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Abst rac t .  Although inherent parallelism in the solution of block an- 
gulax Linear Programming (LP) problems has been exploited in many 
research works, the literature that addresses decomposing constraint ma- 
trices into block angular form for parallel solution is very rare and re- 
cent. We have previously proposed hypergraph models, which reduced 
the problem to the hypergraph partitioning problem. However, the qual- 
ity of the results reported were limited due to the hypergraph partitioning 
tools we have used. Very recently, multilevel graph partitioning heuristics 
have been proposed leading to very successful graph partitioning tools; 
Chaco and Metis. In this paper, we propose an effective graph model to 
decompose matrices into block angular form, which reduces the problem 
to the well-known graph partitioning by vertex separator problem. We 
have experimented the validity of our proposed model with various LP 
problems selected from NETLIB and other sources. The results are very 
attractive both in terms of solution quality and running times. 

1 I n t r o d u c t i o n  

Coarse grain parallelism inherent in the solution of block angular Linear Pro- 
gramming (LP) problems has been exploited in recent research works [5, 10]. 
However, these approaches suffer from inscalabiIiiy and load imbalance, since 
they exploit only the existing block angular structure of the constraint matrix.  
This work focuses on the problem of decomposing irregularly sparse constraint 
matrices of large LP problems to obtain block angular structure for scalable 
parallelization. The objective in the decomposition is to minimize the size of the 
master problem-- the  sequential component of the overall parallel scheme--while 
maintaining computational balance among subproblem solutions. 

The literature that  addresses this problem is extremely rare and very recent. 
Ferris and Horn [3] model the constraint matr ix  as a bipartite graph, and use 
graph partit ioning heuristics for decomposition. However, this model is not suit- 
able for the existing graph partitioning heuristics and tools. In our previous work 
[12], we have proposed two hypergraph models which reduce the decomposition 
problem to the well-known hypergraph partitioning problem. 

Very recently, multilevel graph partitioning heuristics have been proposed 
leading to very successful graph partit ioning tools; Chaco [6] and Metis [7]. This 

"* This work is partiaaly supported by the Commission of the European Communities, 
Directorate General for Industry under contract ITDC 204-82166 and The Scientific 
and Technical Research Council of Turkey under grant no EEEAG 160. 



593 

/ c/ /B1 oil B2 B2 C2 B2 G2 
A ~  = ".. A ~  = .. : ADB = ".. 

Bk " Bk 
R1 R2 Rk Bk Ck R1 R2 Rk 

Fig, 1. Primal (A~), dual (A~) and doubly-bordered (ADB) block angular forms of 
an LP constraint matrix A 

work proposes a new graph model--Row-Interaction Graph (RIG)--for decom- 
posing the constraint matrices. In RIG, each row is represented by a vertex, and 
there is an edge between two vertices if there exists at least one column which has 
nonzeros in both respective rows. This model reduces the decomposition prob- 
lem into the graph partitioning by vertex separator problem. Vertices in part Pi 
of a partition correspond to the rows in block Bi, and vertices in the separator 
correspond to the coupling rows. Hence, minimizing the number of vertices in 
the separator corresponds to minimizing the size of the master problem. 

We have experimented the validity of the proposed graph model with various 
LP constraint matrices selected from I~ETLIB and other sources. We have used 
Metis tool for multi-way partitioning of sample RIGs by edge separators. Then, 
we have used various proposed heuristics for refining the edge-based partitions 
found by Metis to partitions by vertex separators. Our results are much better 
than those of previous methods. We were able to decompose a matrix with 10099 
rows, 11098 columns, 39554 nonzeros into 8 blocks with only 517 coupling rows 
in 1.9 seconds and a matrix with 34774 rows, 31728 columns, 165129 nonzeros 
into 8 blocks with only 1029 coupling rows in 10.1 seconds. The solution times 
with LOQO[14] are 907.6 seconds and 5383.3 seconds, respectively. 

2 P r e v i o u s  W o r k  

2.1 B ipa r t i t e  G r a p h  Model  

Ferris and Horn [3] model the sparsity structure of the constraint matrix as a 
bipartite graph. In this model (BG), each row and each column is represented 
by a vertex, and the sets of vertices representing rows and columns form the bi- 
partition. There exists an edge between a row vertex and a column vertex if and 
only if the respective entry in the constraint matrix is nonzero. This graph is par- 
titioned using Kernighan-Lin [8] heuristic. Then, vertices are removed until no 
edges remain among different parts. This enables permutation of the matrix into 
a doubly-bordered form (Fig. 1). Out of the vertices removed, the ones represent- 
ing columns constitute the row-coupling columns, and the ones representing the 
rows constitute the column-coupling rows. This doubly-bordered matrix ADB is 
transformed into a block angular matrix A~ by column splitting[3]. 

2.2 H y p e r g r a p h  Models  

In our previous study [12], we have proposed two hypergraph models for the 
decomposition. A hypergraph 7 / =  (13,Af) is defined as a set of vertices and a 
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set of nets (hypergedges) among these vertices. Each net is a subset of vertices 
of the hypergraph. In a partition, a net is cut (external), if it has vertices in 
more than one parts, and uncut (internal), otherwise. 

In the first model, namely the row-net (RN) model, each row is represented 
by a net, whereas each column is represented by a vertex. The set of vertices 
connected to a net corresponds to the set of columns which have a nonzero entry 
in the row represented by this net [12]. In this model, the decomposition prob- 
lem reduces to the well-known hypergraph partitioning problem. Hypergraph 
partitioning tries to minimize the number of cut nets, while maintaining balance 
between the parts. Maintaining balance corresponds to balancing among block 
sizes in the block angular matr ix  A p (Fig. 1), and minimizing the number of 
cut nets corresponds to minimizing the number of coupling rows in A p . 

The second model, namely the column-net (CN) model, is the dual of the 
I~N model, so partitioning this hypergraph gives dual block angular matr ix  A d . 

3 G r a p h  P a r t i t i o n i n g  b y  V e r t e x  S e p a r a t o r  

We say that  / /k = (P1, P~ , . . . ,  Pk; S) is a k-way vertex separation of G = (]2, E) 
if the following conditions hold: each part  Pi, for 1 < i < k, is a nonempty 
subset of ]2; all parts and the vertex separator S C ~; are mutually disjoint; 
union of k parts and the separator is equal to 1); and there does not exist 
an edge between two parts Pi and Pj for any i ~ j .  We also restrict our 
separator definition as follows: each vertex in the separator S is adjacent to 
vertices of at least two different parts. Balance criterion for part  sizes is defined 
as: (Wm~=-Wavg)/Wm~= <_ e where Wm~= is the size of the part with maximum 
size, W~vg is the average part  size, and e is a predetermined imbalance ratio. 

Using these definitions, the problem of partitioning by vertex separators can 
be stated as: "finding a balanced vertex partition with desired number of parts 
which minimizes the cardinality of the set S" .  

4 R o w  I n t e r a c t i o n  G r a p h  

In this section, we present a new graph model, namely the row interaction graph 
(RIG), for the decomposition. In RIG, each row is represented by a vertex, and 
there exists an edge between two vertices if and only if there exists at least one 
column which has nonzeros in both respective rows. So formally: 

D e f i n i t i o n  1 A graph ~ = (V,g)  is a RIG representation of a sparse matrix 
A = (aij) iff the following conditions are satisfied. 

- 1; = { r z , r 2 , . . . , r i , . . . , r M } ,  where ri represent the ith row of matrix A .  
- e = ( r i , r j )  EE  ~ 3k l < k < N  9 a ~ 9 s  and a j ~ r  

A sample sparse matr ix  A, and the associated RIG are presented in Fig. 2. In 
this graph, edge ( r l ,  r5) is because of rows 1 and 5 having a nonzero in column 3. 
However, there does not exist an edge between rz and r2, because there does 
not exist a column in which both  row 1 and row 2 have a nonzero. 

A k-way vertex separation H ~ = (P1, P2 , . . - ,  Pk; S) of RIG induces a row 
and column permutat ion for matr ix  A transforming it into a block angular form 
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Fig. 2. A sample 8 • 7 matrix, its associated RIG and its block angular form A p 
induced by the vertex separation //~ = ({ra, rb, r6}, {r2, r4, rs}; {r3, rT}) on the RIG. 

A~ with k blocks. In a separation //~ of RIG, vertices in the separator S 
correspond to the coupling rows of A, and vertices in part Pi correspond to the 
rows in block Bi .  The permutat ion of the columns is controlled by the rows. 
Each column is placed in the same block as the rows it shares non-zero(s). By 
definition of the vertex separator, there are no edges between vertices in different 
parts, hence there is no column interaction between rows in different blocks, i.e., 
there are no columns which have nonzeros in two rows at different parts. 

Given //2 = ({rl ,  rb, r6}, {r2, r4, rs}; {r3, r7}) a s  a separation of the RIG in 
Fig. 2, the associated permuted matr ix  A~ can be obtained as follows. Vertices 
r l ,  rb, r6 (r2, r4, rs)  are in part  P1 (P2),  so respective rows will be placed in block 
B1 (B~). Rows 3 and 7 will form the coupling block because of the vertices r3 
and r~ on the separator. Columns 1,3,4,6 (2,5,7) are placed in block B~ (B2) 
since they share nonzeros with rows placed in this block. 

RIG model reduces the decomposition problem to a well-known problem, 
graph partitioning by vertex separators. The problem of graph partitioning by 
vertex separators has two objectives: ( i )  minimizing the number of vertices in 
the separator, ( i i )  maintaining balance between number of vertices in parts other 
than the separator. The first objective directly corresponds to minimizing the 
number of coupling rows, since each vertex in the separator of RIG corresponds 
to a row in the coupling block of A~.  The second objective corresponds to 
maintaining balance among the block sizes in the block angular matr ix  A~.  

5 Finding Vertex Separators 

We have adopted commonly used scheme of finding vertex separators from edge 
separators. Edges in the edge separator are called the cut edges. An edge is cut 
if it is between two different parts. Each edge can be associated with a weight, 
and cutsize of a partit ion is the sum of weights of cut edges. In the light of these 
definitions, problem of graph partitioning by edge separator can be stated as: 
finding a balanced partition of vertices of the graph which minimizes the cutsize. 

The set of vertices adjacent to the cu t edges is called the wide separator [9]. 
We will call the subgraph induced by the wide separator and the cut edges as the 
wide-separatorsubgraph Gws.  A subset of the vertices in the wide separator can 
be chosen to form a narrow separator, a feasible separator of smaller cardinality. 
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5.1 F i n d i n g  W i d e  S e p a r a t o r s  
There are no certain metrics for the "goodness" of a wide separator that  will lead 
to a smaller narrow separator. However, two metrics have gained populari ty due 
to their simplicity and availabilty of appropriate software tools. The first one 
is minimizing the number of cut edges. Minimizing the number of cut edges 
can give us a good estimate of a vertex separator, since it finds logical clusters 
on the graph. The second one is minimizing the number of vertices in Gws. 
Leiserson and Lewis [9] model the graph with a hypergraph, where there exists 
a vertex for each vertex in the graph, and there exists a net ni for each vertex 
vi which contains vi and all vertices adjacent to vi. With this hypergraph, if 
a net ni is on the cut, then the vertex vl should be on the wide separator. 
Hence, minimizing the number of cut nets on this hypergraph corresponds to 
minimizing the number of vertices in Gws. 

Although, both  metrics are valuable assets for the goodness of a wide sepa- 
rator, they do not guarantee a narrow separator of smaller cardinality. 

5.2 E d g e  W e i g h t e n i n g  fo r  B e t t e r  W i d e  S e p a r a t o r s  
We propose a heuristic model for finding a better  wide separator. Our basic 
observation is that  all edges are not of equal importance for the goodness of a 
wide separator. Edges incident to a vertex with high degree are less important ,  
since this vertex has a higher probability to be moved to the separator. Here, 
degree deg(u) of a vertex u E ]2 refers to the number of edges incident to u in 
RIG. So, we can assign weights to the edges inversely proportional to the degrees 
of its end-vertices. We propose the following weight function: 

1 
weight((u, v)) = max(deg(u),  deg(v)) 

Minimizing the cutsize of this edge-weighted RIG is expected to yield good wide 

separators for refining to narrow separators. 

5.3 F r o m  W i d e  S e p a r a t o r s  t o  N a r r o w  S e p a r a t o r s  
This part  of the problem is equivalent to finding a minimum vertex cover on 
~ w s .  This problem can be solved optimally in polynomial t ime for two way 
partitions, by finding maximum matchings on biparti te graphs [13]. However, 
we need to resort to heuristics for the solution of this problem for multi-way 

partitions. 
We have experimented the greedy heuristics, maximum-inclusion (MI) and, 

minimum-removal (MR) proposed in[9]. In this work, we also propose a new 
heuristic, namely, one-max-inclusion (OMI) heuristic which is presented in Fig- 
ure 3. Our heuristic is similar to MI with the following enhancement: OMI starts 
with including the vertices adjacent to a vertex of degree 1 to the vertex cover 
(narrow separator), since this does not destroy our chance to find an optimal so- 
lution. When there are no vertices of degree 1, we take a greedy decision similar 
to tha t  of MI and include the vertex with the highest degree to the separator. 
Then, we again seek for vertices with degree 1, and repeat this process until all 
edges are adjacent to a vertex in the separator. 
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I N P U T :  Wide Separator subgraph: ~ws = (];ws, Ews) 
O U T P U T :  Narrow Separator: S C Yws 

repea t  
for  each v E Y  deg(v)=l  do 

u +--- only neighbor of v 
s ~- su {~}; 

for  each x 6 Adj(u) do s ~- s - {(u, x)} endfor;  
endfor  
if  (s # ~) t hen  

v ~-- vertex with maximum degree ; 
for each u 6 Adj(v) do S ~- S U {u} endfor;  
for each x �9 ddj(u) do g ~ g - {(u, z)} endfor;  

unt i l  g = 0 

Fig. 3. A greedy heuristic for finding a narrow separator from the wide-separator sub- 
graph of a partition of RIG by edge separator 

In our experiments, OMI heuristic, overperformed the other two, MI and MR 
[11]. We have compared the performance of OMI heuristic with optimal solutions 
obtained by matchings, for bisections. We have seen that,  average difference for 
27 different data  set after 20 runs was only 0.11%, and the peak difference was 
only 0.58% for one data  set. 

6 Experimental R e s u l t s  

We have experimented the validity of the model on various LP matrices selected 
from the Netlib suite [4], Kennigton problems [1], and collection of Gondzio 2. 
The properties of these problems are presented in Table 1. In this table, M ,  
N ,  N z ,  and D,  columns represent the number of rows, columns, nonzeros, and 
density of the respective constraint matrices, respectively. Here, D is computed 
as g z / ( M  x N) .  In Table 1, g z / N  and Y z / M  columns denote average number 
of nonzeros per row and column, respectively, and [$/•1 column denotes average 
vertex degree of the associated RIGs. All experiments have been performed on 
a SUN Sparc 5 workstation. We have used Metis [7] for graph partitioning, an 
FM-variant [2] for hypergraph partitioning, and OMI heuristic implemented in 
C for finding narrow separators from wide separators. For each experiment, 
partit ioning heuristic has been run 20 times with random seeds. Following tables 
and figures display the averages of these runs. 

Figure 4 shows the relative performance of the edge-weighted graph (W- 
RIG) model and hypergraph(t t -RIG) model compared to unweighted graph (U- 
RIG) model in finding narrow separators for 8-way partitioning. W-RIG and 
U-RIG models correspond to running Metis on weighted and unweighted RIG, 
respectively, and then refining the resulting wide-separators to narrow separators 
with OMI. If-RIG corresponds to running the FM-variant [2] on the hypergraph 

2 These problems are avMlable by anonymous ftp from IOWA Optimization Center 
ftp col.biz.uiowa.edu:pub/testprob/lp/gondzio 
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Table  1. Properties of the Constraint Matrices and their associated RIGs 

Problem Constraint Matrix Properties ] RIG Properties 
Name M [ N [ Nz [ D% g z / g  [ N z / M  [s [ [s 

SObau3b 2262 9799 21002 0.09 2.14 9.28 10074 8.91 
bn]2 2324 3489 13999 0.17 4.01 6.02 13457 11.58 
!cycle 1903 2857 20720 0.38 7.25 10.89 2 7 7 1 4  29.13 
czprob 929 3523 10669 0.33 3.03 11.48 7072 15.22 
d2q06c 2171 5167 32417 0.29 6.27 14.93 2 6 9 9 1  24.87 
ganges 1309 1681 6912 0.31 4.11 5.28 7656 11.70 
greenbea 2392 5405 30877 0.24 5.71 12.91 3 3 8 4 1  28.30 
sctap3 1480 2480 8874 0.24 3.58 6.00 7386 9.98 
shipl21 1151 5427 16170 0.26 2.98 14.05 10673 18.55 
stocfor2 2157 2031 8343 0.19 4.11 3.87 12738 11.81 
woodw 1098 8405 37474 0.41 4.46 34.13 2 0 4 2 1  37.20 
cre-a 3516 4067 14987 0.10 3.69 4.26 51015 10.10 
cre-c 3068 3678 13244 0.12 3.60 4.32 49025 13.93 
cre-d 8926 69980 242646 0.04 3.47 27.18 2 8 5 0 6 8  16.40 
os~07 1118 23949 143694 0.54 6.00 1 2 8 . 5 3  273779  15.87 
CO9 10789 1 4 8 5 1  101578 0.06 6.84 9.41 20748 11.80 
CQ9 9278 13778 88897 0.07 6.45 9.58 18905 12.32 
GE 10099 1 1 0 9 8  39554 0.04 3.56 3.92 1 8 1 6 7 0  40.71 
NL 7039 9718 41428 0.06 4.26 5.89 52466 93.86 
mod2 34774 31728 165129 0.01 5.20 4.75 1 1 9 2 0 8  22.10 
world 34506 32734 164470 0.01 5.02 4.77 1 0 6 1 5 6  22.88 

2 ~ . . . . . . . . . . .  ~ W - R I G  . . . .  

,8 t .......... l .... 
1.6 ~- ........... " ..... ] .... 

0,80.61'21 i ~ _  ~ _ j 
o 

I 

F i g .  4. Narrow separa tor  quality of edge-weighted graph  (W-RIG)  model  and hyper-  
g raph  (H-RIG) model  compared  to unweighted graph (U-RIG) model  in finding narrow 
separa tors  of tes t  RIGs for 8-way par t i t ioning.  Bars under  the  baseline indicate  t h a t  

the  respect ive model  pe r fo rms  be t t e r  t han  the  U-RIG model .  

r e p r e s e n t a t i o n s  o f  t h e  R I G s  (as  d i s c u s s e d  in  S e c t i o n  5.1) ,  a n d  r e f in ing  t h e  r e s u l t s  

w i t h  O M I .  W - R I G  m o d e l  p r o d u c e s  20% b e t t e r  r e s u l t s  o n  t h e  a v e r a g e  t h a n  U - R I G  

m o d e l .  T h e  d i f fe rence  b e c o m e s  m o r e  s i gn i f i c an t  fo r  l a rge r  p r o b l e m s .  A l t h o u g h  

H - R I G  m o d e l  is w o r s e  t h a n  U - R I G  m o d e l  on  t h e  ave rage ,  i t  p r o d u c e s  b e t t e r  

r e su l t s  for  m a n y  o f  t h e  p r o b l e m s .  
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Fig. 5. Quality of edge-weighted RIG model (W-RIG) and RN hypergraph model com- 
pared to the BG bipartite graph model for 8-way block angular decomposition of test 
matrices. Bars under the baseline indicate that the respective model performs better 
than BG model. 
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Fig. 6. Execution times of (W-RIG) model and RN model compared to (BG) model 
for 8-way block angular decomposition of test matrices. 

Figures 5 and 6 illustrate quality and execution times of W-RIG model and 
row-net (RN) hypergraph model compared to the bipartite graph (BG) model for 
8-way block angular decomposition of test matrices. W-RIG model overperforms 
BG model in all problems except for s toc for2 .  W-RIG results are twice better 
than BG on the average. The difference becomes drastic for osa-07,  czprob, 
and ~oodw. The common point in these matrices is the large number of columns 
with respect to rows. Relative performance of BG deteriorates for matrices with 
N >> M,  since BG treats both rows and columns as decision variables. The 
difference between run times of BG and W-RIG becomes very significant for 
80bau3b,czprob, woodw, ere-d,  osa-07,  all of which has N >> M.  Recall that, 
we have used the same partitioning tool for both BG and RIG models, hence 
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Table 2. The effectivity of RIG Moclel 

~" P r o b l e m  Coup .  R o w s  
L O Q O  abs .  I rel. abs  rel. I 

R o w s  t~o~(sees) I % II secs. % ~, 
1903 1t0.8  64 3.36 0.87  0 .79 

100 5.25 " 1.05 0.95 :i 
400 .0  223  10'127 u 0.96 0.24 ,i 

293 13 .50 j t  1.17 0.29 o 
21.9 68 5.19 0.32 1.46 

128 9 .78 , 0.41 1 .87 " 
166 .3  125 5.23 '.] 1.34 0.81 H 

231 9.66 I 1.63 0 .98 ir 
20.5 49 4 ,26 ~l 0 .43 2.10 

78 6.78 ii 0 .54 2 . 6 5 ~  
24,8  44 2.04 0.53 2 .14 

120 5.56 u 0.66 2.66 t, 
8 0 . 7  68 6.19 0.74 0,92 

160 1 4 . 5 7 : ;  0.86 1 .07 :; 
40 .8  112 3.19 1.03 2.52 ,, 

141 4:01 1 .27 3.11 ,, 
40 .7  102 3 ,32 " 0.89 2.19 

127 4 .14 [: 1.08 2.65 :: 
6719 .9  913  10.23 6.12 0.09 

1117 12 .5 !  " 6 ,73 0 . 1 0  
3 9 8 . 7  80 7,16 3 .39  0,85 

80 7.16 4.05 1.02 ,, 
i8 '27.6 1099 10.19 4.30 0 .24 

1363 12,63",, 4 .72 0.26 i: 
1664.4  751 8.09 4.00 0.24 

1061 11.44 " 4 .36 0.26 
907.6  331 3 .28  " 1.71 0.19 " 

517  5 . i 2  .... 1.93 0.21 " 
699 .2  547  7 .77 2.82 0.40 iJ 

633 8.99 3.22 0.46 :] 
0.18 

1029 2.96 " 10.'07 0.19 
25819 .7  615 1.78 9.24 0.04 

1074 3.11 " 10.02 0.0Li 

i' i 
N a m e  

IIcycle 

~d2q06c  2171 

" g a n g e s  1309 

Ugreenbea  2392 

" sh ip l21  1151 

Ustoefor2 2157 

~lwoodw 1098 

alcre, a 35161 
d ' 

cre -c  3068  

" c r e - d  8926 

"osa -O7 1118 

" C 0 9  10789 

' C Q 9  9278 

"GE 10099 

" N L  7039 

m o d 2  34774  

"wor ld  345(}~ 

' iAve rag  e .... ',::::, 

the difference is directly due to the effectiveness of the models. 
The performances of W-RIG and RN model are quite competitive. W-RIG 

is better on the average. However, the difference is not too large, and may be 
due to the partitioning tool used. But a careful observation reveals that the 
performance of RN model becomes poor for problems with N >> M. This is 
simply because RN works on too many vertices. 

Table 2 shows the overall effectiveness of the proposed model. The number of 
coupling rows and the percent ratio of the number of coupling rows to the total 
number of rows, the actual partitioning times and percent ratio of partitioning 
times to solution times of the problems with LOQO [14] are presented. On the 
overall average, only 5.48% and 8.06% of the rows are on the coupling block for 
4 and 8 block decompositions, respectively. The partitioning times are negligible 
compared to LOQO solution times (0.9% for 4 blocks, and 1.1% for 8 blocks). 
Another remarkable point in this table is that partitioning times grow slowly 
with the problem size, although solution times rapidly increase. This makes 
decomposition very practical for large problems. 
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7 C o n c l u s i o n  
We have proposed an effective graph model to decompose LP matrices to block 
angular form for scalable parallelization. The new model reduced the problem 
to the well-known graph partitioning by vertex separator problem. The validity 
of the model has been experimented with various LP matrices, and its perfor- 
mance has been compared with bipartite graph [3] and hypergraph models [12]. 
The proposed model overperformed the previous two models on the existing 
graph/hypergraph partitioning tools. The new model is very effective and en- 
ables us to decompose a matr ix  with 10099 rows, 11098 columns, 39554 nonzeros 
into 8 blocks with only 517 coupling rows in 1.9 seconds and a matr ix  with 34774 
rows, 31728 columns, 165129 nonzeros into 8 blocks with only 1029 coupling rows 
in 10.1 seconds. The solution times with LOQO are 907.6 seconds for the former 
and 5383.3 seconds for the latter. 
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