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Abstract: In this paper we propose two new classes of controllers which stabilize
Kirchhoff’s nonlinear string by using boundary control techniques. We assume that the
boundary displacement is the only available measurement. The classes of controllers
proposed in this paper are related to the positive real controllers. One of the classes
generalizes a special class of such stabilizing controllers which is already proposed in
the literature and the other one is new.

Keywords: Boundary control, Kirchhoff’s nonlinear string, infinite dimensional systems,
global asymptotic stability.

1. INTRODUCTION

There are several nonlinear models that represent
the dynamics of elastic strings. A model which has
been studied the most is a nonlinear partial differen-
tial equation known as Kirchhoff’s nonlinear string
model. This model was originally derived by Kirch-
hoff, and later by other researchers, see e.g. Kirchhoff
(1877), and later by other researchers Carrier(1945),
Narasimha (1968). In the past few decades, Kirch-
hoff’s string and its generalizations have been studied
from the mathematical point view; see, e.g. Arosio
(1993) and references therein. Also, from the practical
point of view, the stability and stabilization of Kirch-
hoff’s string have been studied; see, e.g., Shahruz
(1998, 1999), and references therein.

In this paper we consider the stabilization of Kirch-
hoff’s nonlinear string by using the boundary dis-
placement feedback. This problem was considered in
Kobayashi (2004) where a special class of stabilizing
controllers has been proposed and the well-posedness
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and stability of the corresponding closed-loop system
have been established. In the present paper we first ex-
tend the class of controllers given in Kobayashi (2004)
to a more general class of stabilizing controllers. The
proposed class of controllers is a special class of pos-
itive real controllers and includes that proposed in
Kobayashi (2004) as a special case. Then we give
yet another class of positive real controllers which is
completely different from that proposed in Kobayashi
(2004).

This paper is organized as follows. In the Section 2,
we present the problem statement along with the sta-
bilizing controllers proposed in Kobayashi (2004). We
show that these controllers belong to a special class of
one dimensional positive real controllers, and relate
them to some existing stabilizing controllers for linear
strings. In Section 3, we propose a general class of
stabilizing controllers and show that these controllers
have positive real transfer functions. In Sections 4 and
5, we prove the well-posedness and the stability of the
resulting closed-loop system. In Section 6, we propose
yet another class of positive real controllers and show
that the members of this class result in well-posed and
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asymptotically stable closed-loop systems. Finally, we
make some concluding remarks.

2. PROBLEM STATEMENT AND PROPOSED
CONTROLLER

Following Kobayashi (2004), we consider the follow-
ing system which represents a nonlinear Kirchhoff
string with unit length and unit mass density for x ∈
(0 , 1) , t ≥ 0 :

ztt(x, t) = M(‖zx(x, t)‖2)zxx(x, t) (1)

where z(x, t) denotes the transversal displacement of
the string at a point x ∈ (0, 1) and a time instant
t ≥ 0; a notation such as zx or zt denotes the partial
derivative of a function with respect to the variable in
the subscript; the function M(·) ∈C1(R+) is assumed
to be nonnegative and ‖ · ‖ represents the standard L2
norm, i.e.

‖zx(x, t)‖2 =
1∫

0

z2
x(x, t)dx . (2)

Note that for the sake of brevity, we may omit the
arguments and use zx or zt instead of zx(x, t) or zt(x, t).
The boundary conditions associated with (1) are given
as for t ≥ 0 :

z(0, t) = 0 , M(‖zx(x, t)‖2)zx(1, t) = u(t) , (3)

where u(t) is the boundary control force applied at
the free end of the string. The problem is to choose
appropriate control law for u(t) so that the closed-loop
given by (1), (3) is stable. This problem is investigated
in Shahruz (1999) for the case M(s) = α + β s where
α > 0 and β > 0, and recently in Kobayashi (2004) for
a general M(·) satisfying M(s)≥ c > 0. The controller
proposed in the latter is as follows :

ẇ(t) =−aw(t)+bu(t) , w(0) = 0 , , , (4)

u(t) =−k(y(t)+w(t)) , y(t) = z(1, t) , k > 0 , (5)

where a ≥ 0, b > 0 and k > 0. Note that here the
measurement is the end point displacement. Some so-
lutions for the case where the measurement is y(t) =
zt(1, t), i.e. the end point velocity, have been given
in the literature, see e.g. Shahruz (1999) and the ref-
erences therein. The usage of displacement measure-
ment instead of velocity measurement at the end point
has some merit: It is easier to measure the displace-
ment and such measurements are usually less noisy
as opposed to the velocity measurements. The same
problem for the case M(·) = c > 0 has been considered
in many references, see e.g. Morgül (1994), where the
measurement includes both displacement and velocity
at the end point. The main result of Morgül (1994) is
closely related to the positive realness of the transfer

function of the stabilizing controller. To comply with
the notation of Morgül (1994), let us define a force
term f (t) as f (t) = −u(t), and apply the Laplace
transform to (4)-(5). By using (5) in (4), we obtain :

ẇ(t) =−(a+bk)w(t)−bky(t) . (6)

By applying the Laplace transform to (5)-(6), using
zero initial conditions, and f (t) =−u(t), we obtain :

f̂ (s) = g(s)ŷ(s) , (7)

where a hat denotes the Laplace transform of the
corresponding variable, s is the Laplace variable and
g(s) is the transfer function of the controller which is
given as

g(s) = k
s+a

s+a+bk
. (8)

Note that when a = 0, g(s) is a positive real transfer
function, and when a > 0, g(s) is strictly positive
real. For the definition of positive real transfer func-
tions, see e.g. Morgül (1994) , Slotine and Li (1991).
Note that here the measurement is the displacement,
whereas in Morgül (1994) the transfer function is
given with respect to the velocity measurement. For-
mally, using ŷt(s) = sŷ(s) in (7)-(8), we obtain :

f̂ (s) =
g(s)

s
ŷt(s) , (9)

By using (8), we can easily obtain :

g(s)
s

=
k1

s
+

k2

s+a+bk
, (10)

where k1 and k2 are given as :

k1 =
ka

a+bk
, k2 =

bk2

a+bk
. (11)

Note that for the case a≥ 0, we have k1≥ 0 and k2 > 0,
and g(s)/s is a positive real transfer function when
a > 0, and is strictly positive real when a = 0. By using
the results of Morgül (1994), we expect the asymptotic
stability of the closed-loop system when a≥ 0 for the
case M(·) = c > 0. For Kirchhoff’s string, M(·) is a
nonlinear function, and hence the results of Morgül
(1994) are not directly applicable. But by using the
idea of positive realness, we can, however, extend the
class of controllers proposed in Kobayashi (2004) to a
larger class of stabilizing controllers.

In the sequel, we generalize the results of the Kobayashi
(2004) in three respects : i ) We propose a larger class
of stabilizing controllers which includes that proposed
in Kobayashi (2004) as a special case; ii ) We relax the
unrealistic assumption made in (4) that w(0) = 0; iii )
We propose yet another class of stabilizing controllers
the members of which are different from those given
in Kobayashi (2004).



Let us define (see e.g. Morgül (1994))

y(t) = z(1, t) , f (t) =−u(t) . (12)

As for the controller, we propose the following system

ẇ(t) =−Aw(t)−b f (t) ,

f (t) = α1bT w(t)+α2y(t) ,

}
(13)

where α1 > 0 and α2 > 0 are arbitrary positive con-
stant numbers, w ∈ Rn is the state of the controller,
A ∈ Rn×n is a symmetric and positive semi-definite
matrix, b ∈ Rn, and a superscript T denotes the trans-
pose. Note that the controller in Kobayashi (2004) is
a special case of that in (12)-(13) where n = 1, k =
α1b = α2. For this controller we make the following
assumptions

Assumption 1 : A+bbT is a positive definite matrix.

Assumption 2 : The pair (A,b) is controllable.

Note that in Kobayashi (2004), since n = 1 and b >
0, these assumptions are automatically satisfied. The
transfer function of the controller given in (13) can be
easily computed as :

f̂ (s) = g(s)ŷ(s)
= [ α2−α1α2bT (sI +A+α1bbT )−1

b ]ŷ(s) .

(14)

We show in the sequel that with the stated assump-
tions, g(s) given by (14) is a positive real transfer
function. By using (13), we obtain :

ẇ(t) =−(A+α1bbT )w(t)−α2by(t)
= Fw(t)+Gy(t) ,



 (15)

f (t) = α1bT w(t)+α2y(t)
= CT w(t)+Dy(t) ,



 (16)

where we have

F =−(A+α1bbT ) , G =−α2b ,
C = α1b , D = α2 .

}
(17)

Lemma 1 : Consider the system given by (15)-(17)
and let Assumptions 1 and 2 be satisfied. Then the
transfer function given by (14) is a positive real trans-
fer function. Moreover, if A is a positive definite ma-
trix, then g(s) is a strictly positive real transfer func-
tion.

Proof : The proof depends on the well-known Kalman-
Yakubovitch Lemma, see e.g. Slotine and Li (1991),
Lefchetz (1965). According to this Lemma, given a
symmetric and positive definite matrix Q, a control-
lable pair (F,G) and an observable pair (C,F), the
transfer function given by (14), which can be written
as g(s) = CT (sI−F)−1B + D is strictly positive real
transfer function if and only if there exists an ε > 0, a
symmetric and positive definite matrix P ∈ Rn×n, and

a vector q ∈ Rn such that the following equations are
satisfied :

FT P+PF =−εQ−qqT , (18)

PG−C =
√

2Dq . (19)

It easily follows from Assumption 2 that the observ-
ability and controllability conditions are satisfied. It
can be easily shown that when the matrix A is posi-
tive definite, selecting β = α1/α2, P = β I, ε = 2β ,
Q = A, and q =−

√
2α1βb, (18) and (19) are satisfied.

Hence if A is positive definite, then g(s) is a strictly
positive real transfer function. On the other hand, if A
is only positive definite, then from the necessity part
of the proof of Kalman-Yakubovitch Lemma given
in Lefchetz (1965), p. 115, it follows that g(s) is a
positive real transfer function. 2

Note that the transfer function g(s) in (14) correspond-
ing to the controller proposed in this paper reduces
to that proposed in Kobayashi (2004) when n = 1,
k = α1b = α2.

Next, we investigate the well-posedness of the closed-
loop system given by (1)-(3), (12)-(13). For the sake
of simplicity, we call this system as S1. We define
various function spaces as follows :

H = L2 = { f : [0,1]→ R |
1∫

0

f 2(x)dx < ∞ },

H i = { f ∈ H | f , f ′, . . . , f (i) ∈ H },
V = { f ∈ H1 | f (0) = 0} , W = { f ∈ H2 | f (0) = 0},

D = {( f , g, w) ∈ H×H×Rn | f ∈W, g ∈V,

M(‖ f ′‖2) f ′(1) =−α1bT w−α2 f (1) }.

Theorem 1 : Let M ∈ C1([0,∞)) be a positive func-
tion such that M(s) ≥ c > 0, ∀s ≥ 0. Then, for any
(z0, z1, w0) ∈ D, there exists a unique solution of S1
such that for any T > 0 we have.

z ∈C([0, T ];V )∩L2([0, ∞);W ) ,
zt ∈C([0, T ];H) , w ∈C([0, T ];Rn) ,

}
(20)

Proof: For the proof, we use the technique used in
Kobayashi (2004). First, let us define the following
Lyapunov-like function for the system S1 :

E(z(t),w(t)) =
1
2
‖zt‖2 +

1
2

M̂(‖zx‖2)

+
1
2

αw(t)T Aw(t)

+
1
2

α3[α1bT w(t)+α2z(1, t)]2 ,

(21)

where M̂(s) =
∫ s

0 M(z)dz, and α and α3 are positive
constant numbers yet to be determined. Now, for a
given α1 > 0 and α2 > 0, we choose the remaining
constant numbers α and α3 so that α = α1/α2 , α3 =
1/α2. By taking the formal derivative of (21) along



the solutions of S1, and by omitting the spatial and
time variables in the argument for simplicity, after
straightforward calculations we obtain:

Ė = αẇT [Aw+
α2

1 α3

α
bbT w+

α1

α
bz(1, t)]

=−α‖ẇ‖2 ,

(22)

where in the last equality, the norm is the standard
Euclidean norm in Rn. The well-posedness results can
be shown by using Theorem 1 of Kobayashi (2004). 2

Theorem 2 : Let the assumptions in Theorem 1 hold.
Under these conditions, the closed-loop system given
by S1 is globally asymptotically stable .

Proof : Note that by (22) we have :

Ė =−α‖ẇ‖2 , (23)

along the solutions of S1. It can be shown that La
Salle’s Invariance argument can be applicable, see e.g.
see e.g. Luo, Guo and Morgül (1999). Let us define
the following set :

S = {(z, zt , w) ∈V ×H×Rn | Ė = 0 } , (24)

By using the techniques similar to the ones used
in Kobayashi (2004), it can be shown that the only
possible solution of S1 which is invariant in S is
the zero solution. Therefore, by LaSalle’s invariance
theorem, the system S1 is globally asymptotically
stable. 2

3. A NEW CONTROLLER

In this section, we propose yet a different class of
stabilizing controllers for the system given by (1)-(3).
Let us define (see Morgül (1994))

y(t) = z(1, t) , f (t) =−u(t) . (25)

As for the controller, we propose the following system

ẇ(t) = Aw(t)+by(t) = Aw(t)+bz(1, t) ,

o(t) = cT w ,



 (26)

f (t) = ȯ(t) = cT ẇ(t) = cT Aw(t)+ cT bz(1, t) , (27)

where w ∈ Rn, A ∈ Rn×n and b, c ∈ Rn, and a super-
script T denotes the transpose. For the controller given
by (25)-(27) we make the following assumptions :

Assumption 3 : The transfer function of the triple
(c,A,b) i.e g(s) = cT (sI−A)−1b is a strictly positive
real transfer function.

Assumption 4 : The pair (c,A) is observable and the
pair (A,b) is controllable.

From these assumptions, and the Kalman-Yakubovitch
Lemma stated in Lemma 1, it follows from that for any

given symmetric and positive definite matrix Q, there
exists a symmetric and positive definite matrix P such
that the following hold :

AT P+PA =−Q , Pb− c = 0 . (28)

Now, with these controllers, we will call the resulting
closed-loop system as S2.

Theorem 3 : Let M ∈ C1([0,∞)) be a positive func-
tion such that M(s) ≥ c > 0, ∀s ≥ 0. Then for any
(z0, z1, w0) ∈ D, there exists a unique solution of S2
such that for any T > 0 we have

z ∈C([0, T ];V )∩L2([0, ∞);W ) ,
zt ∈C([0, T ];H) , w ∈C([0, T ];Rn) ,

}
(29)

Proof : Proof of this result is quite similar to the
proof of Theorem 1. First, we define an appropriate
Lyapunov-like function as follows :

E(z(t),w(t)) =
1
2
‖zt‖2 +

1
2

M̂(‖zx‖2)

+
1
2

ẇ(t)T Pẇ(t) ,

(30)

where M̂(s) =
∫ s

0 M(z)dz. By formally taking the
derivative of (30) along the solutions of S2, and by
omitting the spatial and time variables in the argu-
ments for simplicity, after straightforward calculations
we obtain :

Ė =−1
2

ẇ(t)T Qẇ(t) , (31)

The rest of the proof is exactly the same as the proof
of Theorem 1 and is omitted here to avoid repetition.
2

Theorem 4 : Let the assumptions in Theorem 3 hold.
Under these conditions, the closed-loop system given
by S2 is globally asymptotically stable .

Proof : Similar to Theorem 2, this result can be shown
by using LaSalle’s invariance theorem. 2

4. CONCLUSION

In this paper we considered the stabilization of Kirch-
hoff’s nonlinear string by using boundary control tech-
niques. We assumed that only the displacement mea-
surement is available at the boundary and proposed
two different controller structures which asymptoti-
cally stabilize the corresponding closed-loop systems.
The first type of controllers proposed in this paper
is a generalization of the one dimensional controller
proposed in Kobayashi (2004) to higher dimensional
case. We note that even in one dimensional case, the
controller proposed in this paper is still more gen-
eral than that proposed in Kobayashi (2004). We also
proposed a second type of stabilizing controllers the



members of which are quite different from those pro-
posed in Kobayashi (2004). This new class of stabiliz-
ing controllers is related to positive real controllers as
well.
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