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Optimal pickup point location on material handling networks

ALIS. KIRANY and BARBAROS C. TANSEL+?}

The optimal location of a pickup point on a material handling network is
considered. The pickup point is defined as the material exchange point between the
maleriai handling system (MHS) and a station. The problem is defined as that of
choosing the location of the pickup point to minimize the total cost of material
movement in the MHS. A facility location mode! on directed networks has been
developed, and strongly polynomial solution methods are presented.

1. Introduction

We consider the optimal location of a pickup point on a material handling network.
The pickup poini may connect the material handling network to any one of the
following: a machining or assembly station, load, unload or inspection station, central
or local storage. Sometimes the pickup point may serve as a transfer point to or from
another material handling network. The problem arises in manufacturing systems
where an automated material handling system (MHS) transports the parts between the
stations. Material flow is often restricted by unidirectional movements of COnveyors,
carts or vehicles.

We use the term *pickup point’ in a generic sense. The term may represent a variety
of scenarios. Some examples are the following. (1) A new workstation with a
multipurpose machine tool is being added to the system. The pickup point is the point
of material exchange between the new station and other stations. (2) A new coordinate
measuring station is added to the system for the purpose of checking certain critical
dimensions before continuing with the remaining operations. The pickup point is the
point where the coordinate measuring machine interacts with the MHS. (3) The work in
progress (WIP) that cannot be stored at focal buffer arcas of work stations have to be
taken out of the MHS to be stored temporarily at a central storage area. Eventually,
when there is sufficient space available at the local buffer storage of a workstation, these
parts will be fetched from rthe central storage to be returned to the MHS. The pickup
point in this scenario represents the point where WIP exits or enters the MHS. Our
analysis and results are not restricted to any one of the above scenarios. Whenever it is
necessary to interpret the model, we will use the last scenario.

The problem is important in both conventional and flexible manufacturing systems.
In a conventional manufacturing setting addition of a new workstation, inspection
station or storage area may be required due to changes in demand, part design or
manufacturing technology. A new multipurpose station may replace cxisting stations,
ctc. The location decision at the time of such a change has considerable cost
consequences. In a flexible manufacturing system where workstations are connected
and operated under a central computer control, the consequences of the station
locations may be even more important. In such a case, the operational performance of
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1476 A. S. Kiran and B. C. Tansel

the system is more sensitive to layout design due to the effects of transportation times
on blocking and starvation probabilities.

Tn some cases, the question of where to locate the pickup point may actually be a
part of the ‘what if’ analysis that must be performed during the design of the system. A
small number of key stations may be evaluated one at a time as an addition to the
conceptually existing system. Alternative designs can be developed by examining
different workstations. This requires efficient and robust techaiques.

The problem can be defined as that of choosing the location of the pickup point so
that the total cost of the material movement is minimized. Our model does not consider
the movements outside the MHS as part of the total cost. We have two reasons for this.
Either such movements are negligibly small in comparison to the movements within
the MHS, and can be ignored, or (when they are not small) a minor medification of our
analysis handles the extra material movement cost outside the MHS.

The problem is modelled as a facility location problem that seeks to minimize the
sum of weighted network distances. The MHS is represented by a network consisting of
directed arcs that correspond to conveyor belts, tow lines, monorail or wire paths.
Because the network is directed, the distances (as defined by shortest path lengths) are
asymmetric. Associated with cach work station is a pair of weights that represent two
types of flow: from workstations to the pickup point and from pickup point to
workstations. The flows are also asymmetric. These asymmetric distances and flows
will be considered in this paper.

Although they are not directly related to the problem we address here, some layout-
related problems in manufacturing systems have been addressed in the literature (see,
for example, Tansel et al. 1983, Hansen et al. 1985). Material handling system and
machine layout problems are described in Kusiak (1985} and Kusiak and Heragu
(1987). Afentakis {1986) developed a graph-theoretic model and proposed algorithms
based on ‘switch-and-check’ techniques. Heragu and Kusiak (1986) proposed
clustering-based heuristic methods for machine layout problems. Gaskins and
Tanchoco (1987) defined a material handling network design problem. Tansel and
Kiran (1988) provided solutions for storage location in flexible manufacturing cells.

2. Notation and definitions

Let MHN =(N, A) be the material handling network. MHN is defined by node set
N={1,...,n} that represents workstations and junction points and (directed) arc sct 4
that corresponds to material handling paths of the MHS. An example of a MHS layout
and corresponding MHN are shown in Fig. 1. We assume that there is a directed path
from any node to any other node, and we allow loops and parallel arcs.

’_7

M/C

J’ M/C

(@) b)

Figure 1. (4) Material handling system layout; (b) corresponding material handling network.
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For each node j, let uy, v; be a pair of non-negative weights where u ; represents the
flow (unit loads/unit time) from node j to pickup point, and v, represents the flow from
pickup point to node j. Parameters u; and v; can be estimated from the routing
information as described in Tansel and Kiran (1988).

Note that u;s#v; in general. It will be convenient to define

U=

i

1=

U (1)

and

1=

V=

i

Up 2)

1

1

the total flows to and from the pickup point, respectively. The case with U =V will be
called the ‘balanced case’ In most automated manufacturing systems the
‘balancedness’ assumption holds. Any part coming to the pickup point will eventuaily
leave the pickup point. This explains why the total inflow U is equal to the total outflow
V. The balancedness assumption may fail when losses or gains occur at the pickup
point. For example, defective parts can be removed from the system at an inspection
station. A station may be allocated only toload parts. In a conventional manufacturing
setting the balancedness is harder to justify due to loss and removal of the parts at the
stations and occasional manual transport of the parts. We will develop our results for
the case with U # V., Some interesting special results will be given for the balanced case.

All points along all arcs are eligible for locating the pickup point. Let d(x, y} be the
length of a shortest path from x to y. We note that d(x, y)=0 with dix, )=01if x=y.
Further, Vx,y,zeMHN, shortest path lengths satisfy d(x,y)+d(y, 2)>d(x,z), and
d(x, y)#d(y, x} in general.

For a pickup point located at x the total cost of material flow is given by

FX)=fi(x)+fox), (3)

where f,(x}is the total cost of material flow from stations to the pickup point, and f5(x)
is the total cost of material flow from the pickup point to stations, ie.

6= Y. uyd(, ) @
1209 3. vjdix.j). g

The problem is to find x such that f(x)<f{y) for all points y on MHN.

3. Node optimality

We new prove that there exists at least one node that minimizes fon MHN.
Theorem 1 (also see Handler and Mirchandani (1979) and Mirchandani (1975)): Let
(a,b) be an arc and let xe(a, b), then

f(x)zmin{fa)f(b)}. (©)

FProof. Let I be the length of arc (a, b). Let A be the distance between a and x (see Fig. 2). If
X=g or x=h, the claim is true. For x#a, b, we have

flx)= Z u; [d(j,a)+ A+ i v,[I—A+db,j)]. (7

=1
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Figure 2. Theorem 1.

L

-

Hence,

Z i [d(b, ) —dla. )] +IV+ AU V). (8)
In Equation (8), d{a, j) <!+ d(b. j), since arc (g, b) may or may not be on the shortest
path from a to j. Hence,

||[\/]=

fix ﬁf(a?_ o~ D+1IV+ AU -V)=MUU—V}. %

A similar derivation gives

Jx)—fy2(V=Ull—4). (10)

Equations (9) and (10) imply that either f(x) =/ (a) or f(x) =f(b). n

Theorem 1 reduces the candidate solution set to node locations. This means that the
minimum total cost can be obtained by locating the pickup point next to an existing
workstation or at an intersection point of the MHN. The minimum cost node can be
found by evaluating f(j) at each node j, and selecting the minimum f{ ). Given the
node-to-node distance matrix, finding the optimal node in worst case takes O(n?) time.

In the event the transport cost outside the MHN is not negligible, a minor
modification is required. Using the scenario with the central storage we now explain
this modification. For nodej, let s; be the cost of moving one unit from the pickup point
to central storage and let ¢; be the cost of moving one unit from central storage to the
pickup point. The parameters s, {; can be estimated a priori for each node j and their
values depend on the particular mode of transportation between the pickup point and
the central storage. Given these numbers, the total cost associated with node j is (/)
+s5;U +1;V. Defining this cost to be g(j), the minimum cost node is obtained by
choosing the smallest g(j).

The O(n?) enumeration will now be improved to O(kn) where k is the number of
nodes whose in or out degree is greater than one. This algorithm is based on the
following observation.

Property 1: Let (a, b) be the only arc connecting nodes a and b (Fig. 3). We then have

fiB)=f{a)+ U —uft+d(b, a)), (11)
fr@)=fo(b)+1V—u(l+d(b,a)). (12)
Proof:

B)=Y wyd(j.h)

jeN
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Figure 3. Property 1.

where dij, b)=d(j,a)+1 fer j#b. Hence

filh)= : u; [d, a)+ 1) =fi(@)—-up d(b, @)+ 1 ) u,,

JeN N
j*b i*b
or
Jib)=f (@) —u,d(b,a)+IU —lu,, (13)

which is equivalent to Equation (11). Equation (12) can be shown in a similar way.

Let N'= N be the set of nodes with indegree greater than one. After calculating f1( )
for jeN',f, values for the other nodes can be calculated using Equation {11). Sirnilarly, if
N"< N is the set of nodes with a outdegree greater than one, [> values of the nodes,
Jje{N—N"}, can be calculated using Equation (12). Hence fvalues of ail nodes can be
calculated in O(kn) time where k=|N"UN"|. If k is small, as is often the case in many
systems, then the computation time is substantially smaller than O(n?). The
calculations are illustrated in Example 1.

3.1. Example 1
Problem data are given below. Graph MHN =(N, 4) is given in Fig. 4. Node-to-
node distances are given in matrix D.

1 2 3 4 5
;| 5 10 15 10 0
v |15 5 10 15 0

02 2 3 1
1 03 42
D=4 3 0 1 2
322 0 1
2 11 2 0]

N'={5}. We calculate f,(5) using equation (4);
Ji(5)=5(1)+ 10{2) + 15(2) + 10X 1) = 65.
Now f1(),je{1,2,3,4}, can be calculated using Equation (11).
fi(2}=65+1 (40— 10)— 10(2) =75,
SiD=T5+1 (40— 5)— 5(2)= 100,
fi(3)=65+1 (40~ 15)— 15(2) =60,
Sil)=60+1 (40— 10)— 10(2) = 70.

Copyright @ 2001. All Rights Reseved.



1480 A. S. Kiran and B. C. Tansel

Figure 4. MHN for Exampie 1.

N*=1{5}. Hence,
£o(5)=15(2)+ 5(1) + 10(1) + 15(2) =

Now using Equation (12} we obtain

L(N)=T5, f[,(2)=105, fi{4)=75, f(3)=90.
Adding f, and f, for each node we have

=175,
1(2)=180,
13 )#150
fd=

f(S)f140

Node 5 is the optimal node location.

4. Unicyclic case

In the case of a unicyclic MHN a more efficient solution method can be developed.
A unicyclic MHN is an appropriate model for a closed loop conveyor system which is
common material handling equipment in many manufacturing systems. In a unicyclic
MHN all arcs are oriented in the same direction to form a cycle. Let us number the
nodes from 1 to n, starting at an arbitrary node, and following the arcs (see Fig. 5).

Let a and b be two adjacent nodes. Let / be the length of arc(a, b) and ¢ be the cycle
length (i.e. total length of all arcs in the network). We observe.

1
|
1 ()

Figure 5. Numbering a unicyclic graph.
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Property 2:

flay—flb)=clu, —v,)—(V--U). (14)
Proof:

Ta)—fb)=f(a) +f2(a)—f.(B)—f(b).

Using equations (11) and (12) we have
fla)—=fb)=fila) + foby+ 1V —v,c —fi{a) - 1U +upe —f(b),

which is the desired result, W
We now use Equation (14) to give an O(n} algorithm that finds the optimal pickup
point in the case of unicyclic MNHs. In the algorithm, f*(i) is defined to be f(i)=f{1) for
i=1,....,n
Algorithm ONLUN (Optimal Node Location on Unicyclic Network)
INITIAL Number nodes from 1 ton. Seti= 1, f*(1}=0, MIN =0, OPNODE =1.
MAIN: i«i+1, compute

SHI=fY= Dt el v )=l y V—U).

If f*{i)< MIN then MIN =/*(j), and OPNODE=i.
If i=n stop, otherwise repeat MAIN.

5. Optimal pickup point location on arcs

The previous results indicate that the minimum cost location coincides with the
location of another station. This may not be possible in practice due to computer
control difficuliics or size constraints. In most real world situations, the pickup point
may have to be located away from existing stations, at an interior point of some arc.
The following result simpiifies the search on the arcs.
Property 3. Let (g, b) be an arc with length ! (see Fig. 6). Letx<(a, b) be a point with
d(a, xy=1. We have

FE) =11(@) +fo(b)+ 2U +(1— D)V, for 0<i<l. (15)

Proof: Rewriting Equation (3) for x+#a, b, we have

I

SO = H00= Y. wydix)+ Y, oydi.)) (16)
i= i=
But
dlj, x)=dj, a)+ 2, (17

Figure 6. Property 3.

Copyright © 2001. All Rights Reseved.



1482 A. 8. Kiran and B. C. Tansel

and
d(x,j)=d(b,j)+(1—4). (18)

By substituting Equations (17) and (18) into (16) we obtain Equation (15). W
In a balanced case, Equation (15) becomes

f)=fila)+fb)+1V (19)

Equation (19) indicates that in the balanced case the total cost of the locating pickup
point at interior point x is independent of A. This means that once the minimum cost arc
of MHN is determined, the pickup point can be located anywhere on this arc. The
minimum cost location can be found by evaluating Equation (19) for all arcs in the
network.

In the general case of U=V, the minimum cost location of the pickup point x
depends on the distances 4 and /- 4. But the minimum cost iocation can be easily
determined. For any interior point x of arc{a, b), let us write Equation (15) as

f)=fi@+f:(b)+V+HU-V), for 0<i<i, (20)

and observe that f(x} is a linear function of 4 with slope U — V. The slope of f(x) is
constant on any arc of the MHN. This indicates that, if node locations are not eligible,
then the pickup point must be located on arc (a, b) as close as possible toaif U> ¥, and
as close as possible to b if U < V. Hence, if a lower limit on A (or /— ) is given because of
size limitations, there is only one candidate point on each directed arc(a,b). The
optimum Jocation can be determined by evaluating Equation (20) at candidate points.

5.1. Example 2

For the problem data in Exampie 1, the evaluation of arcs is given in Example 2.
Suppose, due to size limitations, the pickup point must be located at least 0-2 unit
distance away from nodes 1, 2, 3, 4 and 01 unit distance away from node 5. Let us find
the optimal pickup point location. Note that U =40 < V'=45. Hence, we will consider
the points close to b on directed arcs (a, b). These are evaluated in Table 1. The optimum
location is on arc(3,4), 0-8 unit distance away from node 3.

6. Modifying the MHN

Tn this section we will analyse the situations when a new arc is added to the original
MHN. There are two possible applications of this analysis. First, as we will show, we
may omit loops and parallel arcs during the initial analysis for optimal locations. These

Arc Node

(a.b) b fila) AL v i Jx)
{L,5) 5 100 75 45 09 2155
(2,1) 1 75 75 45 08 191
3.4 4 60 75 45 08 176
4,5) 5 70 75 45 09 1855
(5,2) 2 63 105 45 08 21t
(5,3 3 65 90 45 08 196

Table 1. Computations for Example 2.
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Figure 7. (2) MHS layout with a loop and parallel arcs; (b) corresponding MHS.

omitted arcs may be added to MHN if they are candidates for the new facility. The
second possible application is the case where it is necessary to add a new arc to the
network when it is not possible to locate the new station on the original MHN.

First, let us consider a MHS layout with loops and parallel ares (Fig. 7(a)). We can
use the previous results to simplify the analysis of such a network. Since we have defined
d(a, b} as the shortest path distance between a and b, loops and all but the shortest of the
paraliel arcs will never enter into the calculation of f, and f,. Hence, for analysis
purposes all loops and all but the shortest of parailel arcs can be removed. For example,
in Fig. 7(a) the loop around load/unload station and one of the parallel arcs between
junction points 4 and 5 may be removed. The resulting unicyclic network can easily be
analysed. If loops or parallel arcs are candidate locations for the new facility, f(x) on
these arcs can be calculated using Equation (15). For example, for a loop (g, a} and
xe(a,a) with [ =1, and i-=dia, x),

J) =@+ )+ AU+ -1V, for0<i<l

f{x) for any paraliel arc can be calculated by directly applying Equation (15).

The second case is encountered where the physical configuration of the MHS, space
and size limitations, accessibility, safety considerations, etc., may not permit locating a
new station on the original MHN. There are usually a few alternative arcs that can be
added to MHN. Figure 8 shows such a situation.

Let (x, ¥) be the new arc added to the original network where x and y are any points
on the original MHN and Jet z be a point of this arc. Denoting the length ofarc{x, y)by !
and the length of the subarc (x, z) by A, we observe that every unit transported from j to
point z must visit point x during its journey. This implies

filz)= _:Zl u; [dj, x)+ A]=f,(x)+ AU. (21)
Arc
(a,b) fi(a) f2(b) Al ({—Av 1(2)
(1,3) 100 20 56 9 255
3.1 60 75 56 9 200
(2,4 75 75 56 9 215
4,2) 70 105 56 9 240

Table 2. Computations for Example 3.
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b=15

Figure 8. Alternative new arcs.

Similarly, every unit transported from z to node j must visit y. This gives

L@ =L +(I-AV. (22}

It follows that f(z)=f,(x)+fo ¥) +1{U — V)+1V. Hence, if U— V=0, all points on the
new arc have equal merit for being the pickup point. If U — V>0 then the pickup point
must be as close to x as permitted, and if U — V<0, it must be as close to y as permitted.

6.1. Example 3

Let us consider the alternative arcs (1,3) (3, 1), (2,4) and (4, 2) for the data given in
Example 1 (Fig. 8). Recall that U = 40 < V' =45. Hence, we will consider the points close
to the head of the directed arcs (@, b). On a given arc there is a unique candidate pomnt
which is 02 distance unit away from the points head of the are. Evaluation of the
candidate points is given in Table 2. The optimal point is on new arc (3,1), 0-2 unit
distance away from node 3.

7. Summary and conclusions

We have considered the problem of locating a pickup point on the existing MHN of
a manufacturing system. We have shown that the pickup point may be located at a
node of the MHN to minimize the total cost function defined as the sum of the products
of material flow and travel distances. In a real manufacturing environment, locating the
pickup point at existing nodes may not be possible due to constraints on computer
controls and size limitations. We analysed cases in which the pickup point must be
located on an arc of the MHN. The actual location of the pickup point on the arc does
not affect the objective function under a reasonable ‘balancedness’ assumption. If
MHN consists of a unicycle, the optimum node location can be found in O(n) time.
Otherwisc, it is found in O(kn) time where k is the number of nodes whose indegree or
outdegree or both are greater than one.

We have considered modifications in the existing MHN to accommodate a node or
to relieve the congestion in the system. Results have been obtained to calculate the
effect of such a modification on the cost function. The results in this section can also be
used to evaluate limited alternative layouts that differ from one another in only one arc.

The model presented here is applicable to a variety of real world scenarios. These
scenarios inctude addition of a new workstation, an inspection station or a central
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Figure 9. A sample MHS layout (courtesy of Litton Industries, Inc.).

storage. An example of an existing MHS layout where model is applicable is shown in
Fig. 9. We believe that the applicability of the model and the results will encourage the
research on more comprehensive models of different types of MHNS. The research for
some general cases is already undertaken by the authors.

Acknowledgment
This work was supported in part by the National Science Foundation under grant
DMC-87-09171.

References

ATENTAKIS, P, 1986, A model for layout design in FMS. In Flexible Manufactoring Systems:
Methods and Studies, edived by A. Kusiak (Amsterdam: North Holland).

Frances, R, L., and WHITE, J. A, 1974, Flexible Layout and Loeation {Englewood Cliffs, NJ:
Prentice-Hall).

Francis, R. L., McGinngs, L. F. and Warte, J. A, 1983, Locational analysis. European Journal of
Operational Research, 12, 220-252.

Gaskivs, R. J, and TancHoco, J. M. A, 1987, Flowpath design for automated guided vehicle
systems. International Journal of Production Research, 25, 667-676.

HANDLER, G. Y., and MIRCHANDANI, P. B, 1979, Lacation on Networks: Theory and Algorithms
{Cambridge, MA: MIT Press).

HANSEN, P, LABBE, M., DoMinic, P., and Trisse, J. F., 1983, Single facility location on networks.
Working paper, RUTGOR, Rutgers University.

Heragu, 8. 8., and Kusiak, A, 1986, Machine layout problem in flexible manufacturing systems.
Working paper 08/86, Department of Mechanical and Industrial Engineering, University
of Manitoba.

Copyright @ 2001. All Rights Reseved.



1486 Optimal pickup point location

KusiAk, A., 1985, Materia! handling in flexible manufacturing systems. Material Flow, 2, 79-95.

Kusiak, A., and HeraGu, S. S., 1987, The facility layout problem. European Journal of
Operational Research, 29, 229-251,

MIRCHANDANY, P. B, 1985, Analysis of stochastic networks in emergency service systems. IRP-
TR-15-75, Operations Research Center, MIT.

TanseL, B. C., Francis, R. L., and Lowe, T. J., 1983, Location on networks: a survey, Parts [ and
II. Management Science, 29, 482-512.

TanseL, B. C, and XKiran, A. S, 1988, Optimum central storage location in flexible
manufacturing celis. Journal of Manufacturing Systems, 7, 121-129.

B e s s

. T SR | C 'opyrrght.©T200T“(migﬁ.f§.Rééé-\;"é’d‘”""wm”" X



