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We describe a simple method to derive high performance semidefinite programing relaxations for
optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is
very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum
systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality
in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in
quantum communication complexity and prove the soundness of the prepare-and-measure dimension
witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new
dimension witness that can distinguish between classical, real, and complex two-level systems.
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The realization that certain experimental setups can only
store a finite amount of information, related to the dimen-
sionality of the underlying quantum system [1], is one of
the most surprising features of quantum theory.
Building upon this observation, quantum communica-

tion complexity studies the possibility to conduct a dis-
tributed computation when we limit the dimension of
the quantum systems we allow to exchange [2,3].
Consider the following scenario: two parties, call them
Alice and Bob, receive the inputs x; y, respectively. They
wish to compute the Boolean function fðx; yÞ ∈ f0; 1g, for
which purpose Alice is allowed to transmit Bob a D-level
quantum system. The question is: given a prior distribution
of the inputs pðx; yÞ, what is the maximum probability
that Bob guesses the value of fðx; yÞ? More often than
not, the possibility of exchanging D-dimensional quantum
systems gives Alice and Bob an advantage with respect
to exchanging classical variables with D possible
values [4].
An upper bound on the dimension of the systems

transmitted is also the basis of semidevice independent
quantum key distribution (QKD) and randomness expan-
sion [5,6]. Here the experimental setup only differs from
the above one in that Alice and Bob choose the inputs x; y
locally. Apart from the dimensionality D of the sent states,
no assumption is made on their actual wave function, or on
the nature of Bob’s interaction with the quantum system,
which produces an outcome b. The aim of semidevice
independent QKD and semidevice independent random-
ness expansion is to process the variables ðx; y; bÞ in order
to distill a secret key between these two parties or generate
a genuinely random string of bits, respectively. In both
cases, security proofs rely on upper bounds on the
maximum value of specific linear functionals of the
correlations Pðbjx; yÞ achievable with D-level quantum
systems.

Such upper bounds can also be used to determine the
number of quantum levels that new quantum technologies
can effectively manipulate, and hence assess their potential
for quantum computation, or as quantum memories.
Indeed, by conducting an experiment where the value of
these functionals exceeds the D-dimensional limit, we can
certify that the experimental setup has access to a quantum
system of dimension at least Dþ 1. Lower bounds on the
dimensionality of an experimental setup can be derived
from prepare and measure dimension witnesses [7], such as
the ones used in quantum communication complexity
and semidevice independent QKD, or even better, through
the degree of the violation of a Bell inequality [8–11].
This last technique has the advantage that classical degrees
of freedom have no contribution on the certified
dimensionality.
The above motivates the need of bounding the statistics

arising from quantum systems of a given dimension. A high
performance method to bound D-dimensional quantum
correlations would allow us, given a functional, to upper
bound its maximum value for systems of dimension D,
with applications in quantum communication complexity,
semidevice independent quantum information science,
and experimental tests of quantum dimensionality.
Unfortunately, all methods proposed so far are either very
computationally demanding [8,12], cannot be shown to
converge [13,14], or only apply to particular functionals of
the measured probabilities [9–11,15,16].
In this Letter, we propose a simple scheme to generate

semidefinite programming (SDP) [17] relaxations of
dimensionally constrained problems in quantum informa-
tion theory. Such relaxations, whose working principles
stem from noncommutative polynomial optimization
theory [18], beat all previous methods in almost all
conceivable scenarios. For the sake of clarity, we have
chosen to illustrate how the scheme works by applying it to
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specific setups of interest in quantum information theory.
For many of the problems considered, the application of
any other existing numerical algorithm was not feasible due
to memory or time limitations: our numerical tests must
hence be regarded as new theoretical results derived with
the aid of our proof system. A general approach to the
noncommutative polynomial optimization problem under
dimension constraints, together with an analysis of the
convergence (in the sense of completeness) of the
hierarchies of relaxations introduced here, will appear
elsewhere [19].
Let us start by considering the problem of introducing

dimension constraints in quantum nonlocality. Suppose
that we wish to maximize a Bell functional BðPÞ ¼P

x;y

P
a;b B

x;y
a;bPða; bjx; yÞ under the constraint that each

party has access to a D-level quantum system. That is, we
want to solve the problem

max
X

x;y;a;b

Bx;y
a;bPða; bjx; yÞ;

s:t: Pða; bjx; yÞ ¼ hψ jEx
a ⊗ Fy

bjψi; ð1Þ

where fEx
a; F

y
bg are projection operators acting in CD, withP

aE
x
a ¼

P
bF

y
b ¼ ID, and jψi ∈ CD2

.
One way to attack this problem is to simply ignore the

dimension restrictions and apply the Navascués-Pironio-
Acín (NPA) hierarchy of semidefinite programs for the
characterization of quantum correlations [20,21].
The NPA hierarchy works by reformulating

problems such as (1) as linear optimizations over the
underlying system’s moments cI ≡ hψ jIjψi;…; cFy

b
≡

hψ jðIA ⊗ Fy
bÞjψi;…; cEx

aEx0
a0F

y
b
≡ hψ jðEx

aEx0
a0 ⊗ Fy

bÞjψi;….

Let us group all of them in a single moment vector
c≡ ðcI; cFy

b
;…Þ, whose components are labeled by strings

of operators.
It can be shown that, if we arrange the moments of order

smaller than or equal to 2n of a quantum system as the
entries of a matrix in a certain way, the resulting nth-order
moment matrix ΓnðcÞmust be positive semidefinite [20,21].
See the Supplemental Material [22] for a precise definition
of the moment matrix. The operating principle behind the
NPA hierarchy is to approximate the set of feasible
moments by a vector of complex numbers c, with
cI ¼ 1, ΓnðcÞ ≥ 0.
Callingm the number of moments of length smaller than

or equal to 2n, the nth order NPA relaxation to problem (1) is

max
X

x;y;a;b

Bx;y
a;bcEx

aF
y
b

s:t: c ∈ Cm; cI ¼ 1;ΓnðcÞ ≥ 0: ð2Þ

This happens to be a semidefinite program (SDP), a class of
optimization problems for which plenty of efficient numeri-
cal tools are available [17].

Although a sound relaxation of problem (1), the NPA
hierarchy is not sensitive to the dimensionality parameter
D, and so it cannot be used to derive dimension witnesses.
The key to go beyond the NPA approximation is to
acknowledge that Cm does not capture all linear restrictions
present in moment vectors arising from quantum systems of
dimension D. We will incorporate dimension constraints to
the SDP problem (2) by characterizing exactly the span of
such a set of vectors. That is, we will identify a minimal
basis of vectors fcjgNj¼1 such that any truncated feasible
moment vector c of order 2n arising from a D-dimensional
quantum system can be expressed as c ¼ P

N
j¼1 λjcj, for

some coefficients λj.
For convenience, we start by making an assumption on

the ranks of the optimal projectors fEx
a; F

y
bg. Calling Sn

D;~r
the set of all feasible moment vectors of order 2n with
rankðEx

aÞ ¼ rA;xa ; rankðFy
bÞ ¼ rB;yb , the problem we wish to

solve is

max
X

x;y;a;b

Bx;y
a;bcEx

aF
y
b

s:t: c ∈ Sn
D;~r; cI ¼ 1;ΓnðcÞ ≥ 0: ð3Þ

Clearly, in order to conduct this optimization, we must first
identify the space Sn

D;~r of feasible moment vectors of
order 2n.
To that end, we generate randomly quantum states

jψ jihψ jj ∈ BðCD2Þ and projection operators fEx;j
a ;

Fy;j
b g ⊂ BðCDÞ, with rankðEx;j

a Þ ¼ rAx;a; rankðFy;j
b Þ ¼ rBy;b.

For each tuple ðjψ jihψ jj; Ex;j
a ; Fy;j

b Þ of feasible state and
projectors, we build the corresponding 2nth order moment
vector

cju ¼ hψ jjuð ~Ex;j
a ; ~Fy;j

b Þjψ ji; ð4Þ

where ~Ex;j
a ¼ Ex;j

a ⊗ ID, ~Fy;j
b ¼ ID ⊗ Fy;j

b , and u ranges
over all strings of operators of length smaller than or equal
to 2n. We thus get a sequence of random feasible moment
vectors c1; c2;…. Since on one hand we are only interested
in linear combinations of real entries of the system’s
moment vector (namely, c ~Ex

a; ~F
y
b
) and, on the other hand,

given a feasible tuple ðψ j; Ex;j
a ; Fy;j

b Þ, its complex conjugate
ðψ j; Ex;j

a ; Fy;j
b Þ� is also feasible, it is enough to consider the

real part of the above sequence, i.e., Reðc1Þ;Reðc2Þ;….
One can apply the Gram-Schmidt process to this

sequence of real moment vectors in order to obtain an
orthogonal basis ~c1; ~c2;… for the space spanned by such
vectors. We will notice that, for some number N, ~cNþ1 ¼ 0,
up to numerical precision. This is the point to terminate the
Gram-Schmidt process and define the normalized vectors

fcj ≡ ð~cj=
ffiffiffiffiffi
~c2j

q
Þ∶ j ¼ 1;…; Ng. It is easy to see that, even

though the basis fcjgNj¼1 was obtained randomly, the space
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it represents is always the same, namely, the intersection
of Sn

D;~r with Rm.
Note that, alternatively, we could have reformulated the

objective function as a linear combination of the entries of
the moment matrix Γn, characterized the span of feasible
nth-order moment matrices Γn, and carried out an opti-
mization over all positive semidefinite matrices in such a
space with ðΓnÞI;I ¼ 1. This is actually how we wrote the
codes for the forthcoming numerical examples.
A brief note on strict feasibility is in order. One can show

that, even if we eliminate one projection operator from each
measurement as in Refs. [20,21] to remove operator
dependencies, for high enough relaxation orders n there
are no strictly feasible points for problem (3) [19]. In other
words: there is no s × s positive definite matrix ΓnðcÞ, with
c ∈ Sn

D;~r. This poses a problem for the implementation of
Eq. (3), since many SDP solvers require strict feasibility to
operate. An easy way to circumvent this issue is to compute
the matrixG≡ ð1=NÞPN

i¼1 Re½ΓðciÞ� and find an isometry
V∶ suppðGÞ → Rs. Then, the positive semidefinite con-
dition over ΓnðcÞ can be replaced by VΓnðcÞV† ≥ 0, which,
by construction, admits a strictly feasible point.
We have just described how to perform in practice the

nth order SDP relaxation of problem (3), which, in turn, is a
relaxation of a rank-constrained version of problem (1).
Taking the maximum over all possible rank combinations ~r,
we obtain an upper bound on the solution of (1).
At this point, the reader will probably wonder whether

this method is actually useful for the kind of problems we
usually encounter in quantum information theory. Hence,
we conducted a number of optimizations over the set of
D-dimensional quantum correlations in order to assess its
performance. Such numerical computations, as well as all
subsequent ones presented in this Letter, were carried out
with the MATLAB packages YALMIP [23] and the SDP
solvers SeDuMi [24] and Mosek [25]. First we considered
the I3322 inequality, a three-setting bipartite two-outcome
Bell inequality from the INN22 family, defined in Ref. [26].
Recently, it has been proven that qubit systems are not
enough to attain the quantum maximum ∼0.2509 [12,13].
Rather, the best value in C2 × C2 systems is 0.25. Using
Eq. (3), we certified up to 8 significant digits that the
maximum is 0.25 in dimensions C3 × C3 as well. The
computations, which were performed on a normal desktop
PC using the solver SeDuMi on third order NPA relaxation,
took about 5 min for a fixed rank combination of mea-
surements. Note that the hierarchy of Moroder et al. [13],
by allowing the user to limit the negativity [27] of the
bipartite quantum state, also gives a (not necessarily
tight) lower bound on the dimension of the quantum
state for a fixed Bell violation. Indeed, in the case of
the I3322 inequality, this method works for C2 × C2

systems by returning a violation of 0.25; however, it turns
out not to converge for C3 × C3 systems (see Fig. 1
of Ref. [13]).

We then switched to the four-setting Bell inequality
defined in Ref. [12] by Eq. (19). Its maximal violation in
C2 × C2 systems has been upper bounded by 5.8515 [12].
However, this upper bound turns out to be not tight: using
our new tool one can certify a value of 5.8310, which can
be matched by seesaw variational methods [28,29]. By
raising the dimension to C3 × C3, one obtains the same
number again, which must be compared to the maximum
value of 5.9907, achievable in C4 × C4 systems. In contrast
to our certified value 5.8310 for qutrits, the corresponding
value arising from Moroder et al. hierarchy [13] (on their
level 2) is 5.9045.
Note that relaxation (3) is only valid under the

assumption that both parties are conducting projective
measurements. More general measurements are modeled
in quantum theory via positive operator valued measures
(POVMs), i.e., by a collection of operators fMx

ag ⊂ BðCDÞ
with Mx

a ≥ 0,
P

aM
x
a ¼ ID. It so happens that, for two-

outcome measurements, the extreme points of the POVM
set are given by projective operators. Relaxation (3) is
hence sound in all such scenarios.
In order to study more complex measurement setups, we

can exploit the fact that any d-outcome POVM in dimen-
sion D can be viewed as a projective measurement in an
extended Hilbert space Cd ⊗ CD [30]. In this dilation
picture, Alice and Bob’s state is j0ih0jA0 ⊗ j0ih0jB0 ⊗
jψihψ jAB, with dimðA0Þ ¼ dimðB0Þ ¼ d, dimðAÞ ¼
dimðBÞ ¼ D, while Alice’s local measurement projectors
are given by Ex

a ¼ Uxðjaihaj ⊗ IDÞðUxÞ†, where Ux ∈
BðA0 ⊗ AÞ is an arbitrary unitary operator (and similarly
for Bob). A feasible moment vector for this system would
thus be generated by sampling random unitariesUx; Vy and
states jψi. In this scheme it may be convenient to introduce
two different “identity operators” in our moment matrices.
One of them would be the genuine identity IA0B0 ⊗ IAB on
Alice and Bob’s target and ancillary states. The other one
would be the projector j0ih0j⊗2

A0B0 ⊗ IAB onto Alice and
Bob’s target space AB.
To test the efficiency of the above method, we picked the

Pironio-Bell inequality [8,31], which is the simplest tight
Bell inequality beyond two-outcome inequalities. Here,
Alice has three binary-outcome measurement settings,
whereas Bob’s first setting has binary outcomes and his
second setting has ternary outcomes. By allowing general
POVM measurements on Bob’s second setting, we recover
the two-qubit quantum maximum ð ffiffiffi

2
p

− 1Þ=2≃ 0.2071 up
to 8-digit precision on level 3 of the hierarchy. Note that the
overall quantum maximum is a larger value of 0.2532
which can be attained with two-qutrit systems [8].
Limiting quantum nonlocality under dimension con-

straints is not the only interesting problem in quantum
information that can be solved with the above scheme.
Consider, for instance, the problem of bounding the
efficiency of quantum communication complexity. This
scenario can be modeled by assuming that Bob performs a
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binary measurement Fy
b over the state ρx sent by Alice. The

outcome b ∈ f0; 1g will be Bob’s guess on the value of the
Boolean function fðx; yÞ, which he will output with
probability Pðbjx; yÞ ¼ trðρxFy

bÞ. Finding the maximum
probability of success hence translates into the problem

max
X

x;y

pðx; yÞtrðρxFy
fðx;yÞÞ;

s:t: trðρxÞ ¼ 1; ρ2x ¼ ρx; ðFy
bÞ2 ¼ Fy

b;

ρx; F
y
b ∈ BðCDÞ: ð5Þ

Here we have exploited the fact that the extreme points of
the distributions Pðbjx; yÞ are generated by pure states and
projective measurements. Note that the maximal value of
prepare and measure dimension witnesses, as defined in
Ref. [7], can also be expressed as a linear optimization over
the set of feasible probabilities Pðbjx; yÞ. There are many
ways to reformulate problem (5): e.g., by modeling the
preparation device via measurements on one side of a
maximally entangled state, as in Ref. [14]. Each of them
leads to a different hierarchy of SDP relaxations. Here we
study the most obvious choice: namely, we regard our
reference state as the unnormalized maximally mixed state
in dimension D, and ρx, as rank-1 projectors. Hence we
obtain our random basis by choosing randomly the
projectors ρjx; F

y;j
b ∈ BðCDÞ, with rankðρjxÞ ¼ 1; rankðFy;j

b Þ
¼ ryb and using them to construct the moment vectors
cju ¼ trfuðρjx; Fy;j

b Þg.
Denoting by T D;~r the span of the real part of all such

vectors, the resulting program is

max
X

x;y

pðx; yÞcρxFy
fðx;yÞ

s:t: c ∈ T D;~r; cI ¼ D;ΓnðcÞ ≥ 0: ð6Þ
Let us explore how relaxations of the problem above

performs in practice. In a quantum random access code
(QRAC) [32], the inputs ~x; y can take values in f0; 1gk and
f1;…; kg, respectively, and the function to compute is
fð~x; yÞ ¼ xy. If the inputs are distributed independently and
uniformly and Alice is allowed to transmit Bob a D-level
quantum system, the average success probability of the
optimal k → log2ðDÞ QRAC is usually denoted as
Pmax½k → log2ðDÞ� [33].
It was previously known that Pmaxð2 → 1Þ ¼

1=2þ ffiffiffi
2

p
=4 [32]. Actually, this is the value given by

program (6) at order n ¼ 2, up to computer precision.
Likewise, forD ¼ 3, i.e., when we allow Alice to transmit a
qutrit, program (6) at the same order gives
Pmax ≤ 0.904 508 50, which is equal up to numerical
precision to the lower bound obtained via seesaw methods
[28,29]. The only other feasible method to attack this
problem is the Mironowicz-Li-Pawlowski (MLP) SDP
hierarchy [14], whose 2nd order relaxation gives an upper
bound of 0.926 835 5.
The 2nd order relaxation of Eq. (6) also performs well

when we increase D and k. Table I shows bounds on the
average success probability for QRAC 3 → log2ðDÞ for
different values ofD, computed via program (6) in a normal
desktop (using the solver Mosek [25]). It is worth noting
that, except for the cases D ¼ 5; 6, with gaps between the
upper (UB) and lower bounds (LB) of the order of 10−6 and
10−3, respectively, the values obtained via seesaw and
Eq. (6) are equal up to numerical precision. For compari-
son, we also include the upper bounds (UB’) derived via the
second-order relaxation of the MLP method [14]. Except
for D ¼ 2; 4, where the outputs of both methods coincide,
the new tool gives predictions ∼10−2 more accurate than
the MLP method.
We also used program (6) to recompute the optimal

quantum value of the dimension witnesses IN defined in
Ref. [7], Table I. We found that the second relaxation
produced upper bounds on the maximal value of IN that
matched the lower bounds obtained via seesaw forN ¼ 3; 4
and D ¼ 2; 3. To appreciate the importance of these
calculations, note that the conclusions of the experimental
papers [34,35] relied on the conjecture that the inequality
I4 ≤ 7.9689 cannot be violated by quantum systems of
dimension D ¼ 3.
So far, we have been interested in bounding the behavior

of complex quantum mechanical systems, but nothing
prevents us from applying the same ideas to characterize
the properties of real quantum mechanical systems as well.
Consider the dimension witness V4, defined in Ref. [15],
and take D ¼ 2. Running the SDP for the case of complex
qubits, we recover the upper bound Q2C ¼ 2

ffiffiffi
6

p
. This

bound is tight and can be saturated via SIC POVMs [15]. In
the real qubit case, though, we obtain the upper bound
Q2R ¼ 2ð ffiffiffi

2
p þ 1Þ, also tight. We obtained both results in a

few seconds on a normal desktop PC by using a relaxation
level intermediate between two and three.
Conclusion.—We have described a simple method to

derive SDP relaxations for optimizations over operator

TABLE I. Lower and upper bounds on Pmax½3 → log2ðDÞ�.

D 2 3 4 5 6 7

LB 0.788 675 0.832 273 0.908 248 0.924 431 0.951 184 0.969 841
UB 0.788 675 0.832 273 0.908 248 0.924 445 0.954 123 0.969 841
UB’ 0.788 675 0.853 553 0.908 248 0.934 264 0.957 785 0.979 567
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algebras under dimension constraints. This method allows
us to attack a number of relevant problems in quantum
information theory, such as the characterization of quantum
nonlocality under dimension constraints or the determina-
tion of the quantum communication complexity of arbitrary
Boolean functions. As we saw, the method even distin-
guishes between real and complex algebras, and hence it
can be used to certify that a given experimental setup has
control over a complex D-dimensional space.
Note that one can also use the nondeterministic algo-

rithms sketched above to identify the space spanned by
tensor products c⊗k of k identical moment vectors. By
imposing the existence of a symmetric separable decom-
position (rather than just positive semidefiniteness) over the
corresponding “k-partite” moment matrices Γk

n, we hence
obtain a nontrivial relaxation for the convex hull of
k-degree polynomials of the system’s moments. It would
be interesting to explore whether this scheme leads to
good outer approximations of the (nonconvex) set of
D-dimensional quantum correlations.
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