and 

evacuate the chamber for 2 min. Put 300 torr H2S gas over the meso-silica-CdO-n thin 

films for 100 min at room temperature. Then pump out the unreacted excess H2S gas 

from the reaction media for 5 min before removing the sample from the reaction 

chamber. The samples are labelled as meso-silica-CdS-n. 

2.2.7 Synthesis of meso-silica-CdSe-n Thin Films 

Place the calcined meso-silica-CdO-n thin film in a vacuum chamber and 

evacuate the chamber for 2 min. Put 300 torr of 5 % H2Se gas (diluted with pure N2 gas) 

over the sample for 15 min at RT to obtain meso-TiO2-CdSe thin film.  Then transfer the 

excess H2Se gas in the reaction chamber over a CuO loaded mesoporous silica for 2 min 

to convert the excess H2Se into CuSe nanoparticles. Then, evacuate the unreacted gas by 

using a rotary pump for 5 min before removing the sample.  The samples are labelled as 

meso-silica-CdSe-n. 

 

2.3 CHARACTERIZATION 

 

2.3.1 X-Ray Diffraction (XRD)  

 The XRD patterns of the films of meso-SiO2-ZnX and meso-SiO2-CdY films on 

glass microscope slides were recorded by using Rigaku Miniflex diffractometer with a 

Cu Kα (1.5405 A°) x-rays source operating at 30 kV/15 mA. The fresh samples of meso-

SiO2-ZnX or CdY were monitored at small angles between 1
 
and 5

o
, 2θ, with 1

o
/
 
min 

scan rate for the investigation of mesostructure. For the high angle measurements 

approximately 20 films over glass slides were scraped and collected on a XRD sample 

holder. The high angle XRD patterns were recorded between 10 and 80
o
, 2θ by using 

Pananalytical Multi-purpose x-ray diffractometer, equiped with a Cu Kα (1.5405 À) x-

rays source operating at 45 kV/40 mA. 
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2.3.2 FT-IR Spectroscopy 

FT-IR spectra of the meso-SiO2-ZnX and meso-SiO2-CdY films, coated over 

single crystal Si(100) wafers, were recorded by using Bruker Tensor 27 model FTIR 

spectrometer. The spectra were collected in the range of 400 and 4000 cm
-1

 with a 

resolution of 4 cm
-1

 and by collecting 128 scans. The calcination process of the meso-

SiO2-ZnX was monitored using homemade temperature controlled (Digi-Sense Cole 

Parlmer) sample holder. The calcined samples were diluted using KBr and pressed into 

KBr pellets for the FT-IR measurements.  

2.3.3 UV-Vis Absorption Spectroscopy 

 The UV-Vis absorption spectra of meso-SiO2-ZnO-n and meso-SiO2-CdO-n thin 

films, coated on quartz substrates were collected by using Thermo Scientific Evolution 

300/600 UV-Visible spectrometer. The spectra were obtained in the range of 200 and 

800 nm with a resolution of 2 nm and 100 nm/min scan rate.  

2.3.4 Polarized Electron Microscopy (POM) Images 

 The POM images of the films, coated on microscope glass substrate were 

recorded by using ZEISS Axio Scope A1 Polarizing Optical Microscope in 

transmittance mode with 20X optic lens, between crossed polarizers.  

2.3.5 The N2 (77.4 K) Sorption Measurements 

 The N2 (77.4 K) sorption measurements were carried by using a TriStar 3000 

automated gas adsorption analyzer (Micrometrics) in the relative pressure range, P/P0, 

from 0.01 to 0.99. The samples of meso-SiO2-ZnO-n and meso-SiO2-CdO-n were 

collected from 15-25 films coated on glass microscope slides by scraping with razor 

blade and the amount of sample were ranged from 10 mg to 20 mg. Surface areas were 

calculated in the range from 0.05 to 0.3 relative pressure with 5 points.  The powder 

samples were degassed under (~10
-2

 torr) vacuum for 3 hours at 300 
o
C in order to 

remove adsorbed water and volatile species in the pores prior to measurements. 

2.3.6 Transmission Electron Microscopy (TEM) Images 

 The high resolution transmission electron microscope (HRTEM) images were 

collected by using a FEI Technai G2 F30 at an operating voltage of 200 kV. The 
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calcined films were scraped and ground in a mortar using 5 ml of ethanol for 10 min and 

dispersed using a sonication for 5 min. One drop of the dispersed ethanol solution was 

put on a TEM lacey grid and dried over a hot-plate. Then, for further comprehensive 

analysis of the crystal structure of ZnO and CdO nanoparticles, the images were 

analyzed by using the software of Digital Micrograph 3.6.5.   

2.3.7 Scanning Electron Microscopy (SEM) 

Nano-SEM images were recorded using Hitachi HD-2000 STEM in SEM mode. 

The samples were prepared by dispersing powders over the TEM grids. The SEM 

images were also recorded by using ZEISS EVOS-40, operated at 15 kV. The samples 

were prepared on silicon wafers that were attached to aluminum sample holders using 

conductive carbon adhesive tabs. 
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3 RESULT AND DISCUSSION 

3.1 Optimization of the meso-silica-ZnX-n Films 

In this thesis, mesostructured salted (ZnX or CdY) silica films were prepared 

and investigated to synthesize desired mesoporous silica-ZnO or CdO thin films. The 

meso-silica-ZnX-n films were prepared by spin coating a clear aqueous solution of 

CTAB, C12EO10, ZnX, HNO3, and TMOS.  To obtain the clear aqueous solutions, the 

mixture should be vigorously stirred for 1 day. Note that the surfactants, CTAB and 

C12EO10, which have long hydrophobic tails, are not easy to dissolve (it may take about 

1 day) in an aqueous media. After dissolving the surfactants in water, HNO3 and TMOS 

are added into the solution (TMOS hydrolyzes to Si(OH)4 by an acid catalyzed 

hydrolysis reaction, Equation 3.1.1 and 3.1.2). Note that after addition of TMOS to 

above acidic solution; the solution warms up, indicating the hydrolysis of TMOS. The 

hydrolysis follows a condensation step with a pH dependent rate. The condensation of 

silica precursor in the reaction condition is so moderately high, (Equation 3.1.3) that 

after 2 hrs from the addition of TMOS and HNO3, the SiO2 nanoparticles are formed. 

The solution that is aged for more than 15 min is not good for the synthesis of meso-

silica-ZnX-n thin films. Therefore, ideally in 5 min after the addition of TMOS, the 

solution should be spin coated over a substrate.    

  

Si(OCH3)4 + H2O → HO- Si(OCH3)3+ CH3OH         Hydrolysis (Eq 3.1.1) 

 

Si(OCH3)4 + 4 H2O → Si(OH)4 + 4 CH3OH         Acid Catalyst Hydrolysis(Eq 3.1.2) 

  

Si(OH)4  → SiO2 + H2O                                              Condensation (Eq 3.1.3) 
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In order to prepare the meso-silica-ZnX-n films, the solution of CTAB, C12EO10, 

ZnX, HNO3, water, and TMOS is put over a substrate on spin coater and spanned as 

represented in Figure 3.1.1. The excess water evaporates during spinning. The film 

thickness can be adjusted by altering spin rate and time. The ideal spinning rate and time 

is optimized to be 1200 rpm and 1 min, respectively, for the ideal thickness of meso-

silica-ZnX-n thin films. The sample thickness is about 1 µm after the evaporation of 

water and methanol (a side product). 

 

 

 

 Vigorously 

stirred for 1 

day at room 

temperature 

 

HNO
3
 and TMOS, 

respectively 

Stirred for 5 

min. 
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The meso-silica-ZnX-n 

fim 

Figure 3.1.1: The representative preparation of the meso-silica-ZnX-n film by spin 

coating. 
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The spin coated sample on a glass microscope slide has been characterized using 

XRD and POM techniques.  The as-prepared meso-silica-ZnX-n films are likely in a 

liquid crystalline mesophase. POM is a useful technique for the determination of 

anisotropic mesostructures. A fan-like texture, observed from meso-silica-ZnX-1.14 

film, under a polarized optical microscope (POM), is characteristic for this existence of 

2-D hexagonal mesostructure, see Figure 3.1.2.  The observed birefringence in the POM 

image is characteristic for anisotropic 2-D hexagonal mesophase.  

Figure 3.1.2: The POM image of an as-prepared meso-silica-ZnX-1.14 thin 

film. 

5 um 
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Figure 3.1.3. 

 

The small angle diffraction lines observed from all compositions of meso-silica-

ZnX-n (n is 0.29, 0.57, 0.86, 1.14, 1.43, and 1.71) belong to (100) and (200) planes of 

2D hexagonal mesostructure, Figure 3.1.3.a. The d-spacing of the (100) planes, d(100),  

   

  

  

x y 

z d
 (100)

 

 θ=60
o 

a) 

b) 

a 

Figure 3.1.3 a) Small-angle XRD patterns of the as prepared meso-silica-ZnX-n thin films 

where n is Zn(II)/SiO2 mole ratio(1). b) The schematic representation of d(100) planes in 

2D hexagonal mesostructure 
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can be calculated by utilizing the Bragg’s law, nλ = 2dsin θ. For example, d(100) for the  

meso-silica-ZnX-0.29 is found to be about 4.8 nm, where 2θ is 1.84
o
. The unit cell 

parameter, a, is calculated from a = d(100)/sin(60
o
) (a = 4.8/0.866 = 5.5 nm). The second 

line at 3.58
o
, 2θ, corresponds to the (200) planes of 2D-hexagonal structure. The 

diffraction lines of meso-silica-ZnX-n, gradually shifts to smaller angles with increasing 

the ZnX content of the sample. It is reasonable that increase in the salt content in 

mesostructure increases the unit cell parameter, expands the hydrophilic domains in the 

mesostructure. 

First, for the synthesis of ordered mesoporous silica-ZnO thin film, meso-silica-

ZnX-n samples are aged at room temperature for the condensation of silica domains, 

which eventually provides a rigid 2-D hexagonal and ordered mesostructure. Then, by a 

controlled calcination under an air atmosphere, the ZnX salt is converted to ZnO and the 

surfactants are removed. As a consequence, the ordered mesoporous silica-ZnO thin 

films with 2-D hexagonal structure may be obtained upon calcination.  
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Figure 3.1.4: Small-angle and wide angle (inset) XRD patterns of the meso-silica-ZnX-

1.14 thin films with different aging times where time is shown on the patterns 
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To elucidate and understand the underlying mechanism for the formation of 

meso-silica-ZnX-n, the stability of the mesostructure of as prepared meso-silica-ZnX-

1.14 thin film was monitored by recording small angle and high angle diffraction 

patterns at different aging time. The highly intense diffraction line at around 1.4
o
, 2θ 

shifts to around 1.8
o
, 2θ and its intensity decreases after about 2 min, Figure 3.1.4. The 

diffraction lines at wide angle XRD pattern belong to ZnX salt, Figure 3.1.4 (PDF card 

number: 00-046-0595). This means that most of the ZnX salt leaches out from the 

mesostructure and crystalizes out of the 2D hexagonally oriented mesostructure.  The 

shift from 1.4
o
, 2θ to 1.8

o
, 2θ, in the low angle diffraction line indicates that domains of 

the mesophase shrink more than 30%, and likely indication of leaching salt out of the 

mesostructure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.5: Small (top) and wide (bottom) angle XRD patterns of the calcined meso-

silica-ZnX-1.14 thin film 

If the films, in which ZnX salt leached out from the mesophase, are heated from 

room temperature (RT) to 450 
o
C with  1

o
C /min intervals, the formation of bulk 

wurtzite ZnO is observed. The diffraction lines in wide-angle XRD pattern of the 

calcined sample of meso-silica-ZnX-1.14 belong to (100) and (002) planes of wurtzite 

ZnO (d100 = 2.8141 Å and d002 = 2.6027 Å), Figure 3.1.5. Interestingly, ordered 2-D 

hexagonal mesoporous silica-ZnO thin films and bulk ZnO form together. The 

diffraction line at around 2.4
o
, 2θ in small-angle diffraction patterns of the calcined 
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sample of meso-silica-ZnX-1.14 originates from the (100) plane of 2-D hexagonal 

structure (d100 = 3.7 nm), see Figure 3.1.5. Because, all salt species does not leach out 

from the mesostructure, remaining ZnX in the mesophase with silica precursor forms 

the mesoporous ordered structure.  As shown in the SEM image of this sample in Figure 

3.1.6, after calcination, cracks and round hollows about 1 µm size are formed 

throughout the film. It is likely that the ZnX salt crystals leached out from the 

mesophase, formed bulk ZnO crystals. These crystals cover the surface of ordered 

mesoporous silica-ZnO in which less amount of ZnO than initial salt composition exists 

in the mesoporous domains of the film.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Figure 3.1.6: The SEM images of calcined the meso-silica-ZnX-1.14 thin film. Inset 

shows higher resolution SEM image of square. 
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Figure 3.1.5: The FTIR spectra of meso-silica-ZnX-n ( n is shown on the spectra) (1) 

 

To understand and elucidate the stability issues of the meso-SiO2-ZnX-n thin 

films, the FTIR spectra of meso-silica-ZnX-n films (where n is 0.29, 0.57, 0.86, 1.14, 

and 1.43) are analyzed. The peaks, at around 1326 and 1470 cm
-1

 in the FTIR spectra of 

meso-silica-ZnX-n, are assigned to antisymmetric stretching modes of nitrate ions that 

are coordinated to Zn(II) ion, see Figure 3.1.5. The intensity of these peaks increases 

with increasing salt content in the samples. At high salt content, the nitrate peaks are 

very similar to the peaks in molten ZnX salt.(90) Evaporation of water and methanol 

during spin coating transforms ZnX salt to its molten phase that is confined between the 

silica clusters and hexagonally organized surfactant domains at high ZnX 

concentrations. In the as-prepared thin films, the molten ZnX salt acts as a solvent and 

organizes the surfactant molecules and silica species into mesostructures.  
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Figure 3.1.6: The small-angle and wide-angle XRD patterns of the as prepared meso-

silica-ZnX-n thin film aged for 5 minutes at 55 
0
C and in time  at room temperature 

where time is shown on the patterns 

 

The meso-SiO2-ZnX-n samples at high ZnX concentrations, above 0.57 

Zn(II)/Silica mole ratio, can form the mesostructure by keeping ZnX salt in its molten 

phase. The mesostructure is stable if the samples are kept above melting point of ZnX 

salt. Notice that the melting point of [Zn(H2O)6](NO3)2 is only 36.5 
0
C. To understand 

the role of temperature above the melting point of salt species, small and wide angle 

XRD patterns  of meso-SiO2-ZnX-1.14 film sample were recorded over time after aging 

the samples at 55 
0
C. However the diffraction patterns were recorded at RT; the 

temperature of the samples reaches to RT in 2 min.  The diffraction line at around 1.7
o
, 

2θ, of the sample aged for 5 min at 55 
0
C shifts to around 1.4

o
 in 2 min, and its intensity 

increases, see Figure 3.1.6. This means that when the sample film reaches RT, the 

volume of mesophase expands by absorbing ambient water and the mesophase becomes 
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better ordered. However, after 8 min of aging at RT, the diffraction line, at around 1.4
o
 

shifts back to 1.7
o
 and the diffraction lines of ZnX salt in the wide angle appear (PDF 

card number: 00-046-0595). This is a characteristic behavior when the sample leaches 

out salt.  
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Figure 3.1.7: The small-angle and high angle XRD patterns of the as prepared meso-

silica-ZnX-n thin film aged for 2 hours at 55 
0
C in time where time is shown on the 

patterns 

This behavior shows that the structure of the meso-silica-ZnX-1.14 film is not 

stable at RT for a long time and some of the salt species leach out from the 

mesostructure. The aged sample at 55 
0
C for 2 hrs also shows a similar behavior, see 

Figure 3.1.7. However this sample is stable at RT over 1h. Notice also that there is no 

diffraction line at wide-angle region due to ZnX crystals, showing that the salt species 

are confined and likely in its molten phase between the silica and hexagonal organized 
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surfactant domains. This can be explained by the melting point depression due to 

confinement effect. Otherwise, high amount of salt has to crystallize during self-

assembly. Therefore, longer aging, at 55 
o
C, stabilize the samples for a longer time at 

RT. 
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Figure 3.1.8: The FTIR spectra of as-prepared meso-silica-ZnX-1.14 at different 

temperature with time (Temperatures is shown on the spectra) 

 

 In order to understand the behavior of as-prepared meso-silica-ZnX-n at high 

salt concentrations, against aging, the FT-IR spectra of as-prepared meso-silica-ZnX-

1.14 were also recorded during aging at 55 
o
C. The bottom spectrum in Figure 3.1.8 is 

the spectrum of the as-prepared sample. Then, the film sample was heated to 55 
o
C on a 

homemade IR heating stage, and its spectrum was recorded at 55 
o
C. Finally, the 

sample was cooled to RT and two more spectra were recorded 2 and 10 min later. The 

peaks between 1250 and 1480 cm
-1

, due to asymmetric stretching modes of nitrate ions, 
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and at 1630 cm 
-1

, due to bending mode of water molecules show changes with 

temperature and time, Figure 3.1.8. By heating the sample to 55 
o
C, the coordination of 

nitrate ions to Zn (II) ion is enhanced due to enlarging the splitting of coordinated 

nitrate peak position and the intensity of the water peak at 1630 cm 
-1

 is decreased. 

However, cooling the sample to RT for 2 min, the peaks, due to coordinated nitrates, 

increased and the intensity of the water peak at 1630 cm 
-1

 increased, similar to the 

initial spectrum of as prepared sample, see Figure 3.1.8. This means that the 

coordinated water molecules evaporate at 55 
o
C (dehydration), and the ZnX salt species 

reabsorb the water molecules (hydration) at RT. This also explains the expansion of the 

mesophase, observed in the small angle XRD patterns, since the volume of ZnX salt 

species expands by the hydration. However, if the sample is kept at RT long enough, 

most of salt species leached out from the mesophase. This can also be observed in the 

FTIR spectrum (see top spectrum in Figure 3.1.8). The sharp peak at around 1400 cm
-1

 

is due to ZnX crystals. 

 The mesostructure, at high salt concentration is only stable above the melting 

point of the salt. It means that the molten ZnX salt can organize the surfactants (CTAB 

and C12E10) and silica species into a 2-D hexagonal mesostructure. In conclusion, 

keeping samples above the melting point immediately after spin coating is prerequisite 

for the synthesis mesostructured silica-ZnX films. 
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Figure 3.1.9: The small-angle and high angle (inset) XRD patterns of the as prepared 

meso-silica-ZnX-n thin film aged for 1 day at 55 
0
C in time where time is shown on the 

patterns 

 To further understand the effect of aging, the as-prepared meso-silica-ZnX-1.14 

was aged at 55 
o
C for 1 day. The mesostructure still responses to the adsorption of 

water, such that, the diffraction line in the small angle XRD pattern shifts to lower 

angle, see Figure 3.1.9. However, the diffraction lines due to ZnX crystals appear in 2 

min at RT, indicating that most of the salt species are not inside the mesophase despite 

aging the sample for one day. The calcination of this sample also produced bulk ZnO 

crystals.  

In summary, the samples should be kept above the melting point of ZnX salt 

immediately after the assembly of mesophase through spin coating in order to keep the 

mesostructure stable. The aging temperature, 55 
o
C, is ideal for meso-silica-ZnX-n 

films. The samples are not stable at RT because of leaching out of the salt. The salt 

species, which are out of the mesostructure crystalize and form bulk metal oxide upon 
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calcination.  Aging step should not be longer than 2 hrs because further aging step also 

causes leaching of salt species from the mesostructure.  

3.2 Optimization of Synthesis Conditions for the meso-silica-CdY-n Films  

The knowledge and experience that were gained from the optimization of the 

meso-silica-ZnX-n films can be applied to other salt – surfactant systems to show the 

generality of the synthesis method, developed in this thesis. Therefore, the meso-silica-

CdY-n samples(where CdY is [Cd(H2O)4](NO3)2 ) were prepared by spin coating a 

clear solution of CTAB, C12EO10, CdY, HNO3, water, and TMOS as described in the 

preparation of the meso-silica-ZnX-n film samples.   
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Figure 3.2.1: The small-angle diffraction patterns of as prepared meso-silica-CdY-n (n is 

0.57, 0.86, and 1.14 and n is shown on the spectra 

 

 

The small-angle diffraction lines observed from the as prepared meso-silica-

CdY-n (n is Cd(II)/SiO2 mole ratio and 0.57, 0.86, and 1.14) prove the formation of a 2D 

hexagonal mesostructure and they belong to (100) plane of the hexagonal mesostructure, 

Figure 3.2.1. As in the meso-silica-ZnX-n samples, increasing the salt content shifts the 
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diffraction line to smaller angles, indicating that the distance between surfactant 

domains increases with increasing salt content.  
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Figure 3.2.2: The POM image (a) and the high-angle diffraction patterns (b) of meso-

silica-CdY-1.14, 5 minutes after preparation at RT. 
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 To check the stability of meso-silica-CdY-n film samples at high salt 

concentrations, the POM image and the high-angle diffraction patterns of meso-silica-

CdY-1.14 have been recorded after 5 min aging at RT,  Figure 3.2.2. Since the films are 

too thin, a fan texture characteristic of 2D hexagonal mesostructure is difficult to 

observe.  However, formation and growth of the CdY crystals can be monitored using 

the POM and thin films. The crystals cover the surface of the film and appear as sharp 

texture under the POM. Most salt species leached out from the mesostructure in 5 min. 

The wide-angle diffraction lines, in the XRD pattern of the samples, due to CdY salt 

crystals also appear upon crystallization of the films (PDF card number:04-011-2154).  

500 1000 1500 2500 3000 3500 4000

0.0

0.3

0.6

0.9

1.2

1.5

(1.43)

(1.14)

(0.86)

(0.57)

(0.29)

A
b

s
o

rb
a

n
c

e
/a

.u
.

Wavenumber/cm
-1

(0.0)

n

 

Figure 3.2.3: The FTIR spectra of meso-silica-CdY-n ( n is shown on the spectra) (1) 

 

FTIR spectroscopy is also a useful tool to follow the changes in the samples 

during aging at RT and high temperatures. The sharp peaks between 1250 and 1500 cm
-

1
 in the FTIR spectra of meso-silica-CdY-n belong to asymmetric stretching mode of 

nitrate ions that are coordinated to Cd(II) ion, see Figure 3.2.3. Intensity of these peaks 
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increases with increasing salt content in the samples, Figure 3.2.3. At high salt content, 

the nitrate peaks are very similar to the peaks in the molten CdY salt. Therefore, by 

keeping the samples above the melting point of CdY salt, the mesostructure can be 

stabilized for the synthesis of mesoporous silica-CdO films as in the preparation of 

meso-silica-ZnX films.  

3.3 Synthesis of the meso-silica-ZnO-n and meso-silica-CdO-n Thin Films 

 It is known from the optimization studies of the meso-silica-ZnX-n films in 

which the mesostructure, at high salt concentrations, can be stabilized after spin coating 

above the melting point of the salt. Interestingly, a slow calcination of the meso-silica-

ZnX-n starting from 55
 o

C with an interval of 1
o
C/min up to 450

o
C, immediately after 

spin coating, forms transparent mesoporous films, denoted as meso-silica-ZnO-n 

(where n is the Zn/Si mole ratio).  
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Figure 3.3.1: The small-angle XRD patterns of the meso-silica-ZnX-1.14 thin film 

during calcination where temperature is shown on the patterns and the high angle XRD 

patterns of the meso-silica-ZnO-1.14 (inset) 
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 The small angle diffraction line loses its intensity at around 100-150 
o
C and it 

completely vanishes at around 250 
o
C during the calcination step, see Figure 3.3.1. This 

means that the calcination yields a completely disordered structure. More importantly, 

there is no diffraction line due to ZnO crystals, indicating that bulk ZnO does not form 

in the films during the calcination process, see Figure 3.3.1 (inset). It means that all salt 

species decompose into ZnO on the silica pore-walls, where it cannot grow into bulk 

large ZnO crystals. 
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Figure 3.3.2: The small-angle XRD patterns of the meso-silica-CdO-1.14 thin film and 

the high angle XRD patterns of the meso-silica-CdO-1.14 (inset) 

The slow calcination of the meso-silica-CdY-n films starting from 65
 o

C with an 

interval of 1
o
C/min up to 450 

o
C, immediately after spin coating, forms transparent 

mesoporous films denoted as meso-silica-CdO-n (where n is the Cd/Si mole ratio). Like 

in the synthesis of the meso-silica-ZnO-n films, the calcination process causes loss of 

meso-order in the films, as it is shown in the small angle diffraction pattern of the 

meso-silica-CdO-1.14; see Figure 3.3.2. Also, there is no diffraction line due to bulk 

CdO in the high angle XRD pattern. All salt species decompose into CdO on the silica 

pore-walls and cannot grow into bulk CdO crystals. On the other hand, despite all, 
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above the salt/silica mole ratio of 1.43, the film samples leach out some of the salt 

species and form bulk oxide upon calcination step in addition to meso-silica-CdO-x 

(where x is Cd/Si mole ratio and in unknown). 
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Figure 3.3.3: The N2 sorption isortherms of the meso-silica-ZnO-n (up) and the meso-

silica-CdO-n (down) samples where n values are shown on each plot(1) 



48 

 

 To prove above proposal, whether the meso-silica-ZnO-n and mesoporous-

silica-CdO-n films have mesoporosity or not, the films were recording N2 adsorption-

desorption isotherms. At least 20 mg powder sample is needed for an accurate N2 

adsorption-desorption measurements. Therefore, tens of meso-silica-ZnO-n and 

mesoporous-silica-CdO-n film samples, which were coated over the glass slides, were 

scraped to obtain needed amount of sample (one film coated on a glass slide is about 1 

mg). Scraping the samples from the meso-silica-ZnO-0.29 and meso-SiO2-CdO-0.29 

samples is very difficult. Therefore, N2 adsorption-desorption measurements are done 

for only the meso-silica-ZnO-n and mesoporous-silica-CdO-n (where n is 0.57, 0.86, and 

1.14) samples, see Figure 3.3.3. In all the N2 sorption isotherms, the hysteresis on the 

adsorption and desorption branches shows that the meso-silica-ZnO-n and mesoporous-

silica-CdO-n (where n is 0.57, 0.86, and 1.14) samples have mesoporosity. These 

isotherms are type IV isotherms and characteristic of the mesoporous materials. 
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Figure 3.3.4: The pore size distribution of the mesoporous-silica-ZnO-n (a) and 

mesoporous-silica-CdO-n (b)where n values are shown on each plot(1) 
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 The Brunauer-Emmett-Teller (BET) surface areas that are 430, 175, and 130 

m
2
/g in the meso-silica-ZnO-n samples, where n is 0.57, 0.86, and 1.14, respectively, 

decreases with increasing the ZnO content in the meso-silica-ZnO-n samples. The BET 

surface areas of the mesoporous-silica-CdO-n, where n is 0.57, 0.86, and 1.14 are 85, 55, 

and 50 m
2
/g , respectively. The same trend as in the meso-silica-ZnO-n samples is 

observed in the meso-silica-CdO-n; increase in the metal oxide content decreases the 

surface area. Note also that a calcined salt-free mesoporous silica film has a surface area 

of 950 m
2
/g with a relatively narrow pore-size distribution centered at 2.1 nm, see Figure 

3.3.4. The Barrett-Joyner-Halenda (BJH) pore-size distribution curves of the 

mesoporous-silica-ZnO-n and mesoporous-silica-CdO-n samples become broader and 

shift to higher values with increasing metal oxide content in the samples. For example, 

the pore size distribution of the meso-silica-ZnO-1.14 is centered at 12.4 nm and starts 

from 5 nm and tails up to 20 nm. The mesostructure, in the fresh sample, is distorted and 

expanded during calcination process. During the calcination, above 150 
o
C, the order of 

hexagonal mesostructure goes to a disordered mesostructure, and at the end of 

calcination, completely disordered mesoporous silica-metal oxide samples having 

expanded pores, especially in the high ZnO and CdO amounts, are formed. The decrease 

in the surface area and increase in pore size distribution with increasing  ZnO or CdO 

content clearly show that the silica-ZnO or CdO walls of  the mesoporous structure 

becomes thicker in the samples . 
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Figure 3.3.5: The meso-silica-ZnX-1.14 during calcination at different temperature 

(temperature is shown on the spectra) (1) 

 In order to elucidate the structural properties of the mesoporous silica-ZnO 

film samples, the calcination step was monitored by recording the FT-IR absorption 

spectra of meso-silica-ZnX-1.14 at different temperatures, see Figure 3.3.5. The 

intensity of nitrate peaks starts gradually to decrease on heating the films at around 100 

o
C and the peaks completely disappear at around 250 

o
C. This means that all nitrates are 

decomposed at around 250 
o
C.  The peaks due to symmetric and antisymmetric 

stretching modes of the surfactants are observed at around 2820 and 2920 cm
-1

 and their 

intensities decline at around 200 
o
C and completely disappear at 250 

o
C. The peaks 

between 1100 and 1220 cm
-1

 are assigned to the υ-SiO symmetric and antisymmetric 

stretching modes and the peaks at around 952 cm
-1

 is due to silanol groups (SiO-H) of 

silica framework.
 
(106) The calcination causes changes on the υ-SiO and υ-SiO-H 

stretching modes. The peak due to the υ-SiO-H stretching mode disappeared at 100 
o
C 

and the peaks due to υ-SiO symmetric and antisymmetric stretching mode gradually 

shifted to lower frequencies at higher temperatures. These changes are most probably 
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due to reaction between silanol groups and Zn(II) to form Si-O-Zn linkages. As 

discussed previously, the nitrate ions are coordinated to Zn (II) ions and upon 

calcination, they decompose. In addition to this, above 100 
o
C, there is no water 

molecule, coordinated to Zn (II) ions. Furthermore, the silanol groups are very reactive 

with transition metal ions. Therefore, the Zn(II) species react with silanol groups and 

cause changes on the υ-SiO symmetric and asymmetric stretching frequencies, while the 

υ-SiO-H stretching mode disappears. The FT-IR spectral changes are consistent with the 

changes in the XRD patterns of meso-silica-ZnX-1.14 during calcination. The 

decomposition of nitrates causes reaction between Zn(II) ions and silica framework and 

a distortion on the silica-metal oxide framework. Fortunately, due to stability of the 

surfactants up to 200 
o
C and solidification of the mesostructure by the polymerization of 

the silica species together with Zn(II) ions, mesoporous thin film can be obtained upon 

calcination. Yet, the calcined samples have disordered and non-uniform pore size 

distribution.  
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Figure 3.3.6: FTIR spectra of (a) meso-silica-ZnO-n, (b) meso-silica-CdO-n (n is Zn or 

Cd/SiO2 mole ratio) (1) 
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 To further understand the calcination process, the FTIR spectra of the meso-

silica-ZnO-n and the meso-silica-CdO-n (n is 0, 29, 0.57, 0.86, 1.14, and 1, 43) were 

recorded for all compositions and shown in Figure 3.3.6. Intensity of the peaks at around 

926 cm
-1 

in the meso-silica-ZnO-n samples and at 914 and 864 cm
-1

 in the meso-silica-

CdO-n samples gradually increase with increasing metal oxide component of the 

samples up to metal oxide/silica mole ratio of 1.14. The meso-silica-ZnO-1.43 and the 

meso-silica-CdO-1.43 samples always formed bulk ZnO and CdO, respectively, together 

with mesoporous framework that contains relatively low metal oxide.  Therefore, the 

peak due to υ-SiO stretching mode
 
of the silica-metal oxide interface, Si-O-Zn and Si-O-

Cd, loses its intensity compared to its metal oxide content.  

 The peak of the mesoporous silica at 1080 cm
-1

 gradually shifts to lower 

frequencies with increasing metal oxide content in the samples of meso-silica-ZnO-n 

and meso-silica-CdO-n up to 1.14 mole ratio. A similar trend is also observed in the 

peak at around 456 cm
-1

 due to bending mode of SiO2. The peaks at 538 and 505 cm
-1

 in 

the spectra of meso-silica-ZnO-n and and meso-silica-CdO-n, respectively, gradually 

increase in intensity with increasing metal oxide content. If some of ZnO or CdO form 

bulk oxides, the shift is profoundly less. Therefore, the FT-IR spectroscopy and XRD 

techniques can be complementarly used to better chracterize the samples.  

 Moreover, to the best of  our knowledge, the mixed oxides, like MSixOy do not 

exist. Therefore, the Si-O-M bond (M is Zn or Cd) should be in the interface between 

the metal oxide nanoplates (see latter) and mesoporous silica framework.  
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Figure 3.3.7: The XRD pattern of meso-silica-ZnO-0.86 at (a) 450
o
C, (b) 550

o
C, and (c) 

650
o
C. The common diffraction lines of ZnO are marked on the patterns(1) 

 Up to now, from the comprehensive analysis of the meso-silica-ZnO-n and 

meso-silica-Cd-n samples using FTIR and N2 adsorption-desorption measurements, the 

samples are mesoporous and contains silica-ZnO and silica-CdO pore-walls, 

respectively. However, there is no information about the crystal structure of metal 

oxides in the mesoporous structure because the wide-angle XRD patterns of the films, 

obtained from the samples coated on the glass slides, are very broad with no definite 

diffraction line. The XRD patterns of the samples require large amount of powder 

samples. So, around 30 films coated on the glass slides were scraped to fill the XRD 

powder sample holder. Figure 3.3.7 shows the XRD pattern of meso-silica-ZnO-0.86 at 

450,
 
550, and 650 

o
C. The common diffraction lines correspond to (100), (002), and 

(101) planes of wurtzite structure of ZnO are marked on the patterns. However, the wide 

angle diffraction lines are so broad that they cannot be resolved due to being amorphous 

or ultra-small nanocrystallites.  The diffraction lines due to ZnO domains cannot be 

resolved even by heating the samples at 550 and 650 
o
C, see Figure 3.3.7. Therefore, a 
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more sophisticated characterization tool is needed to determine the crystal structures of 

ZnO or CdO in the samples.  

 

 The UV-Vis absorption spectra of both meso-silica-ZnO-n and meso-SiO2-

CdO-n samples were recorded using the films coated over quartz slides, see Figure 3.3.8.  

The samples only absorb in the UV region. Note that, the films are crack-free and 

transparent. The intensity of absorption band gradually increases with increasing ZnO 

content in the films. 
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Figure 3.3.8: (a) UV-Vis absorption spectra of meso-silica-ZnO-n (1) (b) of meso-silica-

CdO-n (n is shown on the spectra) 
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Figure 3.3.9: Direct gap fitting of UV-Vis absorption spectra of (a) meso-silica-ZnO-n 

(n is the ZnO/SiO2 mole ratio, inset is a table of composition (ZnO/SiO2 mole ratio) and 

band-gap values (eV)) and (b) meso-silica-CdO-n (n is the CdO/SiO2 mole ratio, inset is 

a table of composition (CdO/SiO2 mole ratio) and band-gap values (eV)). (1) 

  

 In order to find the band gap and also calculate the particle size, the UV-Vis 

absorption spectra of films were re-plotted using direct gap relationship in which, the y-

axis is the square of absorbance times energy and x-axis is the energy, see Figure 3.3.8. 

The bulk band gap of ZnO is 3.37 eV. (107) Compared to bulk oxide, the highest blue 

shift is 2.48 eV for the meso-silica-ZnO-0.29 film and lowest blue shift is 1.52 eV from 

the meso-silica-ZnO-1.14. The bulk band gap of CdO is 2.84 eV. The highest blue shift 

is 3.77 eV from the meso-silica-CdO-0.29 film and lowest blue shift is 2.63 eV for the 

meso-silica-CdO-1.14. The band gaps of both meso-silica-ZnO-n and meso-silica-CdO-

n are listed in the insets of Figure 3.3.8.  The blue-shift, observed in both meso-silica-

ZnO-n and meso-silica-CdO-n films are due to the quantum confinement effect. It is 

well known that a decrease in particle size of a semiconductor increases the band gap. 

The particle size of both CdO and ZnO in the mesostructure can be calculated using an 

effective mass model (EMM). (108) This model is formulated in equation 3.3.1;   
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where Eg is the bulk band gap (eV), r is particle size (Å), h (ћ = h/2) is the Planck` s 

constant, me is the effective mass of electron, mh is the effective mass of hole, m0 is the 

free electron mass (9.110x10
-31

 kg), є0 is the permittivity of free space (8.85418782x10
-

12 
C

2
N

-1
m

-2
), є is the dielectric constant, e is the charge on the electron (1.602176x10

-19
 

C). 
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Figure 3.3.10: The plots of the thickness of ZnO and CdO in the meso-silica-MO-n 

versus n(1) 

 The thickness of ZnO and CdO, calculated using effective-mass model, in the 

meso-silica-ZnO-n and meso-silica-CdO-n films versus n are plotted in Figure 3.3.10. 

Thickness of the ZnO or CdO increases with increasing metal content of the samples, 

Figure 3.3.10. The particle size of ZnO for meso-silica-ZnO-n films alters between 1.4 

and 1.7 nm. This means that the ZnO nanoparticles are very small and have a few layer 

of zinc oxide in the silica framework or over silica-walls. The particle size of CdO 

domains are calculated to be in the range between 1.3 and 1.6 nm. 
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Figure 3.3.10 

 

 

10 nm10 nm
5 0  n m5 0  n m

Figure 3.3.11: The SEM images of meso-silica-ZnO-1.14 (a, b),  TEM images of  meso-

silica-ZnO-n, n is (c) 0.86, (d)1.14,  and (e) 0.57 (inset is the yellow line showing the 

spacings between the lines),  and (f) FFT of a crystalline domain(1). 
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 To further understand the structural details of the films, a series of TEM and 

SEM images have also been collected and analyzed from some of the meso-silica-ZnO-n 

and meso-silica-CdO-n samples. The samples for TEM imaging were well grinded in a 

mortar and diluted in ethanol and dispersed by sonication to get very small particles on a 

TEM grid. The SEM images of the meso-silica-ZnO-1.14 sample, in Figure 3.3.10 (a) 

and (b), clearly show that the sample has sponge like mesoporosity. The pores are 

disordered and have relatively large pore size distribution.  The TEM images of the 

meso-silica-ZnO-n, n is 0.86, 1.14, and 0.57 are shown in Figure 3.3.10 (b), (c) and (d), 

respectively. Due to contrast difference between silica and ZnO domains, ZnO domains 

are darker than silica domains. In the high resolution TEM images, Figure 3.3.10 (e), 

lattice fringes of ZnO crystals can be observed. By taking the Fast Fourier Transform 

(FFT) of a selected ZnO nanocrystal in the image, the lattice spacing are calculated, see 

Figure 3.3.10 (f).  The observed lattice spacings of 0.281, 0.260, and 0.162 nm are due 

to the (100), (002), and (110) lattice planes of the ZnO nanocrystallites in wurtzite 

structure, where the unit cell parameters, a and c are 0.325 and 0.520 nm, respectively, 

and consistent with bulk ZnO values. In addition, the particle size range between 1.4 and 

1.7 nm, calculated from the UV-Vis spectra data is also consistent with the size of these 

domains, observed in the TEM images. Figure 3.3.10 (e) clearly shows that the particle 

size is around 1.6 nm for the meso-silica-ZnO-0.57 sample. 
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5 nm5 nm

Figure 3.3.12:The TEM images of  the meso-silica-CdO-n, n is  (a, b) 0.57, (c) 0.86 

and (d) 1.14.(e) HRTEM image of the meso-silica-CdO-0.86 and  the FFT (f) and  

inverse FFT (g) of the marked region of (e). (1) 
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 Figure 3.3.12 shows the TEM images of the meso-silica-CdO-n smaples, 

where n is 0.57, 0.86, and 1.14. The TEM images show that the samples are sponge-like 

mesoporous. Like in the meso-silica-ZnO-n samples, darker domains are due to 

crystalline CdO particles, see Figure 3.3.11 (b), (c) and (d). In the high resolution TEM 

images, Figure 3.3.11 (e), the CdO domains are nanocrystalline, and display lattice 

fringes. The FFT and its inverse FFT of the selected region in the TEM image display 

lattice spots, corresponding to lattice planes with 0.332, 0.271, and 0.235 nm spacings. 

They are due to (110), (111), and (200) planes, respectively, of cubic CdO, where the 

unit cell constant, a, is 0.469 nm.  

 The high resolution TEM images of the meso-silica-CdO-1.14 sample also 

show 15 nm nanocrystalline domains, see Figure 3.3.11 (e). However, Figure 3.3.12 (b) 

shows CdO nanocrystals with a 1.6 nm thicknesses, which is more consistent with the 

UV-Vis data.  If the CdO nanocrystals have confinement at least in one-dimension like 

in nanoplates, the QCE is observed only on thickness axis of the CdO nanoparticles. 

Therefore, CdO particles are like nanoflakes (or nanoplates), and the blue shift in the 

UV-Vis spectra caused by the quantum confinement effect in one-dimension.  

  

 Furthermore, in both TEM images of the meso-silica-CdO-n and the meso-

silica-ZnO-n, the location of the CdO and ZnO domains, respectively, are not well 

understood. The darker domains, corresponding to metal oxide, exist as rings and follow 

each other. However, it is difficult to understand whether metal oxide nanoparticles coat 

the silica walls or are homogeneously embedded in the silica walls. 

 

 

 

 

 

 

 

 

 



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3.3.13: The meso-silica-CdO-0.86 film upon HF etching; (a) TEM image 

of (b) FFT of a large area, (c) SAED pattern, (d) magnified TEM image. (1) 
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 In order to clear the ambiguity about the morphology of nanocrystals of ZnO 

and CdO in the mesostructure, the silica walls of the meso-silica-CdO-0.86 film is 

etched by using a 4% aqueous HF solution. The selected area diffraction pattern (SAED) 

of the etched samples prove that the CdO nanocrystals have a face centered cubic crystal 

structure, in which the intense diffraction rings are originating from the (200) and (220) 

planes of cubic CdO nanocrystallites, see Figure 3.3.13 (c). The FFT of a large area 

TEM image displays two rings, corresponding to the (200) and (220) planes of cubic 

CdO crystals. The particles after etching look like nanoflakes as large as 10 to 15 nm. It 

is difficult to observe the particle thickness.  To be consistent and in not conflict with the 

UV-Vis data, the thickness of the particles must be around 1.6 nm. This can only be 

explained by the fact that the CdO particles are in the form of nanoplates. The quantum 

confinement effect is observed in just one dimension, along the thickness axis of the 

metal oxide nanoplates. 
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 In order to solve second ambiguity about the structural composition of silica-

metal oxide walls, the meso-silica-CdO-0.86 is reacted with a H2S or H2Se gases at 

room temperature to convert CdO nanoplates into CdS or CdSe nanoplates. After 

reaction of meso-silica-CdO-0.86 with H2S or H2Se gas, the samples were denoted as 

meso-silica-CdS-0.86 and meso-silica-CdSe-0.86, respectively. The samples, before and 

after reactions, were analyzed by using FTIR spectroscopy, Figure 3.3.14 (a) and (b). 

The peaks at 914 cm 
-1

 corresponding to Si-O-Cd bonds in the FTIR spectrum of the 
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Figure 3.3.14 The FTIR spectra of (a) (I) pure meso-SiO2 and before H2Se reaction (II) 

and after H2Se reaction of meso-silica-CdO-0.86, (b) before H2S reaction  (I) and after (II) 

H2S reaction of meso-silica-CdO-0.86, The EDS spectra of (c) meso-silica-CdS-0.86 and 

(d) meso-silica-CdSe-0.86 thin films. (1) 
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meso-silica-CdO-0.86 disappear after reactions under H2S or H2Se gases. Moreover, the 

spectra of the meso-silica-CdS-0.86 and the meso-silica-CdSe-0.86 are like pure 

mesoporous silica. This is due to the fact that all Si-O-Cd bonds break through H2S or 

H2Se reactions. The full conversion of the cadmium oxide to cadmium sulfide or to 

cadmium selenide was ensured using the EDS data, see Figure 3.3.12.  The S/Cd and 

Se/Cd intensity ratios in the EDS data are the same as commercial bulk CdS and CdSe. 

In conclusion, the full conversion of the cadmium oxide nanoplates to cadmium sulfide 

or to cadmium selenide nanoplates proves that the metal oxide nanoplates coat the silica 

walls: they are not embedded in the silica walls.  

 

meso-silica-CdO-n 

n (CdO/SiO2 Mole Ratio) 

Surface Area 

meso-SiO2-CdO-n 

(m
2
/g) 

Surface area for 

1 g of CdO (m
2
/g)

 
 

% Surface 

Coverage 

1.14 50 70 113 

0.86 55 85 101 

0.57 85 154 58 

meso-silica-ZnO-n 

n (ZnO/SiO2 Mole Ratio) 

Surface Area 

meso-SiO2-CdO-n 

m
2
/g) 

Surface area for 

1 g of CdO (m
2
/g)

 
 

% Surface 

Coverage 

1.14 130 214 49 

0.86 175 325 37 

0.57 430 948 13 

 

Table 3.3-1: Parameter for surface coverage calculated from measured data. 

 

 Therefore, the CdO and ZnO nanoplates coat the surface of silica walls in the 

films and the number of Si-O-M bond, where M is Zn or Cd increases by increasing 

metal oxide content in the samples. The surface coverage of silica wall with metal oxide 

nanoplates can be calculated hypothetically by using UV-Vis and the N2 sorption data. 

The mass of metal oxide in 1 g sample can be calculated using the CdO/SiO2 mole 
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ratios. Also, volumes of metal oxide nanoplates can be calculated using the densities of 

ZnO and CdO and their thickness.  The thickness of metal oxide nanoplates is known 

from UV-Vis data for each sample. Therefore, the surface area of metal oxides 

nanoplates can easily be calculated by dividing a volume of metal oxide with a specific 

thickness. If the surface of silica walls is completely covered with metal oxide 

nanoplates, this hypothetically calculated surface should be the surface area measured by 

the N2 sorption measurements. The percent coverage of silica walls can be calculated 

from the percentage ratios of measured and calculated surface areas. Table 3.3.1 shows 

the calculated and measured surface areas and also the coverage of silica surface with 

nanoplates of metal oxides for meso-silica-ZnO-n and meso-silica-CdO-n, where n is 

1.14, 0.86, and 0.57. From these calculations, it is reasonable to conclude that a full 

coverage of the silica surface was achieved in the meso-SiO2-CdO-0.86 sample, but 

even in meso-silica-ZnO-1.14, the surface coverage is about 50%,  
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4  CONCLUSION 

 

The salt-surfactant LLC mesophase concept and the EISA method
 
have been 

successfully combined to form the mesostructured silica-ZnX or CdY films up to a 1.14 

salt/silica mole ratio. Herein, two solvent systems have been employed; the primary 

solvent is the molten salt that does not evaporate during spin coating and is converted to 

metal oxide nanoplates during calcination, the second solvent is water, which 

evaporates during spin coating. Two solvent systems provide our method distinguishes 

from the EISA method. Therefore, we called this novel method for the synthesis 

mesoporous silica-metal oxide films as molten salt assisted self-assembly (MASA).  

In order to employ MASA successfully, there is one very critical prerequisite; the films 

should be kept above the melting point of salt after spin coating to get stable 

mesostructured films. Otherwise, most of salt species leach out from the mesostructure, 

giving bulk metal oxide upon calcination. Also, using transition metal salt having low 

melting point is very critical.  Because of this, metal nitrate salts [Zn(H2O)6](NO3)2  and 

[Cd(H2O)4](NO3)2), which have melting points very close to RT, are chosen for this 

investigation. A slow calcination gives uniformly coated 1.4-1.7 nm thick crystalline 

metal oxide nanoplates on the pore walls of mesoporous silica films. By MASA 

method, the loading of metal oxide nanoplates in both the meso-silica-ZnO-n and the 

meso-silica-CdO-n films can be increased up to 1.14 Zn or Cd(II)/silica mole ratios. 

This leads to ~100 and ~50 % surface coverage of the silica walls in the meso-SiO2-

CdO-n and meso-SiO2-ZnO-n thin films, respectively. Pure metal oxide nanoplates 

without silica framework can also be obtained by etching the silica walls using dilute 

HF solution. The meso-SiO2-CdO-n films under a H2S or H2Se atmosphere can be 

converted to meso-SiO2-CdS-n and meso-SiO2-CdSe-n film, in which all CdO 

nanoplates are converted to CdS and CdSe nanoplates, respectively. The MASA 

method is not limited to the mesoporous silica-CdO and ZnO thin films, other transition 

metal salts or alkali earth metal salts can be used. Also, the MASA method is not 

limited to silica frameworks; for example, it can also be employed for the synthesis of 

mesoporous titania-metal oxide films (see future section).  
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The MASA method has many advantages compared to other methods such as 

nano-casting, solid-state grinding and EISA methods for the synthesis of mesoporous 

ZnO and CdO thin films. First advantage is that the MASA process is one-step and 

facile synthesis method for the preparation of mesoporous silica-metal oxide thin films. 

Nano-casting and solid-state grinding methods are time consuming due to several long 

steps. These methods are limited and only employed for the synthesis of powders. 

Second advantage is that no extra conditions such as humidity, aging, etc., are required 

in the MASA method. Third advantage is the uniform distribution of metal oxide 

nanoparticles inside the pores without pore blocking.  Final advantage is that the 

maximum loading can be increased up to 61 and 71 w/w% in the meso-SiO2-ZnO-n and 

meso-SiO2-CdO-n, respectively. The surface coverage can also be adjusted up to 

~100 % and ~50 % of silica walls in the meso-SiO2-CdO-n and meso-SiO2-ZnO-n thin 

films, respectively. 

Therefore, MASA is a new self-assembly process with many advantages and can 

be employed to produce mesoporous mixed oxide thin films for thin film applications.  
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5 FUTURE WORK 

5.1  The Preparation of meso-titanina-ZnX-n Thin Films 

 To show the MASA method is not limited to silica, we have changed the silica 

with titania. In this work, mesostructured salted-titania films were prepared and 

investigated towards stable and desired mesoporous titania-ZnO. The films were 

prepared by spin coating a clear solution of CTAB, C12EO10, ZnX,, HNO3, and 

Ti(OBu)4 in ethanol. Compared to MASA method in the synthesis of meo-silica-ZnX-n 

thin films, ethanol has to be used instead of water with an adequate amount of HNO3 

acid, in order to prevent the uncontrolled condensation of titania precursor. Note that 

Ti(OBu)4 is quite reactive to water. Therefore, MASA method has been modified by 

changing the polymerizing precursor, solvent and pH to prepare mesostructured ZnX-

titania films. The experimental procedure of MASA process is the same with the 

protocol for the synthesis of meso-silica-ZnO-n films. As-prepared mesostructured 

ZnX-titania films are denoted as meso-titania-ZnX-n, where n is the Zn/Ti mole ratio. 

Three samples with n of 0.29, 0,57 and  0,86 has been prepared. 
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Figure 5.1.1 small-angle XRD pattern of as-prepared meso-titania-ZnX-0.86 
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 Small-angle XRD pattern of the as-prepared meso-titania-ZnX-0.86 display a 

diffraction line at 1.56
o
, 2 (5.6 nm, d-spacing) corresponds to (100) plane of 2D 

hexagonal mesostructure, Figure 5.1.1. This proves that the MASA method can be 

applied to synthesize mesoporous titania-ZnO films. Because, as in the synthesis of 

meso-silica-ZnO-n thin films, the molten ZnX salt can also be confined between the 

titania and surfactant domains. This is a perquisite to obtain a mesoporous materials 

upon calcination. Note that keeping the samples above the melting point of salt is very 

important for the MASA process. Therefore, the fresh as-prepared films have been kept 

in an oven above the melting point of salt before calcination.  

5.2  The Synthesis of meso-titania-Zn2TiO4 Thin Films 
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Figure 5.2.1 N2 sorption isotherms of meso-titania-Zn2TiO4 with a Zn/Ti mole ratio of 

(I) 0.29, (II) 0.57, and (III) 0.89. 

 As-prepared meso-titania-ZnX-n thin films have been calcined from 60 to 450 
o
C 

with an interval of 1 
o
C/min, and the product is dumped as meso-titania-Zn2TiO4. The 

calcined films have been further characterized by using XRD and N2 sorption 

measurements. The N2 sorption data display type IV isotherms, characteristic of 

mesoporous materials, see Figure 5.2.1.  
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 To find the structural detail of mesoporous calcined films, the XRD patterns of 

calcined meso-titania-ZnO-0.86 sample, which was heated at different temperatures, 

have been recorded, Figure 5.2.2. The wide angle XRD pattern of meso-titania-Zn2TiO4-

0.86  powders, obtained by scraping around 20 thin films  displays broad diffraction 

lines at 30.0, 34.7, 42.7, 53.5, 56.5, 62, and 72.4
o
, 2, corresponding to the (220), (311), 

(400), (422), (511), (440), and (533) planes, respectively, of nanocrystalline Zn2TiO4. 

The particle size increases with heating samples, but the meso-Zn2TiO4 is stable up to 

650 
o
C, see Figure 5.2.2. Note that the sharp diffraction lines corresponding to ZnO bulk 

oxide was not observed in the XRD pattern.  
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Figure 5.2.2 . The wide angle XRD pattern of meso-titania-Zn2TiO4-0.86  powders 

heated at different temperature (the temeperature are shown in the graph.) 

  

 The data of XRD and N2 sorption measurements ensures that MASA method is 

applicable for the synthesis of mesoporous titania-metal oxide samples. Although the 

mesoporosity can successively be formed by the MASA method, the composition of the 
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pore-walls is quite different from that of silica. These two metals, titanium and zinc, 

form mixed oxide, zinc titanate, rather than titania-ZnO as in the silica system. The 

MASA method can be further adopted to obtain other metal titanates, possibly mixed 

metal titanates.  
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