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ABSTRACT

HYPERGRAPH MODELS FOR SPARSE MATRIX
PARTITIONING AND REORDERING

Umit V. Catalyiirek
Ph.D. in Computer Engineering and Information Science
Supervisor: Assoc. Prof. Cevdet Aykanat
November, 1999

Graphs have been widely used to represent sparse matrices for various scientific
applications including one-dimensional (1D) decomposition of sparse matrices
for parallel sparse-matrix vector multiplication (SpMxV) and sparse matrix re-
ordering for low fill factorization. The standard graph-partitioning based 1D de-
composition of sparse matrices does not reflect the actual communication volume
requirement for parallel SpMxV. We propose two computational hypergraph mod-
els which avoid this crucial deficiency of the graph model on 1D decomposition.
The proposed models reduce the 1D decomposition problem to the well-known
hypergraph partitioning problem. In the literature, there is a lack of 2D decom-
position heuristic which directly minimizes the communication requirements for
parallel SpMxV computations. Three novel hypergraph models are introduced
for 2D decomposition of sparse matrices for minimizing the communication vol-
ume requirement. The first hypergraph model is proposed for fine-grain 2D de-
composition of the sparse matrices for parallel SpMxV. The second hypergraph
model for 2D decomposition is proposed to produce jagged-like decomposition of
the sparse matrix. The checkerboard decomposition based parallel matrix-vector
multiplication algorithms are widely encountered in the literature. However, only
the load balancing problem is addressed in those works. Here, we propose a new
hypergraph model which aims the minimization of communication volume while
maintaining the load balance among the processors for checkerboard decomposi-
tion, as the third model for 2D decomposition. The proposed model reduces the
decomposition problem to the multi-constraint hypergraph partitioning problem.
The notion of multi-constraint partitioning has recently become popular in graph
partitioning. We applied the multi-constraint partitioning to the hypergraph par-
titioning problem for solving checkerboard partitioning. Graph partitioning by
vertex separator (GPVS) is widely used for nested dissection based low fill or-

dering of sparse matrices for direct solution of linear systems. In this work, we



also show that the GPVS problem can be formulated as hypergraph partition-
ing. We exploit this finding to develop a novel hypergraph partitioning-based
nested dissection ordering. The recently proposed successful multilevel frame-
work is exploited to develop a multilevel hypergraph partitioning tool PaToH for
the experimental verification of our proposed hypergraph models. Experimental
results on a wide range of realistic sparse test matrices confirm the validity of
the proposed hypergraph models. In terms of communication volume, the pro-
posed hypergraph models produce 30% and 59% better decompositions than the
graph model in 1D and 2D decompositions of sparse matrices for parallel SpMxV
computations, respectively. The proposed hypergraph partitioning-based nested
dissection produces 25% to 45% better orderings than the widely used multiple
mimimum degree ordering in the ordering of various test matrices arising from

different applications.

Keywords: Sparse matrices, parallel matrix-vector multiplication, parallel pro-
cessing, matrix decomposition, computational graph model, graph partitioning,
computational hypergraph model, hypergraph partitioning, fill reducing ordering,

nested dissection.



OZET

SEYREK MATRIS BOLUMLEME VE
YENIDEN-DUZENLEME ICIN HIPERCIZGE
MODELLERI

Umit V. Catalyiirek
Bilgisayar ve Enformatik Miihendisligi, Doktora
Tez Yoneticisi: Do¢. Dr. Cevdet Aykanat
Kasim, 1999

Cizgeler, kogut seyrek-matris vektor carpiminda (SpMxV) seyrek matrislerin
aynigtirilmast ve az doluluk faktorizasyonu igin kullamilan seyrek matrislerin
yeniden diizenlenmesini iceren ¢esitli bilimsel uygulamalarda seyrek matris-
lerin gosterimi i¢in yaygin olarak kullanilmaktadir. Ancak seyrek matris-
lerin standart ¢izge-bolimlemeye dayali tek-boyutlu aynstirilmasi kosut Sp-
MxV iglemi igin gerekli iletigim hacmini yansitamamaktadir. Cizge modelinin
tek-boyutlu ayrigtirmadaki bu 6nemli eksikligine karsihk benzer bir eksigi ol-
mayan iki bilisimsel hipercizge modeli sunuyoruz. Onerdigimiz modeller tek-
boyutlu ayrigtirma problemini iyi bilinen hipercizge bolumleme problemine in-
dirgemektedir. Literatiirde kogut SpMxV hesaplamalar i¢in iletigim gereksin-
imini dogrudan azaltan iki-boyutlu ayrigtirma yontemi yoktur. Iletigim hacmi
gereksinimini azaltmak i¢in seyrek matrislerin iki-boyutlu ayrigtirmasini saglayan
U¢ yeni hiper¢izge modeli tanitiyoruz. Bunlardan ilki kosut SpMxV islemindeki
seyrek matrislerin fine-grain iki-boyutlu ayrigtirmas: igin onerildi. iki—boyutlu
ayngtirmada kullamlan ikinci hiper¢izge modeli seyrek matrislerin ¢entikli-benzeri
ayrigtirmalarinin iretilmesi i¢in Onerildi. Literaturde dama tahtas: tabanl
ayrigtirmaya dayanan kogut matris vektor c¢arpumi algoritmalar1 yayginca bu-
lunmaktadir. Bununla birlikte bu calismalarda sadece yik dengeleme prob-
lemine igaret edilmigtir. Biz bu calismada iki-boyutlu ayrigtirmanin iicilinci
modeli olarak dama tahtasi tabanli ayrigtirmada i§lemci1ér arasi yuk dengesini
korurken iletigsin hacmini de azaltmayl hedefleyen yeni bir hiper¢izge mod-
eli Gneriyoruz. Onerdié‘imiz model ayrigtirma problemini ¢oklu-kisit hiper¢izge
boliimleme problemine indirgemektedir.  Coklu-kisit bolimleme fikri ¢izge
holimleme alanminda yakin zamanda popller olmusgtur. Biz de dama tahtas:
boliimleme problemini ¢ozmek i¢in bu coklu-kisit bolumleme fikrini hipercizge

parcalama yontemine uyguladik. Diigim ayircilari ile ¢izge bolimleme yontemi

vi
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dogrusal sistemlerin ¢oziimiinde kullanilan, seyrek matrislerin icice ayirma ta-
banli az doluluklu diizenlenmesinde ¢okca kullamlmaktadir. Bu caligmada,
dugiir aymricilar ile ¢izge bolimleme probleminin de hipergizge bolimleme
olarak formiile edilebilecegini gosterdik. Bu bulusumuzu hipergizge béliimlemeye
dayanan veni bir icice aywrarak diizenleme yontemi gelistirmek icin kullandik.
Onerdigimiz hipercizge modellerinin deneysel dogrulugunu sinamak icin yakin
zamanda onerilen bagaril: cokludiizey ¢atiyt kullanarak bir ¢okludiizey hipercizge
bolimleme araci olan PaToHu gelistirdik. Gercege uygun, sinama amagh
seyrek matrisler tizerindeki deneysel sonuclar onerilen hipergizge modellerinin
geerliligini dogruladi. Iletigim hacmi anlaminda, énerdigimiz hipercizge mod-
elleri kogut SpMxV hesaplamalarinda ¢izge modeline gore yapilan tek-boyutlu
ve iki-boyutlu ayrigtirmalara kiyasla anilan siraya gore birinden yiizde 30 ve di-
gerinden yiizde 59 daha iyi ayrigtirmalar iretmektedir. Onerilen hipercizge ta-
banh igice boliimlere ayirma yontemi de farkli uygulamalarda ortaya gikan gesitli
sinama amagch matrisleri diizenleme igleminde yaygin olarak kullanilan coklu en
diisiik derece diizenlemesine kiyasla yiizde 25’ten yiizde 45’e kadar daha iyi olan

diizenlemeler Uiretmektedir.

Anahtar sézcikler: Seyrek matrisler, kosut matris-vektor carpimi, kogut iglem,
matris ayristirma, bilisimsel ¢izge modeli, ¢izge béliimleme, bilisimsel hipergizge

modeli, hipercizge boliimleme, doluluk azaltan siralama, igige ayirma.
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Chapter 1

Introduction

Graphs have been widely used to represent sparse matrices for various scientific
applications including one-dimensional decomposition of sparse matrices for par-
allel sparse-matrix ‘vector multiplication (SpMxV) and sparse matrix reordering
for low fill factorization. In this work, we show the flaws of the graph models in

these applications. We propose novel hypergraph models to avoid the flaws of

the graph models.

In the subsequent sections of this chapter, the contributions are briefly sum-
marized. Chapter 2 introduces the notation and background information for
graph and hypergraph partitioning, and matrix reordering problems. The thesis

work is mainly divided into four parts:

1. one-dimensional (1D) decomposition for parallel SpMxV,
2. two-dimensional (2D) decomposition for parallel SpMxV,
3. hypergraph partitioning-based sparse matrix ordering

4. development of a multilevel hypergraph partitioning tool for experimental

verification of the proposed methods.

These works are described and discussed in detail in Chapters 3, 4, 5, and 6,

respectively.



CHAPTER 1. INTRODUCTION 2

1.1 Sparse Matrix Decomposition for Parallel

Matrix-Vector Multiplication

Iterative solvers are widely used for the solution of large, sparse, linear system of
equations on multicomputers. Two basic types of operations are repeatedly per-
formed at each iteration. These are linear operations on dense vectors and sparse-
matrix vector product of the form y=Ax, where A is an M x M square matrix
with the same sparsity structure as the coefficient matrix [10, 14, 17, 18, 19, 66],
and y and x are dense vectors. In order to avoid the communication of vector
components during the linear vector operations, a symmetric partitioning scheme
is adopted. That is, all vectors used in the solver are divided conformally with
each other. In particular, the x and y vectors are divided as [xi,...,xk]" and
[V1,---,¥K], respectively. To compute the matrix vector product in parallel,
matrix A is distributed among processors of the underlying parallel architecture.
A can be written as A= Y, A*, where the A* matrix is owned by processor P,
and the structure of the A* matrices are mutually disjoint. The matrix-vector
multiply is then computed as y = ¥, y*, where y* = A¥z. Depending on the
way in which A is partitioned among the processors, entries in x and/or entries
in y* may need to be communicated among the processors. Our goal here, is
to find a decomposition that minimizes the total communication volume among
the processors. Two types of decompositions can be applied; 1D and 2D decom-
position. In 1D decomposition, each processor is enforced to own either entire
rows, (rowwise decomposition) or entire columns (columnwise decomposition).
In parallel SpMxV, the rowwise and columnwise decomposition schemes require
communication before or after the local SpMxV computations, thus they can also
he considered as pre and post communication schemes, respectively. In rowwise
decomposition, only the entries in x need to be communicated just before the
local SpMxV computations. In columnwise decomposition, only the entries in y*
need to be communicated after local SpMxV computations. In 2D decomposi-
tion, processors are not imposed to own entire rows or columns. Therefore, both
the entries in x and y* need to be communicated among the processors. That

is, both pre and post communication phases are needed in the 2D decomposition

schemes.
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In SpMxV computation, each nonzero element in a row/column incurs a
multiply-add operation. Hence by assigning nonzero count to each row/column,
load balancing problem in 1D decomposition can be considered as the number
partitioning problem. Nastea et. al. [63] proposed a greedy heuristic to allocate
rows of the matrix to the processors, namely GALA. GALA is simply first-fit-
decreasing bin packing heuristic. They noticed that if the matrix has very dense
rows, the resulting load balance is not good. To elevate this problem, they split
the rows that have significantly large number of nonzero elements into several
parts prior to allocation process. Thus finer granularity of the allocation prob-
lem leads to better load balancing results. However, the decomposition heuris-
tics [63, 72] proposed for computational load balancing may result in an extensive

communication volume, since they do not consider the minimization of the com-

munication volume during the decomposition.

Heuristics proposed for load balancing problem [64, 58, 57] in 2D decomposi-
tion assumes that the underlying parallel algorithm for matrix-vector multiplica-
tion is based on 2D checkerboard partitioning running on a 2D mesh architecture.
In checkerboard partitioning, assignment of matrix elements to processors pre-
serves the integrity of the matrix by placing every row (column) of the matrix
into the processors lying in a single row (column) of the 2D mesh. Ogielski and
Aiello [64] proposed two heuristics which are based on the random permutation
of rows and columns. Hendrickson et.al. [39] noticed that most matrices used in
real applications have nonzero diagonal elements, and they state that it may be
advantageous to force an even distribution of these diagonal elements among pro-
cessors and to randomly distribute the remaining nonzeros. Lewis and Geijn [58]

and Lewis et.al. [57] proposed a new scattered distribution of the matrix which

totally avoids the transpose operation required in [39].

In a K -processor parallel architecture, load balancing heuristics for both 1D
and 2D decomposition schemes may introduce an extensive amount of commu-
nication since they do not consider the minimization of communication require-
ment explicitly. For an M x M sparse matrix A, the worst-case communication
requirement in 1D decomposition is K (K — 1) messages and (K — 1)M words,
and it occurs when each submatrix A* has at least one nonzero in each column

(row) in rowwise (columnwise) decomposition. The matrix-vector multiplication
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algorithms based on 2D checkerboard partitioning [39, 58, 57] reduce the worst-
case communication to 2K (VK — 1) messages and 2(vK — 1)M words. In this

approach, the worst-case occurs when each row and column of each submatrix

has at least one nonzero.

The computational graph model is widely used in the representation of
computational structures of various scientific applications, including repeated
SpMxV computations, to decompose the computational domains for paralleliza-
tion [14, 15, 43, 48, 52, 53, 62, 70]. In this model, the problem of 1D sparse matrix
decomposition for minimizing the communication volume while maintaining the
load balance is formulated as the well-known K -way graph partitioning by edge
separator (GPES) problem. In this work, we show the deficiencies of the graph
model for decomposing sparse matrices for parallel SpMxV. The first deficiency
is that it can only be used for structurally symmetric square matrices. In order
to avoid this deficiency, we propose a generalized graph model in Section 3.1.3
which enables the decomposition of structurally nonsymmetric square matrices
as well as symmetric matrices. The second deficiency is the fact that none of the
graph models reflects the actual communication requirement as will be described

in Section 3.2. These flaws are also mentioned in a concurrent work [35].

In this work, we propose two computational hypergraph models which avoid
all deficiencies of the graph model for 1D decomposition. The proposed models
enable the representation and hence the 1D decomposition of rectangular matri-
ces [65] as well as symmetric and nonsymmetric square matrices. Furthermore,
they introduce an exact representation for the communication volume require-
ment as described in Section 3.3. The proposed hypergraph models reduce the
decomposition problem to the well-known K-way hypergraph partitioning prob-
lem widely encountered in circuit partitioning in VLSI layout design. Hence,
the proposed models will be amenable to the advances in the circuit partitioning
heuristics in the VLSI community. The detailed discussion and presentation of

the proposed hypergraph models can be found in Chapter 3.

There is no work in the literature which directly aims at the minimization
of communication requirements in 2D decomposition for parallel SpMxV com-
putations. We propose three novel hypergraph models for 2D decomposition of

sparse matrices. A fine-grain hypergraph model is proposed in Section 4.1. In
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this fine-grain model, the nonzeros of the matrix are considered as the atomic
tasks in the decomposition. Two coarse-grain hypergraph models are proposed
in Sections 4.2 and 4.3. The coarse-grain models have two objectives. The first
objective is to reduce the decomposition overhead. The second objective is an
implicit effort towards reducing the amount of communication which is a valuable
asset in parallel architectures with high start-up cost. The first coarse-grain hy-
pergraph model, produces jagged-like 2D decompositions of the sparse matrices.
The second hypergraph model is specifically designed for checkerboard partition-
ing which is commonly used in the literature by the matrix-vector multiplication

algorithms [64, 58, 57, 39]. Details of these models are presented and discussed
in Chapter 4.

1.2 Sparse Matrix Ordering for Low Fill Factor-

ization

For a symmetric matrix, the evolution of the nonzero structure during the
Cholesky factorization can easily be described in terms of its graph represen-
tation. In graph terms, the elimination of a vertex creates edges for every pair
of its adjacent vertices. In other words, elimination of a vertex makes its adja-
cent vertices clique of size its degree minus one. In this process, the added edges
directly correspond to the fill in the matrix. The number of floating-point op-
erations, also known as operation count, required to perform the factorization is
equal to the sum of the squares of the nonzeros of each eliminated row/column.
Hence it is also equal to the sum of the squares of the degrees of corresponding
vertices during the elimination. Obviously, the amount of fill and operation count
depends on the row/column elimination order. The aim of ordering is to reduce

these quantities, which yields both faster and less memory intensive factorization.

One of the most popular ordering methods is Minimum Degree (MD) heuris-
tic [76]. Success of the MD heuristic is followed by many variants of it, such as
Quotient Minimum Degree (QMD) [30], Multiple Minimum Degree (MMD) [59],
Approximate Minimum Degree (AMD) [3], and Approximate Minimum Fill

(AMF) [71]. An alternative method nested dissection (ND) was proposed by
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George [29]. The intuition behind this method is as follows. First a set of columns
S (separator), whose removal decouples the matrix into two parts, say X and Y,
is found. If we order S after X and Y, then no fill can occur in the off-diagonal
blocks. Elimination process in X and Y are independent tasks and they do not
incur any fill to each other. Hence, ordering of X and Y can be computed by
applying the algorithm recursively, or using any other technique. It is clear that,
the quality of the ordering depends on the size of S. In ND, separator finding
problem is usually formulated as graph partitioning by vertex separator (GPVS)

problem on the standard graph representation of the matrix.

In a recent work {11], we have shown that the hypergraph partitioning problem
can be formulated as a GPVS problem on its net intersection graph (NIG). In
matrix terms, this work shows that permuting a sparse matrix A into singly-
hordered block-diagonal form can also be formulated as permuting AAT into a
doubly-bordered block-diagonal (DB). Note that, nested dissection also requires
a DB form, in particular, borders in DB form correspond to separator S and
block-diagonals correspond to the X and Y parts. In this work, we exploit this
equivalence in the reverse direction. However, for a given hypergraph, although
its NIG representation is well-defined, there is no unique reverse construction. In
matrix terms, for a symmetric matrix Z there is no unique construction of Z =
AAT decomposition. Luckily, in linear programming (LP) applications, interior
point type solvers require the solution of Zz = b repeatedly, where Z = ADAT.
Here, D is a diagonal matrix whose numerical values are changed in each iteration.
However, since it is diagonal, it doesn’t effect the sparsity pattern of the Z matrix.
In graph terms, if we represent A by its row-net hypergraph model, its NIG is the
graph representation of Z. Therefore we can use the hypergraph representation
of A for a hypergraph partitioning-based nested dissection ordering of Z. For
generalization, if A is unknown, we also propose a 2-clique decomposition C of
any symmetric matrix Z into Z = CCT. Details of this decomposition and

hypergraph partitioning-based ordering is presented in Chapter 5.
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1.3 Multilevel Hypergraph Partitioning

Decomposition and reordering are preprocessings introduced for the sake of ef-
ficient parallelization and low fill factorization, respectively. Hence, heuristics
should run in low order polynomial time. Recently, multilevel graph partition-
ing heuristics [13, 37, 48] have been proposed leading to fast and successful
graph partitioning tools Chaco [38], MeTiS [46], WGPP [33] and reordering tools
BEND [40], oMeTiS [46], and ordering code of WGPP [32]. We have exploited the
multilevel partitioning methods for the experimental verification of the proposed
hypergraph models in both sparse matrix decomposition problems and sparse ma-
trix ordering. The lack of a multilevel hypergraph partitioning tool at the time
of this work was carried, led us to develop a multilevel hypergraph partitioning
tool PaToH. The main objective in the implementation of PaToH was a fair ex-
perimental comparison of the hypergraph models with the graph models both in
sparse matrix decomposition and in sparse matrix ordering. Another objective
in our PaToH implementation was to investigate the performance of multilevel

approach in hypergraph partitioning as described in Chapter 6.



Chapter 2

Preliminaries

In this chapter we will review definition of graph, hypergraph and partitioning
problems in Section 2.1 and 2.2, respectively. Attempts to-solve hypergraph
partitioning problem as graph partitioning problem are presented in Section 2.3.
Various partitioning heuristics and tools are summarized in Section 2.4. Sparse
matrix ordering heuristics and tools are presented in Section 2.5. We will review
how the graph partitioning by vertex separator problem is solved using graph
partitioning by edge separator methods in Section 2.6, and finally, we will discuss

the overlooked non-optimality of the this solution in Section 2.7.

2.1 Graph Partitioning

An undirected graph G=(V, &) is defined as a set of vertices V and a set of edges
£. Every edge e;; €€ connects a pair of distinct vertices v; and v;. We use the
notation Adj(v;) to denote the set of vertices adjacent to vertex v; in graph G. We
extend this operator to include the adjacency set of a vertex subset V' C V), i.e.,
Adj(V')={v; € V=V’ : v; € Adj(v;) for some v; € V'}. The degree d; of a vertex
v; 1s equal to the number of edges incident to v;, i.e., d; =|Adj(v;)|. Weights
and costs can be assigned to the vertices and edges of the graph, respectively.
Let w; and ¢;; denote the weight of vertex v; €V and the cost of edge e;; € £,

respectively. Two partitioning problems can be defined on the graph, these are
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graph partitioning by edge separator and graph partitioning by node separator.

In the following subsections we will briefly describe these problems.

2.1.1 Graph Partitioning by Edge Separator (GPES)

An edge subset £ C £ is a K-way edge separator if its removal disconnects
the graph into at least K connected components. Ilgpps={Vi,Va,...,Vk} is a
K-way partition of G by edge separator Eg if the following conditions hold:

e cach part V; is a nonempty subset of V, ie,, Vu C V and V, # 0 for
1<k<K,

e parts are pairwise disjoint, i.e., Vi N V=0 forall 1 <k < (< K

e union of K parts is equal to V, i.e, U}Ile Vi=V.

Note that all edges between the vertices of different parts belong to £5. Edges in
Es are called cut (external) edges and all other edges are called uncut (internal)
edges. In a partition Ilgprs of G, a vertex is said to be a boundary vertex if it
is incident to a cut edge. A K -way partition is also called a multiway partition
if K >2 and a bipartition if K =2. A partition is said to be balanced if each

part V. satisfies the balance criterion

Wi < Wypy(1+€), fork=12,... K. (2.1)

In (2.1), weight Wy of a part Vi is defined as the sum of the weights of the
vertices in that part (i.e. Wi = Ty, Wi), Wayy = (Xy,ep wi)/K denotes the
weight of each part under the perfect load halance condition, and € represents
the predetermined maximum imbalance ratio allowed. The cutsize definition for

representing the cost x(Ilgpps) of a partition Ilgpes 1s

x(Mepes) = Y ¢y (2.2)

Ciy EES
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In (2.2), each cut edge e;; contributes its cost ¢;; to the cutsize. Hence, the
GPES problem can be defined as the task of dividing a graph into two or more
parts such that the cutsize is minimized, while the balance criterion (2.1) on part

weights is maintained. The GPES problem is known to be NP-hard even for

bipartitioning unweighted graphs [28].

2.1.2 Graph Partitioning by Vertex Separator (GPVS)

A vertex subset Vs is a K-way vertex separator if the subgraph induced
by the vertices in V — Vs has at least K connected components. Ilgpys =

{V1,Va,...,Vk; Vs} is a K-way vertex partition of G by vertex separator Vs CV

if the following conditions hold:

each part V; is a nonempty subset of V, ie., Vu C V and V, # 0 for

1<k<K,
e parts are pairwise disjoint, i.e., ViNV, =0 forall 1 <k <{l< K

parts and separator are disjoint, i.e., ViNVs=0 for I<k<K

union of K parts and separator is equal to V, i.e., U,ﬁ;l ViUVg=V,

the removal of Vg gives K disconnected parts Vi, Vs, ..., Vg, ie,

Adj(Vy) CVs for 1<k<K.

In a partition gpys of G, a vertex v; € Vi is said to be a boundary vertex of
part V, if it is adjacent to a vertex in Vg. A vertex separator is said to be narrow
if no subset of it forms a separator, and wide otherwise. The cost of a partition

Hgpvs is

(JOSt(H(;pvs) = Z Ww;. (23)

'UiEVS
In (2.3) cach separator vertex contributes its weight to cost. Hence, the K -way
GPVS problem can be defined as the task of finding a K-way vertex separator
of minimum cost, while the balance criterion (2.1) on part weights is maintained.

GPVS problem is also known to be NP-hard [12].
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2.2 Hypergraph Partitioning (HP)

A hypergraph H = (V,N) is defined as a set of vertices ¥V and a set of nets
(hyperedges) N among those vertices. Every net n; € N is a subset of vertices,
i.e., nj CV. The vertices in a net n; are called its pins and denoted as pins{n,].
The size of a net is equal to the number of its pins, i.e., s; =|pins[n;]|. The set
of nets connected to a vertex v; is denoted as nets[v;]. The degree of a vertex
is equal to the number of nets it is connected to, i.e., d; =|nets[v;]|. Graph is a
special instance of hypergraph such that each net has exactly two pins. Similar

to graphs, let w; and c; denote the weight of vertex v; € V and the cost of net

n; €N, respectively.

Definition of K-way partition of hypergraphs is identical to that of GPES.
In a partition IT of #, a net that has at least one pin (vertex) in a part is said
to connect that part. Connectivity set A; of a net n; is defined as the set of
parts connected by n;. Connectivity \;=|A;| of a net n; denotes the number
of parts connected by n;. A net n; is said to be cut if it connects more than
one part (i.e. A; > 1), and uncut otherwise (i.e. A; = 1). The cut and uncut
nets are also referred to here as external and internal nets, respectively. The set
of external nets of a partition II is denoted as Np. There are various [77, 21]

cutsize definitions for representing the cost x(II) of a partition II. Two relevant

definitions are:

(@) x(M)= > ¢ and (b)) x(II) = > ¢(¥—1). (2.4)

n;j ENp n; ENE

In (2.4.a), the cutsize is equal to the sum of the costs of the cut nets. In (2.4.b),
cach cut net n; contributes ¢;(A; — 1) to the cutsize. Hence, the hypergraph
partitioning problem can be defined as the task of dividing a hypergraph into
two or more parts such that the cutsize is minimized, while a given balance
criterion (2.1) among the part weights is maintained. Here, part weight definition
is identical to that of the graph model. The hypergraph partitioning problem is

known to be NP-hard [56].
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2.3 Graph Representation of Hypergraphs

As indicated in the excellent survey by Alpert and Kahng [2], hypergraphs are
commonly used to represent circuit netlist connections in solving the circuit par-
titioning and placement problems in VLSI layout design. The circuit partitioning
problem is to divide a system specification into clusters such that the number of
inter-cluster connections is minimized. Other circuit representation models were
also proposed and used in the VLSI literature including dual hypergraph, clique-
net graph and net-intersection graph (NIG) [2]. Hypergraphs represent circuits
in a natural way so that the circuit partitioning problem is directly described
as an HP problem. Hence, these alternative circuit representation models can
also be considered as alternative models for the HP problem so that the cutsize

in a partitioning of these models relate to the cutsize of a partitioning of the

hypergraph.

The dual of a given hypergraph H = (U, ) is defined as a hypergraph H',
where the nodes and nets of H become, respectively, the nets and nodes of H’.
That is, H' = (U', N") with nets[u;] = pins[n;] for each v} €U’ and n;e N, and

pins[nj)=nets[u,] for each nj €N’ and u;€U.

In the clique-net transformation model, the vertex set of the target graph is
equal to the vertex set of the given hypergraph with the same vertex weights. Each
net of the given hypergraph is represented by a clique of vertices corresponding
to its pins. That is, each net induces an edge between every pair of its pins. The
multiple edges connecting each pair of vertices of the graph are contracted into a
single edge of which cost is equal to the sum of the costs of the edges it represents.
In the standard clique-net model [56], a uniform cost of 1/(s;—1) is assigned to
every clique edge of net n; with size s;. Various other edge weighting functions
are also proposed in the literature [2]. If an edge is in the cut set of a GPES then
all nets represented by this edge are in the cut set of hypergraph partitioning,
and vice versa. Ideally, no matter how vertices of a net are partitioned, the
contribution of a cut net to the cutsize should always be one in a bipartition.
However, the deficiency of the clique-net model is that it is impossible to achieve
such a perfect clique-net model [42]. Furthermore, the transformation may result

in very large graphs since the number of clique edges induced by the nets increase
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quadratically with their sizes.

Recently, a randomized clique-net model implementation is proposed [1] which
yields very promising results when used together with graph partitioning tool
MeTiS. In this model, all nets of size larger than T are removed during the
transformation. Furthermore, for each net n; of size s;, F'xs; random pairs of
its pins (vertices) are selected and an edge with cost one is added to the graph for
cach selected pair of vertices. The multiple edges between each pair of vertices
of the resulting graph are contracted into a single edge as mentioned earlier. In
this scheme, the nets with size smaller than 2F 41 (small nets) induce larger
number of edges than the standard clique-net model, whereas the nets with size
larger than 2F+1 {large nets) induce smaller number of edges than the standard
clique-net model. Considering the fact that MeTiS accepts integer edge costs
for the input graph, this scheme has two nice features!. First, it simulates the
uniform edge-weighting scheme of the standard clique-net model for small nets
in a random manner since each clique edge (if induced) of a net n; with size
s; <2F+1 will be assigned an integer cost close to 2F/(s;—1) on the average.
Second, it prevents the quadratic increase in the number of clique edges induced
by large nets in the standard model since the number of clique edges induced by
a net in this scheme is linear in the size of the net. In our implementation, we

use the parameters 7'=50 and F =5 in accordance with the recommendations
given in [1].

In the NIG representation G=(V, &) of a given hypergraph H = (U, N), each
vertex v; of G corresponds to net n; of H. Two vertices v;,v; € V of G are
adjacent if and only if respective nets n;, n; €N of H share at least one pin, i.e.,

e;; €& if and only if pins[n,] N pins[n;] # . So,

Adj(vi) = {v; : n; € N 3 pins[n;] N pins[n;] # 0}. (2.5)

The NIG representation G for a hypergraph H can also be obtained by apply-
ing the clique-net model to the dual hypergraph of H. Note that for a given
hypergraph M, NIG G is well-defined, however there is no unique reverse con-

struction [2].

Tprivate communication with Alpert.
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Both dual hypergraph and NIG models view the HP problem in terms of par-
titioning nets instead of nodes. Kahng [44] and Cong, Hagen, and Kahng [22]
exploited this perspective of the NIG model to formulate the hypergraph biparti-
tioning problem as a two-stage process. In the first stage, nets of H are biparti-
tioned through 2-way GPES of its NIG G. The resulting net bipartition induces
a partial node bipartition on H, since the nodes (pins) that belong only to the
nets on one side of the bipartition can be unambigiuosly assigned to that side.
However, other nodes may belong to the nets on both sides of the bipartition.
Thus, the second stage involves finding the best completion of the partial node bi-
partition; i.e., a part assignment for the shared nodes such that the cutsize (2.4.a)
is minimized. This problem is known as the module (node) contention problem
in the VLSI community. Kahng [44] used a winner-loser heuristic [34], whereas
Cong et al. [22] used a matching-based (IG-match) algorithm for solving the 2-
way module contention problem optimally. Cong, Labio, and Shivakumar [23]
extended this approach to K-way hypergraph partitioning through using the
dual hypergraph model. In the first stage, a K-way net partitioning is obtained
through partitioning the dual hypergraph. For the second stage, they formulated
the K -way module contention problem as a min-cost max-flow problem through

defining binding factors between nodes and nets, and preference function between

parts and nodes.

2.4 Graph/Hypergraph Partitioning Heuristics

and Tools

Kernighan-Lin (KL) based heuristics are widely used for graph/hypergraph par-
titioning because of their short run-times and good quality results. The KL
algorithm is an iterative improvement heuristic originally proposed for graph
bipartitioning [50]. The KL algorithm, starting from an initial bipartition, per-
forms a number of passes until it finds a locally minimum partition. Each pass
consists of a sequence of vertex swaps. The same swap strategy was applied to
the hypergraph bipartitioning problem by Schweikert-Kernighan [74]. Fiduccia-

Mattheyses (FM) [27] introduced a faster implementation of the KL algorithm
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for hypergraph partitioning. They proposed vertex move concept instead of ver-
tex swap. This modification, as well as proper data structures, e.g., bucket lists,
reduced the time complexity of a single pass of the KL algorithm to linear in the
size of the graph and the hypergraph. Here, size refers to the number of edges

and pins in a graph and hypergraph, respectively.

The performance of the F'M algorithm deteriorates for large and very sparse
graphs/hypergraphs. Here, sparsity of graphs and hypergraphs refer to their
average vertex degrees. Furthermore, the solution quality of FM is not stable
(predictable), i.e., average FM solution is significantly worse than the best FM
solution, which is a common weakness of the move-based iterative improvement
approaches. Random multi-start approach is used in VLSI layout design to allevi-
ate this problem by running the FM algorithm many times starting from random
initial partitions to return the best solution found [2]. However, this approach is
not viable in parallel computing since decomposition is a preprocessing overhead
introduced to increase the efficiency of the underlying parallel algorithm /program.
Most users will rely on one run of the decomposition heuristic, so the quality of

the decomposition tool depends equally on the worst and average decompositions

than on just the best decomposition.

These considerations have motivated the two-phase application of the move-
based algorithms in hypergraph partitioning [31]. In this approach, a clustering
is performed on the original hypergraph #H, to induce a coarser hypergraph #,.
Clustering corresponds to coalescing highly interacting vertices to supernodes
as a preprocessing to FM. Then, FM is run on H; to find a bipartition II;,
and this bipartition is projected back to a bipartition IIy of H,. Finally, FM
is re-run on H, using Ily as an initial solution. Cong-Smith [24] introduced a
clustering algorithm which works on the graphs. They convert the hypergraph to
a graph by representing an r-pin net as a r—clique. Then they use a heuristic
a,lgorithm to construct the clusters. The clustered graph is given as input to the
Fiduccia-Mattheyses algorithm. Shin-Kin [75] proposed a clustering algorithm
which works on hypergraphs, then a KL based heuristic is used to partition the

clustered hypergraph.

Recently, the two-phase approach has been extended to multilevel ap-

proaches [13, 37, 48] leading to successful graph partitioning tools Chaco [38]
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and MeTiS [46]. These multilevel heuristics consist of 3 phases: coarsening, ini-
tial partitioning and uncoarsening. In the first phase, a multilevel clustering is
applied starting from the original graph by adopting various matching heuristics
until the number of vertices in the coarsened graph reduces below a predeter-
mined threshold value. In the second phase, the coarsest graph is partitioned
using various heuristics including FM. In the third phase, the partition found
in the second phase is successively projected back towards the original graph by

refining the projected partitions on the intermediate level uncoarser graphs using

various heuristics including FM.

The success of multilevel algorithms both in runtime and solution quality
makes them as a standard for the partitioning problem. The lack of a multi-
level hypergraph partitioning tool at the time of this work was carried led us to
develop a multilevel hypergraph partitioning tool PaToH for a fair experimen-
tal comparison of the hypergraph models with the graph models. The details of
PaToH will be described in Chapter 6. Since multilevel graph partitioning tool
MeTiS is accepted as the state-of-the-art partitioning tool, we have also used it
for hypergraph part‘itioning problem with a hybrid approach using randomized

clique-net.

2.5 Sparse Matrix Ordering Heuristics and

Tools

As we mentioned earlier, the most popular ordering method is Minimum Degree
(MD) heuristic [76]. The motivation of this method is simple. Since elimination
of a vertex causes its adjacent vertices to become adjacent, MD selects a vertex
of minimum degree to eliminate next. Success of the MD heuristic is followed
by many variants of it. Very first implementations, such as Quotient Minimum
Degree (QMD) [30] was too slow, although it is an in-place algorithm (that is
no extra storage is required for fill-edges). A faster variant is Multiple Minimumn
Degree (MMD) [59]. It reduces the runtime of the heuristic by eliminating a set
of vertex of minimum degree. By computing upper bound on a vertex’s degree

rather than the true degree, runtime of the heuristic even further reduced by
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the recent variant Approximate Minimum Degree (AMD) [3]. Another recently
proposed variant is Approximate Minimum Fill (AMF) [71]. This method uses
the selection criteria that roughly approximate the amount of fill that would be

generated by the elimination of a vertex instead of using the vertex degree.

As stated before, Nested Dissection (ND) is an alternative to MD algorithm.
However, although good theoretical results are presented in [29], nested dissection
has not been used until recently. Evolution of the graph partitioning tools have
changed the situation and better methods for finding graph separators are avail-
able now, including Kernighan-Lin and Fiduccia-Mattheyses and their multilevel

variants [50, 27, 12, 45, 37], vertex-separator Fiduccia-Mattheyses variants [6, 41]
and spectral methods [68, 69)].

The multilevel GPES approaches have been used in several multilevel nested
dissection implementations based on indirect 2-way GPVS, e.g., oemetis ordering
code of MeTiS [46]. Converting the solution of GPES to GPVS will be briefly
described in the next section. Recently, direct 2-way GPVS approaches have been
embedded into various multilevel nested dissection implementations [33, 40, 46).
In these implementations, a 2-way GPVS obtained on the coarsest graph is refined
during the multilevel framework of the uncoarsening phase. Two distinct vertex-
separator refinement schemes were proposed and used for the uncoarsening phase.
The first one is the extension of the FM edge-separator refinement approach to
vertex-separator refinement as proposed by Ashcraft and Liu [5]. This scheme
considers vertex moves from vertex separator Vs to both V; and V; in Ilgpys=
{V1,Vs; Vs}. This refinement scheme is adopted in the onmetis ordering code
of MeTiS [46], ordering code of WGPP [33], and the ordering code BEND [40].
The second scheme is based on Liu’s narrow separator refinement algorithm [60],
which considers moving a set of vertices simultaneously from Vs at a time, in
contrast to the FM-based refinement scheme [5], which moves only one vertex at
a time. Liu’s refinement algorithm [60] can be considered as repeatedly running
the maximum-matching based vertex cover algorithm on the bipartite graphs
induced by the edges between V; and Vg, and V, and Vs. That is, the wide
vertex separator consisting of Vs and the boundary vertices of V; (Vs) is refined
as in the GPES-based wide-to-narrow separator refinement scheme. The network-

flow based minimum weighted vertex cover algorithms proposed by Ashcraft and
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Liu [8], and Hendrickson and Rothberg [40] enabled the use of Liu’s refinement

approach [60] on the coarse graphs within the multilevel framework.

2.6 Solving GPVS Through GPES

Until recently, instead of solving the GPVS problem directly, it is solved through
GPES. These indirect GPVS approaches first perform a GPES on the given graph
to minimize the number of cut edges (i.e., ¢;; =1 in (2.2)) and then take the
boundary vertices as the wide separator to be refined to a narrow separator.
The wide-to-narrow refinement problem is described as a minimum vertex cover
problem on the subgraph induced by the cut edges [68]. A minimum vertex cover
is taken as a narrow separator for the whole graph, since each cut edge will be
adjacent to a vertex in the vertex cover. That is, let Vi C V. denote the set
of boundary vertices of part Vi in a partition Hgpps={V1,...,Vk} of a given
graph G =(V,&) by edge separator s C £. Then, K(€s) = (Vp =UK Vg, Es)
denotes the K -partite subgraph of G induced by £s. A vertex cover Vg =UK Vg,
on K(Es) constitutes a K-way GPVS Ilgpys={V1—Vs1,...,Vk—Vsk;Vs} of
G, where Vsi C Vpi denotes the subset of boundary vertices of part Vg that
belong to the vertex cover of K(€s). A minimum vertex cover Vs of K(Es)
corresponds to an optimal refinement of the wide separator Vp into a narrow
separator Vs under the assumption that each boundary vertex is adjacent to at

least one non-boundary vertex in Ilgpgs (see Section 2.7).

A minimum vertex cover of a bipartite graph can be computed optimally in
polynomial time by finding a maximum cardinality matching, since these are dual
concepts [54, 67, 68]. So, the wide-to-narrow separator refinement problem can
easily be solved using this scheme for 2-way indirect GPVS, because the edge
separator of a 2-way GPES induces a bipartite subgraph. This scheme has been
widely exploited in a recursive manner in the nested-dissection based K -way
indirect GPVS for ordering symmetric sparse matrices, because a 2-way GPES is
adopted at each dissection step. However, the minimum vertex cover problem is
known to be NP-hard on K -partite graphs at least for K >5 [28], thus we need to
resort to heuristics. Leiserson and Lewis [55] proposed two greedy heuristics for

this purpose, namely minimum recovery (MR) and maximum inclusion (MI). The
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MR heuristic is based on iteratively removing the vertex with minimum degree
from the K -partite graph K(€s) and including all vertices adjacent to that vertex
to the vertex cover Vs. The MI heuristic is based on iteratively including the
vertex with maximum degree into Vg. In both heuristics, all edges incident to
the vertices included into Vs are deleted from IC(€s) so that the degrees of the

remaining vertices in KC(€s) are updated accordingly. Both heuristics continue

the iterations until all edges are deleted from KC(€g).

Here, we reveal the fact that the module contention problem encountered in
the second stage of the NIG-based hypergraph bipartitioning approaches [22, 44]
is similar to the wide-to-narrow separator refinement problem encountered in the
second stage of the indirect GPVS approaches widely used in nested dissection
based ordering. The module contention and separator refinement algorithms ef-
fectively work on the bipartite graph induced by the cut edges of a two-way GPES
of the NIG representation of hypergraphs and the standard graph representation
of sparse matrices, respectively. The winner-loser assignment heuristic [34, 44]
used by Kahng [44] is very similar to the minimum-recovery heuristic proposed
by Leiserson and Lewis [55] for separator refinement. Similarly, the IG-match al-
gorithm proposed by Cong et al. [22] is similar to the maximum-matching based
minimum vertex-cover algorithm [54, 67] used by Pothen, Simon, and Liou [68]
for separator refinement. Despite not being stated in the literature, these net-
bipartitioning based HP algorithms using the NIG model can be viewed as trying
to solve the HP problem through an indirect GPVS of the NIG representation.

2.7 Vertex-Cover Model: On the Optimality of

Separator Refinement

For 2-way GPES based GPVS, it was stated [67] that the minimum vertex cover
Vs of the bipartite graph K(€s) = (Vg = Vp1UVps, Es) induced by an edge
separator £g of GPES of Hgpps = {V1, V2} of G is a smallest vertex separator
of G corresponding to Es. Recall that Vg denotes the set of boundary vertices
of part V. Here, we would like to discuss that this correspondence does not

guarantee the optimality of the wide-to-narrow separator refinement. That is,
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Figure 2.1: A sample 2-way GPES for wide-to-narrow separator refinement.

the minimum vertex cover Vs of K(€s) may not constitute a minimum vertex
separator that can be obtained from the wide separator Vg. We can classify the
boundary vertices Vp of a part V) as loosely-bound and tightly-bound vertices.
A loosely-bound vertex v; of Vp is not adjacent to any non-boundary vertex of
Vi, i.e., Adj(v;, Vi) = Adj(v;) "V, C Vi —{vi}, whereas a tightly-bound vertex v,
of Vg is adjacent to at least one non-boundary vertex of Vi, i.e., Adj(v;, Vi —
Vai) # 0. Each cut edge between two tightly-bound vertices should always be
covered by a vertex cover Vs of K(Es) for Vs to constitute a separator of G.
However, it is an unnecessarily severe measure to impose the same requirement
for a cut edge incident to at least one loosely-bound vertex. If all vertices in Vpyg
that are adjacent to a loosely-bound vertex v; € Vg are included into Vs then
cut edges incident to v; need not to be covered. For example, Fig. 2.1 illustrates
a 2-way GPES, where v, € Vp is a loosely-bound vertex and all other vertices
are tightly-bound vertices. Fig. 2.2 illustrates two optimal vertex covers Vg =
{vy, vg,v3} and Vs ={vy, vs, v7}, each of size 3, on bipartite graph X(s). Vertices
vg and vy are included into Vs in the former and latter solutions, respectively,
to cover cut edge (vy,v6). However, in both solutions, Adj(ve,V)) = {v1,v3}
remains in the optimal vertex cover so that there is no need to cover cut edge

(vy,v5). Hence, there exists a wide-to-narrow separator refinement Vs = {v;, v}

of size 2 as shown in Fig. 2.3.

As mentioned in Section 2.5, Liu’s narrow separator refinement algorithm [60]
can also be considered as exploiting the vertex cover model on the bipartite graph
induced by the edges between V) and Vs (V, and Vs) of a GPVS Ilgpvs =
{Vy, Vo; Vs}. So, the discussion given here also applies to Liu’s narrow separator

refinement algorithm, where loosely-bound vertices can only exist in the V; (V)
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@ (b)

Figure 2.2: Two wide-to-narrow separator refinements induced by two optimal
vertex covers.

Figure 2.3: Optimal wide-to-narrow separator refinement.
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part of the bipartite graph.

The non-optimality of the minimum vertex-cover model has been overlooked
most probably because of the fact that loosely-bound vertices do not likely exist

in the GPVS of graphs arising in finite difference and finite element applications.



Chapter 3

Hypergraph Models for 1D

Decomposition

For parallel sparse-matrix vector product (SpMxV) using 1D decomposition, an
M x M square sparse matrix A can be decomposed in two ways; rowwise or

columnwise

FAg

A=| A} and A =[Af---Af---AY],

x |

where processor P, owns row stripe A} or column stripe A§, respectively, for a
parallel system with K processors. As discussed in the introduction chapter, in
order to avoid the communication of vector components during the linear vector
operations, a symmetric partitioning scheme is adopted. That is, all vectors used
in the solver are divided conformally with the row partitioning or the column
partitioning in rowwise or columnwise decomposition schemes, respectively. In
particular, the x and y vectors are divided as [xj,...,xx]" and [yi,...,¥k]’,
respectively. In rowwise decomposition, processor Py is responsible for comput-
ing yr = Apx and the linear operations on the k-th blocks of the vectors. In

columnwise decomposition, processor Py is responsible for computing y* = A§x;

23
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(where y = $°X | y*) and the linear operations on the k-th blocks of the vectors.
With these decomposition schemes, the linear vector operations can be easily and
efficiently parallelized [10, 66], such that only the inner-product computations in-
troduce global communication overhead of which its volume does not scale up
with increasing problem size. In parallel SpMxV, the rowwise and columnwise
decomposition schemes require communication before or after the local SpMxV
computations, thus they can also be considered as pre and post communication
schemes, respectively. Depending on the way in which the rows or columns of
A are partitioned among the processors, entries in x or entries in y* may need
to be communicated among the processors. Unfortunately, the communication
volume scales up with increasing problem size. Our goal is to find a rowwise

or columnwise partition of A that minimizes the total volume of communication

while maintaining the computational load balance.

The computational graph model is widely used in the representation of com-
putational structures of various scientific applications, including repeated Sp-
MxV computations, to decompose the computational domains for paralleliza-
tion [14, 15, 43, 48, 52, 53, 62, 70]. In this model, the problem of 1D sparse
matrix decomposition for minimizing the communication volume while maintain-
ing the load balance is formulated as the well-known K -way graph partitioning
problem. However, none of the graph models reflects the actual communica-
tion requirement as will be described in Section 3.2. In this work, we propose
two computational hypergraph models which avoid all deficiencies of the graph
model for 1D decomposition. The proposed hypergraph models reduce the de-
composition problem to the well-known K-way hypergraph partitioning problem

widely encountered in circuit partitioning in VLSI layout design.

Experimental results presented in Section 3.4 confirm the validity of our pro-
posed hypergraph models. The hypergraph models using PaToH and hMeTiS
produce 30%-38% better decompositions than the graph models using MeTisS,
while the hypergraph models using PaToH are only 34%-130% slower than the

praph models using the most recent version (Version 3.0) of MeTiS, on the aver-

age.
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3.1 Graph Models for Sparse Matrix Decompo-

sition

3.1.1 Standard Graph Model for Structurally Symmetric

Matrices

A structurally symmetric sparse matrix A can be represented as an undirected
graph G4=(V, &), where the sparsity pattern of A corresponds to the adjacency
matrix representation of graph G4. That is, the vertices of G4 correspond to the
rows/columns of matrix A, and there exist an edge e;; € £ for i# 7 if and only
if off-diagonal entries a;; and a;; of matrix A are nonzeros. In rowwise decom-
position, each vertex v; €V corresponds to atomic task 7 of computing the inner
product of row ¢ with column vector x. In columnwise decomposition, each vertex
v; €V corresponds to atomic task ¢ of computing the sparse SAXPY/DAXPY
operation y =y +uz;a,;, where a,; denotes column ¢ of matrix A. Hence, each
nonzero entry in a row and column of A incurs a multiply-and-add operation dur-
ing the local SpMxV computations in the pre and post communication schemes,
respectively. Thus, computational load w; of row/column i is the number of
nonzero entries in row/column 4. In graph theoretical notation, w; = d; when
a; =0 and w; =d;+1 when a; #0. Note that the number of nonzeros in row ¢

and column 7 are equal in a symmetric matrix.

This graph model displays a bidirectional computational interdependency
view for SpMxV. Each edge ¢;; € £ can be considered as incurring the com-
putations y; —yi+a;; x; and y; +y;+aj; Xx;. Hence, each edge represents the
bhidirectional interaction between the respective pair of vertices in both inner and
outer product computation schemes for SpMxV. If rows (columns) 7 and j are
assigned to the same processor in a rowwise (columnwise) decomposition, then
edge e;; does not incur any communication. However, in the pre-communication
scheme, if rows ¢ and j are assigned to different processors then cut edge e;;
necessitates the communication of two floating—point words because of the need
of the exchange of updated z; and z; values between atomic tasks 7 and j just

before the local SpMxV computations. In the post-communication scheme, if
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columns ¢ and j are assigned to different processors then cut edge e;; necessi-
tates the communication of two floating—point words because of the need of the
exchange of partial y; and y; values between atomic tasks 7 and j just after
the local SpMxV computations. Hence, by setting ¢;; = 2 for each edge e;; €E,
both rowwise and columnwise decompositions of matrix A reduce to the K-way
partitioning of its associated graph G4 according to the cutsize definition given
n (2.2). Thus, minimizing the cutsize is an effort towards minimizing the total
volume of interprocessor communication. Maintaining the balance criterion (2.1)

corresponds to maintaining the computational load balance during local SpMxV

computations.

Each vertex v; € V effectively represents both row 7 and column ¢ in G4
although its atomic task definition differs in rowwise and columnwise decomposi-
tions. Hence, a partition II of G4 automatically achieves a symmetric partitioning
by inducing the same partition on the y-vector and x-vector components since a
vertex v; € Py corresponds to assigning row 7 (column ¢), y; and z; to the same

part in rowwise (columnwise) decomposition.

In matrix theoretical view, the symmetric partitioning induced by a partition
IT of G4 can also be counsidered as inducing a partial symmetric permutation
on the rows and columns of A. Here, the partial permutation corresponds to
ordering the rows/columns assigned to part P, before the rows/columns assigned
to part Py, for k=1,..., K — 1, where the rows/columns within a part are
ordered arbitrarily. Let AY denote the permuted version of A according to a
partial symmetric permutation induced by II. An internal edge e;; of a part Pj
corresponds to locating both a;; and aj; in diagonal block A},. An external edge
e;; of cost 2 between parts Py, and P, corresponds to locating nonzero entry a;;
of A in off-diagonal block AY, and aj; of A in off-diagonal block AL, or vice
versa. Hence, minimizing the cutsize in the graph model can also be considered
as permuting the rows and columns of the matrix to minimize the total number

of nonzeros in the off-diagonal blocks.

Figure 3.1 illustrates a sample 10 x 10 symmetric sparse matrix A and its as-
sociated graph G4. The numbers inside the circles indicate the computational

weights of the respective vertices (rows/columns). This figure also illustrates a
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Figure 3.1: Two-way rowwise decomposition of a sample structurally symmetric
matrix A and the corresponding bipartitioning of its associated graph G,4.

rowwise decomposition of the symmetric A matrix and the corresponding bipar-
titioning of G4 for a two-processor system. As seen in Fig. 3.1, the cutsize in
the given graph bipartitioning is 8 which is also equal to the total number of
nonzero entries in the off-diagonal blocks. The bipartition illustrated in Fig. 3.1
achieves perfect load balance by assigning 21 nonzero entries to each row stripe.

This number can also be obtained by adding the weights of the vertices in each

part.

3.1.2 Bipartite Graph Model for Rectangular Matrices

The standard graph model is not suitable for the partitioning of nonsymmetric
matrices. A recently proposed bipartite graph model [36, 51] enables the par-
titioning of rectangular as well as structurally symmetric/nonsymmetric square
matrices. In this model, each row and column is represented by a vertex, and
the sets of vertices representing the rows and columns form the bipartition, i.e.
V = Vr U V. There exists an edge between a row vertex 7« € Vg and a column
vertex j € Ve if and only if the respective entry a;; of matrix A is nonzero.
Partitions IIz and Ilg on Vr and Vg, respectively, determine the overall parti-
tion IT={Py,...,Px}, where Py = Vg, UV, for k =1,...,K. For rowwise
(columnwise) decomposition, vertices in Vg (V) are weighted with the number
of nonzeros in the respective row (column) so that the balance criterion (2.1) is
imposed only on the partitioning of Vg (V¢). As in the standard graph model,
minimizing the number of cut edges corresponds to minimizing the total number

of nonzeros in the off-diagonal blocks.
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This approach has the flexibility of achieving nonsymmetric partitioning. In
the context of parallel SpMxV, the need for symmetric partitioning on square
matrices is achieved by enforcing Ilz = Il;. Hendrickson and Kolda [36] pro-
pose several bipartite-graph partitioning algorithms that are adopted from the

techniques for the standard graph model and one partitioning algorithm that is

specific to bipartite graphs.

3.1.3 Proposed Generalized Graph Model for Structurally

Symmetric/Nonsymmetric Square Matrices

In this work, we propose a simple yet effective graph model for symmetric parti-
tioning of structurally nonsymmetric square matrices. The proposed model en-
ables the use of the standard graph partitioning tools without any modification.
In the proposed model, a nonsymmetric square matrix A is represented as an
undirected graph Gr =(Vg,€) and Ge=(Ve, E) for rowwise and columnwise de-
composition schemes, respectively. Graphs Gr and G¢ differ only in their vertex
weight definitions. The vertex set and the corresponding atomic task definitions
are identical to those of the symmetric matrices. Hence, computational weight
w; of a vertex v; € Vi of Gr and a vertex v; € V¢ of G are equal to the total

number of nonzeros in row : and column ¢ in the pre and post communication

schemes, respectively.

Both edge set and edge weight definitions are different than those of the
symmetric matrices. In the edge set £, e;; €€ if and only if off-diagonal entries
ai; 70 or a; #0. That is, the vertices in the adjacency list of a vertex v; denote
the union of the column indices of the off-diagonal nonzeros at row ¢ and the row
indices of the off-diagonal nonzeros at column 4. The cost ¢;; of an edge e;; is set
to 1 if either a;;#0 or a;;#0, and it is set to 2 if both a;;#0 and a;; #0. Note
that each row and column of matrix A are effectively represented by the same
vertex as a simple means for enforcing symmetric permutation. The proposed
scheme is referred to here as a generalized model since it automatically produces
the existing graph representation for symmetric matrices by computing the same

cost of 2 for every edge.
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Figure 3.2: Two-way rowwise decomposition of a sample structurally nonsym-
metric matrix A and the corresponding bipartitioning of its associated graph

Or.

In the proposed model, each edge with a cost of 2 represents the bidirectional
interaction between the respective pair of vertices in an identical manner to that
of the symmetric matrices. However, each edge with a cost of 1 represents an
unidirectional interaction between the respective pair of vertices. That is, each
edge e;; €& with ¢;; =1 incurs the computation of either y; < y; + a;; X z; or
Yj < y; +aj X z;, depending on whether a;; #0 or a;; #0, respectively. Hence,
in inner—product computation scheme for SpMxV, an edge e;; € £ with ¢;; =1
denotes the dependency relation of either atomic task ¢ to z; or atomic task j to
x;. A dual discussion holds for outer—product multiplication scheme. However,
this ambiguity does not constitute any problem in the proposed model. If rows
(columns) 4 and j are assigned to different processors in a rowwise (columnwise)
decomposition, then cut edge e;; with c;; =1 always necessitates the communi-
cation of a single floating-point word as follows. In rowwise decomposition, each
cut edge e;; €E with ¢;;=1 incurs the communication of either updated z; or z;
value just before the local SpMxV computations. In columnwise decomposition,
each cut edge ¢;; € £ with ¢;; =1 incurs the communication of either partial y;

or y; result just after the local SpMxV computations.

Figure 3.2 illustrates a sample 10x 10 nonsymmetric sparse matrix A and
its associated graph Gz for rowwise decomposition. The numbers inside the
circles indicate the computational weights of the respective vertices (rows). This
figure also illustrates rowwise decomposition of the matrix and the corresponding
bipartitioning of its associated graph for a two-processor system. As seen in
Fig. 3.2, the cutsize of the given graph bipartitioning is 7 which is also equal to the

total number of nonzero entries in the off-diagonal blocks. Hence, similar to the
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’

symmetric matrix case, minimizing cutsize in the proposed graph model can also
be considered as permuting the rows and columns of the matrix to minimize the
total number of off-block-diagonal nonzeros. Asseen in Fig. 3.2, the bipartitioning
achieves perfect load balance by assigning 16 nonzero entries to each row part. As
mentioned earlier, G model of sample matrix A for columnwise decomposition
differs from Gz only in vertex weights. Hence, the graph bipartitioning illustrated
in Fig. 3.2 can also be considered as incurring a slightly imbalanced (15 versus
17 nonzeros) columnwise decomposition of sample matrix A (shown by vertical

dash line) with identical communication requirement.

The storage requirements of the standard and proposed graph models is as
follows. For an M x M square matrix with Z off-diagonal nonzero entries, the
graph models contain |V|=M vertices for both symmetric and nonsymmetric ma-
trices. The graph model contains exactly |£|=2/2 edges for symmetric matrices.
However, the number of edges in the graph model for nonsymmetric matrices may
vary between Z/2 and Z (i.e., Z/2 < |E| < Z), because every symmetric pair
off-diagonal nonzeros a;; # 0 and a;; # 0 in an nonsymmetric matrix decrease
the number of edges by 1 from Z towards Z/2. In the graph models of both
symmetric and nonsymmetric matrices, M words are required to store vertex
weights, and M words are needed to store the starting indices of the adjacency
lists. There is no need to store the edge costs for symmetric matrices since all
edge costs are equal to 2, therefore Z words suffices to store |£| = Z/2 edges
as each edge has to be stored twice in the adjacency list representation. How-
ever, edge costs have to be stored in the graph model for nonsymmetric matrices
because of different edge costs of 2 and 1. Therefore, the storage requirement
of the graph models is Sg =2M +Z words for symmetric matrices, whereas it

may vary between 2M+2Z and 2M+4Z words for nonsymmetric matrices (i.e.,

2M+2Z < Sg <2M+47).

3.2 Flaws of the Graph Models

Consider the symmetric matrix decomposition given in Fig. 3.1. Assume that

parts P; and P, are mapped to processors P; and P, respectively. The cutsize
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of the bipartition shown in this figure is equal to 2x4 =8, thus estimating the com-
munication volume requirement as 8 words. In the pre-communication scheme,
off-block-diagonal entries a7 and as 7 assigned to processor P; display the same
need for the nonlocal x-vector component z; twice. However, it is clear that
processor P, will send z7 only once to processor P;. Similarly, processor P; will
send 74 only once to processor P because of the off-block-diagonal entries az 4
and ag 4 assigned to processor P;. In the post-communication scheme, the graph
model treats the off-block-diagonal nonzeros a7 4 and a7 in P; as if processor P
will send two multiplication results ar4z4 and a7 sxs to processor P,. However,
it is obvious that processor P; will compute the partial result for the nonlocal
y-vector component y; =az4%4+a752s during the local SpMxV phase and send
this single value to processor P, during the post-communication phase. Simi-
larly, processor P, will only compute and send the single value y; =aq7z7+a4,57s
to processor P;. Hence, the actual communication volume is in fact 6 words
instead of 8 in both pre and post communication schemes. A similar analysis of
the rowwise decomposition of the nonsymmetric matrix given in Fig. 3.2 reveals
the fact that the actual communication requirement is 5 words (z4, x5, Zs, 7
and zg) instead of 7 determined by the cutsize of the given bipartition of Gr.

In matrix theoretical view, the nonzero entries in the same column of an
off-diagonal block incur the communication of a single z value in the rowwise
decomposition (pre-communication) scheme. Similarly, the nonzero entries in
the same row of an off-diagonal block incur the communication of a single y
value in the columnwise decomposition (post-communication) scheme. However,
as mentioned earlier, the graph models try to minimize the total number of off-
block-diagonal nonzeros without considering the relative spatial locations of such
nonzeros. In other words, the graph models treat all off-block-diagonal nonzeros
in an identical manner by assuming that each off-block-diagonal nonzero will

incur a distinct communication of a single word.

In graph theoretical view, the graph models treat all cut edges of equal cost
in an identical manner while computing the cutsize. However, r cut edges, each
of cost 2, stemming from a vertex v;, in part Py to r vertices vj,, Vi, ..., Vj,,, I
part. P, incur only r+1 communications instead of 27 in both pre and post com-

munication schemes. In the pre-communication scheme, processor P sends z;;, to
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processor P, while P, sends z;,,%;,,...,%; ., to P. In the post-communication
scheme, processor P, sends ygz,ygz, .. .,y,’;r ., to processor P, while P, sends y,fl
to . Similarly, the amount of communication required by r cut edges, each of
cost 1, stemming from a vertex v;, in part Py to r vertices v, vy, ..., v;,, In
part P, may vary between 1 and r words instead of exactly r words determined

by the cutsize of the given graph partitioning.

3.3 Two Hypergraph Models for 1D Decompo-
sition

We propose two computational hypergraph models for the decomposition of
sparse matrices. These models are referred to here as the column-net and row-
net models proposed for the rowwise decomposition (pre-communication) and

columnwise decomposition (post-communication) schemes, respectively.

In the column-net model, matrix A is represented as a hypergraph
Hr =(Vr,N¢) for rowwise decomposition. Vertex and net sets Vg and M cor-
respond to the rows and columns of matrix A, respectively. There exist one
vertex v; and one net n; for each row ¢ and column 7, respectively. Net n; C Vg
contains the vertices corresponding to the rows which have a nonzero entry in
column j. That is, v; € n; if and only if a;; # 0. Each vertex v; € Vr corre-
sponds to atomic task ¢ of computing the inner product of row ¢ with column
vector x. Hence, computational weight w; of a vertex v; € Vg is equal to the
total number of nonzeros in row 7. The nets of Hgr represent the dependency
relations of the atomic tasks on the x-vector components in rowwise decomposi-
tion. Each net n; can be considered as incurring the computations y; < y;+a;;-7;
for each vertex (row) v; €n;. Hence, each net n; denotes the set of atomic tasks
(vertices) that need z;. Note that each pin v; of a net n; corresponds to a unique
nonzero a;; thus enabling the representation and decomposition of structurally
nonsymmetric matrices as well as symmetric matrices without any extra effort.
Figure 3.3(a) illustrates the dependency relation view of the column-net model.
As seen in this figure, net n; = {v),, v;, vx} represents the dependency of atomic

tasks h, 4, k to z; because of the computations y, ¢—yp+an;-T;, Yi ¢ Yi+ai;-2;
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and yg < yp+ax;-z;. Figure 3.4(b) illustrates the column-net representation of
the sample 16 X 16 nonsymmetric matrix given in Fig. 3.4(a). In Fig. 3.4(b), the
pins of net n7; = {vs,v10,v13} represent nonzeros ar7, G0,7, and aj37. Net ns
also represents the dependency of atomic tasks 7, 10 and 13 to z; because of

the computations y; ¢—y7+a77-T7, Y10+ Y10+0ai0,7-T7 and y;3 —Yi3t+az 7 T7.

The row-net model can be considered as the dual of the column-net model. In
this model, matrix A is represented as a hypergraph H¢=(V¢, Nz) for column-
wise decomposition. Vertex and net sets Ve and Mz correspond to the columns
and rows of matrix A, respectively. There exist one vertex v; and one net n;
for each column ¢ and row j, respectively. Net n; C V. contains the vertices
corresponding to the columns which have a nonzero entry on row j. That is,
v; €n; if and only if a;; # 0. Each vertex v; €V, corresponds to atomic task ¢ of
computing the sparse SAXPY/DAXPY operation y =y+z;a,;. Hence, compu-
tational weight w; of a vertex v; € V¢ is equal to the total number of nonzeros in
column 7. The nets of H¢ represent the dependency relations of the computa-
tions of the y-vector components to the atomic tasks represented by the vertices
of H¢ in columnwise decomposition. Fach net n; can be considered as incurring
the computation y; < y;+a;i-z; for each vertex (column) v; € n;. Hence, each
net n; denotes the set of atomic task results needed to accumulate y;. Note
that each pin v; of a net n; corresponds to a unique nonzero a;; thus enabling
the representation and decomposition of structurally nonsymmetric matrices as
well as symmetric matrices without any extra effort. Figure 3.3(b) illustrates
the dependency relation view of the row-net model. As seen in this figure, net
n; = {vy, v;, vk} represents the dependency of accumulating y; :y]’-Ur y}-f—yf to the
partial y; results y.;? =aj, Th, (/; =aj;-z; and yJ’” =aq,x-Zr. Note that the row-net
and column-net models become identical in structurally symmetric matrices.

By assigning unit costs to the nets (i.e. ¢;=1 for each net n;), the proposed
column-net and row-net models reduce the decomposition problem to the K-
way hypergraph partitioning problem according to the cutsize definition given in
(2.4.b) for the pre and post communication schemes, respectively. Consistency of
the proposed hypergraph models for accurate representation of communication
volume requirement while maintaining the symmetric partitioning restriction de-

pends on the condition that “v; € n; for each net n;”. We first assume that this
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Figure 3.3: Dependency relation views of (a) column-net and (b) row-net models.

condition holds in the discussion throughout the following four paragraphs and

then discuss the appropriateness of the assumption in the last paragraph of this

section.

The validity of the proposed hypergraph models is discussed only for the
column-net model. A dual discussion holds for the row-net model. Consider
a partition II of Hx in the column-net model for rowwise decomposition of a
matrix A. Without loss of generality, we assume that part P; is assigned to
processor P, for k=1,2,..., K. As II is defined as a partition on the vertex
set of Hr, it induces a complete part (hence processor) assignment for the rows
of matrix A and hence for the components of the y vector. That is, a vertex
v; assigned to part Pj in II corresponds to assigning row ¢ and y; to part Pg.
However, partition Il does not induce any part assignment for the nets of Hz.
Here, we consider partition II as inducing an assignment for the internal nets of
Hz hence for the respective x-vector components. Consider an internal net n; of
part Py (i.e. A; = {Px}) which corresponds to column j of A. As all pins of net
n; lie in Py, all rows (including row j by the consistency condition) which need
x; for inner-product computations are alrcady assigned to processor P;. Hence,
internal net n; of Py, which does not contribute to the cutsize (2.4.b) of partition
[T, does not necessitate any communication if z; is assigned to processor F. The
assignment of z; to processor Py can be considered as permuting column j to
part Py, thus respecting the symmetric partitioning of A since row j is already
assigned to Py. In the 4-way decomposition given in Fig. 3.4(b), internal nets
ny, Ny, iz of part Py induce the assignment of z;, x4, ;3 and columns 1, 10,

13 to part P;. Note that part P, already contains rows 1, 10, 13 thus respecting

the symmetric partitioning of A.
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Figure 3.4: (a) A 16 x 16 structurally nonsymmetric matrix A. (b) Column-
net representation Hr of matrix A and 4-way partitioning IT of Hg. (¢) 4-way
rowwise decomposition of matrix A™ obtained by permuting A according to the
symrmetric partitioning induced by II.



CHAPTER 3. HYPERGRAPH MODELS FOR 1D DECOMPOSITION 36

Consider an external net n; with connectivity set Aj;, where ); = |A;| and
A; > 1. As all pins of net n; lie in the parts in its connectivity set A;, all rows
(including row j by the consistency condition) which need z; for inner-product
computations are assigned to the parts (processors) in A;. Hence, contribution
A;—1 of external net n; to the cutsize according to (2.4.b) accurately models
the amount of communication volume to incur during the parallel SpMxV com-
putations because of z; if z; is assigned to any processor in A;. Let map[j] €A,
denote the part and hence processor assignment for z; corresponding to cut net
n;. In the column-net model together with the pre-communication scheme, cut
net n; indicates that processor map[j] should send its local z; to those proces-
sors in connectivity set A, of net n; except itself (i.e., to processors in the set
A;—{map[j]}). Hence, processor map[j] should send its local z; to |Aj|-1=X,;—1
distinct processors. As the consistency condition “v; € n;” ensures that row j
is already assigned to a part in A;, symmetric partitioning of A can easily be
maintained by assigning x; hence permuting column 7 to the part which contains
row j. In the 4-way decomposition shown in Fig. 3.4(b), external net ns (with
As = {P1, P2, P3}) incurs the assignment of x5 (hence permuting column 5) to
part P; since row 5 (vs € ns) is already assigned to part P;. The contribution
A5 —1 = 2 of net ns to the cutsize accurately models the communication volume

to incur due to x5, because processor P should send z5 to both processors

and P; only once since Ay — {map[5]} = As — {P1} = { P, Ps}.

In essence, in the column-net model, any partition II of Hyr with v; € Py
can be safely decoded as assigning row %, y; and z; to processor P for rowwise
decomposition. Similarly, in the row-net model, any partition II of H¢ with
v; € P can be safely decoded as assigning column %, z; and y; to processor
Py for columnwise decomposition. Thus, in the column-net and row-net models,
minimizing the cutsize according to (2.4.b) corresponds to minimizing the actual
volume of interprocessor communication during the pre and post communication
phases, respectively. Maintaining the balance criterion (2.1) corresponds to main-
taining the computational load balance during the local SpMxV computations.
Figure 3.4(c) displays a permutation of the sample matrix given in Fig. 3.4(a) ac-
cording to the symmetric partitioning induced by the 4-way decomposition shown
in Fig. 3.4(b). As scen in Fig. 3.4(c), the actual communication volume for the

given rowwise decomposition is 6 words since processor P; should send z5 to
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both P, and P, P, should send z;; to Py, P; should send z7 to P;, and P4
should send ), to both /% and P;. Asseen in Fig. 3.4(b), external nets ns, ny,
ny; and nip contribute 2, 1, 1 and 2 to the cutsize since A\s =3, Ay =2, A\;; =2
and Aj, = 3, respectively. Hence, the cutsize of the 4-way decomposition given
in Fig. 3.4(b) is 6, thus leading to the accurate modeling of the communication
requirement. Note that the graph model will estimate the total communication
volume as 13 words for the 4-way decomposition given in Fig. 3.4(c) since the
total number of nonzeros in the off-diagonal blocks is 13. As seen in Fig. 3.4(c),

each processor is assigned 12 nonzeros thus achieving perfect computational load

balance.

In matrix theoretical view, let AT denote a permuted version of matrix A
according to the symmetric partitioning induced by a partition IT of Hg in the
column-net model. Each cut-net n; with connectivity set A; and map[j] =P,
corresponds to column j of A containing nonzeros in A; distinct blocks (AL,
for Py, € A;) of matrix A™. Since connectivity set A; of net n; is guaranteed to
contain part map[j], column j contains nonzeros in A; —1 distinct off-diagonal
blocks of AT, Note that multiple nonzeros of column j in a particular off-diagonal
block contributes only one to connectivity A; of net n; by definition of A;. So,
the cutsize of a partition II of Hp is equal to the number of nonzero column
segments in the off-diagonal blocks of matrix AT For example, external net ng
with As = {P1,Pa, Ps} and map[5] = P; in Fig. 3.4(b) indicates that column 5
has nonzeros in two off-diagonal blocks AQH,1 and Agl as seen in Fig. 3.4(c).
As also seen in Fig. 3.4(c), the number of nonzero column segments in the off-
diagonal blocks of matrix A" is 6 which is equal to the cutsize of partition II
shown in Fig. 3.4(b). Hence, the column-net model tries to achieve a symmetric
permutation which minimizes the total number of nonzero column segments in
the off-diagonal blocks for the pre-communication scheme. Similarly, the row-net
model tries to achieve a symmetric permutation which minimizes the total number

of nonzero row segments in the off-diagonal blocks for the post-communication
scheme.

Nonzero diagonal entries automatically satisfy the condition “v; € n; for
cach net n;”, thus enabling both accurate representation of communication re-

quirement and symmetric partitioning of A. A nonzero diagonal entry a,; already
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implies that net n; contains vertex v; as its pin. If however some diagonal entries
of the given matrix are zeros then the consistency of the proposed column-net
model is easily maintained by simply adding rows, which do not contain diagonal
entries, to the pin lists of the respective column nets. That is, if a;; =0 then
vertex v; (row j) is added to the pin list pins[n;] of net n; and net n; is added
to the net list nets[v;] of vertex v;. These pin additions do not affect the com-
putational weight assignments of the vertices. That is, weight w; of vertex v; in
Hr becomes equal to either d; or d;—1 depending on whether a;;#0 or a;;=0,

respectively. The consistency of the row-net model is preserved in a dual manner.

3.4 Experimental Results

We have tested the validity of the proposed hypergraph models by running MeTiS
on the graphs obtained by randomized clique-net transformation, and running Pa-
ToH and hMeTiS directly on the hypergraphs for the decompositions of various
realistic sparse test matrices arising in different application domains. These de-
composition results are compared with the decompositions obtained by running
MeTiS using the standard and proposed graph models for the symmetric and
nonsymmetric test matrices, respectively. The most recent version (Version 3.0)
of MeTiS [46] was used in the experiments. As both hMeTiS and PaToH achieve
K -way partitioning through recursive bisection, recursive MeTiS (pMeTiS) was
used for the sake of a fair comparison. Another reason for using pMeTiS is that
direct K -way partitioning version of MeTiS (kMeTiS) produces 9% worse par-
titions than pMeTiS in the decomposition of the nonsymmetric test matrices,
although it is 2.5 times faster, on the average. pMeTiS was run with the default
parameters: sorted heavy-edge matching, region growing and early-exit bound-
ary FM refinement for coarsening, initial partitioning and uncoarsening phases,
respectively. The current version (Version 1.0.2) of hMeTiS [49] was run with
the parameters: greedy first-choice scheme (GFC) and early-exit FM refinement
(EE-FM) for coarsening and uncoarsening phases, respectively. The V-cycle re-
finement scheme was not used, because in our experimentations it achieved at
most 1% (much less on the average) better decompositions at the expense of ap-

proximately 3 times slower execution time (on the average) in the decomposition
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of the test matrices. The GFC scheme was found to be 28% faster than the other
clustering schemes while producing slightly (1%-2%) better decompositions on
the average. The EE-FM scheme was observed to be 30% faster than the other

refinement schemes without any difference in the decomposition quality on the

average.

Table 3.1 illustrates the properties of the test matrices listed in the order of
increasing number of nonzeros. In this table, the “description” column displays
both the nature and the source of each test matrix. The sparsity patterns of
the Linear Programming matrices used as symmetric test matrices are obtained
by multiplying the respective rectangular constraint matrices with their trans-
poses. In Table 3.1, the total number of nonzeros of a matrix also denotes the
total number of pins in both column-net and row-net models. The minimum
and maximum number of nonzeros per row (column) of a matrix correspond to
the minimum and maximum vertex degree (net size) in the column-net model,
respectively. Similarly, the standard deviation std and coefficient of variation cov
values of nonzeros per row (column) of a matrix correspond to the std and cov

values of vertex degree (net size) in the column-net model, respectively. Dual

correspondences hold for the row-net model.

All experiments were carried out on a workstation equipped with a 133 MHz
PowerPC processor with 512-Kbyte external cache and 64 Mbytes of memory.
We have tested K = 8, 16, 32 and 64 way decompositions of every test ma-
trix. For a specific K value, K-way decomposition of a test matrix constitutes a
decomposition instance. pMeTiS, hMeTiS and PaToH were run 50 times start-
ing from different random seeds for each decomposition instance. The average
performance results are displayed in Tables 3.2-3.4 and Figs. 3.5-3.7 for each de-
composition instance. The percent load imbalance values are below 3% for all
decomposition results displayed in these figures, where percent imbalance ratio is

defined as 100 X (Wi, — Wang)/Wang -

Table 3.2 displays the decomposition performance of the proposed hypergraph
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models together with the standard graph model in the rowwise/columnwise de-
composition of the symmetric test matrices. Note that the rowwise and colum-
nwise decomposition problems become equivalent for symmetric matrices. Ta-
bles 3.3 and 3.4 display the decomposition performance of the proposed column-
net and row-net hypergraph models together with the proposed graph models in
the rowwise and columnwise decompositions of the nonsymmetric test matrices,
respectively. Due to lack of space, the decomposition performance results for the
clique-net approach are not displayed in Tables 3.2-3.4, instead they are summa-
rized in Table 3.5. Although the main objective of this work is the minimization
of the total communication volume, the results for the other performance metrics
such as the maximum volume, average number and maximum number of messages
handled by a single processor are also displayed in Tables 3.2-3.4. Note that the
maximum volume and maximum number of messages determine the concurrent
communication volume and concurrent number of messages, respectively, under

the assumption that no congestion occurs in the network.

As seen in Tables 3.2-3.4, the proposed hypergraph models produce substan-
tially better partitions than the graph model at each decomposition instance in
terms of total communication volume cost. In the symmetric test matrices, the
hypergraph model produces 7%-48% better partitions than the graph model (see
Table 3.2). In the nonsymmetric test matrices, the hypergraph models produce
12%-63% and 9%-56% better partitions than the graph models in the rowwise
(see Table 3.3) and columnwise (see Table 3.4) decompositions, respectively. As
seen in Tables 3.2-3.4, there is no clear winner between hMeTiS and PaToH
in terms of decomposition quality. In some matrices hMeTiS produces slightly
better partitions than PaToH, whereas the situation is the other way round in
some other matrices. As seen in Tables 3.2 and 3.3, there is also no clear win-
ner between matching-based clustering scheme HCM and agglomerative cluster-
ing scheme HCC in PaToH (see Section 6.1 for detailed discussion of clustering
schemes). However, as seen in Table 3.4, PaToH-HCC produces slightly better

partitions than PaToH-HCM in all columnwise decomposition instances for the

nonsymmetric test matrices.

Tables 3.2-3.4 show that the performance gap between the graph and hyper-

graph models in terms of the total communication volume costs is preserved by
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almost the same amounts in terms of the concurrent communication volume costs.
For example, in the decomposition of the symmetric test matrices, the hypergraph
model using PaToH-HCM incurs 30% less total communication volume than the
graph model while incurring 28% less concurrent communication volume, on the
overall average. In the columnwise decomposition of the nonsymmetric test ma-
trices, PaToH-HCM incurs 35% less total communication volume than the graph

model while incurring 37% less concurrent communication volume, on the overall

average.

Although the hypergraph models perform better than the graph models in
terms of number of messages, the performance gap is not as large as in the
communication volume metrics. However, the performance gap increases with
increasing K. As seen in Table 3.2, in the 64-way decomposition of the symmetric
test matrices, the hypergraph model using PaToH-HCC incurs 32% and 10% less
total and concurrent number of messages than the graph model, respectively.
As seen in Table 3.3, in the rowwise decomposition of the nonsymmetric test

matrices, PaToH-HCC incurs 32% and 26% less total and concurrent number of

messages than the graph model, respectively.

The performance comparison of the graph/hypergraph partitioning based
1D decomposition schemes with the conventional algorithms based on 1D and
2D [39, 58, 57] decomposition schemes is as follows. As mentioned earlier, in K-
way decompositions of M x M matrices, the conventional 1D and 2D schemes
incur the total communication volume of (K — 1)M and 2(vVK —1)M words,
respectively. For example, in 64-way decompositions, the conventional 1D and
2D schemes incur the total communication volumes of 63M and 14M words,
respectively. As seen at the bottom of Tables 3.2 and 3.3, PaToH-HCC reduces
the total communication volume to 1.91M and 0.90M words in the 1D 64-way
decomposition of the symmetric and nonsymmetric test matrices, respectively,
on the overall average. In 64-way decompositions, the conventional 1D and 2D
schemes incur the concurrent communication volumes of approximately M and
0.22M words, respectively. As seen in Tables 3.2 and 3.3, PaToH-HCC reduces
the concurrent communication volume to 0.052M and 0.025M words in the 1D
64-way decomposition of the symmetric and nonsymmetric test matrices, respec-

tively, on the overall average.
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Figure 3.5 illustrates the relative run-time performance of the proposed hyper-
graph model compared to the standard graph model in the rowwise/columnwise
decomposition of the symmetric test matrices. Figures 3.6 and 3.7 display the
relative run-time performance of the column-net and row-net hypergraph models
compared to the proposed graph models in the rowwise and columnwise decom-
positions of the nonsymmetric test matrices, respectively. In Figs. 3.5-3.7, for
each decomposition instance, we plot the ratios of the average execution times
of the tools using the respective hypergraph model to that of pMeTiS using the
respective graph model. The results displayed in Figs. 3.5-3.7 are obtained by
assuming that the test matrix is given either in CSR or in CSC form which are
commonly used for SpMxV computations. The standard graph model does not
necessitate any preprocessing since CSR and CSC forms are equivalent in sym-
metric matrices and both of them correspond to the adjacency list representation
of the standard graph model. However, in nonsymmetric matrices, construc-
tion of the proposed graph model requires some amount of preprocessing time,
although we have implemented a very efficient construction code which totally
avoids index search. Thus, the execution time averages of the graph models for
the nonsymmetric test matrices include this preprocessing time. The preprocess-
ing time constitutes approximately 3% of the total execution time on the overall
average. In the clique-net model, transforming the hypergraph representation of
the given matrices to graphs using the randomized clique-net model introduces
considerable amount of preprocessing time, despite the efficient implementation
scheme we have adopted. Hence, the execution time averages of the clique-net
model include this transformation time. The transformation time constitutes ap-
proximately 23% of the total execution time on the overall average. As mentioned
carlier, the PaToH and hMeTiS tools use both CSR and CSC forms such that

the construction of the other form from the given one is performed within the

respective tool.

As seen in Figs. 3.5-3.7, the tools using the hypergraph models run slower
than pMeTiS using the the graph models in most of the instances. The compar-
ison of Fig. 3.5 with Figs. 3.6 and 3.7 shows that the gap between the run-time
performances of the graph and hypergraph models is much less in the decom-
position of the nonsymmetric test matrices than that of the symmetric test ma-

trices. These experimental findings were expected, because the execution times
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of graph partitioning tool pMeTiS, and hypergraph partitioning tools hMeTiS
and PaToH are proportional to the sizes of the graph and hypergraph, respec-
tively. In the representation of an M x M square matrix with Z off-diagonal
nonzeros, the graph models contain || = Z/2 and Z/2 < |£] < Z edges for
symmetric and nonsymmetric matrices, respectively. However, the hypergraph
models contain p = M + Z pins for both symmetric and nonsymmetric matrices.
Hence, the size of the hypergraph representation of a matrix is always greater
than the size of its graph representation, and this gap in the sizes decreases in
favor of the hypergraph models in nonsymmetric matrices. Figure 3.7 displays
an interesting behavior that pMeTiS using the clique-net model runs faster than
pMeTiS using the graph model in the columnwise decomposition of 4 out of
9 nonsymmetric test matrices. In these 4 test matrices, the edge contractions
during the hypergraph-to-graph transformation through randomized clique-net

approach lead to less number of edges than the graph model.

As seen in Figs. 3.5-3.7, both PaToH-HCM and PaToH-HCC run considerably
faster than hMeTiS in each decomposition instance. This situation can be most
probably due to the design considerations of hMeTiS. hMeTiS mainly aims at par-
titioning VLSI circuits of which hypergraph representations are much more sparse
than the hypergraph representations of the test matrices. In the comparison of the
HCM and HCC clustering schemes of PaToH, PaToH-HCM runs slightly faster
than PaToH-HCC in the decomposition of almost all test matrices except in the
decomposition of symmetric matrices KEN-11 and KEN-13, and nonsymmetric
matrices ONETONE1 and ONETONE2. As seen in Fig. 3.5, PaToH-HCM us-
ing the hypergraph model runs 1.47-2.93 times slower than pMeTiS using the
graph model in the decomposition of the symmetric test matrices. As seen in
Figs. 3.6 and 3.7, PaToH-HCM runs 1.04-1.63 times and 0.83-1.79 times slower
than pMeTiS using the graph model in the rowwise and columnwise decompo-
sition of the nonsymmetric test matrices, respectively. Note that PaToH-HCM
runs 17%, 8% and 6% faster than pMeTiS using the graph model in the 8-way,
16-way and 32-way columnwise decompositions of nonsymmetric matrix LHR34,
respectively. PaToH-HCM achieves 64-way rowwise decomposition of the largest
test matrix BCSSTK32 containing 44.6K rows/columns and 1030K nonzeros in
only 25.6 seconds, which is equal to the sequential execution time of multiplying

matrix BCSSTK32 with a dense vector 73.5 times.
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The relative performance results of the hypergraph models with respect to
the graph models are summarized in Table 3.5 in terms of total communication
volume and execution time by averaging over different /& values. This table also
displays the averages of the best and worst performance results of the tools using
the hypergraph models. In Table 3.5, the performance results for the hypergraph
models are normalized with respect to those of pMeTiS using the graph models.
In the symmetric test matrices, direct approaches PaToH and hMeTiS produce
30%-32% better partitions than pMeTiS using the graph model, whereas the
clique-net approach produces 16% better partitions, on the overall average. In the
nonsymmetric test matrices, the direct approaches achieve 34%-38% better de-
composition quality than pMeTiS using the graph model, whereas the clique-net
approach achieves 21%-24% better decomposition quality. As seen in Table 3.5,
the clique-net approach is faster than the direct approaches in the decomposition
of the symmetric test matrices. However, PaToH-HCM achieves nearly equal
run-time performance as pMeTiS using the clique-net approach in the decom-
position of the nonsymmetric test matrices. It is interesting to note that the
execution time of the clique-net approach relative to the graph model decreases
with increasing number of processors K. This is because of the fact that the
percent preprocessing overhead due to the hypergraph-to-graph transformation

in the total execution time of pMeTiS using the clique-net approach decreases

with increasing K .

As seen in Table 3.5, hMeTiS produces slightly (2%) better partitions at the
expense of considerably larger execution time in the decomposition of the sym-
metric test matrices. However, PaToH-HCM achieves the same decomposition
quality as hMeTiS for the nonsymmetric test matrices, whereas PaToH-HCC
achieves slightly (2%-3%) better decomposition quality. In the decomposition of
the nonsymmetric test matrices, although PaToH-HCC performs slightly better

than PaToH-HCM in terms of decomposition quality, it is 13%-14% slower.

In the symmetric test matrices, the use of the proposed hypergraph model
instead of the graph model achieves 30% decrease in the communication volume
requirement of a single parallel SpMxV computation at the expense of 130%
increase in the decomposition time by using PaToH-HCM for hypergraph parti-

tioning. In the nonsymmetric test matrices, the use of the proposed hypergraph
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Table 3.1: Properties of test matrices.

4

-

o)

number number of nonzeros
matrix name | description of total avg. per per column per row

rows/cols row/col [ min  max std cov | min max std cov

Structurally Symmetric Matrices

SHERMAN3 | [26] 3D finite difference grid 5005 20033 4.00 1 7 2.66 0.67 1 7 2.66 0.67
KEN-11 [16] linear programming 14694 82454 5.61 2 243  14.54  2.59 2 243 14.54 2.59
NL [20] linear programming 7039 105089 14.93 1 361 28.48 1.91 1 361 28.48 1.91
KEN-13 (16] linear programming 28632 161804 5.65 2 339 16.84 2.98 2 339 16.84 2.98
CQo [20] linear programming 9278 221590 23.88 1 702 54.46 2.28 1 702 54.46 2.28
CO9 [20] linear programming 10789 249205 23.10 1 707  52.17 2.26 1 707  52.17 2.26
CRE-D [16] linear programming 8926 372266 41.71 1 845 76.46 1.83 1 845 76.46 1.83
CRE-B [16] linear programming 9648 398806 41.34 1 904 74.69 1.81 1 904 7469 1.81
FINAN512 [25] stochastic programming 74752 615774 8.24 3 1449 20.00 2.43 3 1449 20.00 243

Structurally Nonsymmetric Matrices
GEMATI1 [26] optimal power flow 4929 38101 7.73 1 28 2.96 0.38 1 29 3.38 0.44
LHRO7 [25] light hydrocarbon recovery 7337 163716 22.31 1 64 26.19 1.17 2 37 16.00 0.72
ONETONE2 | [25) nonlinear analog circuit 36057 254595 7.06 2 34 5.13 0.73 2 66 6.67 0.94
LHR14 [25] light hydrocarbon recovery 14270 321988 22.56 1 64 26.26 1.16 2 37 1598 0.71
ONETONEL | [25] nonlinear analog circuit 36057 368055 10.21 2 82 14.32 1.40 2 162 17.85 1.75
LHR17 [25] light hydrocarbon recovery 17576 399500 22.73 1 64 26.32 1.16 2 37 1596 0.70
LHR34 [25] light hydrocarbon recovery 35152 799064 22.73 1 64 2632 1.16 2 37 15.96 0.70
BCSSTK32 [26] 3D stiffness matrix 44609 | 1029655 23.08 1 141  10.10 0.44 1 192 1045 045
BCSSTK30 [26] 3D stiffness matrix 28924 | 1036208 35.83 1 159 21.99 0.61 1 104 15.27 0.43

models instead of the graph model achieves 34%-35% decrease in the communica-

tlon volume requirement of a single parallel SpMxV computation at the expense

of only 34%-39% increase in the decomposition time by using PaToH-HCM.
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Table 3.2: Average communication requirements for rowwise/columnwise decom-
position of structurally symmetric test matrices.

Graph Model

Hypergraph Model: Column-net Model = Row-net Model

pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.

per proc. volume per proc. volume per proc. volume per proc. volume
avg  max tot max avg  max tot max avg  max tot max avg  max tot max
8 3.6 4.9 0.20 0.033 3.6 50 017 0.029 34 4.9 0.16 0.030 3.3 4.8 0.16 0.030
16 5.3 82 0.31 0.028 5.2 7.8 0.27 0.024 4.5 74 025 0.024 4.7 78 0.25 0.025
SHERMAN3 | 32 6.5 11.0 0.46 0.021 6.7 109 0.39 0.018 5.7 10.1 0.37 0.019 59 105 0.37 0.019
64 7.5 13.6 0.64 0.016 7.9 13.6 0.55 0.013 70 13.1 0.53 0.014 70 134 053 0.014
Y 7.0 7.0 0.70 0.116 6.9 7.0 047 0.078 6.9 7.0 0.51 0.083 7.0 7.0 055 0.094
16 || 13.8 15.0 0.92 0.080 || 124 15.0 0.57 0.047 | 128 150 0.59 0.046 | 13.7 15.0 0.66 0.057
KEN-11 32 || 26.1 30.5 116 0.055 || 19.8 30.3 0.70 0.032 | 21.2 31.0 0.73 0.033 | 221 305 0.79 0.034
64 || 409 549 144 0.038 || 30.1 586 0.90 0.024 | 32.1 604 0.92 0.025 | 30.1 54.2 0.96 0.025
8 7.0 70 133 0.192 6.8 7.0 0.72 0.110 6.8 7.0 076 0.124 7.0 7.0 079 0.135
16 || 15.0 150 1.71 0.147 || 13.5 15.0 0.99 0.085 | 13.2 15.0 1.05 0.097 | 13.7 150 1.14 0.101
NL 32 || 281 31.0 226 0.101 || 195 265 140 0.060 | 20.0 27.6 1.52 0.068 | 20.3 27.5 1.57 0.070
64 382 59.1 3.06 0.073 244 393 208 0.045 | 264 405 220 0.048 { 26.0 429 223 0.050
8 7.0 7.0 075 0.120 7.0 7.0 047 0.070 7.0 7.0 0.48 0.075 6.9 7.0 048 0.076
16 || 14.8 150 0.94 0.078 |{ 13.2 150 0.54 0.043 | 14.0 15.0 0.55 0.041 [ 134 150 0.55 0.042
KEN-13 32 11 29.2 310 1.16 0.051 | 227 31.0 0.64 0.029 | 22.8 31.0 0.63 0.025 | 21.8 31.0 0.63 0.027
64 || 51.0 622 141 0.034 || 359 62.8 0.80 0.022 | 35.8 63.0 0.79 0.020 | 34.7 63.0 0.78 0.019
] 7.0 7.0 111 0.173 7.0 7.0 0.65 0.104 7.0 7.0 0.71 0.154 6.9 7.0 0.71 0.166
16 || 149 150 1.69 0.172 || 12.7 15.0 0.88 0.097 | 12.9 15.0 0.99 0.120 | 12.7 149 0.96 0.112
CQ9 32 || 21.8 307 242 0.148 || 186 26.6 1.36 0.075 | 18.0 27.0 1.47 0.086 | 176 26.9 1.40 0.082
64 || 32.1 56.4 3.71 0.115 || 23.7 384 227 0.061 | 22.7 41.0 234 0.065 | 227 395 231 0.064
8 7.0 7.0 096 0.156 7.0 7.0 0.67 0.110 7.0 7.0 0.68 0.133 7.0 70 0.67 0.139
16 || 14.8 15.0 1.51 0.157 || 12.4 14.9 0.87 0.091 | 12.7 149 0.94 0.110 | 12.7 149 0.92 0.107
CO9 32 | 195 297 208 0.120 j| 176 266 133 0.079 | 17.6 26.3 1.37 0.077 | 18.1 26.7 1.34 0.079
64 || 299 523 314 0.093 | 21.7 373 213 0,061 | 21.8 38.8 216 0.059 | 21.9 38.6 214 0.062
8 7.0 7.0 1.81 0.292 6.9 7.0 1.39 0.226 6.4 7.0 133 0.214 6.2 7.0 1.25 0.208
16 14.9 15.0 2.81 0.238 13.0 15.0 2.09 0.177 | 11.8 15.0 2.00 0.176 | 11..2 15.0 1.89 0.163
CRE-D 32 || 28.7 31.0 413 0.188 (| 21.3 31.0 297 0.136 [ 19.3 31.0 2.89 0.133 | 184 31.0 2.73 0.124
— 64 || 479 63.0 6.01 0.142 || 31.2 61.3 4.16 0.104 | 29.7 60.8 4.19 0.104 | 279 60.5 3.96 0.098
8 7.0 7.0 170 0.267 6.9 7.0 140 0.224 6.7 7.0 133 0.213 6.6 7.0 128 0.212
16 14.8 15.0 2.62 0.230 13.4 15.0 2.07 0.177 | 12.2 15.0 2.01 0.175 | 12.2 15.0 1.95 0.180
CRE-B 32 [l 285 31.0 3.89 0.179 {| 21.5 309 290 0.138 | 200 31.0 2.88 0.148 | 19.3 31.0 2.75 0.154
64 )| 466 63.0 572 0.136 || 31.3 61.4 4.07 0.111 | 30.0 G61.7 4.12 0.121 | 28.3 61.5 3.93 0.125
8 2.9 4.3 0.13  0.047 2.8 4.2 0.11 0.045 3.0 4.6 0.12 0.047 3.4 56 012  0.047
16 4.3 7.2 0.20 0.034 3.0 6.7 0.14 0.024 3.3 7.2 0.16 0.025 4.0 94 0.17 0.027
FINANS512 32 6.3 13.6 0.27 0.020 3.4 13.2 0.18 0.015 4.2 13.8 0.21 0.016 4.7 173 0.22 0.017
64 8.8 26,5 038 0.013 4.2 258 0.28 0.010 55 264 031 0.011 5.9 31.0 032 0.012

Averages over K

& 6.2 6.5 097 0.155 6.1 6.5 0.67 0.111 6.0 6.5 0.68 0.119 6.0 6.6 0.67 0.123
16 12.5 13.4 141 0.129 1.0 13.3 093 0.085 | 10.8 13.3  0.95 0.091 10.9 13.6  0.94 0.090
32 1| 21,6 266 1.98 0.098 || 16.8 252 1.32 0.065 [ 16.5 254 1.34 0.067 | 16.5 25.8 1.31 0.067
64 || 33.6 50.1 2.83 0.073 || 234 443 192 0.050 | 234 451 195 0.052 | 22.7 450 191 0.052

In the “# of mssgs” column, “avg” and “max” denote the average and maximum num-
ber of messages, respectively, handled by a single processor. In the “comm. volume”
column, “tot” denotes the total communication volume, whereas “max” denotes the
maxiinum comrmunication volume handled by a single processor. Communication vol-
ume values (in terms of the number of words transmitted) are scaled by the number of
Tows/columns of the respective test matrices.
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Table 3.3: Average communication requirement for rowwise decomposition of
structurally nonsymmetric test matrices.

Graph Model

Hypergraph Model: Column-net Model

pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.

per proc. volume per proc. volume per proc. volume per proc. volume
avg max  tot max avg max tot max | avg max tot max | avg max tot max
8 7.0 70 1.33 0.201 7.0 7.0 0.79 0.111 7.0 7.0 0.75 0.109 7.0 70 073 0.106
16 || 15.0 15.0 1.85 0.144 || 14.8 15.0 1.00 0.071 | 14.7 150 0.96 0.070 | 14.6 15.0 0.93 0.067
GENATI11 32 || 298 31.0 231 0.092 | 266 308 1.18 0.044 | 258 30.6 1.15 0.043 | 251 304 1.10 0.042
64 || 47.7 588 2,71 0.056 || 34.3 46,7 133 0.026 | 33.5 46.2 1.32 0.026 | 31.9 44.2 1.27 0.025
8 6.8 7.0 1.09 0.179 6.2 7.0 064 0.111 6.0 7.0 0.65 0.106 5.8 7.0 066 0.116
16 §| 13.0 15.0 1.52 0.130 |} 10.3 139 0.93 0.089 9.7 13.8 091 0.081 9.2 13.1 0.90 0.083
LHRO7 32 |1 201 291 196 0.094 || 13.9 223 130 0.081 | 13.0 21.7 1.24 0.066 | 12.5 20.5 1.24 0.064
G4 || 244 448 249 0.079 || 16,8 335 1.84 0.077 | 156 30.0 1.65 0.056 | 159 30.7 1.64 0.059
8 2.8 4.3 0.08 0.014 2.6 3.8 0.06 0.010 2.4 3.5 0.06 0.011 2.5 3.6 0.06 0.010
16 4.9 7.5 017 0.015 4.9 7.3 011 0.010 4.7 6.9 0.12 0.011 4.7 6.8 0.12 0.011
ONETONE2 | 32 7.0 119 0.28 0.014 7.5 13.3 0.20 0.009 8.0 11.9 0.22 0.009 7.1 109 0.21 0.009
64 9.4 186 0.39 0.011 10.1 201 0.29 0.007 | 10.7 17.2 0.31 0.008 94 158 0.31 0.008
8 7.0 7.0 099 0.157 6.6 7.0 0.61 0.100 6.4 7.0 0.59 0.095 6.2 7.0 059 0.097
16 || 14.0 150 1.33 0.116 |j 11.4 146 0.84 0.074 | 103 13.5 0.81 0.071 | 10.0 13.6 0.82 0.072
LHR14 32 || 229 294 1.71 0.078 {[ 155 23.2 1.10 0.056 | 13.5 20.7 1.05 0.050 | 13.1 209 1.07 0.053
64 || 29.9 48.6 2.14 0.054 || 181 31.5 1.44 0.048 | 16.4 275 1.34 0.040 | 156 29.0 136 0.041
8 5.1 6.5 0.42 0.067 3.7 5.0 0.16 0.025 3.5 4.9 0.16 0.026 3.6 4.9 0.16 0.025
16 85 11.8 0.59 0.050 79 104 0.29 0.023 7.6 9.8 0.30 0.026 7.8 101 0.29 0.024
ONETONE!1 | 32 13.6 19.1 0.78 0.035 14.2 19.7 042 0.017 | 13.8 19.1 045 0.020 | 14.2 18.9 0.42 0.019
64 18.7 289 0.97 0.025 22.0 330 057 0.013 | 193 29.2 061 0.016 [ 19.8 29.7 0.56 0.015
8 7.0 7.0 094 0.143 6.9 7.0 062 0.094 6.7 7.0 0.57 0.090 6.5 7.0 0.60 0.095
16 14.3 150 1.28 0.110 (| 124 14.8 0.82 0.068 [ 11.0 13.8 0.77 0.066 | 10.8 13.7 0.80 0.068
LHR17 32 f 23.5 29.6 1.62 0.074 j| 17.1 23.8 1.07 0.052 | 144 21.0 1.00 0.047 | 14.1 21.5 1.03 0.047
G4 || 30.3 46.9 2.04 0.048 || 19.6 33.0 1.38 0.041 | 164 294 1.29 0.036 { 16.0 30.3 1.30 0.036
8 3.5 4.8 0.61 0.088 3.6 5.3 042 0.063 3.5 50 0.38 0.056 34 4.5 0.40 0.061
16 7.3 9.5 095 0.075 7.3 101 0.62 0.049 7.0 9.7 0.57 0.046 6.8 8.8 0.60 0.050
LHR34 32 || 145 17.5 1.28 0.055 || 12.6 16.8 0.84 0.037 | 11.1 153 0.77 0.034 | 109 14.6 0.80 0.035
64 || 23.7 306 1.63 0.038 || 17.2 24.9 1.08 0.027 | 14.6 22.7 1.00 0.025 | 14.3 22,5 1.03 0.025
8 3.5 54 0.07 0.015 3.7 5.7 0.05 0.012 3.5 54 0.05 0.013 3.6 5.5  0.05 0.012
16 4.4 76 0.12 0.013 4.2 8.3 0.09 0.011 4.0 7.3 0.09 0.011 4.0 7.3 0.09 o0.011
BCSSTK32 32 5.1 9.4 0.20 0.011 4.7 10.6  0.14 0.008 4.7 9.6 0.15 0.009 4.6 9.7 0.14 0.008
64 57 11.3 0.30 0.008 4.8 11.6 0.22 0.006 49 11.0 0.24 0.007 4.7 10.8 0.22 0.006
8 2.3 3.9 010 0.018 2.3 3.6 0.09 0.018 2.2 34 0.09 0.017 2.2 34 008 0017
16 3.7 6.3 0.21 0.022 3.3 54 0.18 0.018 3.3 5.6 0.18 0.018 3.3 56 0.16 0.017
BCSSTK30 32 4.9 8.7 036 0.019 4.4 7.9 029 0.015 4.6 8.0 031 0.016 1.4 7.8 0.28 0.014
64 58 11.3  0.57 0.016 53 106 0.45 0.013 56 10.3 0.48 0.013 53 10.0 045 0.012

Averages over I

8 5.0 59 0.63 0.098 4.7 5.7 0.38 0.060 4.6 5.6 0.37 0.058 4.5 55 0.37 0.060
16 9.5 114 0.89 0.075 85 11.1 0.54 0.046 8.0 10.6 0.53 0.045 79 104 052 0.045
32 15.7 206 1.17 0.052 (| 12.9 187 0.73 0.036 | 121 17.5 0.70 0.033 | 11.8 17.3 0.70 0.032
64 21.7 333 147 0.037 16.5  27.2 096 0.029 | 15.1 24.8 092 0.025 | 14.8 248 090 0.025

In the “# of mssgs” column, “avg” and “max” denote the average and maximum num-
ber of messages, respectively, handled by a single processor. In the “comm. volume”
column, “tot” denotes the total communication volume, whereas “max” denotes the
maximum cominunication volume handled by a single processor. Communication vol-
ume values (in terms of the number of words transmitted) are scaled by the number of
rows/columns of the respective test matrices.
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Table 3.4: Average communication requirements for columnwise decomposition
of structurally nonsymmetric test matrices.

Graph Model

Hypergraph Model: Row-net Model

pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.

per proc. volume per proc. volume per proc. volume per proc. volume
avg  max 1ot max avg  max tot max avg  max tot max avg  max tot max
8 7.0 7.0 1.44 0.213 7.0 7.0 0.75 0.108 7.0 7.0 0.76 0.110 7.0 7.0 072 0.108
16 150 15.0 198 0.145 || 14.7 150 095 0.071 | 14.7 15.0 0.97 0.072 | 146 150 0.93 0.069
GEMATI11 32 |1 29.9 31.0 246 0.091 || 25.6 30.0 1.13 0.043 | 25.9 30.3 1.15 0.043 | 25.0 29.9 1.10 0.042
G4 47.9 58.5 2.85 0.056 || 32.7 43.9 1.28 0.026 | 33.6 453 1.33 0.026 | 31.6 43.8 1.27 0.025
8 6.9 7.0 1.10 0.188 6.5 70 0.7 0.123 6.4 7.0 0.67 0.107 6.4 7.0 066 0.105
16 1256 15.0 1.54 0.141 1.1 15.0 1.10 0.094 | 10.6 15.0 0.96 0.081 | 10.8 15.0 0.95 0.081
LHRO7 32 19.3 303 205 0.112 || 164 28.7 1.52 0.068 [ 151 29.5 132 0.059 { 156 29.0 1.31 0.059
64 23.5 56.7 2.60 0.088 || 22.0 39.2 203 0.050 | 19.7 405 1.76 0.042 | 19.8 41.2 1.74 0.042
8 2.6 3.8 0.09 0.017 2.4 3.2 0.07 0.012 2.2 3.1 0.08 0.013 3.1 4.5 0.08 0.013
16 4.8 74 020 0.019 4.7 6.6 0.13 0.012 4.6 6.2 0.16 0.014 5.4 8.7 0.15 0.014
ONETONE2 | 32 7.5 127 0.34 0.016 76 11.2 0.24 0.010 7.6 11.1 0.27 0.011 83 148 025 0.011
G4 10.2 214 0.46 0.013 9.6 158 0.33 0.008 | 10.5 164 0.35 0.008 | 104 235 0.34 0.009
8 7.0 7.0 1.05 0.168 6.6 7.0 0.67 0.109 6.6 7.0 0.61 0.096 6.7 7.0 0.61 0.096
16 13.9 150 143 0.123 || 11.4 14.7 0.95 0.077 | 11.6 150 0.85 0.069 | 11.7 15.0 0.84 0.069
LHR14 32 (| 229 304 1.85 0.087 || 16.8 279 1.26 0.054 | 16.4 29.6 111 0.047 | 16.5 30.5 1.11 0.049
(4 293 553 232 0.069 [[ 21.3 457 165 0.038 | 198 54.2 145 0.035 | 20.3 56.2 1.44 0.036
8 5.1 6.5 044 0.067 3.7 5.0 0.19 0.031 3.5 4.7 021 0.033 3.5 4.9 0.20 0.034
16 8.7 11.6 0.62 0.051 7.8 102 0.34 0.026 7.6 9.6 0.38 0.032 7.8 10.1 0.36 0.029
ONETONE1 | 32 144 200 081 0.035 (| 13.3 186 049 0.021 | 13.4 18.6 0.54 0.026 | 14.0 19.1 0.51 0.024
64 19.9 302 1.08 0.024 || 199 31.5 0.65 0.017 [ 19.6 30.5 0.72 0.018 | 19.3 304 0.69 0.019
8 7.0 7.0 1.02 0.164 6.8 7.0 0.66 0.100 6.8 7.0 0.59 0.087 6.9 7.0 0.58 0.087
16 144 15.0 140 0.117 (| 12.2 15.0 0.91 0.074 | 123 150 0.81 0.064 | 12.3 15.0 0.80 0.063
LHRI17 32 |1 242 306 1.78 0.080 || 18.0 30.0 1.22 0.052 | 17.1 30.6 1.06 0.044 | 17.2 30.8 1.05 0.044
64 || 31.4 533 221 0.062 || 229 51.9 1.58 0.037 | 20.7 55.0 1.37 0.031 |} 20.8 558 1.36 0.032
8 3.4 4.5 0.67 0.103 3.4 4.1 043 0.065 3.4 4.1 0.39 0.056 3.4 4.1 039 0.055
16 7.3 8.6 1.02 0.086 7.1 8.4 0.66 0.053 7.2 83 0.59 0.046 7.1 8.3 0.59 0.046
LHR34 32 || 14.7 16.8 1.40 0.061 124 159 092 0.040 | 124 156 0.81 0.033 | 12.5 15.7 0.80 0.033
64 24.2 314 178 0.043 || 18.2 303 1.22 0.028 [ 17.3 30.8 1.06 0.023 [ 17.3 31.0 1.06 0.023
8 3.6 5.3 0.07 0.016 3.1 4.6 0.05 0.013 3.9 58 0.06 0.014 3.4 52 0.05 0.012
16 4.3 7.3 012 0.014 3.9 7.0 0.08 0.010 44 7.9 0.10 0.012 4.1 7.7 0.08 0.011
BCSSTIK32 32 5.1 9.5 019 o0.011 4.4 8.9 0.14 0.008 4.7 9.9 0.15 0.009 4.6 9.4 (.14 0.009
(4 5.5 11.6  0.29 0.009 4.5 101 021 0.007 4.9 114 0.23 0.008 4.7 11.2 021 0.007
8 2.5 4.0 0.08 0.017 2.8 46 0.08 0.017 2.2 3.4 0.07 0.014 24 4.2 0.06 0.013
16 3.6 6.2 0.18 0.018 3.4 6.0 0.14 0.015 3.0 5.0 0.14 0.016 3.1 52 013 0.014
BCSSTK30 32 4.7 8.2 031 0.0156 4.0 8.0 0.22 0.012 4.0 6.9 024 0.013 3.9 7.1 (.21  0.012
64 5.7 10.0 0.50 0.013 4.6 9.0 0.34 0.010 4.5 8.4 0.37 0.010 4.5 9.3 034 0.010

Averages over K

K 5.0 5.8 0.66 0.106 4.7 5.5 0.40 0.064 4.7 55 0.38 0.059 4.8 5.7 037  0.058
16 94 11.2 094 0.079 85 109 0.59 0.048 84 10.8 0.55 0.045 86 11.1 0.54 0.044
32 15.8  21.1 1.24 0.057 |{ 13.2 199 0.79 0.034 | 13.0 20.2 074 0.032 | 13.1 207 0.72 0.031
64 22.0 36.5 1.57 0.042 173 30,8 1.03 0.024 | 16.7 325 096 0.022 | 16.5 33.6 094 0.023

In the “# of mssgs” column, “avg” and “max” denote the average and maximum num-
ber of messages, respectively, handled by a single processor. In the “comm. volume”
column, “tot” denotes the total communication volume, whereas “max” denotes the
maximmnn communication volume handled by a single processor. Comimunication vol-
ume values (in terms of the number of words transmitted) are scaled by the number of

rows/columns of the respective test matrices.
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Figure 3.5: Relative run-tirne performance of the proposed column-net/row-net
h,ypergraph model (Clique-net, hMeTiS, PaToH-HCM and PaToH-HCC) to the
graph model (pMeTiS) in rowwise/columnwise decomposition of symmetric test
matrices. Bars above 1.0 indicate that the hypergraph model leads to slower

decomposition time than the graph model.
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Figure 3.6: Relative run-time performance of the proposed column-net hyper-
graph model (Clique-net, liMeTiS, PaToH-HCM and PaToH-HCC) to the graph
model (pMeTiS) in rowwise decomposition of symmetric test matrices. Bars
above 1.0 indicate that the hypergraph model leads to slower decomposition time

than the graph model.
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Figure 3.7: Relative run-time performance of the proposed row-net hypergraph
model (Clique-net, liMeTiS, PaToH-HCM and PaToH-HCC) to the graph model
(pMeTiS) in columnwise decomposition of symmetric test matrices. Bars above
1.0 indicate that the hypergraph model leads to slower decomposition time than
the graph model.
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Table 3.5: Overall performance averages of the proposed hypergraph models nor-
malized with respect to those of the graph models using pMeTiS.

pMeTiS (clique-net model) hMeTiS PaToH-HCM PaToH-HCC
K | Tot. Comm. Volume | Time | Tot. Comm. Volume | Time | Tot. Comm. Volume | Time | Tot. Comm. Volume | Time
best  worst avg best  worst avg best  worst avg best  worst avg
Symmetric Matrices: Column-net Model = Row-net Model
8 | 0.86 0.84  0.85 2.08 | 0.73 0.70 0.71 8.13 | 0.73 0.73 0.73 2.19 | 0.73 0.73 0.73 2.42
16 | 0.86 0.84 0.83 1.90 | 0.70 0.66 0.66 8.95 | 0.70 0.69 0.68 225 | 0.71 0.69 0.69 2.43
32 1 0.85 0.84 0.84 1.79 | 0.68 0.65 0.66 9.72 | 0.69 0.68 0.68 2.33 | 0.69 0.68 0.68 2.44
64 | 0.85 0.84 0.84 1.78 | 0.71 0.68 0.69 | 10.64 | 0.72 0.69 0.70 241 | 0.72 0.69 0.70 2.56
avg | 0.86 0.84 0.84 1.89 | 0.70 0.67 0.68 9.36 | 0.71 0.70 0.70 2.30 | 0.71 0.70 0.70 2.46
Nonsymmetric Matrices: Column-net Model
8 | 0.78 0.78 0.78 1.48 | 0.68 0.63 0.64 5.31 | 0.67 0.64 0.64 1.32 | 0.66 0.62 0.63 1.50
16 | 0.80 0.78 0.78 1.44 | 0.66 0.63 0.64 5.53 | 0.67 0.64 0.65 1.37 | 0.65 0.62 0.63 1.56
32 | 0.79 0.78 0.78 1.34 | 0.66 0.64 0.66 5.88 | 0.67 0.65 0.66 1.44 | 0.65 0.63 0.64 1.61
64 | 0.80 0.79 0.79 1.34 | 0.69 0.68 0.68 6.17 | 0.69 0.68 0.68 1.45 | 0.67 0.66 0.66 1.62
avg | 0.79 0.78 0.79 1.40 | 0.67  0.64 0.66 5.72 | 0.67 0.65 0.66 1.39 | 0.66 0.63 0.64 1.57
Nonsymmetric Matrices: Row-net Model

8 [ 0.75 0.74 0.76 1.25 | 0.64 0.62  0.63 5.22 | 0.64 0.63 0.63 1.29 | 0.62 0.60 0.61 1.50
16 | 0.75 0.74 0.75 1.15 | 0.65 0.63 0.64 5.34 | 0.65 0.63 0.65 1.33 | 0.62 0.61 0.62 1.54
32 ] 0.75 0.75  0.75 1.12 | 0.67 0.65 0.66 5.55 | 0.66 0.64 0.66 1.38 | 0.63 0.62 0.63 1.58
64 .76 0.77  0.76 1.09 | 0.67 0.67 0.67 5.84 | 0.66 0.65 0.66 1.36 | 0.64 0.63 0.63 1.50
avg | 0.75 0.75 0.76 1.15 | 0.66 0.64 0.65 5.49 | 0.65 0.64 0.65 1.34 | 0.63 0.61 0.62 1.53

In total communication volume, a ratio smaller than 1.00 indicates that the hypergraph
model produces better decompositions than the graph model. In execution time, a ratio
greater than 1.00 indicates that the hypergraph model leads to slower decomposition

time than the graph model.



Chapter 4

Hypergraph Models for 2D

Decomposition

The atomic task definition in the 1D decomposition ensures that either row stripes
or column stripes are distributed among the processors. That is computations for
a row and column are considered as indivisible tasks in rowwise and columnwise
decomposition, respectively. This atomic task definition can be unnecessarily
restricted. Consider the sparse matrices which have some dense rows/columns.
Load balancing problem becomes very hard for this kind of matrices. It is conjec-
tured that columnwise decomposition can be more appropriate for the matrices
with dense rows, and rowwise decomposition can be appropriate for the ones with
dense columns. However, this precaution can be valuable for only nonsymmet-
ric matrices. Furthermore, columnwise (rowwise) decomposition of matrices with
dense rows (columns) is likely to induce high volume of communication during the
post (pre) communication phase. The 2D decomposition approach is expected to
yicld better decomposition in terms of both load balancing and communication

requirements since it has more degree of freedom.

Unfortunately, in the literature there is not too much work on 2D decom-
position of matrices, and existing heuristics address only the load balancing
problem [64, 58, 57, 39]. The matrix-vector multiplication algorithm proposed
by Hendrickson et. al. [39] is based on 2D block checkerboard partitioning and

minimizes the communication requirement implicitly. Lewis and Geijn [58] and
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Lewis et.al. [57] proposed different parallel SpMxV computation approaches one

of which eliminates the transpose operation required in method proposed by Hen-

drickson et. al. [39].

There is no work on 2D decomposition which directly aims at minimizing
communication volume while maintaining the load balance. In this section, three
different hypergraph models will be introduced for 2D decomposition of sparse
matrices. Here, we propose a fine-grain hypergraph model which considers each
multiply operation in SpMxV as atomic tasks during the decomposition. Two
new coarse-grain hypergraph models are proposed for reducing the decomposi-
tion overhead. Another objective in the coarse-grain hypergraph models is an im-
plicit effort towards reducing the amount of communication. The first hypergraph
model produces jagged-like 2D decompositions of the sparse matrices. The second
coarse-grain hypergraph model is specifically designed for checkerboard partition-
ing which is commonly used in the literature by the matrix-vector multiplication
algorithms [64, 58, 57, 39]. Experimental results presented in Section 4.4 show
that the fine-grain hypergraph model for 2D decomposition produces superior
results over 1D decomposition results produced by both graph and hypergraph
models, in terms of total communication volume. The coarse-grain models also
produce better decompositions then the graph model in terms of total commu-

nication volume. In terms of number of messages, checkerboard decomposition

displays its strength over all models.

As mentioned earlier, parallel SpMxV computations based on 2D decomposi-
tion schemes, necessitates both pre and post communication. That is, the entries
in x vector need to be communicated just before the local SpMxV computations,
and the result of partial y vector need to be communicated after local SpMxV
computations. Here and after, we will use the term expand to denote the per-

sonalized communication of the entries in x, and fold to denote the personalized

communication of entries in y.
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4.1 A Fine-grain Hypergraph Model

In this model, an M x M matrix A with Z nonzero elements is represented as
a hypergraph H = (V,N) with |V| = Z vertices and |N| = 2 x M nets for 2D
decomposition which uses both pre and post communication. There exists one
vertex v;; € V corresponding to each nonzero a;; in matrix A. For each row
and for each column there exists a net in M. For simplicity in the presentation
let N = Ng UM such that Ng = {my,ms,...,mp} represents the set of
nets corresponding to the rows and Ne = {ni,n,,... ,nM} represents the set
of nets corresponding to the columns of the matrix A. Net m; C V contains
the vertices corresponding to the nonzeros in row j, and net n; CV contains
the vertices corresponding to the nonzeros in column j. That is, v;; € m; and
vi; € n; if and only if a;; # 0. Note that each vertex wv;; is connected exactly
two nets. BEach vertex v; € V corresponds to the atomic task of computing
the scalar multiplication operation yf = a;;z;. Hence, each vertex v;; € V has
unit computational weight w;; = 1. The nets in N represent the dependency
relations of the atomic tasks to the x-vector components, that is, they model the
expand operation in the pre communication phase. The nets in Mz represent the
dependency relations of the atomic tasks on the y-vector components, in other
words, they model the fold operation in the post communication phase. Hence,
each column-net n; denotes the set of atomic tasks (vertices) that need z; during
pre communication, and each row-net m; denotes the set of atomic task results
needed to accumulate y; during the post communication. Figure 4.1 illustrates
the dependency relation view of 2D fine-grain model. As seen in this figure,
column-net n; = {v;;, v, v} of size 3 represents the dependency of atomic tasks
Vij, Vj;, Vi t0 x; because of the 3 multiplication operations y! = aijz;, Y} = a5,
and y,] =ay;-7;. In this figure, row-net m; = {vy, vi;, 'ui;;,'u,;j} of size 4 represents
the dependency of accumulating y; =y + y}f+yik+yf to the 4 partial y; results
Yl =a;p -z, Y =ay i, yF =ag-zk and y! =a,;-z,;. Figure 4.3 displays the 2D fine-
grain hypergraph representation of the sample 8 X8 nonsymmetric matrix with
21 nonzero elements displayed in Figure 4.2. In Figure 4.3 pins of the row net
my = {11,012, 016} corresponding to row 1, represent the nonzeros a;;, a2,
and a;¢ in that row. Net 7, also represents the dependency of accumulating

the y; = yi +9? +y¢ on the partial y; results yi = a;,71, y¥ = a1222, and
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( Vi )
Figure 4.1: Dependency relation of 2D fine-grain hypergraph mode

y¥ = a1 6z¢. Similarly, pins of the column net n; = {va,7,v57,v77} corresponding
to column 7, represents the nonzeros a4z, as7, and az7 in that column. Net n;
is also represents the dependency of atomic tasks vy 7, vs7 and v77 to z7 because

of the computation y] = a4 727, yi = aszz7 and y! = a7 7z7.

By assigning unit costs to the nets (i.e. ¢; =1 for each net n; € N'), the
proposed fine-grain hypergraph model reduces the decomposition problem to the
K -way hypergraph partitioning problem according to the cutsize definition given
in (2.4.b) for 2D schemes which requires both the pre and post communication.
Nets corresponding to rows of matrix (i.e. nets in Nz ) model the communica-
tion volume requirement of folds, and nets corresponding the columns of matrix
(i.e. nets in N¢) model the communication volume requirement of expands.
Consistency of the proposed hypergraph models for accurate representation of
communication volume requirement while maintaining the symmetric partition-
ing depends on the condition that “v; € m; and v; € n; for each row-net m;
and column-net n;”. We first assume that this condition holds in the discussion
throughout the following paragraphs and then discuss the appropriateness of the

assumption in the last paragraph of this section.

Consider a partition II of H in the fine-grain hypergraph model for 2D de-
composition of a matrix A. Without loss of generality, we assume that part Py
is assigned to processor P for k=1,2,..., K. Recall that, II is defined as a
partition on the vertex set of H, hence it does not induce any part assignment
for the nets. Since column and row nets of H denotes the expand and fold opera-
tions on x and y vectors, we need to decode Il as inducing a partition on nets to

formulate communication volume requirements. Let A[n;] and A[m;] denote the
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connectivity sets of column-net n; and row-net m; in II, and part[v,;] denotes

the part (hence processor) assignment for vertex vy;.

Consider an internal column-net n; of part P, (i.e. Aln;] = {Px}). As
all pins of net n; lie in Pk, all nonzeros in column j (including a;; by the
consistency condition) which need z; for their multiplication are already assigned
to processor P. Hence, internal column-net n; of Py, which does not contribute
to the cutsize (2.4.b) of partition II, does not necessitate any expand operation
if z; is assigned to processor P;. Similarly, consider an internal row-net m; of
part Pg. As all pins of row-net m; lie in Py, all nonzeros in row j which will
contribute in the accumulation of y; are already assigned to processor Fy. Hence,
internal row-net m; of P, which does not contribute to the cutsize (2.4.b) of

partition II, does not necessitate any fold operation if y; is assigned to processor

P

Consider an external column-net n; (i.e., Aln;] > 1). As all pins of net
n; lie in the parts in its connectivity set A[n;], all nonzeros (including a;; by
the consistency condition) which need z; for multiplication are assigned to the
parts (processors) in A[n;]. Hence, contribution A[n;]—1 of external net n; to
the cutsize according to (2.4.b) accurately models the amount of communication
volume to incur during the expand of z; if z; is assigned to any processor in
Aln;]. Let map[n;] € Aln,] denote the part and hence processor assignment for z;
corresponding to cut net n;. Cut net n; indicates that processor map[n;] should
send its local x; to those processors in connectivity set A[n;] except itself (i.e., to
processors in the set A[n,;|—{map[n;]}). Hence, processor map[n,] should send its
local z; to |A[n,;])|—1=A[n;]—1 distinct processors. Similarly, consider an external
row-net m;. As all pins of net m; lie in the parts in its connectivity set A[m;],
all nonzeros which will contribute in the accumulation of y; are already assigned
to the parts (processors) in A[m;]. Cut net m; indicates that the processors
in the connectivity set A[m;] except owner of m; (i.e., processors in the set
A[mj]—{map[m;]}) should send their partial y; results to the processor rmap[m].
Hence, contribution A[m;]—1 of external row-net mn; to the cutsize according
to (2.4.b) accurately models the amount of communication volume to incur during

the fold of y; if y; is assigned to any processor in A[m,].

The connectivity sets A[n;] and A[m;] of column-net n; and row-net rn; must
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have at least one common part, since they share exactly one common pin, which
is a;; by the consistency condition, i.e., {part[v;;]} C (A[n;]NMA[m;]). There are

four distinct cases to consider:

Case 1 Both row-net m; and column-net n; are internal to part part[v;;] (note

that they cannot be internal to different parts, since both of them contains
Vii )y
Case 2 Both row-net m; and column-net n; are external (cut) nets connected

to part part[v;,],

Case 3 Row-net m; is internal to part part[v;;], and column-net n; is external

net connected to part pa'rt[vjj],

Case 4 Column-net n; is internal to part part[v;;], and row-net m; is external

net connected to part part[v;]

For “Case 17, using the discussion in the previous paragraph, we can safely assign
internal nets m; and n; to part part[v;;]. We know that external nets exactly
model the communication requirement if their corresponding variable is also as-
signed to a part in connectivity set. Hence, for “Case 2”, we can again safely
assign external nets to part part[v;;], since it is already in the connectivity sets
of both external nets. In cases 3 and 4 again since the part, which one of them is

internal to, (part[v;;]) is already in the connectivity set of the other one, we can

also assign both nets to part[v;].

In essence, in the fine-grain hypergraph model, any partition Il of X with
partvi;] = Py can be safely decoded as assigning row-net m; (hence y;) and
column-net n; (hence z;) to part Py, i.e., map[n;] = map[m;] = part[v;]. With
this assignment, both symmetric partitioning (in other words conformal parti-
tioning) on x and y vectors is maintained and also total communication volume
is cxactly modeled. Thus, in the fine-grain model, minimizing the cutsize ac-
cording to (2.4.b) corresponds to minimizing the actual volume of interprocessor

communication during the pre and post communication phases.

Figure 4.3 displays a 3-way partition of the fine-grain hypergraph. The cost

of this partition is 8. There arc 6 cut nets with connectivity 2, hence their
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Figure 4.4: Decomposition result of the sample given in Figure 4.3

total contribution to the cost is 6 x (2 — 1) = 6. The connectivity set A[m]
of cut net my is Almz] = {P1,P2,Ps}. Hence its contribution to the cost is
Alm7] =1 =3-1=2. Figure 4.4 displays the 3-way partitioning result obtained
in Figure 4.3 in matrix view. Here we put the part number of each nonzero as its
value. In this figure you can identify the row cutnets m;, ms, my, my; and mg
as the rows containing different numbers. With this partition, processors P; and
P, will send their partial y; results y7 = a74-z4 and y§ = a7 676 to processor Py,
which already contains az,7, during the fold operation of y;. Thus contribution

Almz]—1 = 2 of row-net my to the cost exactly models volume of communication

required in the fold of y;.

Nonzero diagonal entries automatically satisfy the condition “v; € m; and
v; € n; for each row-net m; and column-net n;” thus enabling both accurate
representation of communication requirement and symmetric partitioning of x
and y vectors. A nonzero diagonal entry a;; already implies that both column-
net n; and row-net m; contains vertex v;; as their pin. If however some diagonal
entries of the given matrix are zeros then the consistency of the proposed model
is easily maintained by simply adding dummy vertex v;; for each a;; = 0 with
wj; = 0 to the vertex set V of H. Vertex v;j is also added to the both pin
list. pins[n;] of column-net n; and pins[m,] of row-net m;. The net list of this
dummy vertex vj; is simply set to nets[v;;] = {n;,m;}. These vertex additions

do not affect the weight computations, since we give zero as the weight of dummy

vertices.
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4.2 Hypergraph Model for Jagged-like Decom-

position

In this section, we propose coarse-grain hypergraph model for jagged-like 2D
decomposition of the sparse matrices for parallel SpMxV computations. As stated
earlier, SpMxV algorithms that are based on 2D decomposition must use both pre
and post communication schemes together. The proposed decomposition method
is a two-phase method, in which each phase models either the pre communication
cost or post communication cost. Therefore, we have two alternative schemes for
this decomposition method. For the sake of simplicity in the presentation we will
discuss only one scheme, the one which models the pre communication in the
first phase and the post communication in the second phase. The dual discussion
holds for the other scheme, that is the one which models the post communication

in the first phase and the pre communication in the second phase.

In the jagged-like decomposition model, K -way 2D decomposition of a sparse
matrix is achieved by first decomposing the matrix into v/K parts using the
column-net model proposed in Section 3.3 (rowwise), then each part further de-
composed into VK parts using the row-net model (columnwise). Thus resulting
decomposition is a 2D decomposition. Figures 4.5~4.9 display each step of this
process on a sample 16x16 matrix. Let the input matrix A be an M x M matrix.
In the first phase, A is represented by the column-net hypergraph Hgz. For the
sake of simplicity in the presentation, we assume that underlying parallel archi-
tecture is a VK x VK 2D mesh. Consider a v/ K -way partition IT of Hg. If we
partially permute the matrix according to the row partitioning induced by the
partition IT, we obtain a matrix A which contains roughly —% X M submatri-
ces. In fact, since column-net model tries the work load balance on local SpMxV
computations, the resulting submatrices may not contain same number of rows
but they will contain roughly equal number of nonzeros. We can assign cach
submatrix to a row group in 2D mesh. Clearly assignment of submatrices to row
groups does not change the total communication volume, so we can safely assume
that first submatrix is assigned to first row group and so on. For now, just assume

that we will not assign the nonzeros in a column of each submatrix to more than
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Figure 4.5: A 16 x 16 nonsymmetric matrix A

one processor in each row processor group, i.e., columns of submatrices are indi-
visible. We will later explain the correctness of this assumption in our jagged-like
decomposition model. The expand operation on the x vector components will
require communication among the row processor groups, not between any pair of
processors in a processor row of 2D mesh. Thus this phase minimizes the total
volume of communication among the v/K row processor groups required during
the pre communication step. Figure 4.6 illustrated the column-net representation

of the sample hypergraph given in Figure 4.5. We labeled the vertices and nets

of hypergraphs with letters “r” and “c” to denote row and column of matrix, for
simplicity in the presentation. For a 4-way decomposition of the sample matrix
we first decompose matrix into V4 = 2 parts, to assign each part to a row group,
namely to row groups {P;, P} and {Ps, P1}. The resulting permuted matrix is

displayed in Figure 4.7.

In the second phase, each submatrix of A" is independently decomposed into
VK column stripes using the row-net model described in Section 3.3. Since the
vertices in the row-net hypergraph model correspond to the columns of the matri-
ces, all nonzeros in a column of each submatrices will be assigned exactly to one

processor. Hence, this verifies the assumption in the previous paragraph. That
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Figure 4.6: Jagged-like 4-way decomposition, Phase 1: Column-net representa-
tion Hr of A and 2-way partitioning IT of the Hp
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Figure 4.7. Jagged-like 4-way decomposition, Phase 1. 2-way rowwise decom-
position of matrix obtained by permuting A according to the partitioning

induced by fl

is, applying the row-net model in the second phase does not disturb the commu-
nication requirements of expand operation which is modeled in the first phase.
Clearly, the columnwise decomposition in each row processor group, minimizes
the total communication volume required during the post communication step,
among the \/K processors in respective row of 2D mesh . Since each group of
processors are assigned different rows of matrix A'~, only the processors in each
group must communicate to obtain full y vector. Therefore, sum of the volume
of communications of the each processor group exactly models the total volume
of communication among the K processors required during the post communica-
tion step. Figure 4.8 displays the two row-net hypergraphs corresponding to each
submatrix displayed in Figure 4.7. Each hypergraph is partitioned independeritl.y,
sample partitions of these hypergraphs are also presented in this figure. The final
permutation hence processor assignments is displayed in Figure 4.9.

Note that, in the second phase, some vertices may need to exist in more than
one hypergraph. These vertices are the vertices corresponding to the columns
which have nonzero in more than one row group of A . In other words, they are
the cutnets of the first phase. In the second phase, we simply create a copy of
each such column in the decomposition of each submatrix if there is at least one



CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 65

Figure 4.8: Jagged-like 4-way decomposition, Phase 2: Row-net representations
of submatrices of A and 2-way partitionings
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Figure 4.9: Jagged-like 4-way decomposition, Phase 2: Final permuted matrix.

nonzero in that column of submatrix. In other words, for each cutnet nj in the
first phase, we create exactly \[nj] copies of vertex Vj in the second phase. For
example, as seen in Figure 4.6 the column-net &G is a cutnet with Acs] = 2, hence
as displayed in Figure 4.8 each hypergraph contains a vertex for column 5, namely
cr,. The computational weight of each vertex is just the number of nonzeros in
the corresponding column of each submatrix. Hence, maintaining the balance
criterion (2.1) corresponds to maintaining the computational load balance during

the local SpMxV computations.

In terms of number of messages, the jagged-like decomposition has some nice
features over 2D fine-grain hypergraph model. Recall that there is no restriction
in the communication pattern of 2D fine-grain model, hence in both pre and post
communication phases each processor can communicate with any processor. Thus
the bound of total number of message is 2K{K —1). In jagged-like communi-
cation, in the pre communication phase, the maximum number of messages per
processor is K —\fK . Since the processors in the same row group of 2D mesh do
not require communication of x vector components. In the post communication
j)hase, the maximum number of communication for each processor is \TK —1.
Hence the bound of total number of messages in jagged-like decomposition is

K(K-i).
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’

4.3 Hypergraph Model for Checkerboard De-

composition

Most of the SpMxV kernels in the literature [64, 58, 57, 39] work on the 2D
checkerboard partitioning with the assumption that underlying interconnection
topology is 2D processor mesh. The nice property of 2D checkerboard decomposi-
tion is that, all expand operations are only performed among the processors in the
same column, and all fold operations are only performed among the processors
in the same row of 2D mesh. This nice property is the result of maintaining both
row and column integrity, that is, the nonzeros of each column (row) of the ma-
trix is assigned to same column (row) of 2D processor mesh. As you may notice,
the proposed jagged-like decomposition presented in the previous section already
has some part of this nice property. Using the jagged-like decomposition, all fold
operations are only performed among the processors in the same row of 2D mesh.
However, for expand operations we should take care of extra precautions. In this
section, we propose a hypergraph model for 2D checkerboard decomposition of
sparse matrices for parallel SpMxV. In the second phase of jagged-like decom-
position each column segment assigned to processor groups are represented by a
vertex in the row-net model and decomposition in each processor group is done
independently. That is, there is no restriction in the assignment of the column
segments in the final decomposition. For example, as displayed in Figure 4.8 al-
though both copies of the vertex ¢s is assigned to first parts of two hypergraphs,
the copies of the vertex ¢, are assigned to different parts in those hypergraphs.

Hence as we can see in the matrix displayed in Figure 4.9, although the column

5 is maintained, the integrity of the column 2 is not main-

mtegrity of column 5
tained. The simplest way to achieve column integrity, is to force the partitioner
to put the copied vertices into same part in decomposition of the subsequent ma-
trices. That is, the decomposition of the first submatrix can be done without any
restriction, however, in the decomposition of the subsequent matrices the vertices
corresponding to cutnet in the first phase are forced to be assigned to same part
with the all previous decompositions in the second phase. As you may notice,
this enforcement limits the search space of the decomposition of the subsequent
submatrices. Furthermore, even the decomposition of first submatrix may blindly

cause extra fold operations in the next decompositions.
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Here we propose a new method which uses hypergraph model for 2D checker-
board decomposition of sparse matrices for parallel SpMxV computations. The
proposed method is again a two phase method where the first phase is identical
with the jagged-like decomposition. For the second phase we introduce new hy-
pergraph partitioning problem; Multi-Constraint Hypergraph Partitioning. The
notion of multi-constraint and multi-objective partitioning has recently become
popular in graph partitioning [47, 73] for the parallelization of multi-physics and
multi-phase applications. In these applications each constraint effectively corre-
sponds to the computational load of the vertex in different phase of the target
parallel algorithm. Hence maintaining balance on each constraint corresponds to
maintaining load balance in each phase of the parallel algorithm. The intuition
behind the new model for checkerboard decomposition is as follows. Since, the
first decomposition in the second phase locks the vertices to the parts in the sub-
sequent decompositions, the locked vertices may cause communication and there
is no way to get rid of this communication in the subsequent decompositions.
We should find a way to compute these extra communication before locking the
vertices. Luckily, we can easily integrate the computation of this cost. That
is, we can safely add the nets of hypergraphs of subsequent submatrices to the
hyvpergraph of the first submatrix. Furthermore, we can add all the nets of all
submatrices and solve the second phase just in one step. Recall that, in jagged-

like decomposition the second phase contains v K steps such that each of them

is a v K -way decomposition.

The computational weight assignment is as follows. Since we have already
decided that “which rows of the matrix will be assigned to which row of the
2D processor mesh”, we have also decided computational weight of each column
segment. In the new model, each vertex corresponding to columns of matrix will
have VK weights. Each weight of a vertex corresponds to the number of nonzeros
of the corresponding column in the corresponding row processor group. Hence,
maintaining the halance on each weight constraint corresponds to maintaining
computational load balance among the processors of each row of 2D mesh. For
our specific application, multiple weights of the vertices do not correspond to the

weight of different phases. In fact they represent the load of computation that

will be executed concurrently.
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We can summarize the proposed checkerboard decomposition method as fol-
lows. First decompose matrix A rowwise into /K -way using column-net repre-
sentation Hr. Let partition Il = {P,...,P %} of Hr be the partition obtained
in the first phase. In the second phase decompose the matrix A columnwise
into v/ K -way using row-net representation Hc with multi-constraint on vertex
weights. Let wy[i, 7] denotes the jth weight of vertex v; in hypergraph Hc,

representing the number of nonzeros of the column ¢ in the jth row group, i.e.,

Wi [t 5] = |pinsag [vi] N P;l.

4.4 Experimental Results

We have tested the validity of the proposed hypergraph models for 2D decompo-
sition by running PaToH on the hypergraphs for the decompositions of various re-
alistic sparse test matrices arising in different application domains [26, 16, 20, 25].
Table 4.1 illustrates the properties of the test matrices listed in the order of in-
creasing number of nonzeros. PaToH is modified to handle multi-constraints to
present the checkerboard decomposition results. These 2D decomposition results
are compared with the 1D decompositions obtained by running MeTiS using the
standard graph models, and PaToH using the 1D column/row-net hypergraph
model presented in Section 3.3 (Recall that column-net and row-net models be-
come equivalent in symmetric matrices). As PaToH achieves K-way partitioning
through recursive bisection, recursive MeTiS (pMeTiS) was used for the sake of
a fair comparison. Another reason for using pMeTiS is that direct K -way parti-
tioning version of MeTiS (kMeTiS) produces 3% worse partitions than pMeTiS
in the decomposition of the test matrices, although it is approximately 2 times

faster, on the average.

All experiments were carried out on a workstation equipped with a 133 MHz
PowerPC processor with 512-Kbyte external cache and 64 Mbytes of memory.
We have tested K = 16, 32 and 64 way decompositions of every test matrix. For
a specific K value, K -way decomposition of a test matrix constitutes a decompo-
sition instance. For jagged-like and checkerboard decompositions we assume that

underlying architecture is 4x 4, 4x8 and 8 x8 2D processor mesh. pMeTiS and
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Table 4.1: Properties of test matrices

number of nonzero
number of per row/col
name rows/cols total | min  max avg
sherman3 5005 | 20033 1 7 400
bespwrl0 5300 | 21842 2 14 4.12
ken-11 14694 | 82454 2 243 561
nl 7039 | 105089 1 361 14.93
ken-13 28632 | 161804 2 339 565
cq9 9278 | 221590 1 702 23.88
co9 10789 | 249205 1 707 23.10
pltexpA4-6 26894 | 269736 5 204 10.03
vibrobox 12328 | 342828 9 121 27.81
cre-d 8926 | 372266 1 845 41.71
cre-b 9648 | 398806 1 904 41.34
world 34506 | 582064 1 972 16.87
mod2 34774 | 604910 1 941 17.40
finan512 74752 | 615774 3 1449 8.24

PaToH were run 50 times starting from different random seeds for each decompo-
sition instance. The average performance results are displayed in Tables 4.2-4.4
for each decomposition instance. The percent load imbalance values are below 3%

for all decomposition results displayed in these figures, where percent imbalance

ratio is defined as 100 X (Wiuz — Waug)/ Wy -

Table 4.2 displays the decomposition performance of the proposed hypergraph
models in 2D decomposition together with the standard graph model and 1D hy-
pergraph model. Communication volume values (in terms of the number of words
transmitted) are scaled by the number of rows/columns of the respective test ma-
trices. As you can see average percent imbalance values are also displayed in this
table. Since both MeTiS and PaToH use recursive bisection to achieve K-way
partitioning, it is very hard to impose exact load balance for all instances in both
of the tools. Although the main objective of this work is the minimization of the
total communication volume, the results for the other performance metrics such
as the maximum volume, average number and maximum number of messages
handled by a single processor are also displayed in Table 4.3. Recall that, by its
nature 2D checkerboard partitioning also minimizes these quantities implicitly.

Note that the maximum volume and maximum number of messages determine
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the concurrent communication volume and concurrent number of messages, re-

spectively, under the assumption that no congestion occurs in the network.

As seen in Table 4.2, the proposed hypergraph models produce substantially
better partitions than the graph model at each decomposition instance in terms of
total communication volume. 2D fine-grain hypergraph model is clear winner in
the communication volume cost as expected, since it has more degree of freedoms.
On the overall average, 2D fine-grain hypergraph model produces 59%, 43% and
34% better decompositions than the 1D graph model, 1D hypergraph model and
2D jagged-like decomposition, respectively. As expected, when the limitations
increase in the decomposition, the total volume of communication also increases.
However, even the most restricted decomposition method checkerboard decompo-

sition produces 26% better decompositions than the graph model, on the overall

average.

Table 4.3 displays the average communication requirements of the proposed
hypergraph models in terms of number of messages handled by a single proces-
sor. As seen in table, checkerboard decomposition result is shining. This result
was expected since the theoretical bound on the maximum number of messages
handled by a single processor is 2(v/K — 1). For example, for K = 64, the
maximum number of messages is 2(\/264) — 1) =2(8 = 1) = 14. Whereas, this
number is K — 1 = 63 for 1D graph and hypergraph models, 2(K — 1) = 126
for 2D fine-grain hypergraph model, and K — 1 = 63 for jagged-like decompo-
sition. Although theoretical bound on the number of messages in 1D graph and
hypergraph models and 2D jagged-like decomposition are same, the hypergraph

models produce 27% less number of messages than the 1D graph model.

Table 4.4 displays the average execution times of the MeTiS and PaToH for the
standard graph and proposed hypergraph models. As seen in the table, 2D fine-
grain model has the largest execution time. 2D fine-grain hypergraph model is
approximately 2.4 times slower than the 1D hypergraph model. This was expected
since 2D fine grain contains 2 times more pins and nets than the 1D hypergraph
model, and also number of vertices in the 2D fine-grain model is equal to the
number of nonzeros in the matrix, whereas it is the number of rows/columns
in 1D hypergraph model. The execution time of jagged-like decomposition is

29% less than the 1D hypergraph decomposition, since it achieves the K-way
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decomposition by VK times K -way decomposition. As also seen in Table 4.4,
both 1D hypergraph decomposition and 2D checkerboard decomposition using
PaToH is approximately 3 times slower than the standard graph model using
MeTiS. Here, we should note that we have used PaToH without any modification
(except multi-constraint code added for checkerboard), that is, current version of
PaToH contains net weight variables, and is able to balance on nets, hence there
are some variables for each cell and net which are maintained during coarse of
partitioning. By modifying PaToH (i.e., removing the unnecessary code segments

and variables) we may expect substantial reduce in running time of hypergraph

models.
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Table 4.2: Average communication volume requirements of the proposed hyper-
graph modeis and standard graph model. “tot” denotes the total communication
volume, whereas “max” denotes the maximum communication volume handled
by a single processor. “bal” denotes the percent imbalance ratio found by the

respective tool for each instance.

2D Checkerboard

Graph Model 1D Hypergraph 2D Fine-grain 2D Jagged-like
comm. vol. comm. vol. comm. vol. comm. vol. comm. vol.
name K tot  max bal tot max | bal tot max | bal tot max | bal tot max | bal
16 { 0.31 0.03 0.1 025 0.02|051]025 00204026 003 047]030 0.03]1.1
sherman3 32 |1 046 0.02 03]037 002] 10036 002]| 067038 0.02( 10045 0.02] 4.0
64 | 0.64 0.02 23} 053 0.01 2.2 | 0.50 0.01 1.0 { 0.51 0.01 2.0 | 0.72 0.02 | 9.0
16 | 0.09 0.01 0.2 | 0.08 0.01 1.0 | 0.07 0.01 0.9 | 0.08 0.01 1.6 | 0.10 0.01 1.1
bespwrl0 32 |1 0.15 0.01 091013 00115012 001 ( 1.7]013 0.01}251}0.17 0.01 | 15
64 | 0.23 0.01 2.7 | 0.22 0.01 25 1019 0.01 { 2.2 | 0.21 0.01 | 3.1 | 0.28 0.01 1.7
16 | 0.93 0.08 0.3 {060 00521014 002] 35073 0.07 ] 1.1]084 0.08] 14
ken-11 32 | 1.17  0.06 48 | 074 003 | 26 | 029 0.02 | 36 (088 0.05]| 2.1 | 098 0.06 | 2.7
64 { 145 004 | 135 | 093 0.02 | 39| 048 002 | 3.7 | 1.03 0.03 | 28| 1.17 0.04 | 34
16 | 1.70  0.15 05106 01003074 0.08] 01100 009]05]115 0.10 ] 0.1
nl 32 1 225 0.10 1.7 1149 007 | 16 {105 007 ) 01130 007 ]| 13} 1.54 0.07 | 0.8
64 | 3.04 0.07 771220 005 | 45| 138 0.05| 03163 0.05 (20211 005 | 1.1
16 | 0.94 0.08 03] 055 0041/ 221|008 00141072 0.07] 267079 0.07 |27
ken-13 32 ] 1.17 0.05 1.9 | 0.63 0.03 | 3.1 | 0.17 0.02 | 5.2 | 0.81 0.05 | 3.7 | 0.89 0.06 | 3.9
64 | 1.40 0.03 831|079 0.02) 40| 039 002 53]092 0.03 | 4.0 | 1.03 0.03 | 5.0
16 ( 1.70  0.17 03099 012 1.0 050 0081 11091 0.12( 2.0 1.15 0.13 | 0.8
cq9 32 ) 243 0.15 1.2°1 145 008 | 18079 00916127 008 |24 /162 0.10} 1.5
64 | 3.73 0.12 60233 006 | 83122 00718172 006 | 3.0 | 242 0.08 | 2.1
16 ( 1.50 0.16 0.3 ]094 01109047 0.07 ] 09|08 011 13112 0.12 | 04
co9 32 | 207 0.12 09413 008|119 (074 007 | 13120 0.08] 20155 0.09 |19
64 | 3.10 0.09 34 217 006 | 38 | 1.09 0.06 | 1.8 | 1.63 005 | 3.0 | 224 0.07 | 1.8
16 | 0.34 0.03 011030 003/)01|020 002{1.1 027 00317029 003/ 0.1
pltexpA4-6 | 32 | 0.55 0.03 03]05 002|02(02 00113047 0.02} 3.1 (053 0.02] 0.6
64 | 0.98 0.03 06 | 0.86 0.02 1.0 | 0.51 0.01 14 [ 0.74 0.02 | 2.9 | 0.85 0.02 1.3
16 | 1.24 0.11 03106 00801079 007 (00095 0.07] 0.1 1.07 0.08 | 0.1
vibrobox 32 1 1.73  0.08 0.8 153 00604 | 106 0067001131 005 1.1 | 149 0.06 | 0.2
64 | 2.28 0.05 20208 005114143 005 03[ 164 003 | 1.6 | 201 0.04 | 0.4
16 | 2.82  0.24 0.9 200 017 13115 012 00| 163 0.19 | 1.3 ] 1.81 0201 14
cre-d 32 1 412 0.19 25129 014 |26 ]177 011 | 01| 222 016 1.9 ] 253 0.17 | 2.3
64 | 595 0.14 56 ( 4.14 0.10 ( 6.6 [ 255 0.10 | 0.2 | 272 0.10 | 2.7 | 3.44 0.10 | 4.5
16 | 2.62 0.23 0.9 | 202 01810 (1.00 011 ] 0.0 158 021 ] 1.0] 181 0.22 ] 0.7
cre-b 32 1 390 0.18 22128 01515 (155 011} 0.0 215 0.18 | 1.8 ] 2.55 0.20 | 1.9
64 | 573 0.14 5.6 | 4.08 0.12 | 5.8 | 226 0.10 | 0.0 } 273 0.11 | 2.3 | 3.49 0.12 | 3.2
16 1 0,59  0.05 0.1 ] 0.54 006 | 06 [ 023 005 1.5 063 008115070 0.09 1.5
world 32 1084 0.04 03107 00511041 004 | 18|08 006 ] 21 {096 0.07 | 1.7
64 1.19 0.03 0.7 | 1.06 0.04 1.7 | 0.62 0.04 1.9 | 1.07 0.04 2.9 1 1.30 0.04 | 2.1
16 | 0.57 0.05 0.1 0.52 0.06 [ 0.8 | 0.24 0.05 1.8 | 0.60 0.08 1.7 | 0.67 0.09 1.5
mod?2 32 1 079 0.04 0.3 ] 072 004 1.2 | 0.41 005 211082 006 | 21| 091 0.07 1.6
64 | 1.14  0.03 0.8 ] 102 004 | 18] 062 004 1.8|103 0041 3.1 | 1.27 0.04 | 23
16 | 0.20  0.03 0.0 | 0.16 0.03 [ 2.8 | 0.07 0.02 ] 35020 0.06 | 52/ 021 0.07 | 4.5
finanh12 32 | 0.27  0.02 1.0 | 0.21 002 | 32 ] 010 002) 38]025 007 ] 54| 0.28 0.08 | 5.3
64 | 0.38 0.01 1.7 | 0.31 001 | 43 | 020 0.02 | 4.1 (038 0.05] 62 (046 0.05 | 1.9
Averages over X
16 1 1.11 0.10 0.3 ] 079  0.08 1.1 | 042  0.05 1.4 1 0.74 0.09 1.6 | 0.86 0.09 1.2
averape 32 1.56  0.08 1.4 1.12  0.06 1.7 | 0.65 0.05 1.7 ) 1.00 0.07 | 2.3 1.17 0.08 | 2.1
64 | 223 0.06 14 1.62  0.04 3.7 | 096 0.04 1.8 | 1.28 0.04 | 3.0 | 1.63 0.06 | 3.1
overall average ] 1.63 0.08 | 2.0 [ 1.18  0.06 [ 21 [ 0.68° 0.056 [ 1.6 [ 1.01 0.07 [ 23 [ 1.22 0.07 | 2.1
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Table 4.3: Average communication requirements of the proposed hypergraph
models and standard graph model. “avg” and “max” denote the average and
maximum number of messages handled by a single processor

Graph Model | 1D Hypergraph | 2D Fine-grain | 2D Jagged-like | 2D Checkerboard
name K avg max avg max avg max avg max avg max
16 5.30 8.10 4.46 7.22 8.38 13.90 5.16 8.36 4.09 5.34
sherman3 32 6.48 10.94 5.81 10.44 | 10.07 17.60 6.34 11.00 5.83 8.92
64 7.42 13.40 6.94 13.40 | 11.01 20.78 7.20 13.00 7.26 11.14
16 4.21 7.28 4.29 7.30 7.14 12.04 4.31 7.20 3.99 5.58
bespwrl0 32 4.79 9.30 4.65 8.80 7.49 13.86 4.70 9.18 4.94 8.04
64 5.20 10.24 4.93 9.56 7.32 13.80 4.94 9.70 5.52 9.50
16 | 13.99 15.00 | 12.91 15.00 | 10.79  21.16 | 13.69 15.00 5.98 6.00
ken-11 32 | 26.00 30.48 | 21.19 30.96 | 18.85 40.90 | 22.84 28.88 9.62 10.00
64 | 40.48 55.14 | 32.22 60.80 | 28.23 76.28 | 28.93 45.04 { 13.21 14.00
16 | 14.99 15.00 | 13.30 15.00 | 23.87 28.56 | 13.75 15.00 6.00 6.00
nl 32 | 27.88 31.00 | 20.39 27.58 | 35.98 50.48 | 21.61 27.80 9.95 10.00
64 | 38.35 58.98 | 26.13 41.32 | 4243 75.94 | 25.67 40.68 | 13.39 14.00
16 14.77  15.00 13.87 15.00 9.39 19.28 | 12.52 15.00 6.00 6.00
ken-13 32 | 29.02 31.00 | 22.79 31.00 | 11.22 35.62 | 21.07 29.92 9.81 10.00
64 | 50.81 61.92 | 35.93 63.00 | 20.51 71.54 | 29.29 47.96 | 13.28 14.00
16 | 14.88 15.00 | 12.62 14.92 | 18.03 26.08 | 13.36 14.96 6.00 6.00
cq9 32 | 21.96 30.60 17.87 26.78 | 24.54 45.38 18.37 28.00 9.75 10.00
64 | 32.27 56.58 | 22.67 41.12 | 30.72  75.26 | 21.27 42.32 | 12.89 14.00
16 | 14.81 15.00 | 12.82 14.92 | 20.00 26.40 | 13.47 15.00 6.00 6.00
o9 32 | 19.62 29.46 | 17.55 26.20 | 26.84 45.57 | 17.93 27.68 9.66 10.00
64 | 29.99 53.04 | 21.85 39.52 | 31.13 73.50 | 20.37 40.04 | 12.77 14.00
16 ( 10.05 13.62 | 10.i1 13.62 | 14.78  22.80 7.53 10.84 5.47 6.00
pltexpA4-6 | 32 | 15.86 2540 | 14.73 25.38 | 20.51 36.96 | 11.23 19.54 8.43 10.00
64 | 20.48 45.20 | 17.35 38.12 { 21.40 52.88 | 14.86 32.64 9.95 12.58
16 12.84 14.86 10.14 12.42 | 23.27 28.32 10.64 13.20 5.82 6.00
vibrobox 32 | 20.85 27.20 14.77 20.14 | 31.28 47.88 15.24 20.44 9.26 10.00
04 | 28.85 40.48 | 19.58 30.84 | 35.38 80.68 | 19.74 27.38 | 11.53 13.04
16 | 14.90 15.00 | 11.78 15.00 | 26.05  29.67 | 12.26 15.00 5.80 6.00
cre-d 32 | 28.59 31.00 | 19.49 31.00 | 41.37 54.87 | 18.84 28.44 9.19 10.00
64 | 47.36 63.00 | 29.73 61.28 | 55.76  92.27 | 24.86 51.48 | 11.78 14.00
16 | 14.78 15.00 | 12.13 15.00 | 25.91 29.60 | 12.87 15.00 5.91 6.00
cre-b 32 | 28.57 31.00 | 19.97 31.00 | 40.33  55.47 | 19.49 28.44 9.51 10.00
04 | 46.42 63.00 | 29.98 61.34 | 52.72  89.80 | 25.10 50.32 | 12.29 14.00
16 | 11.78  15.00 6.09 15.00 | 16.57  27.68 9.29 14.38 5.12 6.00
world 32 | 18.00 30.94 8.19 30.94 | 23.14 51.36 13.79 25.68 7.46 10.00
64 | 20.58 57.58 11.58 58.08 | 27.42 87.52 16.37 41.78 9.47 14.00
16 | 10.95 15.00 5.59 14.92 | 13.02  27.12 8.71 14.16 4.92 6.00
mod?2 32 | 14.59  29.72 7.42 27.84 | 18.68 48.44 | 12.10 24.24 7.12 10.00
64 17.84 50.84 10.51 46.12 | 24.44 80.72 | 14.56 37.96 8.92 14.00
16 4.35 7.40 3.48 7.40 9.24 19.53 4.50 9.20 4.08 5.90
finanb12 32 6.39 13.64 4.15 13.58 | 10.756  34.47 5.33 14.04 5.12 9.46
64 8.80  26.40 5.37 26.40 | 14.90 62.33 5.82 20.36 6.12 11.80

Averages over K
16 | 11.61 13.30 9.54 13.05 | 16.17  23.72 | 10.15 13.02 5.37 5.92
average 32 19.19  25.83 14.21 24.40 | 22.93 11.35 14.92 23.09 8.26 9.74
64 | 28.20 46.84 19.63 42.23 | 28.81 68.09 | 18.50 35.76 10.60 13.15
overall average ] 19.67  28.66 ] 14.46 26.56 L22.64 14.39 ] 14.52 23.96 ] 8.08 9.60
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Table 4.4: Average execution times, in seconds, of the MeTiS and PaToH for
the standard graph model and proposed hypergraph models. Numbers in the
parentheses are the normalized execution times with respect to Graph Model

using MeTiS.

Graph Model 1D Hypergraph 2D Fine-grain 2D Jagged-like | 2D Checkerboard

name , K exec. time exec. time exec. time exec. time exec. time
16 0.53  (1.00) 0.94 (1.77) 1.60 (3.03) 0.60  (1.13) 0.85 (1.61)
sherman3 32 0.61 (1.00) 1.10 (1.79) 2.05 (3.34) 0.65  (1.06) 1.07 (1.75)
64 0.71 (1.00) 1.22 (1.71) 2.42 (3.39) 0.82  (1.15) 1.29 (1.80)
16 0.28 (1.00) 1.01 (3.62) 2.04 (7.28) 0.66  (2.35) 0.86 (3.06)
bespwrl0 32 0.34 (1.00) 1.24 (3.63) 2.47 (7.25) 0.70  (2.05) 1.02 (3.01)
64 0.42 (1.00) 1.39 (3.34) 2.86 (6.86) 0.85 (2.03) 1.30 (3.13)
16 | 1.77 (1.00) | 3.86  (2.19) | 6.47 (3.66) | 2.51 (1.42) | 3.21 (1.82)
ken-11 32 | 1.98 (1.00) | 4.74  (239) | 810  (4.09) | 278 (1.40) | 3.73 (1.88)
64 2.35  (1.00) 5.31 (2.26) 9.87 (4.20) 3.19  (1.36) 4.39 (1.87)
16 1.21  (1.00) 3.75 (3.09) 8.58 (7.07) 2.54  (2.09) 3.39 (2.79)
nl 32 1.43  (1.00) 4.46 (3.12) | 10.56 (7.39) 2.59  (1.81) 3.84 (2.68)
64 | 1.54 (1.00) | 513  (3.34) | 12.33  (8.03) | 3.13 (2.04) | 4.48 (2.92)
16 3.84 (1.00) 8.33 (2.17) | 12.81 (3.33) 520 (1.35) 6.69 (1.74)
ken-13 32 4.50  (1.00) 9.81 (2.18) | 16.39 (3.64) 5.80 (1.29) 7.77 (1.73)
64 4.78 (1.00) | 10.99 (2.30) | 20.71 (4.33) 6.67  (1.40) 9.16 (1.92)
16 | 2.12 (1.00) | 5.58  (2.64) | 14.41  (6.81) | 4.15 (1.96) | 5.42 (2.56)
cq9 32 2.46 (1.00) 6.43 (2.61) 17.13 (6.96) 4.47 (1.82) 6.37 (2.59)
64 2.80 (1.00) 7.90 (2.82) | 20.49 (7.31) 5.16  (1.84) 7.20 (2.57)
16 242 (1.00) 6.58 (2.72) | 16.01 (6.63) 4.78  (1.98) 6.21 (2.57)
co9 32 2.84 (1.00) 7.89 (2.78) | 20.29 (7.14) 5.10  (1.80) 7.52 (2.65)
G4 3.07 (1.00) 9.15 (2.99) | 24.54 (8.01) 6.17  (2.01) 8.72 (2.84)
16 3.22  (1.00) | 12.26 (3.81) | 28.69 (8.92) 8.78  (2.73) | 11.27 (3.50)
pltexpA4-6 | 32 3.84 (1.00) | 15.87 (4.13) | 36.92 (9.61) 9.02  (2.35) | 13.67 (3.56)
64 4.32 (1.00) | 18.20 (4.21) | 42.06 (9.73) | 11.41 (2.64) | 17.09 (3.95)
16 2.77  (1.00) | 12.64 (4.56) | 28.83 (10.40) | 10.92 (3.94) | 15.88 (5.73)
vibrobox 32 3.25 (1.00) | 15.11 (4.65) | 35.43 (10.90) | 11.52  (3.54) | 18.86 (5.80)
64 3.49 (1.00) | 17.35 (4.97) | 41.50 (11.88) | 13.27  (3.80) | 21.81 (6.24)
16 4.18  (1.00) 9.76 (2.34) | 31.30 (7.49) | 11.14  (2.67) | 13.27 (3.18)
cre-d 32 | 4.80 (1.00) | 11.71  (2.44) | 38.77  (8.08) | 12.88  (2.69) | 14.92 (3.11)
64 5.03  (1.00) | 13.66 (2.72) | 45.50 (9.05) | 14.10  (2.80) | 17.48 (3.48)
16 441  (1.00) | 10.47 (2.38) | 32.05 (7.27) | 11.04  (2.50) | 14.06 (3.19)
cre-b 32 501 (1.00) | 12.13 (2.42) | 39.88 (7.96) | 11.77  (2.35) | 15.73 (3.14)
64 542 (1.00) | 14.20 (2.62) | 46.92 (8.66) | 13.83  (2.55) | 18.63 (3.44)
16 5.76  (1.00) | 19.37 (3.36) | 48.24 (8.37) | 15.28  (2.65) | 20.88 (3.62)
world 32 7.04  (1.00) | 23.52 (3.34) | 63.34 (9.00) | 17.13  (2.43) | 25.10 (3.57)
64 8.16  (1.00) | 28.89 (3.54) | 77.90 (9.54) | 19.59  (2.40) | 29.79 (3.65)
16 | 585 (1.00) | 20.51  (3.51) | 52.13  (8.92) | 16.22  (2.77) | 20.57 (3.52)
mod2 32 7.19  (1.00) 23.85 (3.32) 66.18 (9.20) 17.42 (2.42) 25.72 (3.58)
64 | 7.96 (1.00) | 29.30  (3.68) | 74.27  (9.33) | 20.93  (2.63) | 30.32 (3.81)
16 7.84 (1.00) 25.72 (3.28) | 55.13 (7.03) 16.49 (2.10) | 20.05 (2.56)
finanb12 32 9.56  (1.00) | 31.49 (3.30) | 67.26 (7.04) | 17.01 (1.78) | 25.62 (2.68)
64 | 11.17  (1.00) | 37.29 (3.34) | 79.71 (7.13) | 21.69  (1.94) | 31.12 (2.78)

Averages over K

16 - (1.00) - (2.96) T (6.87) T (2.26) - (2.96)
average 32 - (L.00) - (3.01) - (7.26) - (2.06) - (2.98)
64 - (1.00) - (3.13) - (7.68) - (2.18) - (3.17)
overall average | - (1.00) ] - (3.03) ] - (7.27) | - (217 ] - (3.04)




Chapter 5

Hypergraph Partitioning-Based
Sparse Matrix Ordering

The first step of a direct method to solve linear system Zz = b is a heuristic
reordering of the rows and columns of Z to reduce fill in the factor matrices. The
fill is the set of zero entries in Z that become nonzero in the factor matrices.
Reducing the fill usually causes a faster and less memory intensive factorization.
Minimum degree [76] algorithm (MD) is the most commonly used heuristic for re-
ordering. An alternative for reordering is nested dissection [29]. Although nested
dissection has some nice theoretical results [29], it has not been used widely un-
til the development of recent multilevel graph partitioning tools. Here, we will
demonstrate the flaw of the graph model for sparse matrix ordering in multilevel
framework. We will propose a novel hypergraph partitioning-based nested dis-
section ordering for matrices arising in the solution of Linear Programming (LP)
problems using an interior point method. Furthermore, we will generalize the

proposed method to order any symmetric matrices.

76
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5.1 Flaws of the Graph Model in Multilevel

Framework

As discussed in Sections 2.4 and 2.5, most of the nested dissection tools [33, 40, 46]
are based on successful multilevel graph partitioning tools [33, 38, 46] with some
extra initial partitioning and refinement strategies specific to the solution of the
GPVS problem. As also discussed in Section 2.4, a multilevel partitioning tool
basically contains three phases; coarsening, initial partitioning and uncoarsening.
During the coarsening phase, vertices are visited in some order and usually two
(or more) of them selected according to a some criteria to construct the vertices
of coarsened graph. Consider the two examples displayed in Figure 5.1 as partial
illustration of two different GPVS partitioning results at some level m of multi-
level GPVS tool. In the first one, £+ 1 vertices {v;,vi41,...,vire} are coalesced
to construct vertex v;_, as a result of one or more levels of coarsening. This is
a valid and narrow separator for level m. GPVS tool computes the cost of this
separator as £+ 1 at this level. However, obviously this separator is not a narrow
separator in the original graph, it is a wide separator in the original graph. In
other words, there is a subset of those vertices which is a valid narrow separator
of the original graph. In fact anyone of the vertices is a valid separator of cost
1 in the original graph. Similarly, for the second example, GPVS tool computes
the cost of the separator as 3, however, there is a subset of constituent vertices

of vk = {v;,vj,vx} which is a valid narrow separator of cost 1 in the original
graph (i.e., either {v;} or {vc}).

In GPES, the multilevel framework does not have this kind of flaw. That is,
for an edge separator g at level m, there is no subset of £ which is a valid

edge separator of the original graph.
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Figure 5.1: Partial illustration of two sample GPVS result to demonstrate the
flaw of the graph model in multilevel framework.

5.2 Describing GPVS Problem as a HP Prob-

lem

Consider a hypergraph % = (U,N) and its NIG representation G = (V, &) as
discussed in Section 2.3. A K-way vertex partition Ilzp = {U),Us,... Uk} of
# can be decoded as (K +1)-way net partitioning [Igp = {M, N, ..., Ng; Ns}
of H as follows. Here, N} corresponds to the internal nets of part U, i.e., for
1 <k < K, Ny = {nj|pins[n;) N\Uy, = pins[n;]}. N corresponds to the external
nets. In particular, a 2-way vertex partition [Igp = {U;,Us} of H can be decoded
as 3-way net partitioning IIgp = {N7,No;Ns} of H. Here, we consider net-
partition Ilyp = {N;, Na; Ng} of H as inducing a GPVS Ilgpys = {V1, Vs; Vs}
on its NIG representation G, where V; = Ny, Vo, = Ns, Vs = Ns. Let Adjy(n;)
denote the set of nets that share pin(s) with net n;. Consider an internal net
n; of part Uy,i.e, n; € Up. It is clear that we have either Adjy(n;) C N; or
Adjy(n;) € Ny UNs. Recall that NIG G contains a vertex v; for each net n,
of H. So we have either Adjg(v;) C V; or Adjg(v;) C V) U Vs in NIG G. In
other words, Adjg(v;) NV, = 0. In the respective IIgpyg, this corresponds to
Adjg(V)) N Vy = Adjg(Va) NV = 0 which in turn corresponds to Adjg(V;) C Vs
and Adjg(Va) € Vs. Thus, Vs of IIgpys constitutes a valid separator of size
|[Vs| = |[Ns]. Recall that in the GPVS problem, balancing is defined on the
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vertex counts of parts V; and V,. Hence, the GPVS problem on NIG G can be
described as an HP problem according to the net-cut metric ( Equation (2.4.a)

with ¢; = 1) with balancing on the internal nets of parts I, and U,.

From a matrix theoretical point of view, let A be a matrix and #H be its
row-net hypergraph representation, the NIG G would be the standard graph rep-
resentation of matrix AAT. Hence, finding a doubly-bordered form of matrix
AAT (finding GPVS on §G) is equivalent to finding a singly-bordered form of
matrix A (finding a net partition on #). Although this finding looks very im-
pressive, it is not very useful on itself. For a general GPVS problem on G, which
is equivalent to finding a doubly-bordered form of associated matrix (say Z) of

G . we should know the decomposition of matrix Z as Z = AAT.

5.3 Ordering for LP Problems

The interior point methods for solving linear programming (LP) problems require
the solution of Zz = b repeatedly, where Z = ADAT. Here, D is a diagonal ma-
trix whose numerical values change in each iteration, however constraint matrix
A remains unchanged. The linear systems are usually solved by factoring matrix
Z. As discussed earlier, factorization introduces fills, and hence, the fill-reducing

reordering heuristics are used just before the factorization.

Here, we propose a hypergraph-partitioning-based nested dissection ordering
for the ordering of matrix Z = ADAT. Nested dissection ordering requires finding
a doubly-bordered (DB) form of the matrix. In DB form, borders correspond
to separator S, and block-diagonals correspond to X and Y parts of nested
dissection as mentioned earlier. Nested dissection simply orders rows/columns
of S after the rows/columns of X and Y. Together with the formulation of
GPVS problem as an HP problem, described in the previous section, we can
construct an ordering of Z by just recursively dissecting A. That is, in each
hisection of A cutnets in Ns correspond to separator vertices in S in the nested

dissection. Figure 5.2 and 5.3 illustrate this finding in a two level incomplete

nested dissection.
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Figure 5.2: 2 level recursive partitioning of A and its transpose A"
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Figure 5.3; Resulting DB form of AA"*, for matrix A displayed in Figure 5.2
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initialize delete[u;] < FALSE for u; € U
for node u; € U in non-increasing degree order
if delete[u;] = FALSE then
for each n; € netsfu;] do
if degg(v;) = degy(u;) — 1 then
for each uy, € pins[n;] do
if ug # u; and delete[uy] = FALSE then
delete[u;] « TRUE

delete all nodes u; of H with delete[u;] = TRUE

Figure 5.4: Clique discarding algorithm for H = (U, V). Here, G = (V, £) is the
NIG representation of H

Since our main aim is to achieve a GPVS on NIG G through a partitioning
on H, we may simplify H without disturbing its NIG representation G. That is,
let H' be the simplified version of H such that the NIG representation of both
of them is exactly the same (i.e., G), then we can safely use H' instead of H to

find a GPVS partition on G. Here, we propose two simplification methods.

5.3.1 Clique Discarding

Let H be the row-net hypergraph representation of matrix A, clearly its NIG
G is the graph representation of matrix AAT. As mentioned in Section 2.3, the
NIG representation G for a hypergraph H can also be obtained by applying the
clique-net model to the dual hypergraph of H. In other words, each node of H
(columns of A) induces a clique among the vertices of G that correspond to nets
incident on that node in H (rows with nonzero at that column). Hence, if the two
columns have exactly the same sparsity pattern (i.e., have nonzeros in the same
rows) they induce the same clique in G. Furthermore, if the sparsity pattern of a
vertex, say v;, is a subset of another vertex, say v;, then clique edges which are
induced by wv; are a subset of clique edges which are induced by v;, so v; become

redundant in the partitioning of H to find a GPVS partition on NIG G.

Here we present a simple yet effective algorithm to find the redundant nodes
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(v )

Figure 5.5: A sample partial matrix and NIG representation of associated hyper-
graph to illustrate the clique discarding algorithm

of hypergraph in the solution of GPVS problem through hypergraph partitioning
methods. Figure 5.4 displays the proposed algorithm. The algorithm works as
follows; nodes of hypergraphs are visited in the non-increasing degree order. If
the currently visited node u; in H is not marked for deletion yet, we check the
degree of vertex v; corresponding to the incident net n; of u;. If the degree of
vertex v; in G is equal to the degree of u; minus one, this means that u; is the
node that induced the largest clique which includes v;. In other words, all other
nodes connected to n; in H will induce cliques whose edges are subset of the
clique edges induced by u;. So we can safely delete all other nodes connected to
n; in H. Consider the example sketched in Figure 5.5. Our algorithm works as
follows. The columns of the sample matrix are visited in the order a, ¢, b, d. For
the first column a with 4 nonzeros, we check the degree of vertices v;, vk, v;, V.
Since degree of v; is 4 in G (not equal to degy(u,) —1 =4—1 = 3) we just skip
it. The degree of v, is 3 in G, therefore all the nodes, except node wu,, incident
to net n; will be marked for deletion. Hence, u, is marked for deletion. Since
the degree of v, is also 3 in G, this cause to mark u. for deletion. Although the
degree of v, is also 3 in G, since the only node u, incident to n,, already marked
for deletion, no extra vertex is marked. In the outer-most loop, we will skip nodes
u,. and wu, since they are marked for deletion. For node uy, no other node will be
marked. Although degree of v; is 1 which is equal to degy(uqg) —1=2-1=1,
there is no other node in the hypergraph (except wuy) which is connected to n;.
Since the degree of v; is not 1, it will be skipped. At the end of the execution

nodes v, and v, is marked for deletion, so we can safely discard those nodes in

the hypergraph.



CHAPTER §. HP-BASED SPARSE MATRIX ORDERING 83

5.3.2 Sparsening

Here, we propose a second hypergraph simplification algorithm for solving GPVS
problem through hypergraph partitioning. Recall from Section 2.3 that, two
vertices of NIG are adjacent if the respective nets share at least one pin in the
hypergraph. However, if they share more than one pin, only one of them suffices
in our application, because our goal is to achieve a GPVS partitioning on NIG
through hypergraph partitioning. Here we present a simple yet effective algorithm
for pin deletion based sparsening. We need to first identify the pins that can be

deleted. Let Wi, j] denotes the number of common pins of nets n; and n;. We

have the following lemma for pin deletion:

Lemma 1 For each u € pins[n;], pin (n;,u) can be deleted if Wi, j} > 1 for all

n; € netsju] — {n;}.

Obviously, Wi, j] must be greater than or equal to 1, since u is common a pin of
both n; and n;. If W[i, j] =1 for a net n;, this means that u is the only common
pin between n; and n;, so we cannot delete it, since we loose edge {v;,v;} in
NIG. If W[i,j] > 1 for all n;, this means that n; and n; share more than one
pin, including u, so we can safely delete pin (n;,u). Consider the example given
in Figure 5.6. In this figure NIG edges are labeled both with Wi, 5] values and
the set of common nodes for the sake of simplicity of presentation. Consider
the possible deletion of pins of net n;. Pin (n;,u;) cannot be deleted since
WL, 3] =1, that is w; is the only common node in the pin lists of nets n; and
ny. Pin (ng,up) can be deleted since both W{l,2] = 2 and W[l,4] = 4. Pin
(n1,u3) can also be deleted since W1, 4] = 2. However, pins (n;, uz) and (n,, u3)

cannot be deleted together, since deleting both of them makes W][1,4] = 0.

The proposed pin deletion-based sparsening algorithm is displayed in Fig-
ure 5.7. The algorithm does not require the NIG G as input. Edge weight values
Wi, 7] of G are recomputed for each net n;. When pin (n;,u) is identified for
deletion, since pin (n;,u) stored both in the net list of node « and in the pin list
of net n;, we delete both n; from nets[u] and u from pins[n;] to effectively delete

(n;,u) in H. Note that when pin (n;,u) is deleted, weights of edges between n;
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Figure 5.6: A sample matrix, its associated row-net hypergraph and NIG repre-
sentation of the associated hypergraph

and n; are decremented by 1, for each n; € nets[u] to reflect the pin deletion in

the edge weights of NIG.

5.4 (Generalization

Until here, we have assumed that for ordering Z we have also given its decompo-
sition Z = AAT. However, in most of the applications this is not the case, that
is, A is usually unknown. Here, we propose a simple yet effective decomposition
of symmetric matrices for hypergraph partitioning-based nested dissection. Let
G be the standard graph model representation of matrix Z. Our aim is to find a
matrix A such that AA7 = Z. In graph theoretical view, we are trying to find a
hypergraph H such that its NIG is G. Obviously net set of the target hypergraph
‘H is already identified by the definition of NIG. That is, there must be a net n;
in hypergraph # corresponding to each vertex v; in G. The node set of H is
defined as follows. There is a node u;; in H corresponding to edge e;; € £ with
the net list nets[u;;] = {ni,n;}. As mentioned earlier, during the construction of
NIG G from a hypergraph #, each node of A induces a clique among the vertices
of G that correspond to nets incident to that node in H. It is clear that, with
the proposed decomposition, each node of H induces distinct 2-cliques, therefore

the proposed decomposition is referred to here as 2-clique decomposition.

In matrix theoretical view, matrix A is the edge-incidence matrix of NIG G.
That is, each row of matrix A corresponds to a vertex in G. Each column of

matrix A corresponds to an edge in G, such that there are exactly two nonzeros
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initialize W[j] - 0 for i = 1,..., |N]|
for each net n; € N do
for each node u € pins[n;] do
for each n; € nets[u] do
W] < W[j] + 1
for each node u € pins[n;] do
flag + TRUE
for each n; € netsfu] do
if n; # n; and W[j] =1 then
flag « FALSE
break
if lag = TRUE then
netslu] < netsfu] — {n;}
pinsing] ¢ pinsln;] ~ {u}
for each n; € netsfu] do
Wil < Wil -1
for each node u € pins[n;] do
for each n; € nets[u] do
Wil « 0

Figure 5.7: Hypergraph Sparsening Algorithm for H = (U, N)
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in each column representing the two end points of the edge. Note that, the
hypergraph mentioned in the previous paragraph is the row-net representation of

the edge-incident matrix A.

5.5 Extending Supernode Concept

Supernode concept has been widely used in MD ordering [76, 59]. In matrix
theoretical view, supernodes correspond to the columns with identical sparsity
pattern. In graph theoretical view, a supernode corresponds to a clique of vertices
with identical adjacency structure. The nice property of a supernode is that all
nodes in the supernode can be eliminated in one step. In MD-based ordering
algorithms, supernodes are identified and the ordering algorithm works on the
compressed graph obtained by merging vertices constituting the supernodes. The
supernode concept has also been exploited in a dynamic manner by identifying

supernodes formed during the elimination.

The supernode concept has also been exploited in nested dissection based
ordering algorithms as follows. If any constituent vertex of a supernode belongs to
vertex separator Vs in Ilgpys = {V1, Vs; Vs}, then all other constituent vertices
of the supernode belong to separator Vs. In a similar manner, if any constituent
vertex of a supernode belongs to V; (V,), then all other constituent vertices of the
supernode belong to V; (V). So nested bisection based algorithms can also work
on compressed graphs. In this work, we extend the supernode concept for nested
dissection based ordering. We claim that for nested dissection based ordering,
the constituent vertices of a supernode need not to be connected. That is, a set of
disconnected (non-adjacent) vertices with identical adjacency structure can also
he merged to form supernodes. The former and latter types of supernodes will

e referred to here as connected (conventional) and disconnected supernodes.

The algorithm [4] used for identifying connected supernodes computes a hash

value for each vertex v; as

hash(v;) =i+ > ] (5.1)

v;€ Adyj(vy)
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These hash values are exploited to quickly identify connected supernodes. It is
obvious that, if two vertices have different hash values, then .they have different
adjacency structure. The algorithm first sorts the vertices in G by hash value.
The sorted list is divided into subsets so that each subset contains the vertices
with identical hash value. Then only adjacency structures of the vertices in these
subsets are compared. We made some enhancements in the implementation of
this algorithm as follows. The degree of the vertices are used as a secondary key
in the sorting to reduce the number of vertices with identical key. The sorted
list is again divided into subsets so that each subset contains the vertices with
identical hash value and degree. For each vertex v; in this subset (if it is not
selected as a constituent of a supernode yet), adjacent vertices are marked with
i in a mark array (i.e., mark[v;] = i for v; € Adj(v;)). Then only the adjacency
structure of the vertices, in the same subset, adjacent to v; are compared with
the adjacency structure of v;. Note that we can skip the adjacency structure
comparison for a vertex v; if it is not adjacent to v; (i.e., mark[v;] #¢). During
the adjacency structure comparison for a vertex v;, we check if all its adjacent

vertices are also marked with 7.

The algorithm for identifying disconnected supernodes works as follows. The

hash values are computed as

hash(v;) = > J. (5.2)

v; EAdj(v;)

Vertices of graph G are sorted by hash value and degree. The sorted list is again
divided into subset containing identical key values. For each vertex v; in each
subset (if it is not selected as a constituent of a supernode yet), adjacent vertices
are marked with 4 in a mark array (i.e., mark[v;] = i for v; € Adj(v;)). Then only
the adjacency structure of the vertices, in the same subset, non-adjacent to v; are
compared with the adjacency structure of v;. That is, in this algorithm, we can

skip the adjacency comparison of a vertex v, if it is adjacent to v; (i.e.,mark[v;] =

i).
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5.6 Experimental Results

We have tested the proposed hypergraph partitioning-based nested dissection
method on the ordering of various realistic sparse test matrices arising in differ-
ent application domains [26, 16, 20, 25]. Table 5.1 illustrates the properties of the
test matrices. In this table, M denotes the number of rows/columns of matrix Z,
and NZ denotes the total number of nonzeros. For the matrices arising from LP
problems, number of columns N and total number of nonzeros NZ are also listed
for matrix A, where Z = AAT. The number of rows of A4 is equal to the number
of rows/columns of Z. This table also displays the Multiple Minimum Degree [59]
(MMD) ordering results in terms of operation count (shown as “OPC”) and total
number of nonzeros after factorization (shown as “NZF”). We have used MMD
implementation of SMOOTH [7] with the parameters: compressFlag=6 for com-
pression before elimination and after each elimination step, prioType=1 for exact

external degree for each vertex, stepType=1 for independent set elimination.

Table 5.2 displays the the number of connected and disconnected supernodes
identified by the algorithms described in Section 5.5, as percent of M. For the
matrices arising from LP problems, the clique discarding and sparsening algo-
rithms presented in Section 5.3.1 and Section 5.3.2 are also applied. The number
of discarded/deleted columns and nonzeros of A are also display in this table
as percents of N and NZ, respectively. As seen in Table 5.2, general matri-
ces have considerable amount of connected supernodes (approximately 26% on
the average), however disconnected supernodes are very rare (less than 1% on
the average). In LP problems, percent of disconnected supernodes is 3.64 and
percent of connected supernodes is 5.48, on the average. Approximately 2% of
the columns and nonzeros of A is identified as redundant by clique discarding
algorithm, on the average. As seen Table 5.2, considerable amount (20% on the

average) of nonzeros (pins) of A (H) are deleted by the sparsening algorithm.

The nested dissection hased algorithms usually work in an incomplete manner.
That is, nested disscction is applied until the parts are fairly small, since the
MD algorithm is quite effective for modest-size graphs. The subgraphs induced
by the parts correspond to the standard graph representation of the decoupled

hlock-diagonal submatrices. There are various possible ordering schemes for the
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parts and separators after a K = 2-way nested dissection. Let Zy, Zo, ..., Zx
be decoupled parts of symmetric matrix Z by separators S;,.5,,...,S, at each
level of recursion. Figure 5.8 illustrates a sample for this decoupling process for
K = 4. The difference of the ordering schemes lies in which ordering method is
used to order vertices in the decoupled parts, and how the vertices in separators

are ordered. Four possible ordering schemes as follows:

ND-MD all decoupled block-diagonal submatrices are ordered first by MD,
then all separators are ordered in depth-first order, i.e., S, is ordered just

after the orderings of Z,,2,,..., Zk, then S,_; is ordered and so on, such

that S; is ordered last.

ND-CMD all decoupled block-diagonal submatrices are ordered first by con-

straint minimum degree [61] (CMD), then all separators are ordered in

depth-first order.

multisection-MD all decoupled block-diagonal submatrices are ordered first

by MD, then all separators are ordered together.

multisection-CMD all decoupled block-diagonal submatrices are ordered first

by CMD, then all separators are ordered together.

With this classification, ordering code of MeTiS [46] falls into the class ND-MD,
and BEND [40] falls into the class ND-CMD. In their recent work [9], Ashcraft
and Liu states that CMD [61] algorithm produces better orderings in nested dis-
section and multisection ordering. The results presented in their work also show
that multisection generates better orderings than nested dissection. Hence, their

ordering code, we call it SMOOTH as the name of whole package is SMOOTH [7],

falls into class multisection-CMD.

MSMD object in the SMOOTH software package [7], is a piece-of-art ordering
object. It contains both CMD and MMD features combined in a brilliant way.
The idea is as follows, NISMD orders the vertices by stages, i.e., vertices in stage
k will be ordered before vertices in stage k + 1. Inside the stages, it basically
does MMD ordering, however, selection criteria can also be changed, i.e., instead
of using actual degree, approximate degree can be used. With this code, devel-

opment of “ND-CMD” and “multisection-CMD” ordering codes are simple tasks.
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Figure 5.8: 4-way decoupled matrix Z using recursive dissection.

Therefore, we have used MSMD object of SMOOTH [7] in the development of
our hypergraph partitioning-based nested dissection ordering tool oPaToH. We
have incorporated, both ND-CMD and multisection-CMD schemes. In the cur-
rent implementation oPaToH-ND stands for ordering code of PaToH which uses

ND-CMD, and oPaToH-MS stands for multisection version.

The average ordering performance of the various tools are displayed in Ta-
bles 5.3-5.5 relative to MMD. The results of GP-based nested dissection ordering
tools onmetis and oemetis, graph partitioning-based multisection ordering tool
SMOOTH are displayed in these tables. The proposed HP-based multisection and
nested dissection ordering results using PaToH are also displayed in these tables.
In Tables 5.3-5.5, “2-Clique oPaToH” denotes the hypergraph partitioning-based
ordering of matrix Z using the 2-Clique decomposition described in Section 5.4,
whereas “oPaToH using A” denotes the hypergraph partitioning-based ordering
of matrix Z using the given constraint matrix A for LP problems. Hence, no
result is displayed in those columns for general matrices. For each problem, order-

ing tools were run 50 times starting from different random seeds and the average

results are displayed in the tables.

Table 5.3 displays the average ordering performance of the tools in terms
of operation count. For general matrices, best ordering results are obtain by
SMOOTH, on the average, SMOOTH produces 27% better orderings than MMD.

The proposed HP-based multisection ordering (oPaToH-MS) produces the second
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hest solutions, on the average. oPaToH-MS produces consistently better order-
ings than MMD for each problem, and produces 25% better orderings than MMD
on the average. In the ordering of matrices arising from LP problems, ND ver-
sion of PaToH produces better orderings than MS based version, achieving 45%
better orderings than MMD heuristic. For these matrices, o0PaToH-ND using A
produces 17% and 43% better orderings than onmetis and SMOOTH. It is inter-

esting to note that indirect GPVS based nested dissection tool oemetis produces

very inconsistent results.

Average ordering performance of the tools in terms of nonzero counts in the
factor matrices are presented in Table 5.4. For general matrices, there is no clear
winner. All the nested dissection and multisection based tools perform equally
well by producing approximately 10% less nonzero than MMD. In LP problems,
again oPaToH-ND produces best results in terms of nonzero counts. oPaToH-
ND produces approximately 22% less nonzeros than MMD, and 9% less nonzeros

than onmetis. For these problems, SMOOTH produces nearly the same amount

of nonzeros with MMD.

Table 5.5 displays the average execution times of the tools relative to MMD
ordering. In this table, a ratio smaller than 1.0 indicates that the respective tool
is faster than the MMD ordering. The fastest tool is the direct GPVS based
ordering code onmetis of MeTiS. Although it is only 5% faster than MMD in
the ordering of general matrices, it runs approximately 3.6 times faster than
MMD in the ordering of matrices arising from LP problems. SMOOTH runs
4.7 and 1.8 times slower than MMD in the ordering of general matrices and
matrices arising from LP problems. 2-clique decomposition yields the slowest
ordering. This is an expected result, since the running time of the hypergraph
partitioning is proportional to the number of pins and nodes, and the 2-clique
model generates a hypergraph with NZ nodes and 2NZ pins. However, the
proposed HP-based ordering methods is only 21% slower than MMD ordering

while producing superior results than MMD.
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Table 5.1: Properties of test matrices and results of MMD orderings

matrix Z matrix A where Z = AA7 MMD
name M NZ N NZ NZF OPC
General Matrices
BCSSTK23 3,134 45,178 - - 461,697 1.46E+08
BCSSTK21 3,600 26,600 - - 116,083 6.75E+06
BCSSTK15 3,948 117,816 - - 653,831 1.68E+08
3elt 4,720 32,164 - - 92,188 3.11E+06
BCSSTK16 4,884 290,378 - - 741,200 1.45E+08
BCSSTK17 10,974 428,650 - - 1,136,428 1.99E+08
BCSSTK18 11,948 149,090 - - 642,176 1.30E+08
BCSSTK25 15,439 252,241 - - 1,515,540 3.31E+08
BCSSTK32 44,609 2,014,701 - - 5,146,621 1.05E409
brack?2 62,631 795,749 - - 7,482,073 3.22E+09
598a 110,971 1,594,839 - - | 45,116,662 5.87TE+10
crystk01 4,875 315,891 - - 1,094,672 3.46E+08
1shp3025 3,025 20,833 - - 75,332 3.46E406
Ishp3466 3,466 23,896 - - 89,551 4.39E+06
mplate 5,962 142,190 - - 2,172,166 1.53E+409
nasad704 4,704 104,756 - - 269,427 3.24E+07
pwt 36,519 326,107 - - 1,810,221 2.38E+08
slrmqgdml 5,489 281,111 - - 658,508 1.15E+08
s2rmq4ml 5,489 281,111 - - 658,508 1.15E+08
s3rmqg4ml 5,489 281,111 - - 658,508 1.15E+08
shuttle-eddy 10,429 103,599 - - 389,810 2.61E+07
skirt 12,598 196,520 - - 494,045 3.63E+07
vibrobox 12,328 342,828 - - 2,119,728 9.16E+-08
LP Problems

NL 7,039 105,089 9,718 41,428 282,929 3.78E+07
CQ9Y 9,278 221,590 | 13,778 88,897 451,108 5.74E+07
GE 10,099 112,129 | 11,098 39,554 204,188 3.47E+07
CO9 10,789 249,205 | 14,851 101,578 499,511 6.40E+07
fomel2 24,284 329,068 | 48,920 142,528 6,314,673 5.19E+409
pltexpA4-6 26,894 269,736 | 70,364 143,059 2,329,048 1.10E+409
world 34,506 582,064 | 32,734 164,470 1,789,127 2.77E+08
mod?2 34,774 604,910 | 31,728 165,129 1,823,079 2.72E+08
Ipll 39,951 541,217 | 125,000 381,259 3,146,595 1.21E+09
fxm3-16 41,340 765,626 | 64,162 370,839 637,294 1.97E+07
cre-b 9,648 398,806 | 72,447 256,095 954,754 3.82E+08
cre-d 8,926 372,266 | 69,980 242,646 870,409 3.01E+08
delf036 3,170 33,508 5,459 14,202 50,025 1.78E+06
dfl0o1 6,071 82,267 | 12,230 35,632 1,599,565 1.34E+09
exdstal 17,443 679,857 8,156 59,419 | 25,649,479 7.28E+10
ken-07 2,426 14,382 3,602 8,404 15,553 2.17E+05
ken-11 14,694 82,454 | 21,349 49,058 134,394 4.18E+06
ken-13 28,632 161,804 | 42,659 97,246 355,934 1.71E+07
large036 4,282 50,696 6,822 18,840 75,363 3.17E+06
model10 4,400 293,260 | 15,447 149,000 516,068 1.14E+08
pds-02 2,953 23,281 7,535 16,390 40,920 1.73E+06
pds-06 9,881 88,003 | 28,655 62,524 573,506 2.056E+08
pds-10 16,558 149,658 | 48,763 106,436 1,618,218 1.05E+09
pds-20 33,874 320,196 | 105,728 230,200 6,889,030 9.22E+09
rlfprim 58,866 9,119,596 8,052 265,927 | 301,830,670 2.56E+12
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Table 5.2: Compression and sparsening results

Supernodes

connected | disconnected | Clique Discarding | Sparsening

name %M %M | %N | WNZ | %N | WNZ
, General Matrices

BCSSTK23 6.51 0.00 - - - -
BCSSTK21 0.00 0.00 - - - -
BCSSTK15 0.00 0.13 - - - -
3elt 0.00 0.00 - - - -
BCSSTK16 63.60 1.86 - - - -
BCSSTK17 52.44 4.79 - - - -
BCSSTK18 8.55 6.65 - - - -
BCSSTK25 14.61 0.05 - - - -
BCSSTK32 66.78 0.07 - - - -
brack?2 0.00 0.00 - - - -
598a 0.00 0.00 - - - -
crystk01 64.78 0.10 - - - -
Ishp3025 0.00 0.00 - - - -
1shp3466 0.00 0.00 - - - -
mplate 5.67 0.00 - - - -
nasa4704 50.51 0.62 - - - -
pwt 0.01 0.16 - - - -
slrmqgd4ml 82.49 0.00 - - - -
s2rmqgdml 82.49 0.00 - - - -
s3rmq4m1 82.49 0.00 - - - -
shuttle-eddy 0.63 0.00 - - - -
skirt 15.46 0.02 - - - -
vibrobox 0.10 0.00 - - - -
average [ 25.96 | 063 -| - | - | -

. LP Problems
NL 0.38 0.75 | 1.76 0.62 | 17.03 | 13.85
CQ9 4.67 1.46 | 5.12 0.82 | 12.91 | 31.40
GE 12.18 2.11 | 1.39 2.47 | 18.16 | 31.25
CO9 6.83 1.21 | 7.75 1.44 | 11.90 | 34.47
fomel2 0.00 0.96 | 0.01 0.01 | 14.93 7.88
pltexpA4-6 0.00 5.78 | 0.00 0.00 | 56.24 | 43.96
world 8.67 1.28 | 0.62 0.26 | 7.76 | 11.43
mod2 9.61 1.29 | 0.60 0.24 | 6.45 | 12.27
Ipli 0.00 6.34 | 0.04 0.03 | 53.84 | 52.99
fxm3-16 14.51 9.95 | 9.539 24.49 | 37.41 | 65.01
cre-b 0.07 25.01 | 0.00 0.00 | 2.26 | 12.47
cre-d 0.10 27.48 | 0.00 0.00 | 247 | 12.81
delf036 11.29 0.00 | 7.07 5.08 | 26.93 | 37.90
dflool 0.00 0.96 | 0.01 0.01 | 14.93 7.88
ex3stal 26.83 0.00 { 0.01 0.00 | 12.75 | 21.21
ken-07 0.00 0.00 | 0.00 0.00 | 2.05 1.46
ken-11 0.00 3.29 | 0.00 0.00 | 3.65 3.07
ken-13 0.59 1.77 | 0.00 0.00 | 2.15 1.81
large036 18.52 0.00 | 7.07 6.38 | 26.93 | 40.90
model10 21.34 1.09 | 1.30 0.16 | 7.30 | 55.18
pds-02 0.00 0.07 | 0.00 0.00 0.15 0.20
pds-06 0.00 0.04 | 0.00 0.00 | 0.08 0.11
pds-10 0.00 0.04 | 0.00 0.00 | 0.07 0.09
pds-20 0.00 0.25 | 0.00 0.00 | 0.05 0.07
rifprim 1.34 0.00 | 0.00 0.00 | 0.00 0.30

1.68 | 13.54 | 20.00

average | 5.48 ‘ 3.64 ] 1.69
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7.

Table 5.3: Operation counts of various methods relative to MMD

2-Clique oPaToH | oPaToH using A

name onmetis | oemetis | SMOOTH | MS | ND MS | ND
General Matrices
BCSSTK23 0.65 0.69 0.65 | 0.73 0.71 - -
BCSSTK21 0.94 1.09 0.73 | 0.93 0.94 - .
BCSSTK15 0.53 0.53 0.61 | 0.71 0.70 - -
3elt 0.93 0.97 0.84 | 0.82 0.85 - -
BCSSTK16 1.02 1.02 0.84 | 0.92 1.11 - -
BCSSTK17 0.97 0.94 0.68 | 0.76 0.83 - -
BCSSTK18 0.68 0.70 0.71 | 0.72 0.77 - -
BCSSTK25 1.14 1.16 0.77 | 0.91 1.21 - -
BCSSTK32 1.27 1.51 0.83 | 0.84 0.90 - -
brack2 0.58 0.60 0.65 | 0.67 0.70 - -
598a 0.34 0.34 0.48 | 0.53 0.48 - -
crystk01 0.79 0.63 0.65 ] 0.70 0.78 - -
Ishp3025 0.92 0.92 0.77 | 0.78 0.81 - -
Ishp3466 0.89 0.91 0.76 | 0.77 0.80 - -
mplate 0.39 0.35 0.47 | 0.49 0.45 - -
nasa4704 1.08 1.07 0.98 | 0.85 0.79 - -
pwt 0.46 0.46 0.52 | 0.54 0.53 - -
slrmqdml 0.94 0.76 0.82 | 0.80 0.82 - -
s2rmqg4m1 0.95 0.76 0.82 | 0.82 0.89 - -
s3rmqg4ml 0.95 0.76 0.82 | 0.82 0.84 - -
shuttle-eddy 0.84 0.86 0.63 | 0.68 0.83 - -
skirt 0.86 0.87 0.67 | 0.79 0.80 - -
vibrobox 1.06 1.06 1.88 | 0.95 0.84 - -
geomean | 079 0.78 | 0.7310.75 | 078 | -] -
LP Problems

NL 1.16 20.16 1.02 | 0.94 0.97 | 0.95 0.97
CQ9 0.79 28.35 0.74 ] 0.71 0.71 | 0.65 0.67
GE 0.68 0.90 0.61 | 0.82 0.81 | 0.66 0.64
CO9 0.88 33.48 0.76 | 0.75 0.77 | 0.74 0.77
fomel2 0.58 0.93 2.01 | 0.46 0.46 | 0.46 0.46
pltexpA4-6 0.16 0.24 0.38 | 0.13 0.13 | 0.09 0.10
world 1.48 2.78 1.66 | 0.92 0.92 | 0.82 0.81
mod?2 1.56 2.93 1.57 | 0.91 0.90 | 0.80 0.81
Ipl1 1.57 12.33 1.25 | 0.96 0.94 | 0.94 0.96
fxm3-16 1.41 1.59 1.29 | 0.99 0.99 | 0.97 0.97
cre-b 0.58 0.67 0.78 | 0.49 0.56 | 0.51 0.57
cre-d 0.56 0.63 1.17 | 0.56 0.56 | 0.57 0.60
delf036 1.02 1.26 0.92 | 0.79 0.95 | 0.79 0.92
dfi001 0.59 0.91 1.89 | 0.45 0.40 | 0.44 0.39
ex3stal 0.11 0.11 0.18 | 0.16 0.14 | 0.14 0.11
ken-07 1.06 18.16 1.00 | 0.95 0.95 | 0.95 0.95
ken-11 1.00 | 113.04 0.98 | 0.97 0.97 | 0.97 0.97
ken-13 1.07 | 307.63 1.09 | 0.99 0.98 { 0.99 0.99
large036 1.05 1.08 1.10 | 0.77 0.92 | 0.76 0.92
model10 0.55 0.50 0.73 | 0.54 0.49 | 0.70 0.51
pds-02 1.21 1.25 1.51 | 0.95 0.99 | 0.91 0.89
pds-06 0.33 0.48 0.94 | 0.54 0.44 | 0.49 0.37
pds-10 0.35 0.67 1.24 | 0.67 0.49 | 0.65 0.39
pds-20 0.41 0.71 0.89 | 0.79 0.70 | 0.72 0.48
rlfprim 0.14 0.14 0.65 - - 10.17 0.13
geomean ] 0.66 ] 2.22 J 0.95 ] O.GM 0.64 ] 0.59 0.55




CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING

Table 5.4: Nonzero counts of various methods relative to MMD

2-Clique oPaToH | oPaToH using A

name onmetis | oemetis | SMOOTH | MS | ND MS | ND
General Matrices
BCSSTK?23 0.85 0.87 0.83 | 0.89 0.89 - -
BCSSTK?21 0.96 1.04 0.88 | 0.99 0.99 - -
BCSSTK15 0.76 0.76 0.80 | 0.85 0.85 - -
3elt 1.00 1.02 0.95 | 0.94 0.95 - -
BCSSTK16 1.00 1.01 0.92 | 0.96 1.03 - -
BCSSTK17 1.00 0.99 0.87 | 0.91 0.93 - -
BCSSTK18 0.92 0.94 0.90 | 0.89 0.91 - -
BCSSTK?25 1.06 1.08 0.89 | 0.95 1.04 - -
BCSSTK32 1.12 1.17 0.94 | 0.95 0.96 - -
brack?2 0.81 0.82 0.84 | 0.84 0.85 - -
598a, 0.60 0.60 0.69 | 0.72 0.69 - -
crystk01 0.92 0.82 0.83 | 0.86 0.90 - -
Ishp3025 0.99 0.99 0.92 | 0.92 0.93 - -
Ishp3466 0.98 0.98 0.91 | 0.92 0.92 - -
mplate 0.65 0.62 0.70 | 0.71 0.69 - -
nasad704 1.09 1.08 1.01 ] 0.94 0.92 - -
pwt 0.76 0.76 0.77 1 0.78 0.78 - -
slrmg4ml 0.99 0.92 0.92 | 0.92 0.93 - -
s2rmg4ml 0.99 0.92 0.92 | 0.93 0.95 - -
s3rmqgdm1 0.99 0.92 0.92 | 0.93 0.94 - -
shuttle-eddy 0.93 0.93 0.83 | 0.85 0.91 - -
skirt 0.98 0.98 0.86 | 0.92 0.93 - -
vibrobox 1.01 1.03 1.29 | 0.91 0.87 - -
geomean | 092 091 ] 0.88 | 0.89 | 090 | -] -
LP Problems

NL 1.09 3.83 1.03 | 0.98 0.99 | 0.98 0.99
CQ9 0.94 4.05 0.92 | 0.89 0.89 | 0.87 0.88
GE 0.94 1.02 0.88 | 0.94 0.94 | 0.89 0.88
CcO9 0.99 4.51 0.92 | 0.91 0.92 | 0.90 0.91
fomel2 0.81 1.04 1.50 | 0.71 0.71 ] 0.70 0.71
pltexpA4-6 0.55 0.67 0.96 | 0.46 0.46 | 0.42 0.43
world 1.20 1.63 1.31 | 0.97 0.97 | 0.93 0.92
mod?2 1.22 1.67 1.28 | 0.97 0.96 | 0.93 0.92
Ipll 1.24 3.73 1.11 | 0.98 0.97 | 0.97 0.97
fxm3-16 1.12 1.17 1.06 | 1.00 1.00 | 1.00 1.00
cre-b 0.83 0.87 0.93 | 0.76 0.79 | 0.77 0.80
cre-d 0.82 0.84 1.09 | 0.79 0.79 1 0.79 0.81
delf036 1.04 1.13 0.99 | 0.94 0.98 | 0.94 0.97
df001 0.82 1.03 1.46 | 0.70 0.67 | 0.69 0.66
ex3stal 0.31 0.32 0.38 | 0.36 0.34 | 0.33 0.31
ken-07 1.04 2.31 1.00 | 0.99 0.99 | 0.99 0.99
ken-11 1.02 5.38 1.02 | 0.99 0.99 { 0.99 0.99
ken-13 1.06 8.11 1.07 | 1.01 1.00 | 1.01 1.00
large036 1.06 1.08 1.05 ] 0.94 0.98 | 0.93 0.97
model10 0.80 0.77 0.90 | 0.77 0.75 | 0.85 0.76
pds-02 1.09 1.10 1.14 | 0.98 1.00 | 0.97 0.97
pds-06 0.70 0.87 1.09 | 0.80 0.74 | 0.77 0.71
pds-10 0.72 0.97 1.24 | 0.83 0.74 | 0.82 0.70
pds-20 0.70 0.93 1.07 | 0.85 0.81 { 0.82 0.71
rlfprim 0.38 0.38 0.83 - - 10.40 0.36

0.83 ] 0.80 | 0.78

geomean ] 0.86 ‘ 1.40 ] 1.02 l (.83
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Table 5.5: Ordering runtimes of various methods relative to MMD

2-Clique oPaToH | oPaToH using A

name onmetis | oemetis | SMOOTH | MS | ND MS [ ND
General Matrices
BCSSTK?23 0.63 0.50 1.80 | 4.14 4.10 - -
BCSSTK21 0.77 0.65 1.73 | 4.90 4.84 - -
BCSSTK15 1.07 0.86 2.76 | 14.76 14.84 - .
3elt 1.01 0.98 3.03 | 6.60 6.64 - -
BCSSTK16 1.12 4.56 14.74 | 8.75 8.70 - -
BCSSTK17 1.67 3.70 9.18 | 11.13 11.13 - -
BCSSTK18 1.00 0.82 3.28 | 8.01 8.03 - -
BCSSTK25 1.16 0.96 2.82 | 7.53 7.53 - -
BCSSTK32 1.66 5.55 11.67 | 10.42 10.46 - -
brack?2 0.91 0.84 249 | 8.72 8.67 - -
598a 0.74 0.69 2.39 | 843 8.45 - -
crystk01 1.04 4.63 16.16 | 7.91 7.92 - -
Ishp3025 0.97 0.93 292 | 6.82 6.80 - -
Ishp3466 1.00 0.89 2.82 | 6.61 6.66 - -
mplate 0.50 0.40 1.75 | 541 5.43 - -
nasa4704 0.98 2.54 5.80 | 5.64 5.87 - -
pwt 1.19 1.19 3.32 | 10.15 10.16 - -
slrmgdml 0.76 8.01 18.90 | 2.52 2.55 - -
s2rmqdm] 0.73 8.30 19.86 | 2.43 2.43 - -
$3rmg4m1 0.70 8.07 18.96 | 2.49 2.52 - -
shuttle-eddy 1.20 1.18 3.30 | 10.58 10.61 - -
skirt 1.31 1.42 2.97 | 14.30 14.34 - -
vibrobox 0.71 0.65 4.28 | 11.93 11.91 - -
geomean ] 095]  1.57 ] 4.71 ] 7.00 | 702 -] -
LP Problems

NL 0.17 0.16 2131 2.90 2.84 | 0.99 0.82
CQ9 0.14 0.14 1.78 | 5.24 4.70 | 1.18 0.87
GE 1.06 0.86 282 5.12 5.08 | 2.04 1.96
CO9 0.12 0.12 1.37 | 3.97 3.86 | 0.98 0.78
fomel2 0.10 0.08 092 | 242 2.58 | 1.74 1.61
pltexpA4-6 1.05 0.83 1.86 | 4.72 4.72 | 2.09 2.00
world 0.24 0.21 1.35 | 3.78 3.72 | 0.92 0.73
mod2 0.30 0.25 1.57 | 4.21 4.19 | 0.92 0.81
Ipll 0.23 0.21 1.56 | 2.21 2.21 | 0.99 0.93
fxm3-16 1.83 1.90 2.96 | 14.77 15.05 | 2.61 2.51
cre-b 0.21 0.18 3.66 | 14.02 14.51 | 3.17 3.06
cre-d 0.15 0.14 2.62 | 9.26 9.21 | 2.62 2.56
delf036 1.26 1.11 323 | 7.28 7.27 | 2.62 2.67
Afi001 0.08 0.06 0.96 | 2.14 0.81 | 1.61 0.48
ex3stal 0.36 0.45 11.09 | 4.43 447 | 0.75 0.71
ken-07 0.78 0.94 1.14 | 4.57 4.74 | 3.29 3.22
ken-11 0.72 0.84 1.89 | 6.49 6.12 | 3.20 3.20
ken-13 0.31 0.35 0.85 | 6.30 4.16 | 4.97 2.25
large(036 1.13 1.26 3.72 7.67 7.70 | 2.52 2.55
modell0 0.65 0.97 7.63 | 16.56 16.11 | 3.28 3.33
pds-02 0.80 0.62 2.73 | 3.56 3.59 | 3.29 3.37
pds-06 0.14 0.12 0.84 0.91 0.79 | 0.82 0.76
pds-10 0.05 0.04 0.38 | 047 0.32 | 0.42 0.30
pds-20 0.01 0.01 0.11 | 0.37 0.17 | 0.24 0.14
rlfprim 0.35 0.35 8.47 - - 1012 0.12

1.19

geomean ] 029] 0.28 | 1.82 | 3.96 3.53 | 1.43




Chapter 6

PaToH: A Multilevel Hypergraph

Partitioning Tool

We exploit the successful multilevel methodology [13, 37, 48] proposed and im-
plemented for graph partitioning [38, 46] to develop a new multilevel hypergraph
partitioning tool, called PaToH (PaToH: Partitioning Tools for Hypergraphs).

The data structures used to store hypergraphs in PaToH mainly consist of
the following arrays. The NETLST array stores the net lists of the vertices. The
PINLST array stores the pin lists of the nets. The size of both arrays is equal to
the total number of pins in the hypergraph. Two auxiliary index arrays VTXS
and NETS of sizes |V|+1 and |[N|+1 hold the starting indices of the net lists and
pin lists of the vertices and nets in the NETLST and PINLST arrays, respectively.
In sparse matrix storage terminology, this scheme corresponds to storing the given
matrix both in Compressed Sparse Row (CSR) and Compressed Sparse Column
(CSC) formats [52] without storing the numerical data. In the column-net model
proposed for rowwise decomposition, the VI'XS and NETLST arrays correspond
to the CSR storage scheme, and the NETS and PINLST arrays correspond to the
CSC storage scheme. This correspondence is dual in the row-net model proposed

for columnwise decomposition.

The storage requirement of the proposed hypergraph models is as follows. For

an M x M squarc matrix with Z off-diagonal nonzero entries, the hypergraph

97
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Figure 6.1: Cut-net splitting during recursive bisection.

models contain |V| = M vertices, |M| = M nets and p = M + Z pins for both
symmetric and unsymimetric matrices. Note that M pins comes from maintain-
ing the diagonal entries of the matrix. Hence, the storage requirement of both
hypergraph models is Sy = S5M + 2Z words, where 2M words come from index
arrays VIXS and NETS, M words are required to store vertex weights, and
2(M + Z) words come from NETLST and PINLST arrays.

The K-way graph/hypergraph partitioning problem is usually solved by re-
cursive bisection. In this scheme, first a 2-way partition of G /H is obtained, and
then this bipartition is further partitioned in a recursive manner. After lg, K
phases, graph G /H is partitioned into K parts. PaToH achieves K -way hyper-

graph partitioning by recursive bisection for any K value (i.e., K is not restricted

to be a power of 2).

The connectivity cutsize metric given in (2.4.b) needs special attention in K -
way hypergraph partitioning by recursive bisection. Note that the cutsize metrics
given in (2.4.a) and (2.4.b) become equivalent in hypergraph bisection. Consider
a bipartition V4 and Vg of V obtained after a bisection step. It is clear that V4
and Vy and the internal nets of parts A and B will become the vertex and net
sets of H 4 and Hp, respectively, for the following recursive bisection steps. Note
that cach cut net of this bipartition already contributes 1 to the total cutsize of
the final K-way partition to be obtained by further recursive bisections. How-
ever, the further recursive biscctions of V4 and Vi may increase the connectivity

of these cut nets. In parallel SpMxV view, while each cut net already incurs



CHAPTER 6. PATOH: MULTILEVEL HYPERGRAPH PART. TOOL 99

the communication of a single word, these nets may induce additional commu-
nication because of the following recursive bisection steps. Hence, after every
hypergraph bisection step, each cut net n; is split into two pin-wise disjoint nets
n; = pins[n;]NVa and n = pins[n;] Vs, and then these two nets are added
to the net lists of H 4 and Hg if |nj| > 1 and |nf| > 1, respectively. Note that
the single-pin nets are discarded during the split operation since such nets cannot
contribute to the cutsize in the following recursive bisection steps. Thus, the total
cutsize according to (2.4.b) will become equal to the sum of the number of cut
nets at every bisection step by using the above cut-net split method. Figure 6.1
illustrates two cut nets n; and ny in a bipartition, and their splits into nets n/,
ny and ny, ny, respectively. Note that net n) becomes a single-pin net and it is

discarded.

Similar to multilevel graph and hypergraph partitioning tools Chaco [38],
MeTiS [46] and hMeTiS [49], the multilevel hypergraph bisection algorithm used
in PaToH consists of 3 phases: coarsening, initial partitioning and uncoarsening.
The following sections briefly summarize our multilevel bisection algorithm. Al-
though PaToH works on weighted nets, we will assume unit cost nets both for
the sake of simplicity of presentation and for the fact that all nets are assigned

unit cost in the hypergraph representation of sparse matrices.

6.1 Coarsening Phase

In this phase, the given hypergraph H = Ho = (Vo, My) is coarsened into a se-
quence of smaller hypergraphs Hy = V1, M), Ho= Vo, M2), ..., Hin = Vin, Non)
satisfying |Vo| > Vi[> [Ve| > ... > |Vim|. This coarsening is achieved by coalesc-
ing disjoint subsets of vertices of hypergraph H; into multinodes such that cach
multinode in H; forms a single vertex of H,,;. The weight of each vertex of H,
hecomes equal to the sum of its constituent vertices of the respective multinode
in H,. The net set of each vertex of H;,; becomes equal to the union of the net
sets of the constituent vertices of the respective multinode in ;. Here, multiple
pins of a net n€N; in a multinode cluster of H,; are contracted to a single pin of
the respective net n' € My, of ;4. Furthermore, the single-pin nets obtained

during this contraction are discarded. Note that such single-pin nets correspond
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to the internal nets of the clustering performed on H;. The coarsening phase ter-
minates when the number of vertices in the coarsened hypergraph reduces below

100 (i.e. |Vm|<100).

Clustering approaches can be classified as agglomerative and hierarchical. In
the agglomerative clustering, new clusters are formed one at a time, whereas in
the hierarchical clustering several new clusters may be formed simultaneously.
In PaToH, we have implemented both randomized matching-based hierarchical
clustering and randomized hierarchic-agglomerative clustering. The former and
latter approaches will be abbreviated as matching-based clustering and agglom-

erative clustering, respectively.

The matching-based clustering works as follows. Vertices of #; are visited in
a random order. If a vertex u €V; has not been matched yet, one of its unmatched
adjacent vertices is selected according to a criterion. If such a vertex v exists,
we merge the matched pair u and v into a cluster. If there is no unmatched
adjacent vertex of u, then vertex u remains unmatched, i.e., u remains as a
singleton cluster. Here, two vertices u and v are said to be adjacent if they share
at least one net, i.e., nets[u]Nnets[v] # 0. The selection criterion used in PaToH
for matching chooses a vertex v with the highest connectivity value N,,. Here,
connectivity N, =|nets[u]Nnets[v]| refers to the number of shared nets between

w and v. This matching-based scheme is referred to here as Heavy Connectivity

Matching (HCM).

The matching-based clustering allows the clustering of only pairs of vertices in
a level. In order to enable the clustering of more than two vertices at each level,
we have implemented a randomized agglomerative clustering approach. In this
scheme, each vertex u is assumed to constitute a singleton cluster Cy, = {u} at the
beginning of each coarsening level. Then, vertices are visited in a random order. If
a vertex u has already been clustered (i.e. |Cy|>1) it is not considered for being
the source of a new clustering. However, an unclustered vertex u can choose to
join a multinode cluster as well as a singleton cluster. That is, all adjacent vertices
of an unclustered vertex u are considered for selection according to a criterion.
The selection of a vertex v adjacent to u corresponds to including vertex u to
cluster C, to grow a new multinode cluster C,, = C, =C, U {u}. Note that no

singleton cluster remains at the end of this process as far as there exists no isolated
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Figure 6.2: Matching-based clustering A and agglomerative clustering
A HCC of the rows of matrix Ag.

vertex. The selection criterion used in PaToH for agglomerative clustering chooses
a singleton or multinode cluster C, with the highest N, ¢, /W, ¢, value, where
N, ¢, = |nets[u] NUzece, netsz]| and Wy, ¢, is the weight of the multinode cluster
candidate {u} UC,. The division of N, ¢, by W, ¢, is an effort for avoiding the
polarization towards very large clusters. This agglomerative clustering scheme is

referred to here as Heavy Connectivity Clustering (HCC).

The objective in both HCM and HCC is to find highly connected vertex clus-
ters. Connectivity values NV, and N, ¢, used for selection serve this objective.
Note that Ny, (Nyc,) also denotes the lower bound in the amount of decrease
in the number of pins because of the pin contractions to be performed when
u joins v (C,). Recall that there might be additional decrease in the number
of pins because of single-pin nets that may occur after clustering. Hence, the
connectivity metric is also an effort towards minimizing the complexity of the fol-
lowing coarsening levels, partitioning phase and refinement phase since the size

of a hypergraph is equal to the number of its pins.

In rowwise matrix decomposition context (i.e. column-net model), the con-
nectivity metric corresponds to the number of common column indices between
two rows or row groups. Hence, both HCM and HCC try to combine rows or
row groups with similar sparsity patterns. This in turn corresponds to combining
rows or row groups which need similar sets of x-vector components in the pre-

communication scheme. A dual discussion holds for the row-net model. Figure 6
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illustrates a single level coarsening of an 8 x 8 sample matrix Ay in the column-
net model using HCM and HCC. The original decimal ordering of the rows is
assumed to be the random vertex visit order. As seen in Fig. 6, HCM matches
row pairs {1,3}, {2,6} and {4,5} with the connectivity values of 3, 2 and 2,
respectively. Note that the total number of nonzeros of Ay reduces from 28 to
21 in A{{CM after clustering. This difference is equal to the sum 3+242=7 of
the connectivity values of the matched row-vertex pairs since pin contractions do
not lead to any single-pin nets. As seen in Fig. 6, HCC constructs three clusters
{1,2,3}, {4,5} and {6,7,8} through the clustering sequence of {1,3}, {1,2,3},
{4,5}, {6,7} and {6,7,8} with the connectivity values of 3, 4, 2, 3 and 2, re-
spectively. Note that pin contractions lead to three single-pin nets n,, ns and
n7, thus columns 2, 3 and 7 are removed. As also seen in Fig. 6, although rows 7

and 8 remain unmatched in HCM, every row is involved in at least one clustering

in HCC.

Both HCM and HCC necessitate scanning the pin lists of all nets in the net
list of the source vertex to find its adjacent vertices for matching and clustering.
In the column-net (row-net) model, the total cost of these scan operations can be
as expensive as the total number of multiply and add operations which lead to
nonzero entries in the computation of AAT (ATA). In HCM, the key point to
efficient implementation is to move the matched vertices encountered during the
scan of the pin list of a net to the end of its pin list through a simple swap opera-
tion. This scheme avoids the re-visits of the matched vertices during the following
matching operations at that level. Although this scheme requires an additional
index array to maintain the temporary tail indices of the pin lists, it achieves
substantial decrease in the run-time of the coarsening phase. Unfortunately, this
simple yet effective scheme cannot be fully used in HCC. Since a singleton vertex
can select a multinode cluster, the re-visits of the clustered vertices are partially
avoided by maintaining only a single vertex to represent the multinode cluster
in the pin-list of each net connected to the cluster, through simple swap opera-
tions. Through the use of these efficient implementation schemes the total cost
ol the scan operations in the column-net (row-net) model can be as low as the
total number of nonzeros in AAT (AT A). In order to maintain this cost within
reasonable limits, all nets of size greater than 4s,,, are not considered in a bi-

partitioning step, where s,,, denotes the average net size of the hypergraph to
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be partitioned in that step. Note that such nets can be reconsidered during the

further levels of recursion because of net splitting.

The cluster growing operation in HCC requires disjoint-set operations for
maintaining the representatives of the clusters, where the union operations are
restricted to the union of a singleton source cluster with a singleton or a multinode
target cluster. This restriction is exploited by always choosing the representative
of the target cluster as the representative of the new cluster. Hence, it is sufficient
to update the representative pointer of only the singleton source cluster joining

to a multinode target cluster. Therefore, each disjoint-set operation required in

this scheme is performed in O(1) time.

6.2 Initial Partitioning Phase

The goal in this phase is to find a bipartition on the coarsest hypergraph H,,.
In PaToH, we use Greedy Hypergraph Growing (GHG) algorithm for bisecting
M. This algorithm can be considered as an extension of the GGGP algorithm
used in MeTiS to hypergraphs. In GHG, we grow a cluster around a randomly
selected vertex. During the coarse of the algorithm, the selected and unselected
vertices induce a bipartition on H,,. The unselected vertices connected to the
growing cluster are inserted into a priority queue according to their FM gains.
Here, the gain of an unselected vertex corresponds to the decrease in the cutsize
of the current bipartition if the vertex moves to the growing cluster. Then, a
vertex with the highest gain is selected {rom the priority queue. After a vertex
moves to the growing cluster, the gains of its unselected adjacent vertices which
are currently in the priority queue are updated and those not in the priority
queue are inserted. This cluster growing operation continues until a predeter-
mined bipartition balance criterion is reached. As also mentioned in MeTiS, the
quality of this algorithm is sensitive to the choice of the initial random vertex.
Since the coarsest hypergraph H,, is small, we run GHG 4 times starting from
different random vertices and select the best bipartition for refinement during the

uncoarseni ng ])h ase.
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6.3 Uncoarsening Phase

At each level ¢ (for ¢« = m,m—1,...,1), bipartition II; found on H; is projected
back to a bipartition II,_; on H;_;. The constituent vertices of each multinode
in H;_; is assigned to the part of the respective vertex in H;. Obviously, II;_;
of H;_; has the same cutsize with II; of H;. Then, we refine this bipartition
by running a Boundary FM (BFM) hypergraph bipartitioning algorithm on H;_;
starting from initial bipartition II;,_;. BFM moves only the boundary vertices
from the overloaded part to the under-loaded part, where a vertex is said to be a

boundary vertex if it is connected to an at least one cut net.

BFM requires maintaining the pin-connectivity of each net for both initial
gain computations and gain updates. The pin-connectivity ox[n] = |n N Pl of a
net n to a part P, denotes the number of pins of net n that lie in part Py, for
k=1,2. In order to avoid the scan of the pin lists of all nets, we adopt an efficient
scheme to initialize the o values for the first BFM pass in a level. It is clear that
initial bipartition II;_; of H;_; has the same cut-net set with II; of H;. Hence,
we scan only the pin lists of the cut nets of Il;_; to initialize their o values. For
each other net n, oy[n] and o3[n] values are easily initialized as oy[n]=s, and
og[n] =0 if net n is internal to part Py, and o;[n]=0 and o3[n]=s, otherwise.
After initializing the gain value of each vertex v as g[v] = —d,, we exploit o values
as follows. We re-scan the pin list of each external net n and update the gain
value of each vertex v € pins[n] as g[v] = g[v] + 2 or g[v] = g[v] + 1 depending
on whether net n is critical to the part containing v or not, respectively. An
external net n is said to be critical to a part & if ox[n] = 1 so that moving
the single vertex of net n that lies in that part to the other part removes net »
from the cut. Note that two-pin cut nets are critical to both parts. The vertices
visited while scanning the pin-lists of the external nets are identified as boundary
vertices and only these vertices are inserted into the priority queue according to

their computed gains.

In each pass of the BFM algorithm, a sequence of unmoved vertices with
the highest gains are selected to move to the other part. As in the original
I'M algorithm, a vertex move necessitates gain updates of its adjacent vertices.

However, in the BI'M algorithm, some of the adjacent vertices of the moved
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vertex may not be in the priority queue, because they may not be boundary
vertices before the move. Hence, such vertices which become boundary vertices
after the move are inserted into the priority queue according to their updated
gain values. The refinement process within a pass terminates either no feasible
move remains or the sequence of last max{50, 0.001]);]|} moves does not yield a
decrease in the total cutsize. A move 1s said to be feasible if it does not disturb
the load balance criterion (2.1) with K’ =2. At the end of a BFM pass, we have a
sequence of tentative vertex moves and their respective gains. We then construct
from this sequence the maximum prefix subsequence of moves with the maximum
prefix sum which incurs the maximum decrease in the cutsize. The permanent
realization of the moves in this maximum prefix subsequence is efficiently achieved
by rolling back the remaining moves at the end of the overall sequence. The
initial gain computations for the following pass in a level is achieved through this
rollback. The overall refinement process in a level terminates if the maximum
prefix sum of a pass is not positive. In the current implementation of PaToH, at

most 2 BFM passes are allowed at each level of the uncoarsening phase.



Chapter 7

Conclusion

Two computational hypergraph models were proposed to decompose sparse ma-
trices in 1D for minimizing communication volume while maintaining load bal-
ance during repeated parallel matrix-vector product computations. The proposed
models enable the representation and hence the decomposition of structurally
nonsymmetric matrices as well as structurally symmetric matrices. Furthermore,
they introduce a much more accurate representation for the communication re-
quirement than the standard computational graph model widely used in the lit-
erature for the parallelization of various scientific applications. The proposed
models reduce the 1D decomposition problem to the well-known hypergraph par-
titioning problem thus enabling the use of circuit partitioning heuristics widely
used in VLSI design. Experimental results carried out on a wide range of sparse
test matrices arising in different application domains confirmed the validity of
the proposed hypergraph models. In the 1D decomposition of the test matrices,
the use of the proposed hypergraph models instead of the graph models achieved
30%-38% decrease in the communication volume requirement of a single parallel
matrix-vector multiplication at the expense of only 34%-130% increase in the
decomposition time by using PaToll, on the average.

In the literature, there was a lack of existence of 2D decomposition heuristics
for parallel SpMxV computations. This thesis provides three different hyper-
graph models for 2D decomposition of sparse matrices, a fine-grain hypergraph

model and hypergraph models for jagged-like and checkerboard decompositions.
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The proposed fine-grain hypergraph model produced the best decompositions in
terms of communication volume. For the architecture with high start-up costs,
number of messages is also important. For those kind of architectures, checker-
board decomposition model is a good choice, since it restricts the communication
to be done only on the rows or columns of the 2D processor mesh, hence the
upper bound on the number of messages is very low. In the 2D decomposition
of the test matrices, all of the proposed hypergraph models produces 26%-59%

better decompositions, on the overall average, than the standard graph model

that enables 1D decompositions.

Graph and graph partitioning are also widely used in nested dissection based
low fill ordering tools. Graph partitioning encountered in this domain is formu-
lated as graph partitioning by vertex separator (GPVS). In this thesis, we showed
that GPVS problem can be formulated as hypergraph partitioning problem. We
have exploited this finding to develop a novel hypergraph partitioning based fill
reducing ordering method, to order the AA” kind matrices encountered in the
solution of LP problems. For general symmetric matrices, the proposed method
extended by the notion of 2-clique decomposition of the matrix. In the order-
ing of matrices arising from LP problems, the proposed method produced 45%
better orderings than MMD ordering heuristic in ferms of operation count, by
the expense of 20% larger execution time. In the ordering of general symmetric
test matrices, the proposed method produces 25% better orderings than MMD,

however it is approximately 7 times slower than MMD implementation we have

used.

In this work, a successful multilevel hypergraph partitioning tool PaToH was
also implemented. PaToH is found to be approximately 4 times faster than its
only competitor hMeTiS while producing the same quality results. 2D checker-
board decomposition requires multi-constraint hypergraph partitioning. Hence,
PaToH was extended to handle the multi-constraints. Hypergraph partitioning
based nested dissection also requires additional extensions, such as balance on
nets, embedded constrained minimum degree, etc. PaToH was also modified to
handle balance on nets, and multi-stage ordering code of SMOOTH is embedded
to produce nested dissection and multisection ordering results based on hyper-

graph partitioning.
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This work was an effort towards showing that the computational hypergraph
mocdlel is more powerful than the standard computational graph model as it pro-
vides a more versatile representation for the interactions among the atomic tasks
of the computational domains. In the computational graph model for general
applications, each edge usually represents a two-way interaction between a pair
of atomic tasks implicitly. The net (hyperedge) concept in the computational hy-
pergraph model has the additional power of representing a multiway interaction
explicitly among a set of atomic tasks through a shared data item in data parallel
applications. Hence, the graph model suffices when an edge represents a unique
data item of which intermediate result(s) should be communicated between ex-
actly two processors if the atomic tasks represented by the two end vertices of this
edge are assigned to different processors. Unfortunately, this is not the case in all
scientific applications. There is usually a multiway interaction among the atomic

tasks and thus the hypergraph is a more promising model for the decomposition

of the computational domains.
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