
MATRIX ^АКТГШШй АЮ

4 ©'ΓΠδ'Τ./ΐ'ΐ'̂ Γ'ί-ΛΤ.·

£L J u ^ X ê t iA Jt2¡*-^'Íé Jà ¿ i nLjSÜ1í^ \ «á> 'Ό * ·'^ 4.i^"4V-¿.-<r* ·ί>«> W <ww* ‘̂«¿ LLêi J ‘'i 4J/

’*,»'̂ ';; 'T * Г''̂ ;Т '” ·■ *í Τ' -'̂ ■'’■Г "''’v<' T'"-”T

/i·. #7Г»'«т?Г'.'ГЛ ·ϊ - , '.-L - ~ j ' Э-Λ í'·* « -.r*· - «-■ » .■ -̂
J¡L, J ^ L Í ^ LL<m^»ySi> «4 <«¿ Ш 4 > 4» 4 ^ ' ». j^·· ; ’ -Тт,- - ' - ■ ~ '. i'*' - >4

L·̂ J, ‘L/

d q 4 'í * ·^ ¿* · .̂̂ '* * j** ‘ i # . чГ , '«Ŝ итіппіт і̂Ыф Ші вшіыт» а

/ев
< s e

H YPERG RAPH MODELS FOR SPARSE
M ATRIX PARTITIONING A ND

REORDERING

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Unlit V. Qatalyiirek

November, 1999

«VA
ISS
'сза

1 0 0 5

t 23

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof./Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of doctor of philosophy.

t
Prof. Kemal Efe

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of doctor of philosophy.

11

I certify that I have read this thesis and that in rny opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of doctor of philosophy.

U iX
Prof. İrşadi Aksun

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of doctor of philosophy.

. r rAsst. Prof. Kıvanç Dinçer

Approved for the Institute of Engineering and Science:

' a
Prof. Mehmet Ba(

Director of the Institute

in

ABSTRACT

HYPERGRAPH MODELS FOR SPARSE MATRIX
PARTITIONING AND REORDERING

Ümit V. Çatalyürek
Ph.D. in Computer Engineering and Information Science

Supervisor; Assoc. Prof. Cevdet Aykanat
November, 1999

Graphs have been widely used to represent sparse matrices for various scientific
applications including one-dimensional (ID) decomposition of sparse matrices
for parallel sparse-matrix vector multiplication (SpMxV) and sparse matrix re
ordering for low fill factorization. The standard graph-partitioning based ID de
composition of sparse matrices does not reflect the actual communication volume
requirement for parallel SpMxV. We propose two computational hypergraph mod
els which avoid this crucial deficiency of the graph model on ID decomposition.
The proposed models reduce the ID decomposition problem to the well-known
hypergraph partitioning problem. In the literature, there is a lack of 2D decom
position heuristic which directly minimizes the communication requirements for
parallel SpMxV computations. Three novel hypergraph models are introduced
for 2D decomposition of sparse matrices for minimizing the communication vol
ume requirement. The first hypergraph model is proposed for fine-grain 2D de
composition of the sparse matrices for parallel SpMxV. The second hypergraph
model for 2D decomposition is proposed to produce jagged-like decomposition of
the sparse matrix. The checkerboard decomposition based parallel matrix-vector
multiplication algorithms are widely encountered in the literature. However, only
the load balancing problem is addressed in those works. Here, we propose a new
hypergraph model which aims the minimization of communication volume while
maintaining the load balance among the processors for checkerboard decomposi
tion, as the third model for 2D decomposition. The proposed model reduces the
decomposition problem to the multi-constraint hypergraph partitioning problem.
The notion of multi-constraint partitioning has recently become popular in graph
partitioning. We applied the multi-constraint partitioning to the hypergraph par
titioning problem for solving checkerboard partitioning. Graph partitioning by
vertex separator (GPVS) is widely used for nested dissection based low fill or
dering of sparse matrices for direct solution of linear systems. In this work, we

IV

also show that the GPVS problem can be formulated as hypergraph partition
ing. We exploit this finding to develop a novel hypergraph partitioning-based
nested dissection ordering. The recently proposed successful multilevel frame
work is exploited to develop a multilevel hypergraph partitioning tool PaToH for
the experimental verification of our proposed hypergraph models. Experimental
results on a wide range of realistic sparse test matrices confirm the validity of
the proposed hypergraph models. In terms of communication volume, the pro
posed hypergraph models produce 30% and 59% better decompositions than the
graph model in ID and 2D decompositions of sparse matrices for parallel SpMxV
computations, respectively. The proposed hypergraph partitioning-based nested
dissection produces 25% to 45% better orderings than the widely used multiple
mimirnum degree ordering in the ordering of various test matrices arising from
different applications.

Keywords: Sparse matrices, parallel matrix-vector multiplication, parallel pro
cessing, matrix decomposition, computational graph model, graph partitioning,
computational hypergraph model, hypergraph partitioning, fill reducing ordering,
nested dissection.

ÖZET

SEYREK MATRİS BÖLÜMLEME VE
YENİDEN-DÜZENLEME İÇİN HİPERÇİZGE

MODELLERİ

üm it V. Çatalyürek
Bilgisayar ve Enformatik Mühendisliği, Doktora

Tez Yöneticisi: Doç. Dr. Cevdet Aykanat
Kasım, 1999

Çizgeler, koşut seyrek-matris vektör çarpımında (SpMxV) seyrek matrislerin
a3'-rıştırılması ve az doluluk faktorizasyonu için kullanılan seyrek matrislerin
3̂ eniden düzenlenmesini içeren çeşitli bilimsel U3^gulamalarda seyrek matris
lerin gösterimi için yaygın olarak kullanılmaktadır. Ancak seyrek matris
lerin standart çizge-bölümlemeye dayalı tek-boyutlu ayrıştırılması koşut Sp-
MxV işlemi için gerekli iletişim hacmini 3̂ ansıtamamaktadır. Çizge modelinin
tek-boyutlu ayrıştırmadaki bu önemli eksikliğine karşılık benzer bir eksiği ol
mayan iki bilişimsel hiperçizge modeli sunuyoruz. Önerdiğimiz modeller tek-
boyutlu ayrıştırma problemini iyi bilinen hiperçizge bölümleme problemine in
dirgemektedir. Literatürde koşut SpMxV hesaplamaları için iletişim gereksin
imini doğrudan azaltan iki-boyutlu ayrıştırma yöntemi yoktur. İletişim hacmi
gereksinimini azaltmak için seyrek matrislerin iki-boyutlu ayrıştırmasını sağlayan
üç 3̂ eni hiperçizge modeli tanıtıyoruz. Bunlardan ilki koşut SpMxV işlemindeki
seyrek matrislerin fine-grain iki-boyutlu ayrıştırması için önerildi. Iki-bo3mtlu
ayrıştırmada kullanılan ikinci hiperçizge modeli seyrek matrislerin çentikli-benzeri
ayrıştırmalarının üretilmesi için önerildi. Literatürde dama tahtası tabanlı
ayrıştırmaya dayanan koşut matris vektör çarpımı algoritmaları yaygınca bu
lunmaktadır. Bununla birlikte bu çalışmalarda sadece yük dengeleme prob
lemine işaret edilmiştir. Biz bu çalışmada iki-boyutlu ayrıştırmanın üçüncü
modeli olarak dama tahtası tabanlı ayrıştırmada işlemciler arası yük dengesini
korurken iletişim hacmini de azaltmayı hedefle3'en yeni bir hiperçizge mod
eli önerİ3'̂ oruz. Önerdiğimiz model ayrıştırma problemini çoklu-kısıt hiperçizge
bölümleme problemine indirgemektedir. Çoklu-kısıt bölümleme fikri çizge
bölümleme alanında yakın zamanda popüler olmuştur. Biz de dama tahtası
bölümleme problemini çözmek için bu çoklu-kısıt bölümleme fikrini hiperçizge
parçalama yöntemine uyguladık. Düğüm ayırıcıları ile çizge bölümleme yöntemi

VI

vıı

doğrusal sistemlerin çözümünde kullanılan, seyrek matrislerin içiçe ayırma ta
banlı az doluluklu düzenlenmesinde çokça kullanılmaktadır. Bu çalışmada,
düğüm ayırıcılar ile çizge bölümleme probleminin de hiperçizge bölümleme
olarak formüle edilebileceğini gösterdik. Bu buluşumuzu hiperçizge bölümlemeye
dayanan j'eni bir içiçe ayırarak düzenleme yöntemi geliştirmek için kullandık.
Önerdiğimiz hiperçizge modellerinin deneysel doğruluğunu sınamak için yakın
zamanda önerilen başarılı çokludüzey çatıyı kullanarak bir çokludüzey hiperçizge
bölümleme aracı olan PaToH’u geliştirdik. Gerçeğe uygun, sınama amaçlı
seyrek matrisler üzerindeki deneysel sonuçlar önerilen hiperçizge modellerinin
geçerliliğini doğruladı. İletişim hacmi anlamında, önerdiğimiz hiperçizge mod
elleri koşut SpMxV hesaplamalarında çizge modeline göre yapılan tek-boyutlu
ve iki-boyutlu ayrıştırmalara kıyasla anılan sıraya göre birinden yüzde 30 ve di
ğerinden yüzde 59 daha iyi ayrıştırmalar üretmektedir. Önerilen hiperçizge ta
banlı içiçe bölümlere ayırma yöntemi de farklı uygulamalarda ortaya çıkan çeşitli
sınama amaçlı matrisleri düzenleme işleminde yaygın olarak kullanılan çoklu en
düşük derece düzenlemesine kıyasla yüzde 25’ten yüzde 45’e kadar daha iyi olan
düzenlemeler üretmektedir.

Arıahtar- sözcükler: Seyrek matrisler, koşut rnatris-vektör çarpımı, koşut işlem,
matris ayrıştırma, bilişimsel çizge modeli, çizge bölümleme, bilişimsel hiperçizge
modeli, hiperçizge bölümleme, doluluk azaltan sıralama, içiçe ayırma.

Acknowledgement

I would like to express rny deepest gratitude to my supervisor Assoc. Prof.
Cevdet Aykanat for his guidance, suggestions, and invaluable encouragement
throughout the development of this thesis. His creativity, lively discussions and
cheerful laughter provided an invaluable and joyful atmosphere for our work.

I am grateful to Prof. Kemal Efe, Asst. Prof. Attila Giirsoy, Prof. İrşadi
Aksun and Asst. Prof. Kıvanç Dinger for reading and commenting on the thesis.

I owe special thanks to Prof. Mehmet Baray for providing a pleasant environ
ment for study.

I am grateful to my family and my friends for their infinite moral support
and help. I owe special thanks to my friends İlker Cengiz, Bora Uçar, Mehmet
Koyutürk and Ferhat Büyükkökten for reading the thesis.

I would also like to thank George Karypis and Vipin Kumar, and Cleve
Ashcraft and Joseph Liu for supplying their state-of-the-art codes, MeTiS and
SMOOTH.

I would like to express very special thanks to Bruce Hendrickson and Gleve
Ashcraft for their instructive comments.

Finally, I would like to thank my wife Gamze for her endless patience while
I spent untold hours in front of my computer. Her support in so many ways

deserves all I can give.

Vlll

To my parents, my wife Gamze and my son Kaan

IX

Contents

1 Introduction 1

1.1 Sparse Matrix Decomposition for Parallel Matrix-Vector Multipli
cation 2

1.2 Sparse Matrix Ordering for Low Fill Factorization......................... 5

1.3 Multilevel Hypergraph Partition ing ... 7

2 Preliminaries 8

2.1 Graph Partition ing ... 8

2.1.1 Graph Partitioning by Edge Separator (GPES) 9

2.1.2 Graph Partitioning by Vertex Separator (GPVS) 10

2.2 H.ypergraph Partitioning (H P) .. 11

2.3 Graph Representation of Hypergraphs 12

2.4 Graph/Hypergraph Partitioning Heuristics and T o o ls 14

2.5 Sparse Matrix Ordering Heuristics and Tools................................... 16

2.6 Solving GPVS Through GPES . . . 18

2.7 Vertex-Cover Model; On the Optimality of Separator Refinement 19

CONTENTS X I

3 Hypergraph Models for ID Decomposition 23

3.1 Graph Models for Sparse Matrix Decomposition............................ 25

3.1.1 Standard Graph Model for Structurally Sj^mmetric Matrices 25

3.1.2 Bipartite Graph Model for Rectangular M atrices............... 27

3.1.3 Proposed Generalized Graph Model for Structurally Sym-
metric/Nonsymmetric Square M atrices............................... 28

3.2 Flaws of the Graph Models... 30

3.3 Two Hypergraph Models for ID Decomposition 32

3.4 Experimental R esults.. 38

4 Hypergraph Models for 2D Decomposition 53

4.1 A Fine-grain Hypergraph M odel... 55

4.2 Hypergraph Model for Jagged-like Decomposition.......................... 61

4.3 Hypergraph Model for Checkerboard Decomposition...................... 67

4.4 Experimental R esults.. 69

5 Hypergraph Partitioning-Based Sparse Matrix Ordering 76

5.1 Flaws of the Graph Model in Multilevel Fram ew ork....................... 77

5.2 Describing GPVS Problem as a HP Problem 78

5.3 Ordering for LP Problems 79

5.3.1 Glique Discarding... 81

5.3.2 Sf^arsening.. 83

5.4 Generalization.. 84

CONTENTS x n

5.5 Extending Supernode Concept 86

5.6 Experimental Results 88

6 PaToH: A Multilevel Hypergraph Partitioning Tool 97

6.1 Coarsening Phase 99

6.2 Initial Partitioning Phase..103

6.3 Uncoarsening Phase... 104

7 Conclusion 106

List of Figures

2.1 A sample 2-way GPES for wide-to-narrow separator refinement. 20

2.2 Two wide-to-narrow separator refinements induced by two optimal
vertex covers.. 21

2.3 Optimal wide-to-narrow separator refinement. 21

3.1 Two-way rowwise decomposition of a sample structurally symmet
ric matrix A and the corresponding bipartitioning of its associated
graph Qa - 27

3.2 Two-way rowwise decomposition of a sample structurally nonsym-
metric matrix A and the corresponding bipartitioning of its asso
ciated graph Qti- 29

3.3 Dependency relation views of (a) column-net and (b) row-net models. 34

3.4 (a) A 16x16 structurally nonsymmetric matrix A. (b) Column-net
representation?^7e of matrix A and 4-way partitioning IT of 'Kn- (c)
4-way rowwise decomposition of matrix A^ obtained by permuting
A according to the symmetric partitioning induced by 11............... 35

Xlll

LIST OF FIGURES X I V

3.5 Relative run-time performance of the proposed column-net/row-
net hypergraph model (Clique-net, liMeTiS, PaToH-HCM
and PaToH-HCC) to the graph model (pMeTiS) in row-
wise/columnwise decomposition of symmetric test matrices. Bars
above 1.0 indicate that the hypergraph model leads to slower de
composition time than the graph model. 49

3.6 Relative run-time performance of the proposed column-net hy
pergraph model (Clique-net, hMeTiS, PaToH-HCM and PaToH-
HCC) to the graph model (pMeTiS) in rowwise decomposition of
symmetric test matrices. Bars above 1.0 indicate that the hyper
graph model leads to slower decomposition time than the graph
model.. 50

3.7 Relative run-time performance of the proposed row-net hypergraph
model (Clique-net, hMeTiS, PaToH-HCM and PaToH-HCC) to
the graph model (pMeTiS) in columnwise decomposition of sym
metric test matrices. Bars above 1.0 indicate that the h3̂ pergraph
model leads to slower decomposition time than the graph model. . 51

4.1 Dependenc}' ̂ relation of 2D fine-grain hypergraph m o d e 56

4.2 A 8 X 8 nonsymmetric matrix A ... 57

4.3 2D fine-grain hypergraph representation R of the matrix A dis
played in Figure 4.2 and 3-way partition U oil-L.............................. 57

4.4 Decomposition result of the sample given in Figure 4.3 60

4.5 A 16 X 16 nonsymmetric matrix A .. 62

4.6 Jagged-like 4-way decomposition. Phase 1: Column-net represen
tation R ti of A and 2-way partitioning H of the T in 63

4.7 Jagged-like 4-way decomposition. Phase 1: 2-way rowwise decom
position of matrix A^’ obtained by permuting A according to the
partitioning induced by H 64

LIST OF FIGURES X V

4.8 Jagged-like 4-way decomposition, Phase 2: Row-net representa
tions of submatrices of A and 2-way partitionings......................... 65

4.9 Jagged-like 4-way decomposition, Phase 2; Final permuted matrix. 66

5.1 Partial illustration of two sample GPVS result to demonstrate the
flaw of the graph model in multilevel framework.............................. 78

5.2 2 level recursive partitioning of A and its transpose 80

5.3 Resulting DB form of AA'^, for matrix A displayed in Figure 5.2 . 80

5.4 Clique discarding algorithm for R = (Κ,Λί). Here, Ç = (V,S) is
the NIG representation of Ή ... 81

5.5 A sample partial matrix and NIG representation of associated hy
pergraph to illustrate the clique discarding a lg o rith m 82

5.6 A sample matrix, its associated row-net hypergraph and NIG rep
resentation of the associated hypergraph 84

5.7 Hypergraph Sparsening Algorithm for Ή = (¿7, Λ/")......................... 85

5.8 4-way decoupled matrix Z using recursive dissection. 90

6.1 Cut-net splitting during recursive bisection. 98

6.2 Matching-based clustering and agglomerative clustering
A|iC’c j-^atrix A().. 101

List o f Tables

3.1 Properties of test matrices... 45

3.2 Average communication requirements for rowwise/columnwise de
composition of structurally symmetric test matrices........................ 46

3.3 Average communication requirement for rowwise decomposition of
structurally nonsymmetric test matrices.. 47

3.4 Average communication requirements for columnwise decomposi
tion of structurally nonsymmetric test matrices................................ 48

3.5 Overall performance averages of the proposed hypergraph models
normalized with respect to those of the graph models using pMeTiS. 52

4.1 Properties of test m atrices.. 70

4.2 Average communication volume requirements of the proposed hy
pergraph models and standard graph model, “tot” denotes the
total communication volume, whereas “max” denotes the maxi
mum communication volume handled by a single processor, “bal”
denotes the percent imbalance ratio found by the respective tool
for each instance. 73

4.3 Average communication requirements of the proposed hypergraph
models and standard graph model, “avg” and “max” denote the
average and maximum number of messages handled by a single
processor... 74

X V I

LIST OF TABLES X V l l

4.4 Average execution times, in seconds, of the MeTiS and PaToH
for the standard graph model and proposed hypergraph models.
Numbers in the parentheses are the normalized execution times
with respect to Graph Model using MeTiS.. 75

5.1 Properties of test matrices and results of MMD orderings............ 92

5.2 Compression and sparsening re su lts ... 93

5.3 Operation counts of various methods relative to MMD 94

5.4 Nonzero counts of various methods relative to MMD 95

5.5 Ordering runtimes of various methods relative to M M D 96

Chapter 1

Introduction

Graphs have been widely used to represent sparse matrices for various scientific
applications including one-dimensional decomposition of sparse matrices for par
allel sparse-matrix vector multiplication (SpMxV) and sparse matrix reordering
for low fill factorization. In this work, we show the flaws of the graph models in
these applications. We propose novel h}'^pergraph models to avoid the flaws of
the graph models.

In the subsequent sections of this chapter, the contributions are briefly sum
marized. Chapter 2 introduces the notation and background information for
graph and hypergraph partitioning, and matrix reordering problems. The thesis
work is mainly divided into four parts:

1. one-dimensional (ID) decomposition for parallel SpMxV,

2. two-dimensional (2D) decomposition for parallel SpMxV,

3. hypergraph partitioning-based sparse matrix ordering

4. development of a multilevel hypergraph partitioning tool for experimental
verification of the proposed methods.

These works are described and discussed in detail in Chapters 3, 4, 5, and 6,
respectively.

CHAPTER 1. INTRODUCTION

1.1 Sparse M atrix Decom position for Parallel

M atrix-Vector M ultiplication

Iterative solvers are widely used for the solution of large, sparse, linear system of
equations on multicomputers. Two basic types of operations are repeatedly per
formed at each iteration. These are linear operations on dense vectors and sparse-
matrix vector product of the form y= A x, where A is an Af x M square matrix
with the same sparsity structure as the coefficient matrix [10, 14, 17, 18, 19, 66],
and y and x are dense vectors. In order to avoid the communication of vector
components during the linear vector operations, a symmetric partitioning scheme
is adopted. That is, all vectors used in the solver are divided conformally with
each other. In particular, the x and y vectors are divided as [x i,. . . ,x/<-]‘ and
[yi> · ■ · >y/<']S respectively. To compute the matrix vector product in parallel,
matrix A is distributed among processors of the underlying parallel architecture.
A can be written as A = where the A* matrix is owned by processor Pk,
and the structure of the Â “ matrices are mutually disjoint. The matrix-vector
multiply is then computed as y = y*, where y* = A ^ x . Depending on the
way in which A is partitioned among the processors, entries in x and/or entries
in y*̂ may need to be communicated among the processors. Our goal here, is
to find a decomposition that minimizes the total communication volume among
the processors. Two types of decompositions can be applied; ID and 2D decom
position. In ID decomposition, each processor is enforced to own either entire
rows, (rowwise decomposition) or entire columns (columnwise decomposition).
In parallel SpMxV, the rowwise and columnwise decomposition schemes require
communication before or after the local SpMxV computations, thus they can also
be considered as pre and post communication schemes, respectively. In rowwise
decomposition, only the entries in x need to be communicated just before the
local SpMxV computations. In columnwise decomposition, only the entries in y*'
need to be communicated after local SpMxV computations. In 2D decomposi
tion,])rocessors are not imposed to own entire rows or columns. Therefore, both
the entries in x and y^ need to be communicated among the processors. That
is, both pre and post communication phases are needed in the 2D decomposition

schemes.

CHAPTER 1. INTRODUCTION

In SpMxV computation, each nonzero element in a row/column incurs a
multiply-add operation. Hence by assigning nonzero count to each row/column,
load balancing problem in ID decomposition can be considered as the number
partitioning problem. Nastea et. al. [63] proposed a greedy heuristic to allocate
rows of the matrix to the processors, namely GALA. GALA is simply first-fit-
decreasing bin packing heuristic. They noticed that if the matrix has very dense
rows, the resulting load balance is not good. To elevate this problem, they split
the rows that have significantly large number of nonzero elements into several
parts prior to allocation process. Thus finer granularity of the allocation prob
lem leads to better load balancing results. However, the decomposition heuris
tics [63, 72] proposed for computational load balancing may result in an extensive
communication volume, since they do not consider the minimization of the com
munication volume during the decomposition.

Heuristics proposed for load balancing problem [64, 58, 57] in 2D decomposi
tion assumes that the underlying parallel algorithm for matrix-vector multiplica
tion is based on 2D checkerboard partitioning running on a 2D mesh architecture.
In checkerboard partitioning, assignment of matrix elements to processors pre
serves the integrity of the matrix by placing every row (column) of the matrix
into the processors lying in a single row (column) of the 2D mesh. Ogielski and
Aiello [64] proposed two heuristics which are based on the random permutation
of rows and columns. Hendrickson et.al. [39] noticed that most matrices used in
real applications have nonzero diagonal elements, and they state that it may be
advantageous to force an even distribution of these diagonal elements among pro
cessors and to randomly distribute the remaining nonzeros. Lewis and Geijn [58]
and Lewis et.al. [57] proposed a new scattered distribution of the matrix which
totally avoids the transpose operation required in [39].

In a /-sT-processor parallel architecture, load balancing heuristics for both ID
and 2D decomposition schemes may introduce an extensive amount of commu
nication since they do not consider the minimization of communication require
ment explicitly. For an M x M sparse matrix A, the worst-case communication
requirement in ID decomposition is K {K — 1) messages and {K — 1)M words,
and it occurs when each submatrix A* has at least one nonzero in each column
(row) in rowwise (columnwise) decomposition. The matrix-vector multiplication

CHAPTER 1. INTRODUCTION

algorithms based on 2D checkerboard partitioning [39, 58, 57] reduce the worst-
case communication to 2K {\/K — 1) messages and 2{\/K — T)M words. In this
approach, the worst-case occurs when each row and column of each submatrix
has at least one nonzero.

The computational graph model is widely used in the representation of
computational structures of various scientific applications, including repeated
SpMxV computations, to decompose the computational domains for paralleliza
tion [14, 15, 43, 48, 52, 53, 62, 70]. In this model, the problem of ID sparse matrix
decomposition for minimizing the communication volume while maintaining the
load balance is formulated as the well-known K-way graph partitioning by edge
separator (GPES) problem. In this work, we show the deficiencies of the graph
model for decomposing sparse matrices for parallel SpMxV. The first deficiency
is that it can only be used for structurally symmetric square matrices. In order
to avoid this deficiency, we propose a generalized graph model in Section 3.1.3
which enables the decomposition of structurally nonsymmetric square matrices
as well as symmetric matrices. The second deficiency is the fact that none of the
graph models reflects the actual communication requirement as will be described
in Section 3.2. These flaws are also mentioned in a concurrent work [35].

In this work, we propose two computational hypergraph models which avoid
all deficiencies of the graph model for ID decomposition. The proposed models
enable the representation and hence the ID decomposition of rectangular matri
ces [65] as well as symmetric and nonsymmetric square matrices. Furthermore,
they introduce an exact representation for the communication volume require
ment as described in Section 3.3. The proposed hypergraph models reduce the
decomposition problem to the well-known K-way hypergraph partitioning prob
lem widely encountered in circuit partitioning in VLSI layout design. Hence,
the proposed models will be amenable to the advances in the circuit partitioning
heuristics in the VLSI community. The detailed discussion and presentation of
the proposed hypergraph models can be found in Chapter 3.

There is no work in the literature which directly aims at the minimization
of communication requirements in 2D decomposition for parallel SpMxV com-
imtations. We propose three novel hypergraph models for 2D decomposition of
sparse matrices. A fine-grain hypergraph model is proposed in Section 4.1. In

CHAPTER, 1. INTRODUCTION

this fine-grain model, the nonzeros of the matrix are considered as the atomic
tasks in the decomposition. Two coarse-grain hypergraph models are proposed
in Sections 4.2 and 4.3. The coarse-grain models have two objectives. The first
objective is to reduce the decomposition overhead. The second objective is an
implicit effort towards reducing the amount of communication which is a valuable
asset in parallel architectures with high start-up cost. The first coarse-grain hy
pergraph model, produces jagged-like 2D decompositions of the sparse matrices.
The second hypergraph model is specifically designed for checkerboard partition
ing which is commonly used in the literature by the matrix-vector multiplication
algorithms [64, 58, 57, 39]. Details of these models are presented and discussed
in Chapter 4.

1.2 Sparse Matrix Ordering for Low Fill Factor

ization

For a symmetric matrix, the evolution of the nonzero structure during the
Cholesky factorization can easily be described in terms of its graph represen
tation. In graph terms, the elimination of a vertex creates edges for every pair
of its adjacent vertices. In other words, elimination of a vertex makes its adja
cent vertices clique of size its degree minus one. In this process, the added edges
directly correspond to the Ell in the matrix. The number of floating-point op
erations, also known as operation count, required to perform the factorization is
equal to the sum of the squares of the nonzeros of each eliminated row/column.
Hence it is also equal to the sum of the squares of the degrees of corresponding
vertices during the elimination. Obviously, the amount of fill and operation count
depends on the row/column elimination order. The aim of ordering is to reduce
these quantities, which yields both faster and less memory intensive factorization.

One of the most popular ordering methods is Minimum Degree (MD) heuris
tic [76]. Success of the MD heuristic is followed by many variants of it, such as
Quotient Minimum Degree (QMD) [30], Multiple Minimum Degree (MMD) [59],
Approximate Minimum Degree (AMD) [3], and Approximate Minimum Fill
(AMF) [71]. An alternative method nested dissection (ND) was proposed by

CHAPTER 1. INTRODUCTION

George [29]. The intuition behind this method is as follows. First a set of columns
S (separator), whose removal decouples the matrix into two parts, say X and Y,
is found. If we order S after X and Y, then no fill can occur in the off-diagonal
blocks. Elimination process in X and Y are independent tasks and they do not
incur any fill to each other. Hence, ordering of X and Y can be computed by
applying the algorithm recursively, or using any other technique. It is clear that,
the quality of the ordering depends on the size of S. In ND, separator finding
problem is usually formulated as graph partitioning by vertex separator (GPVS)
problem on the standard graph representation of the matrix.

In a recent work [11], we have shown that the hypergraph partitioning problem
can be formulated as a GPVS problem on its net intersection graph (NIG). In
matrix terms, this work shows that permuting a sparse matrix A into singly-
bordered block-diagonal form can also be formulated as permuting AA'^ into a
doubly-bordered block-diagonal (DB). Note that, nested dissection also requires
a DB form, in particular, borders in DB form correspond to separator S and
block-diagonals correspond to the X and Y parts. In this work, we exploit this
equivalence in the reverse direction. However, for a given hypergraph, although
its NIG representation is well-defined, there is no unique reverse construction. In
matrix terms, for a symmetric matrix Z there is no unique construction of Z =
AA^ decomposition. Luckily, in linear programming (LP) applications, interior
point type solvers require the solution oi Zx = b repeatedly, where Z = A D A ^.
Here, D is a diagonal matrix whose numerical values are changed in each iteration.
However, since it is diagonal, it doesn’t effect the sparsity pattern of the Z matrix.
In graph terms, if we represent A by its row-net hypergraph model, its NIG is the
graph representation of Z. Therefore we can use the hypergraph representation
of A for a hypergraph partitioning-based nested dissection ordering of Z. For
generalization, if A is unknown, we also propose a 2-clique decomposition C of
any symmetric matrix Z into Z = CC^. Details of this decomposition and
hypergraph partitioning-based ordering is presented in Chapter 5.

CHAPTER 1. INTRODUCTION

1.3 M ultilevel Hypergraph Partitioning

Decomposition and reordering are preprocessings introduced for the sake of ef
ficient parallelization and low fill factorization, respectively. Hence, heuristics
should run in low order polynomial time. Recently, multilevel graph partition
ing heuristics [13, 37, 48] have been proposed leading to fast and successful
graph partitioning tools Chaco [38], MeTiS [46], WGPP [33] and reordering tools
BEND [40], oMeTiS [46], and ordering code of WGPP [32]. We have exploited the
multilevel partitioning methods for the experimental verification of the proposed
hypergraph models in both sparse matrix decomposition problems and sparse ma
trix ordering. The lack of a multilevel hypergraph partitioning tool at the time
of this work was carried, led us to develop a multilevel h3̂ pergraph partitioning
tool PaToH. The main objective in the implementation of PaToH was a fair ex
perimental comparison of the hypergraph models with the graph models both in
sparse matrix decomposition and in sparse matrix ordering. Another objective
in our PaToH implementation was to investigate the performance of multilevel
approach in hypergraph partitioning as described in Chapter 6.

Chapter 2

Prelim inaries

In this chapter we will review definition of graph, hypergraph and partitioning
problems in Section 2.1 and 2.2, respectively. Attempts to· solve hypergraph
partitioning problem as graph partitioning problem are presented in Section 2.3.
Various partitioning heuristics and tools are summarized in Section 2.4. Sparse
matrix ordering heuristics and tools are presented in Section 2.5. We will review
how the graph partitioning by vertex separator problem is solved using graph
partitioning by edge separator methods in Section 2.6, and finally, we will discuss
the overlooked non-optimality of the this solution in Section 2.7.

2.1 Graph Partitioning

An undirected graph Q = {V,£) is defined as a set of vertices V and a set of edges
£. Every edge € £ connects a pair of distinct vertices Vi and Vj. We use the
notation Adj(vi) to denote the set of vertices adjacent to vertex Vi in graph Q. We
extend this operator to include the adjacency set of a vertex subset V'C V, i.e.,
Adj{V) = {vj e V —V' ; Vj € Ad,j{vi) for some u,; G V'}. The degree d,; of a vertex
Vi is equal to the number of edges incident to Wj, i.e., d,; = \Adj{vi)\. Weights
and costs can be assigned to the vertices and edges of the graph, respectively.
Let v>i and c,;y denote the weight of vertex u, ^ V and the cost of edge e,j G £,
respectively. Two partitioning problems can be defined on the graph, these are

CHAPTER 2. PRELIMINARIES

graph partitioning by edge separator and graph partitioning by node separator.
In the following subsections we will briefly describe these problems.

2.1.1 Graph Partitioning by Edge Separator (G PES)

An edge subset ¿̂ 5 C £ is a /iT-way edge separator if its removal disconnects
the graph into at least K connected components. I1gp£;5 = {Vi, V2, . . . , Vk } is a
K-way partition of Q by edge separator £s if the following conditions hold:

• each part Vk is a nonempty subset of V, i.e., C V and Vk ^ ^ for
l < k < K ,

• parts are pairwise disjoint, i.e., fi = 0 for all \ < k < I < K

• union of K parts is equal to V, i.e., Uf=i V/c = V.

Note that all edges between the vertices of different parts belong to £5 . Edges in
£ 5 are called cut (external) edges and all other edges are called uncut (internal)
edges. In a partition Ugpes of 0 , a vertex is said to be a boundary vertex if it
is incident to a cut edge. A K-way partition is also called a multiway partition
if K > 2 and a bipartition if K = 2. A partition is said to be balanced if each

part Vr- satisfies the balance criterion

< Wayg (1 + e), for k = 1 ,2 ,..., K. (2.1)

In (2.1), weight Wk of a part is defined as the sum of the weights of the
vertices in that part (i.e. Wk = Wavy = {Yf,i€V’̂ î)/ denotes the
wciight of each part under the perfect load balance condition, and e represents
the predetermined maximum imbalance ratio allowed. The cutsize definition for
representing the cost y;(ric;p/j5) of a partition IIg'pps is

X(ncPP5) - (‘iy (2,2)

CHAPTER 2. PRELIMINARIES 1 0

In (2.2), each cut edge eij contributes its cost to the cutsize. Hence, the
GPES problem can be defined as the task of dividing a graph into two or more
parts such that the cutsize is minimized, while the balance criterion (2.1) on part
weights is maintained. The GPES problem is known to be NP-hard even for
bipartitioning unweighted graphs [28].

2.1.2 Graph Partitioning by Vertex Separator (G PVS)

A vertex subset V.5 is a K-way vertex separator if the subgraph induced
by the vertices in V — V5 has at least K connected components. Hcpys =
{Pi, P2, · · ·, V/r; P5} is a K-way vertex partition of G by vertex separator V5 C V
if the following conditions hold:

• each part Vk is a nonempty subset of V, i.e., Vfc C V and V*, ^ 0 for
\ < k < K ,

• parts are pairwise disjoint, i.e., Vjt H = 0 for all 1 < /: < £ <

• parts and separator are disjoint, i.e., VjtnV5 = 0 for \ < k < K

• union of K parts and separator is equal to V, i.e., Uj^i Pjt U V5 = V,

• the removal of V5 gives K disconnected parts Vi, V2, .. ·, V/t-, i.e.,

Adj{Vk)CVs for l< k < K .

In a partition of a vertex u, G Vk is said to be a boundary vertex of
part Vk if it is adjacent to a vertex in V.5. A vertex separator is said to be narrow
if no subset of it forms a separator, and wide otherwise. The cost of a partition

IIgpi/s is
cost{Ilapvs) = X) Wi. (2.3)

Vi€V,s

In (2.3) each separator vertex contributes its weight to cost. Hence, the K-way
GPVS problem can be defined as the task of finding a K-way vertex separator
of minimum cost, while the balance criterion (2.1) on part weights is maintained.
GPVS problem is also known to be NP-hard [12].

CHAPTER 2. PRELIMINARIES 11

2.2 Hypergraph Partitioning (HP)

A hypergraph H — {V,Af) is defined as a set of vertices V and a set of nets
(hyperedges) Af among those vertices. Every net rij e Ai is a, subset of vertices,
i.e., UjCV. The vertices in a net rij are called its pins and denoted as pins[rij].
The size of a net is equal to the number of its pins, i.e., Sj = \pins[nj]\. The set
of nets connected to a vertex Vi is denoted as nets[vi]. The degree of a vertex
is equal to the number of nets it is connected to, i.e., di = \nets[vi]\. Graph is a
special instance of hypergraph such that each net has exactly two pins. Similar
to graphs, let Wi and Cj denote the weight of vertex Uj e V and the cost of net
UjEAf, respectively.

Definition of AT-way partition of hypergraphs is identical to that of GPES.
In a partition H of ?^, a net that has at least one pin (vertex) in a part is said
to connect that part. Connectivity set Aj of a net Uj is defined as the set of
parts connected by n,j. Connectivity Aj = |Aj| of a net n,j denotes the number
of parts connected by Uj. A net Uj is said to be cut if it connects more than
one part (i.e. Xj > 1) , and uncut otherwise (i.e. Xj = 1). The cut and uncut
nets are also referred to here as external and internal nets, respectiveljc The set
of external nets of a partition 11 is denoted as A/e - There are various [77, 21]
cutsize definitions for representing the cost x(II) of a partition 11. Two relevant
definitions are:

(a) x(ri) = and m x (n) = 5 : c , (X , - l) . (2.4)
Uj eMe Uj £Me

In (2.4.a), the cutsize is equal to the sum of the costs of the cut nets. In (2.4.b),
each cut net n, contributes Cj{Xj - 1) to the cutsize. Hence, the hypergraph
partitioning problem can be defined as the task of dividing a hypergraph into
two or more parts such that the cutsize is minimized, while a given balance
criterion (2.1) among the part weights is maintained. Here, part weight definition
is identical to that of the graph model. The hypergraph partitioning problem is
known to be NP-hard [56].

CHAPTER 2. PRELIMINARIES 1 2

2.3 Graph Representation of Hypergraphs

As indicated in the excellent survey by Alpert and Kahng [2], hj^pergraphs are
commonly used to represent circuit netlist connections in solving the circuit par
titioning and placement problems in VLSI layout design. The circuit partitioning
problem is to divide a system specification into clusters such that the number of
inter-cluster connections is minimized. Other circuit representation models were
also proposed and used in the VLSI literature including dual hypergraph, clique-
net graph and net-intersection graph (NIG) [2]. Hypergraphs represent circuits
in a natural way so that the circuit partitioning problem is directly described
as an HP problem. Hence, these alternative circuit representation models can
also be considered as alternative models for the HP problem so that the cutsize
in a partitioning of these models relate to the cutsize of a partitioning of the
hypergraph.

The dual of a given hypergraph R = (ZY, Af) is defined as a hypergraph T-L' ,
where the nodes and nets of R become, respectively, the nets and nodes of R '.
That is, R ' — {U',J\P) with nets[u[]—pins[ni] for each and riieA i, and
pins[n'j] = nets[uj] for each n'jEAf and Uj£U.

In the clique-net transformation model, the vertex set of the target graph is
equal to the vertex set of the given hypergraph with the same vertex weights. Each
net of the given hypergraph is represented by a clique of vertices corresponding
to its pins. That is, each net induces an edge between every pair of its pins. The
multiple edges connecting each pair of vertices of the graph are contracted into a
single edge of which cost is equal to the sum of the costs of the edges it represents.
In the standard clique-net model [56], a uniform cost of l / (s i ~l) is assigned to
every clique edge of net n,; with size Si. Various other edge weighting functions
are also proposed in the literature [2]. If an edge is in the cut set of a GPES then
all nets represented by this edge are in the cut set of hypergraph partitioning,
and vice versa. Ideally, no matter how vertices of a net are partitioned, the
contribution of a cut net to the cutsize should always be one in a bipartition.
However, the deficiency of the clique-net model is that it is impossible to achieve
such a perfect clique-net model [42]. Furthermore, the transformation may result
in very large graphs since the number of clique edges induced by the nets increase

CHAPTER 2. PRELIMINARIES 13

(juadratically with their sizes.

Recently, a randomized clique-net model implementation is proposed [1] which
yields very promising results when used together with graph partitioning tool
MeTiS. In this model, all nets of size larger than T are removed during the
transformation. Furthermore, for each net of size s,;, F x s i random pairs of
its pins (vertices) are selected and an edge with cost one is added to the graph for
each selected pair of vertices. The multiple edges between each pair of vertices
of the resulting graph are contracted into a single edge as mentioned earlier. In
this scheme, the nets with size smaller than 2F-t-l (small nets) induce larger
number of edges than the standard clique-net model, whereas the nets with size
larger than 2F+1 (large nets) induce smaller number of edges than the standard
clique-net model. Considering the fact that MeTiS accepts integer edge costs
for the input graph, this scheme has two nice features'. First, it simulates the
uniform edge-weighting scheme of the standard clique-net model for small nets
in a random manner since each clique edge (if induced) of a net rii with size
A·,: < 2F +1 will be assigned an integer cost close to 2^ / (5 ̂—1) on the average.
Second, it prevents the quadratic increase in the number of clique edges induced
by large nets in the standard model since the number of clique edges induced by
a net in this scheme is linear in the size of the net. In our implementation, we
use the parameters T = 50 and F = 5 in accordance with the recommendations
given in [1].

In the NIG representation Q — {V,S) of a given hjq^ergraph 'H = {U,Af), each
vertex Vi of 0 corresponds to net rii of R. Two vertices Vi,Vj E V of ^ are
adjacent if and only if respective nets rii,njEAf of R share at least one pin, i.e.,
(iij e £ \f and only if p'ins[n,:] r\pins[nj\ 7̂ 0. So,

Ad/j{vi) = {Vj : rij e Af 3 pins[ni] r\pins[nj] 7̂ 0} . (2.5)

The NIG representation Q for a hypergraph R can also be obtained by apply
ing the clique-net model to the dual hypergraph of R . Note that for a given
hypergraph R , NIG G is well-defined, however there is no unique reverse con
struction [2].

' [private (X)iniimnication with Alpei t.

CHAPTER 2. PRELIMINARIES 14

Both dual hypergraph and NIG models view the HP problem in terms of par
titioning nets instead of nodes. Kahng [44] and Cong, Hagen, and Kahng [22]
exploited this perspective of the NIG model to formulate the hypergraph biparti
tioning problem as a two-stage process. In the first stage, nets of H are biparti-
tioned through 2-way GPES of its NIG G- The resulting net bipartition induces
a partial node bipartition on R , since the nodes (pins) that belong only to the
nets on one side of the bipartition can be unambigiuosly assigned to that side.
However, other nodes may belong to the nets on both sides of the bipartition.
Thus, the second stage involves finding the best completion of the partial node bi
partition; i.e., a part assignment for the shared nodes such that the cutsize (2.4.a)
is minimized. This problem is known as the module (node) contention problem
in the VLSI community. Kahng [44] used a winner-loser heuristic [34], whereas
Cong et al. [22] used a matching-based (IG-match) algorithm for solving the 2-
way module contention problem optimally. Cong, Labio, and Shivakumar [23]
extended this approach to /P-way hj'pergraph partitioning through using the
dual hypergraph model. In the first stage, a K -way net partitioning is obtained
through partitioning the dual hypergraph. For the second stage, they formulated
the JP-way module contention problem as a min-cost max-flow problem through
defining binding factors between nodes and nets, and preference function between
parts and nodes.

2.4 Graph/Hypergraph Partitioning Heuristics

and Tools

Kernighan-Lin (KL) based heuristics are widely used for graph/hypergraph par
titioning because of their short run-times and good quality results. The KL
algorithm is an iterative improvement heuristic originally proposed for graph
bipartitioning [50]. The KL algorithm, starting from an initial bipartition, per
forms a number of passes until it finds a locally minimum partition. Each pass
consists of a sequence of vertex swaps. The same swap strategy was applied to
the hypergraph bipartitioning problem by Schweikert-Kernighan [74]. Fiduccia-
Mattheyses (FM) [27] introduced a faster implementation of the KL algorithm

CHAPTER 2. PRELIA4INARIES 15

for hypergraph partitioning. They proposed vertex move concept instead of ver
tex swap. This modification, as well as proper data structures, e.g., bucket lists,
reduced the time complexity of a single pass of the KL algorithm to linear in the
size of the graph and the hypergraph. Here, size refers to the number of edges
and pins in a graph and hypergraph, respectively.

The performance of the FM algorithm deteriorates for large and very sparse
graphs/hypergraphs. Here, sparsity of graphs and hypergraphs refer to their
average vertex degrees. Furthermore, the solution quality of FM is not stable
{predictable), i.e., average FM solution is significantly worse than the best FM
solution, which is a common weakness of the move-based iterative improvement
approaches. Random multi-start approach is used in VLSI layout design to allevi
ate this problem by running the FM algorithm many times starting from random
initial partitions to return the best solution found [2]. However, this approach is
not viable in parallel computing since decomposition is a preprocessing overhead
introduced to increase the efficiency of the underlying parallel algorithm/program.
Most users will rely on one run of the decomposition heuristic, so the quality of
the decomposition tool depends equally on the worst and average decompositions
than on just the best decomposition.

These considerations have motivated the two-phase application of the move-
based algorithms in hypergraph partitioning [31]. In this approach, a clustering
is performed on the original hypergraph Ho to induce a coarser hypergraph H \ .
Clustering corresponds to coalescing highly interacting vertices to supernodes
as a preprocessing to FM. Then, FM is run on Hi to find a bipartition H i,
and this bipartition is projected back to a bipartition Ho of Ho- Finally, FM
is re-run on Ho using Ho as an initial solution. Cong-Smith [24] introduced a
clustering algorithm which works on the graphs. They convert the hypergraph to
a graph by representing an r-pin net as a r —clique. Then they use a heuristic
algorithm to construct the clusters. The clustered graph is given as input to the
Fiduccia-Mattheyses algorithm. Shin-Kin [75] proposed a clustering algorithm
which works on hy])ergraphs, then a KL based heuristic is used to partition the
clustered hypergraph.

Recently, the two- phase approach has been extended to multilevel aj)-
proaches [13, 37, 48] leading to successful graph partitioning tools Chaco [38]

CHAPTER 2. PRELIMINARIES 16

and MeTiS [46]. These multilevel heuristics consist of 3 phases: coarsening, ini
tial partitioning and uncoarsening. In the first phase, a multilevel clustering is
applied starting from the original graph by adopting various matching heuristics
until the number of vertices in the coarsened graph reduces below a predeter
mined threshold value. In the second phase, the coarsest graph is partitioned
using various heuristics including FM. In the third phase, the partition found
in the second phase is successively projected back towards the original graph by
refining the projected partitions on the intermediate level uncoarser graphs using
various heuristics including FM.

The success of multilevel algorithms both in runtime and solution quality
makes them as a standard for the partitioning problem. The lack of a multi
level hypergraph partitioning tool at the time of this work was carried led us to
develop a multilevel hypergraph partitioning tool PaToH for a fair experimen
tal comparison of the hypergraph models with the graph models. The details of
PaToH will be described in Chapter 6. Since multilevel graph partitioning tool
MeTiS is accepted as the state-of-the-art partitioning tool, we have also used it
for hypergraph partitioning problem with a hybrid approach using randomized
clique-net.

2.5 Sparse Matrix Ordering Heuristics and

Tools

As we mentioned earlier, the most popular ordering method is Minimum Degree
(MD) heuristic [76]. The motivation of this method is simple. Since elimination
of a vertex causes its adjacent vertices to become adjacent, MD selects a vertex
of minimum degree to eliminate next. Success of the MD heuristic is followed
l)y many variants of it. Very first implementations, such as Quotient Minimum
Degree (QMD) [30] was too slow, although it is an in-place algorithm (that is
no extra storage is required for fill-edges). A faster variant is Multiple Minimum
D(igree (MMD) [59]. It reduces the runtime of the heuristic by eliminating a set
of vertex of minimum degree. By computing upper bound on a vertex’s degree
rather than the true degree, runtime of the heuristic even further reduced by

CHAPTER 2. PRELIMINARIES 17

the recent variant Approximate Minimum Degree (AMD) [3]. Another recently
proposed variant is Approximate Minimum Fill (AMF) [71]. This method uses
the selection criteria that roughly approximate the amount of fill that would be
generated by the elimination of a vertex instead of using the vertex degree.

As stated before, Nested Dissection (ND) is an alternative to MD algorithm.
However, although good theoretical results are presented in [29], nested dissection
has not been used until recently. Evolution of the graph partitioning tools have
changed the situation and better methods for finding graph separators are avail
able now, including Kernighan-Lin and Fiduccia-Mattheyses and their multilevel
variants [50, 27, 12, 45, 37], vertex-separator Fiduccia-Mattheyses variants [6, 41]
and spectral methods [68, 69].

The multilevel GPES approaches have been used in several multilevel nested
dissection implementations based on indirect 2-way GPVS, e.g., oemetis ordering
code of MeTiS [46]. Converting the solution of GPES to GPVS will be briefly
described in the next section. Recently, direct 2-way GPVS approaches have been
embedded into various multilevel nested dissection implementations [33, 40, 46].
In these implementations, a 2-way GPVS obtained on the coarsest graph is refined
during the multilevel framework of the uncoarsening phase. Two distinct vertex-
separator refinement schemes were proposed and used for the uncoarsening phase.
The first one is the extension of the FM edge-separator refinement approach to
vertex-separator refinement as proposed by Ashcraft and Liu [5]. This scheme
considers vertex moves from vertex separator V5 to both Vi and V2 in Hgpvs =

{Vi,V2;V5}. This refinement scheme is adopted in the onmetis ordering code
of MeTiS [46], ordering code of WGPP [33], and the ordering code BEND [40].
The second scheme is based on Liu’s narrow separator refinement algorithm [60],
which considers moving a set of vertices simultaneously from V5 at a time, in
contrast to the FM-based refinement scheme [5], which moves only one vertex at
a time. Liu’s refinement algorithm [60] can be considered as repeatedly running
the maximum-matching based vertex cover algorithm on the bipartite graphs
induced by the edges between V] and V5 , and V2 and V5 . That is, the wide
vertex separator consisting of V5 and the boundary vertices of Vi (V2) is refined
as in the GPES-based wide-to-narrow separator refinement scheme. The network-
flow based minimum weighted vertex cover algorithms proposed by Ashcraft and

CHAPTER 2. PRELIMINARIES 18

Liu [8], and Hendrickson and Rothberg [40] enabled the use of Liu’s refinement
approach [60] on the coarse graphs within the multilevel framework.

2.6 Solving GPVS Through GPES

Until recently, instead of solving the GPVS problem directly, it is solved through
GPES. These indirect GPVS approaches first perform a GPES on the given graph
to minimize the number of cut edges (i.e., Cij = 1 in (2.2)) and then take the
boundary vertices as the wide separator to be refined to a narrow separator.
The wide-to-narrow refinement problem is described as a minimum vertex cover
problem on the subgraph induced by the cut edges [68]. A minimum vertex cover
is taken as a narrow separator for the whole graph, since each cut edge will be
adjacent to a vertex in the vertex cover. That is, let Vsk Q denote the set
of boundary vertices of part V* in a partition nGP£;5 = {Vj,. . . , Va-} of a given
graph g = {V,£) by edge separator £ s C £ . Then, JC{£s) = (Vb = Uk=i^Bk,£s)
denotes the A'-partite subgraph of Q induced by ¿̂5 . A vertex cover

on JC{£s) constitutes a AT-way GPVS Hgpvs = {T\ — Vs\·, ■ ■ ■ -,Vk — Vs k ’ iVs } of
Q, where C Vsk denotes the subset of boundary vertices of part V/<- that
belong to the vertex cover of K,{£s)· A minimum vertex cover V5 of lC{£s)
corresponds to an optimal refinement of the wide separator Vp into a narrow
separator V5 under the assumption that each boundary vertex is adjacent to at
least one non-boundary vertex in Hopes (see Section 2.7).

A minimum vertex cover of a bipartite graph can be computed optimally in
polynomial time by finding a maximum cardinality matching, since these are dual
concepts [54, 67, 68]. So, the wide-to-narrow separator refinement problem can
easily be solved using this scheme for 2-way indirect GPVS, because the edge
separator of a 2-way GPES induces a bipartite subgraph. This scheme has been
widely exploited in a recursive manner in the nested-dissection based A'-way
indirect GPVS for ordering symmetric sparse matrices, because a 2-way GPES is
ado])ted at each dissection step. However, the minimum vertex cover problem is
known to be NP-hard on A'-partite graphs at least for K >5 [28], thus we need to
resort to heuristics. Leiserson and Lewis [55] proposed two greedy heuristics for
this purpose, namely minimum recovery (MR) and maximum inclusion (A4I). The

CHAPTER 2. PRELIMINARIES 19

MR heuristic is based on iteratively removing the vertex with minimum degree
from the A'-partite graph K,{£s) and including all vertices adjacent to that vertex
to the vertex cover V5 . The MI heuristic is based on iteratively including the
vertex with maximum degree into V5 . In both heuristics, all edges incident to
the vertices included into V5· are deleted from IC{Ss) so that the degrees of the
remaining vertices in IC{£s) are updated accordingly. Both heuristics continue
the iterations until all edges are deleted from IC{£s)·

Here, we reveal the fact that the module contention problem encountered in
the second stage of the NIG-based hypergraph bipartitioning approaches [22, 44]
is similar to the wide-to-narrow separator refinement problem encountered in the
second stage of the indirect GPVS approaches widely used in nested dissection
based ordering. The module contention and separator refinement algorithms ef
fectively work on the bipartite graph induced by the cut edges of a two-way GPES
of the NIG representation of hypergraphs and the standard graph representation
of sparse matrices, respectively. The winner-loser assignment heuristic [34, 44]
used by Kahng [44] is very similar to the minimum-recovery heuristic proposed
by Leiserson and Lewis [55] for separator refinement. Similar^, the IG-match al
gorithm proposed by Cong et al. [22] is similar to the maximum-matching based
minimum vertex-cover algorithm [54, 67] used by Pothen, Simon, and Liou [68]
for separator refinement. Despite not being stated in the literature, these net-
bipartitioning based HP algorithms using the NIG model can be viewed as trying
to solve the HP problem through an indirect GPVS of the NIG representation.

2.7 Vertex-Cover Model: On the Optimality of

Separator Refinement

For 2-way GPES based GPVS, it was stated [67] that the minimum vertex cover
V,s· of the bipartite graph IC{£s) = (V/j = Vb i CV i3 2 ,£.s) induced by an edge
separator £s of GPES of Uopes = {Vi. V2} of ^ is a smallest vertex separator
of Q corresponding to £ 3 ■ Recall that V^k denotes the set of boundary verticois
of part Vk. Here, we would like to discuss that this correspondence docs not
guarantee the optimality of the wide-to-narrow separator refinement. That is.

CHAPTER 2. PRELIMINARIES 2 0

V.

Figure 2.1: A sample 2-way GPES for wide-to-narrow separator refinement.

the minimum vertex cover of K,{£s) may not constitute a minimum vertex
separator that can be obtained from the wide separator V s. We can classify the
boundary vertices Vsk of a part Vk as loosely-bound and tightly-bound vertices.
A loosely-bound vertex V{ of Vsfc is not adjacent to any non-boundary vertex of
Vfc, i.e., Adj{vi,Vk) = Adj{vi)r\VkQVBk-{vi}, whereas a tightly-bound vertex Vj
of Vek is adjacent to at least one non-boundary vertex of i.e., Adj{vj,Vk —
Vsfc) 7̂ 0· Each cut edge between two tightly-bound vertices should always be
covered by a vertex cover Vs of)C{£s) for Vs to constitute a separator of Q.
However, it is an unnecessarily severe measure to impose the same requirement
for a cut edge incident to at least one loosely-bound vertex. If all vertices in Vsk
that are adjacent to a loosely-bound vertex Vi € Vsk are included into Vs then
cut edges incident to Vi need not to be covered. For example. Fig. 2.1 illustrates
a 2-way GPES, where '02 € Vbi is a loosely-bound vertex and all other vertices
are tightly-bound vertices. Fig. 2.2 illustrates two optimal vertex covers Vs =

'î 2, a n d Vs = {'«1, «6, U7}, each of size 3, on bipartite graph lC{£s)· Vertices
ue and v-z are included into Vs in the former and latter solutions, respectively,
to cover cut edge {v-zyub). However, in both solutions, Adj{v2 ,Vi) = {ui,U3}
remains in the optimal vertex cover so that there is no need to cover cut edge
{v2 -,v^). Hence, there exists a wide-to-narrow separator refinement Vs = {'yi,'C3}

of size 2 as shown in Fig. 2.3.

As mentioned in Section 2.5, Liu’s narrow separator refinement algorithm [60]
can also be considered as exploiting the vertex cover model on the bipartite graph
induced by the edges between Vi and Vs (V2 and Vs) of a GPVS Hcpys =
{Vi, V2; Vs}. So, the discussion given here also applies to Liu’s narrow separator
refinement algorithm, where loosely-bound vertices can only exist in the Vi (V2)

CHAPTER 2. PRELIMINARIES 2 1

(a)

V,

(b)

Figure 2.2: Two wide-to-narrow separator refinements induced by two optimal
vertex covers.

Figure 2.3: Optimal wide-to-narrow separator refinement.

CHAPTER 2. PRELIMINARIES 2 2

part of the bipartite graph.

The non-optimality of the minimum vertex-cover model has been overlooked
most probably because of the fact that loosely-bound vertices do not likely exist
in the GPVS of graphs arising in finite difference and finite element applications.

Chapter 3

Hypergraph M odels for ID
D ecom position

For parallel sparse-matrix vector product (SpMxV) using ID decomposition, an
M X M square sparse matrix A can be decomposed in two ways; rowwise or
columnwise

A =

Ai

A’·■̂ K

and A = [A^· ·A^· ·A ' /<])

where processor owns row stripe A^ or column stripe A^., respectively, for a
parallel system with K processors. As discussed in the introduction chapter, in
order to avoid the communication of vector components during the linear vector
operations, a symmetric partitioning scheme is adopted. That is, all vectors used
in the solver are divided conformally with the row partitioning or the column
partitioning in rowwise or columnwise decomposition schemes, respectively. In
particular, the x and y vectors are divided as [xi, . . . and [yi, ■.. ,y/<]S
respectively. In rowwise decomposition, processor Pk is responsible for comput
ing Yf, = and the linear operations on the k-th blocks of the vectors. In
columnwise decomposition, processor P^ is responsible for computing = Alxk

23

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 24

(where y = y^) and the linear operations on the A:-th blocks of the vectors.
With these decomposition schemes, the linear vector operations can be easily and
efficiently parallelized [10, 66], such that only the inner-product computations in
troduce global communication overhead of which its volume does not scale up
with increasing problem size. In parallel SpMxV, the rowwise and columnwise
decomposition schemes require communication before or after the local SpMxV
computations, thus they can also be considered as pre and post communication
schemes, respective!}'. Depending on the way in which the rows or columns of
A are partitioned among the processors, entries in x or entries in y^ may need
to be communicated among the processors. Unfortunately, the communication
volume scales up with increasing problem size. Our goal is to find a rowwise
or columnwise partition of A that minimizes the total volume of communication
while maintaining the computational load balance.

The computational graph model is widely used in the representation of com
putational structures of various scientific applications, including repeated Sp
MxV computations, to decompose the computational domains for paralleliza
tion [14, 15, 43, 48, 52, 53, 62, 70]. In this model, the problem of ID sparse
matrix decomposition for minimizing the communication volume while maintain
ing the load balance is formulated as the well-known K-way graph partitioning
problem. However, none of the graph models reflects the actual communica
tion requirement as will be described in Section 3.2. In this work, we propose
two computational hypergraph models which avoid all deficiencies of the graph
model for ID decomposition. The proposed hypergraph models reduce the de
composition problem to the well-known K-way hypergraph partitioning problem
widely encountered in circuit partitioning in VLSI layout design.

Experimental results presented in Section 3.4 confirm the validity of our pro
posed hypergraph models. The hypergraph models using PaToH and liMeTiS
produce 30%-38% better decompositions than the graph models using MeTiS,
while the hypergraph models using PaToH are only 34%-130% slower than the
graph models using the most recent version (Version 3.0) of MeTiS, on the aver-

age.

3.1 Graph Models for Sparse M atrix Decom po
sition

3.1.1 Standard Graph M odel for Structurally Symmetric

M atrices

CHAPTER 3. HYPERGRAPH MODELS FOR. ID DECOMPOSITION 25

A structurally symmetric sparse matrix A can be represented as an undirected
graph Ga = {P,^), where the sparsity pattern of A corresponds to the adjacency
matrix representation of graph Qa ■ That is, the vertices of Qa correspond to the
rows/columns of matrix A, and there exist an edge Cij &£ for i ^ j if and only
if off-diagonal entries aij and aji of matrix A are nonzeros. In rowwise decom
position, each vertex Uj G V corresponds to atomic task i of computing the inner
product of row i with column vector x. In columnwise decomposition, each vertex
V i G V corresponds to atomic task i of computing the sparse SAXPY/DAXPY
operation y = y + .x'ia,j, where a*j denotes column i of matrix A. Hence, each
nonzero entry in a row and column of A incurs a multiply-and-add operation dur
ing the local SpMxV computations in the pre and post communication schemes,
respectively. Thus, computational load Wi of row/column i is the number of
nonzero entries in row/column i. In graph theoretical notation, Wi = di when
(la = 0 and Wi — di + 1 when au^O. Note that the number of nonzeros in row i
and column i are equal in a symmetric matrix.

This graph model displays a bidirectional computational interdependency
view for SpMxV. Each edge e,;j G £ can be considered as incurring the com
putations yi‘<r-yi+aij xx j and yj i-yj+ajiXXi· Hence, each edge represents the
Ijidirectional interaction between the respective pair of vertices in both inner and
outer product computation schemes for SpMxV. If rows (columns) i and j are
assigned to the same processor in a rowwise (columnwise) decomposition, then
edge e-ij does not incur any communication. However, in the pre-communication
scheme, if rows i and j are assigned to different processors then cut edge c-ij
necessitates the communication of two floating-point words because of the need
of the exchange of updated Xi and Xj values between atomic tasks i and j just
before the local SpMxV computations. In the post-communication scheme, if

CHAPTER 3. HYPERGRAPH MODELS FOR. ID DECOMPOSITION 26

columns i and j are assigned to different processors then cut edge e,;j necessi
tates the communication of two floating-point words because of the need of the
exchange of partial iji and yj values between atomic tasks i and j just after
the local SpMxV computations. Hence, by setting Cij = 2 for each edge CijES,
both rowwise and columnwise decompositions of matrix A reduce to the A-way
partitioning of its associated graph Ga according to the cutsize definition given
in (2.2). Thus, minimizing the cutsize is an effort towards minimizing the total
volume of interprocessor communication. Maintaining the balance criterion (2.1)
corresponds to maintaining the computational load balance during local SpMxV
computations.

Each vertex Vi G V effectively represents both row i and column i in G a
although its atomic task definition differs in rowwise and columnwise decomposi
tions. Hence, a partition H of G a automatically achieves a symmetric partitioning
by inducing the same partition on the y-vector and x-vector components since a
vertex Vi^iVk corresponds to assigning row i (column f), j/j and xi to the same
part in rowwise (columnwise) decomposition.

In matrix theoretical view, the symmetric partitioning induced b}'̂ a partition
n of G A can also be considered as inducing a partial symmetric permutation
on the rows and columns of A. Here, the partial permutation corresponds to
ordering the rows/columns assigned to part Pk before the rows/columns assigned
to part Pfc+i, for A; = 1, . . . , A - 1, where the rows/columns within a part are
ordered arbitrarily. Let Â ̂ denote the permuted version of A according to a
partial symmetric permutation induced by H . An internal edge eij of a part Vk
corresponds to locating both aij and (iji in diagonal block A [\. An external edge
(iij of cost 2 between parts Vk corresponds to locating nonzero entry aij
of A in off-diagonal block Aj[?̂ and a.;,; of A in off-diagonal block A ^ , or vice
versa. Hence, minimizing the cutsize in the graph model can also be considered
as permuting the rows and columns of the matrix to minimize the total number
of nonzeros in the off-diagonal blocks.

Figure 3.1 illustrates a sample 10 x 10 symmetric sparse matrix A and its as
sociated graph G A ■ The numbers inside the circles indicate the computational
weights of the respective vertices (rows/columns). This figure also illustrates a

CHAPTER 3. HYPER.GRAPH MODELS FOR ID DECOMPOSITION 27

Figure 3.1: Two-way rowwise decomposition of a sample structurally symmetric
matrix A and the corresponding bipartitioning of its associated graph ■

rowwise decomposition of the symmetric A matrix and the corresponding bipar
titioning of Ça for a two-processor system. As seen in Fig. 3.1, the cutsize in
the given graph bipartitioning is 8 which is also equal to the total number of
nonzero entries in the off-diagonal blocks. The bipartition illustrated in Fig. 3.1
achieves perfect load balance by assigning 21 nonzero entries to each row stripe.
This number can also be obtained by adding the weights of the vertices in each
part.

3.1.2 B ipartite Graph M odel for Rectangular M atrices

The standard graph model is not suitable for the partitioning of nonsymmetric
matrices. A recently proposed bipartite graph model [36, 51] enables the par
titioning of rectangular as well as structurally symmetric/nonsymmetric square
matrices. In this model, each row and column is represented by a vertex, and
the sets of vertices representing the rows and columns form the bipartition, i.e.
V = V77, U Vc · There exists an edge between a row vertex i ^ Vjz and a column
vertex j € Vc if and only if the respective entry Uij of matrix A is nonzero.
Partitions U.TI and lie on Vn and Vc, respectively, determine the overall parti
tion n = {7̂ 1, . . . , , where Vk = U Vq̂ for k = 1, . . . , A. For rowwise
(columnwise) decomposition, vertices in Vn (Vc) are weighted with the number
of nonzeros in the respective row (column) so that the balance criterion (2.1) is
imposed only on the partitioning oi Vn (Vc). As in the standard graph model,
minimizing the number of cut edges corresponds to minimizing the total number
of nonzeros in the off-diagonal blocks.

CHAPTER 3. HYPERGRAPH MODELS EOR ID DECOMPOSITION 28

This approach has the flexibility of achieving nonsymmetric partitioning. In
the context of parallel SpMxV, the need for symmetric partitioning on square
matrices is achieved by enforcing Uyz = Tic· Hendrickson and Kolda [36] pro
pose several bipartite-graph partitioning algorithms that are adopted from the
techniques for the standard graph model and one partitioning algorithm that is
speciflc to bipartite graphs.

3.1.3 Proposed Generalized Graph M odel for Structurally

Sym m etric/N onsym m etric Square M atrices

In this work, we propose a simple yet effective graph model for symmetric parti
tioning of structurally nonsymmetric square matrices. The proposed model en
ables the use of the standard graph partitioning tools without any modiflcation.
In the proposed model, a nonsymmetric square matrix A is represented as an
undirected graph Çyi = and Oc = (Yc,^) for rowwise and columnwise de
composition schemes, respectively. Graphs and Qc differ only in their vertex
weight definitions. The vertex set and the corresponding atomic task definitions
are identical to those of the symmetric matrices. Hence, computational weight
Wi of a vertex Vi E Vn of Q-jz and a vertex Vi E Vc of Qc are equal to the total
number of nonzeros in row i and column % in the pre and post communication
schemes, respectivel}c

Both edge set and edge weight definitions are different than those of the
symmetric matrices. In the edge set T, CijES if and only if off-diagonal entries
ttjy 7̂ 0 or ajiz^O. That is, the vertices in the adjacency list of a vertex Vi denote
the union of the column indices of the off-diagonal nonzeros at row i and the row
indices of the off-diagonal nonzeros at column i . The cost Cij of an edge is set
to 1 if either or a îT^O, and it is set to 2 if both and Note
that each row and column of matrix A are effectively represented by the same
vertex as a simple means for enforcing symmetric permutation. The proposed
scheme is referred to here as a generalized model since it automatically produces
the existing graph representation for symmetric matrices by computing the same
cost of 2 for every edge.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 29

Figure 3.2: Two-way rowwise decomposition of a sample structurally nonsym-
metric matrix A and the corresponding bipartitioning of its associated graph
Qu

in the proposed model, each edge with a cost of 2 represents the bidirectional
interaction between the respective pair of vertices in an identical manner to that
of the symmetric matrices. However, each edge with a cost of 1 represents an
unidirectional interaction between the respective pair of vertices. That is, each
edge 6 ij G S with C{j = 1 incurs the computation of either Vi yi + aij x Xj or
Uj ^ Vj + ^ji ^ depending on whether a,;j#0 or ajj^O, respectively. Hence,
in inner-product computation scheme for SpMxV, an edge Cij 6 £ with dj = 1
denotes the dependency relation of either atomic task i to Xj or atomic task j to
Xi. A dual discussion holds for outer-product multiplication scheme. However,
this ambiguity does not constitute any problem in the proposed model. If rows
(columns) i and j are assigned to different processors in a rowwise (columnwise)
decomposition, then cut edge with c,j = 1 always necessitates the communi
cation of a single floating-point word as follows. In rowwise decomposition, each
cut edge e,;j € £ with = 1 incurs the communication of either updated X{ or Xj
value just before the local SpMxV computations. In columnwise decomposition,
each cut edge eij G £ with = 1 incurs the communication of either partial y,;
or '{¡j result just after the local SpMxV computations.

Figure 3.2 illustrates a sample 10x10 nonsymrnetric sparse matrix A and
its associated graph Q-ji for rowwise decomposition. The numbers inside the
circles indicate the computational weights of the respective vertices (rows). This
figure also illustrates rowwise decomposition of the matrix and the corresponding
bipartitioning of its associated graph for a two-processor system. As seen in
Fig. 3.2, the cutsize of the given graph bipartitioning is 7 which is also equal to the
total number of nonzero entries in the off-diagonal blocks. Hence, similar to the

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 30

symmetric matrix case, minimizing cutsize in the proposed graph model can also
be considered as permuting the rows and columns of the matrix to minimize the
total number of off-block-diagonal nonzeros. As seen in Fig. 3.2, the bipartitioning
achieves perfect load balance by assigning 16 nonzero entries to each row part. As
mentioned earlier, Qc model of sample matrix A for columnwise decomposition
differs from Qti only in vertex weights. Hence, the graph bipartitioning illustrated
in Fig. 3.2 can also be considered as incurring a slightly imbalanced (15 versus
17 nonzeros) columnwise decomposition of sample matrix A (shown by vertical
dash line) with identical communication requirement.

The storage requirements of the standard and proposed graph models is as
follows. For an M x M square matrix with Z off-diagonal nonzero entries, the
graph models contain \V\ = M vertices for both symmetric and nonsymmetric ma
trices. The graph model contains exactly \S\ — ZI2 edges for symmetric matrices.
However, the number of edges in the graph model for nonsymmetric matrices may
vary between Zj2 and Z (i.e., Z/2 < \£\ < Z), because every symmetric pair
off-diagonal nonzeros aij 7̂ 0 and aji 7̂ 0 in an nonsymmetric matrix decrease
the number of edges by 1 from Z towards Z/2. In the graph models of both
symmetric and nonsymmetric matrices, M words are required to store vertex
weights, and M words are needed to store the starting indices of the adjacency
lists. There is no need to store the edge costs for symmetric matrices since all
edge costs are equal to 2 , therefore Z words suffices to store \£\ = Zj2 edges
as each edge has to be stored twice in the adjacency list representation. How
ever, edge costs have to be stored in the graph model for nonsymmetric matrices
because of different edge costs of 2 and 1. Therefore, the storage requirement
of the graph models is Sg = 2M -I- Z words for symmetric matrices, whereas it
may vary between 2M+2Z and 2M+4Z words for nonsymmetric matrices (i.e.,
2M+2Z < S g < 2M+4Z).

3.2 Flaws of the Graph M odels

Consider the symmetric matrix decomposition given in Fig. 3.1. Assume that
])arts V] and V2 mapped to processors Pj and P2, respectively. The cutsize

CHAPTER 3. HYPER.GRAPH MODELS FOR ID DECOMPOSITION 31

of the bipartition shown in this figure is equal to 2x4 = 8 , thus estimating the com
munication volume requirement as 8 words. In the pre-communication scheme,
off-block-diagonal entries a4 j and assigned to processor Pi display the same
need for the nonlocal x-vector component xj twice. However, it is clear that
processor P2 will send X7 only once to processor P i . Similarly, processor Pi will
send X4 only once to processor P2 because of the off-block-diagonal entries 07,4
and 08,4 assigned to processor P2. In the post-communication scheme, the graph
model treats the off-block-diagonal nonzeros 07,4 and 07,5 in Pi as if processor Pi
will send two multiplication results 07,40:4 and 07,5X5 to processor P2. However,
it is obvious that processor Pi will compute the partial result for the nonlocal
y-vector component 2/7 = û7,4-'ï4 + 07,5̂ 5 during the local SpMxV phase and send
this single value to processor P2 during the post-communication phase. Simi
larly, processor P2 will only compute and send the single value j/4 = 04,7X7-1-04,8X8
to processor P i . Hence, the actual communication volume is in fact 6 words
instead of 8 in both pre and post communication schemes. A similar analysis of
the rowwise decomposition of the nonsymmetric matrix given in Fig. 3.2 reveals
the fact that the actual communication requirement is 5 words (X4, X5, .xe, xy
and X8) instead of 7 determined by the cutsize of the given bipartition of Gn ■

In matrix theoretical view, the nonzero entries in the same column of an
off-diagonal block incur the communication of a single x value in the rowwise
decomposition (pre-communication) scheme. Similarly, the nonzero entries in
the same row of an off-diagonal block incur the communication of a single y
value in the columnwise decomposition (post-communication) scheme. However,
as mentioned earlier, the graph models try to minimize the total number of off-
block-diagonal nonzeros without considering the relative spatial locations of such
nonzeros. In other words, the graph models treat all off-block-diagonal nonzeros
in an identical manner by assuming that each off-block-diagonal nonzero will
incur a distinct communication of a single word.

In graph theoretical view, the graph models treat all cut edges of equal cost
in an identical manner while computing the cutsize. However, r cut edges, each
of cost 2, stemming from a vertex Vî in part Vk to r vertices '«¿3, . . . , in
part Ve incur only r-t-1 communications instead of 2r in both pre and post com
munication schemes. In the pre-communication scheme, processor Pk sends x,;i to

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 32

processor Pc while Pc sends Xi^, a;,;.,, . . . , to P*. In the post-communication
scheme, processor Pc sends y'î LU'î ·, ■ ■ ■ to processor Pjt while Pk sends
to Pc. Similarly, the amount of communication required by r cut edges, each of
cost 1, stemming from a vertex Uji in part Vk to r vertices Ujj, ¿̂3, . . . , in
part Vc may vary between 1 and r words instead of exactly r words determined
by the cutsize of the given graph partitioning.

3.3 Two Hypergraph M odels for ID Decom po

sition

We propose two computational hypergraph models for the decomposition of
sparse matrices. These models are referred to here as the column-net and row-
net models proposed for the rowwise decomposition (pre-communication) and
columnwise decomposition (post-communication) schemes, respectively.

In the column-net model, matrix A is represented as a hypergraph
= for rowwise decomposition. Vertex and net sets Vn and Ac cor

respond to the rows and columns of matrix A, respectivelз^ There exist one
vertex Vi and one net rij for each row i and column j , respectively. Net rij C V-ji
contains the vertices corresponding to the rows which have a nonzero entry in
column j . That is, Vi G n,j if and only if a.ij 7̂ 0 . Each vertex Vi G V-ji corre
sponds to atomic task i of computing the inner product of row i with column
vector X. Hence, computational weight Wi of a vertex Vi G V n is equal to the
total number of nonzeros in row i. The nets of 'Hn represent the dependency
relations of the atomic tasks on the x-vector components in rowwise decomposi
tion. Each net rij can be considered as incurring the computations yi-^yi+aij-Xj
for each vertex (row) Vi G rij. Hence, each net Uj denotes the set of atomic tasks
(vertices) that need Xj. Note that each pin Vi of a net Uj corresponds to a unique
nonzero a,ij thus enabling the representation and decomposition of structurally
nonsyrnmetric matrices as well as symmetric matrices without any extra effort.
Figure 3.3(a) illustrates the dependency relation view of the column-net model.
As seen in this figure, net tij = {vh.Vipvk} represents the dependency of atomic
ta.sks h, k to Xj becau.se of the computations yh.<-yk+cihj-Xj, yi<-yi+(iij-^'j

CHAPTER. 3. HYPER.GRAPH MODELS FOR ID DECOMPOSITION 33

and yk^U k + ii'kj-^j· Figure 3.4(b) illustrates the column-net representation of
the sample 16 x 16 nons3̂ mmetric matrix given in Fig. 3.4(a). In Fig. 3.4(b), the
pins of net '/7,7 = {'«7, uio, fis} represent nonzeros ayj, aioj, and a ^ j . Net Uj
also represents the dependency of atomic tasks 7, 10 and 13 to Xj because of

the computations + yio^//lo + aio./’-'Tr and //13^ / / 13+ «13,7· '̂7·

The row-net model can be considered as the dual of the column-net model. In
this model, matrix A is represented as a hypergraph 'Hc-iPciAi-ji) for column
wise decomposition. Vertex and net sets Vc and Ai-ji correspond to the columns
and rows of matrix A, respectively. There exist one vertex Vi and one net Uj
for each column i and row j , respectively. Net rij C Vc contains the vertices
corresponding to the columns which have a nonzero entry on row j . That is,
Vi G rij if and only if ttji 7̂ 0. Each vertex Uj G Vc corresponds to atomic task i of
computing the sparse SAXPY/DAXPY operation y = Hence, compu
tational weight Wi of a vertex Vi G Vc is equal to the total number of nonzeros in
column i. The nets of %c represent the dependency relations of the computa
tions of the y-vector components to the atomic tasks represented by the vertices
of He in columnwise decomposition. Each net nj can be considered as incurring
the computation yj ■e- yj + aji-Xi for each vertex (column) Vi^Uj. Hence, each
net n,j denotes the set of atomic task results needed to accumulate yj. Note
that each pin Vi of a net rij corresponds to a unique nonzero aji thus enabling
the representation and decomposition of structurally nonsymmetric matrices as
well as S3'^mmetric matrices without any extra effort. Figure 3.3(b) illustrates
the dependency relation view of the row-net model. As seen in this figure, net
rij = {n/,, Vi, Vk] represents the dependency of accumulating yj — y’j + y]+y^ to the
partial yj results/yJ— ap,.-.'r/,,,;//) = 0 1̂-.'Ci dxxdy’j=ajk-Xk· Note that the row-net
and column-net models become identical in structurally S3̂ mrnetric matrices.

By assigning unit costs to the nets (i.e. cy = l for each net Uj), the proposed
c:olumn-net and row-net models reduce the decomposition problem to the K-
way hypergraph partitioning problem according to the cutsize definition given in
(2.4.b) for the pre and post communication schemes, respectively. Consistency of
the proposed hypergraph models for accurate representation of communication
volume requirement while maintaining the symmetric partitioning restriction de-

on the condition that “v.j G n.j for each net rij”. We first assume that this

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 34

Figure 3.3: Dependency relation views of (a) column-net and (b) row-net models.

condition holds in the discussion throughout the following four paragraphs and
then discuss the appropriateness of the assumption in the last paragraph of this
section.

The validity of the proposed hypergraph models is discussed only for the
column-net model. A dual discussion holds for the row-net model. Consider
a partition H of H-ji in the column-net model for rowwise decomposition of a
matrix A. Without loss of generality, we assume that part Vk is assigned to
processor Pk for k = 1 , 2 , . . . , K. As II is defined as a partition on the vertex
set of H-ji, it induces a complete part (hence processor) assignment for the rows
of matrix A and hence for the components of the y vector. That is, a vertex
Vi assigned to part Vk in ü corresponds to assigning row i and iji to part Vk ■
However, partition H does not induce any part assignment for the nets of H-ji.
Here, we consider partition H as inducing an assignment for the internal nets of
%Ti hence for the respective x-vector components. Consider an internal net rij of
part Vk (i.e. Aj = {Vk}) which corresponds to column j of A. As all pins of net
Uj lie in Vk , all rows (including row j by the consistency condition) which need
Xj for inner-product computations are already assigned to processor Pk. Hence,
internal net rij of Vk, which does not contribute to the cutsize (2.4.b) of partition
H , does not necessitate any communication if Xj is assigned to processor Pk ■ The
assignment of Xj to processor Pk can be considered as permuting column j to
part Vk, thus respecting the symmetric partitioning of A since row j is already
assigned to Vk· In the 4-way decomposition given in Fig. 3.4(b), internal nets
ri], njo, r?,i3 of part V\ induce the assignment of .Xi, .xyo, -Cia and columns 1, 10,
13 to part V \ . Note that part V\ already contains rows 1, 10, 13 thus respecting
the symmetric partitioning of A.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 35

I 2 3 4 .W) 7 K y 10 11 12 13 14 15 16

1 2 3 4 5 6 7 K 9 10 11 12 13 14 15 16

(a)

T

f’4
1

10 13 5 1 6 14 11 3 2 15 7 y 8 161 12! 4

10 X X X i 1 X 1 10

13 X X
1
1

1
1 X

1
1 13

5 X X x | 1
1

1
1 5

1 X X ' 1 1 1

6 X i X 1 6
14 X ! X X

1
t

1
1 X 14

11 1
1 X X x | 1

1 X 11

3 ' X X ' 1 3
2 X 1 IX 1 X 2

15
1
1

1
1 X X 1 15

7 X 1
1 | x X X 1 7

y t 1 X X ' X y

K 1 X 1 iX X 8

16
1
1

1
1 I ' x X X 16

12 1
1 X 1

1
1
1 X X 12

4 1
1

X 1
f

1
1

X X 4

10 13 5 1 6 14 11 3 2 15 7 y 8 16 12 4

(c)

Figure 3.4: (a) A 16 x 16 structurally nonsyrnmetric matrix A. (b) Column-
net representation 7 / of matrix A and 4-way partitioning IT of H-ji. (c) 4-way
rowwise
symmetric partitioning induced by IT.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 36

Consider an external net rij with connectivity set Aj, where Xj = |A |̂ and
Xj > 1. As all pins of net nj lie in the parts in its connectivity set A j , all rows
(including row j by the consistency condition) which need Xj for inner-product
computations are assigned to the parts (processors) in A j . Hence, contribution
Xj — 1 of external net rij to the cutsize according to (2.4.b) accurately models
the amount of communication volume to incur during the parallel SpMxV com
putations because of Xj if Xj is assigned to any processor in Aj. Let map[j] EAj
denote the part and hence processor assignment for Xj corresponding to cut net
rij. In the column-net model together with the pre-communication scheme, cut
net rij indicates that processor map[j] should send its local Xj to those proces
sors in connectivity set Aj of net Uj except itself (i.e., to processors in the set
Aj—{map[j]}). Hence, processor 7nap[j] should send its local Xj to |Aj|—l = Aj—1
distinct processors. As the consistency condition “vj E n̂ ·” ensures that row j
is already assigned to a part in A j , symmetric partitioning of A can easily be
maintained by assigning .Xj hence permuting column j to the part which contains
row j . In the 4-way decomposition shown in Fig. 3.4(b), external net (with
As = {Pi,P 2 ,P 3 }) incurs the assignment of X5 (hence permuting column 5) to
])art Vi since row 5 (v^ € ns) is already assigned to part Vi. The contribution
As — 1 = 2 of net ns to the cutsize accurately models the communication volume
to incur due to x^, because processor Pi should send X5 to both processors P2

and P3 only once since As - {map[b]] — As — {Pi} = {P2,P 3}.

In essence, in the column-net model, any partition H of H ti with Vj, E Vk
can be safely decoded as assigning row i , pi and Xj to processor Pk for rowwise
decomposition. Similarly, in the row-net model, any partition H of He with
Vf E Vk can be safely decoded as assigning column i, Xi and pi to processor
Pk for columnwise decomposition. Thus, in the column-net and row-net models,
minimizing the cutsize according to (2.4.b) corresponds to minimizing the actual
volume of interprocessor communication during the pre and post communication
phases, respectively. Maintaining the balance criterion (2.1) corresponds to main
taining the computational load balance during the local SpMxV computations.
Figure 3.4(c) displays a permutation of the sample matrix given in Fig. 3.4(a) ac
cording to the symmetric partitioning induced by the 4-way decomposition shown
in Fig. 3.4(b). As seen in Fig. 3.4(c), the actual communication volume for the
given rowwise decomposition is 6 words since processor Pi should send Xr, to

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 37

both P2 and P3, P2 should send xn to P4, P3 should send xj to P i, and P4
should send .7:12 to both P2 and P3. As seen in Fig. 3.4(b), external nets n^, ny,
rill and n \2 contribute 2, 1, 1 and 2 to the cutsize since A5 = 3, Ay = 2, An = 2
and Ai2 = 3, respectively. Hence, the cutsize of the 4-way decomposition given
in Fig. 3.4(b) is 6, thus leading to the accurate modeling of the communication
requirement. Note that the graph model will estimate the total communication
volume as 13 words for the 4-way decomposition given in Fig. 3.4(c) since the
total number of nonzeros in the off-diagonal blocks is 13. As seen in Fig. 3.4(c),
each processor is assigned 12 nonzeros thus achieving perfect computational load
balance.

In matrix theoretical view, let denote a permuted version of matrix A
according to the symmetric partitioning induced by a partition H of R-r, in the
column-net model. Each cut-net nj with connectivity set Aj and map[j] = Vi
corresponds to column j of A containing nonzeros in \ j distinct blocks (Aj^£,
for Vk e Aj) of matrix A ^. Since connectivity set Aj of net Uj is guaranteed to
contain part ma,p[j] , column j contains nonzeros in Xj — 1 distinct off-diagonal
blocks of A ^ . Note that multiple nonzeros of column j in a particular oflf-diagonal
block contributes only one to connectivity Xj of net Uj by definition of Xj. So,
the cutsize of a partition H of P h is equal to the number of nonzero column
segments in the off-diagonal blocks of matrix A ^. For example, external net
with A.5 = { P i,p 2,P 3} and map[5] = V\ in Fig. 3.4(b) indicates that column 5
has nonzeros in two off-diagonal blocks A^j and A ^j as seen in Fig. 3.4(c).
As also seen in Fig. 3.4(c), the number of nonzero column segments in the off-
diagonal blocks of matrix Â ̂ is 6 which is equal to the cutsize of partition H
shown in Fig. 3.4(b). Hence, the column-net model tries to achieve a symmetric
permutation which minimizes the total number of nonzero column segments in
the ofl-diagonal blocks for the pre-communication scheme. Similarly, the row-net
model tries to achieve a symmetric permutation which minimizes the total number
of nonzero row segments in the off-diagonal blocks for the post-communication
scheme.

Nonzero diagonal entries automatically satisfy the condition “uj 6 rij for
each net rij ”, thus enabling both accurate representation of communication re-
(luirement and .symmetric partitioning of A. A nonzero diagonal entry a,jj already

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 38

implies that net rij contains vertex Vj as its pin. If however some diagonal entries
of the given matrix are zeros then the consistency of the proposed column-net
model is easily maintained by simply adding rows, which do not contain diagonal
entries, to the pin lists of the respective column nets. That is, if ajj = 0 then
vertex Vj (row j) is added to the pin list pins[rij] of net Uj and net nj is added
to the net list nets[vj] of vertex Vj. These pin additions do not affect the com
putational weight assignments of the vertices. That is, weight Wj of vertex Vj in
H-ji becomes equal to either dj or dj— 1 depending on whether or %j = 0,
respectively. The consistency of the row-net model is preserved in a dual manner.

3.4 Experim ental Results

We have tested the validity of the proposed hypergraph models by running MeTiS
on the graphs obtained by randomized clique-net transformation, and running Pa-
ToH and hMeTiS directly on the hypergraphs for the decompositions of various
realistic sparse test matrices arising in different application domains. These de
composition results are compared with the decompositions obtained by running
MeTiS using the standard and proposed graph models for the symmetric and
nonsyrnmetric test matrices, respectively. The most recent version (Version 3.0)
of MeTiS [46] was used in the experiments. As both hMeTiS and PaToH achieve
A'-way partitioning through recursive bisection, recursive MeTiS (pMeTiS) was
used for the sake of a fair comparison. Another reason for using pMeTiS is that
direct A'-way partitioning version of MeTiS (kMeTiS) produces 9% worse par
titions than pMeTiS in the decomposition of the nonsymmetric test matrices,
although it is 2.5 times faster, on the average. pMeTiS was run with the default
parameters: sorted heavy-edge matching, region growing and early-exit bound
ary FM refinement for coarsening, initial partitioning and uncoarsening phases,
respectively. The current version (Version 1.0.2) of hMeTiS [49] was run with
the parameters: greedy first-choice scheme (GFC) and early-exit FM refinement
(EE-FM) for coarsening and uncoarsening phases, respectively. The V-cycle re
finement scheme was not used, because in our experimentations it achieved at
most 1% (much less on the average) better decompositions at the expense of ap-
])roxiniately 3 times slower execution time (on the average) in the decomposition

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 39

of the test matrices. The GFC scheme was found to be 28% faster than the other
clustering schemes while producing slightly (l% -2%) better decompositions on
the average. The EE-FM scheme was observed to be 30% faster than the other
refinement schemes without any difference in the decomposition quality on the
average.

Table 3.1 illustrates the properties of the test matrices listed in the order of
increasing number of nonzeros. In this table, the “description” column displays
both the nature and the source of each test matrix. The sparsity patterns of
the Linear Programming matrices used as symmetric test matrices are obtained
by multiplying the respective rectangular constraint matrices with their trans
poses. In Table 3.1, the total number of nonzeros of a matrix also denotes the
total number of pins in both column-net and row-net models. The minimum
and maximum number of nonzeros per row (column) of a matrix correspond to
the minimum and maximum vertex degree (net size) in the column-net model,
respectively. Similarly, the standard deviation std and coefficient of variation cov
values of nonzeros per row (column) of a matrix correspond to the std and cov
values of vertex degree (net size) in the column-net model, respectively. Dual
correspondences hold for the row-net model.

All experiments were carried out on a workstation equipped with a 133 MHz
PowerPC processor with 512-Kbyte external cache and 64 Mbytes of memory.
We have tested K = 8 , 16, 32 and 64 way decompositions of every test ma.-
trix. For a specific K value, K -way decomposition of a test matrix constitutes a
decomposition instance. pMeTiS, liMeTiS and PaToH were run 50 times start
ing from different random seeds for each decomposition instance. The average
performance results are displayed in Tables 3.2-3.4 and Figs. 3.5-3.7 for each de
composition instance. The percent load imbalance values are below 3% for all
decomposition results displayed in these figures, where percent imbalance ratio is

defined as 100 X { W m a x ~ ^ a v (,) / ^ a v (j ·

Table 3.2 displays the decomposition performance of the proposed hjqjergraph

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 40

models together with the standard graph model in the rowwise/columnwise de
composition of the symmetric test matrices. Note that the rowwise and colum
nwise decomposition problems become equivalent for symmetric matrices. Ta
bles 3.3 and 3.4 display the decomposition performance of the proposed column-
net and row-net hypergraph models together with the proposed graph models in
the rowwise and columnwise decompositions of the nonsymmetric test matrices,
respectively. Due to lack of space, the decomposition performance results for the
clique-net approach are not displayed in Tables 3.2-3.4, instead they are summa
rized in Table 3.5. Although the main objective of this work is the minimization
of the total communication volume, the results for the other performance metrics
such as the maximum volume, average number and maximum number of messages
handled by a single processor are also displayed in Tables 3.2- 3.4. Note that the
maximum volume and maximum number of messages determine the concurrent
communication volume and concurrent number of messages, respectively, under
the assumption that no congestion occurs in the network.

As seen in Tables 3.2-3.4, the proposed hypergraph models produce substan
tially better partitions than the graph model at each decomposition instance in
terms of total communication volume cost. In the symmetric test matrices, the
hypergraph model produces 7%-48% better partitions than the graph model (see
Table 3.2). In the nonsymmetric test matrices, the hypergraph models produce
12%-63% and 9%-56% better partitions than the graph models in the rowwise
(see Table 3.3) and columnwise (see Table 3.4) decompositions, respectively. As
seen in Tables 3.2-3.4, there is no clear winner between liMeTiS and PaToH
in terms of decomposition quality. In some matrices hMeTiS produces slightly
better partitions than PaToH, whereas the situation is the other way round in
some other matrices. As seen in Tables 3.2 and 3.3, there is also no clear win
ner between matching-based clustering scheme HCM and agglomerative cluster
ing .scheme HCC in PaToH (see Section 6.1 for detailed discussion of clustering
schemes). However, as seen in Table 3.4, PaToH-HCC produces slightly better
partitions than PaToH-HCM in all columnwise decomposition instances for the
nonsymmetric test matrices.

Tables 3.2-3.4 show that the performance gap between the graph and hyper-
graph models in terms of the total communication volume costs is preserved by

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 41

almost the same amounts in terms of the concurrent communication volume costs.
For example, in the decomposition of the symmetric test matrices, the hypergraph
model using PaToH-HCM incurs 30% less total communication volume than the
graph model while incurring 28% less concurrent communication volume, on the
overall average. In the columnwise decomposition of the nonsymmetric test ma
trices, PaToH-HCM incurs 35% less total communication volume than the graph
model while incurring 37% less concurrent communication volume, on the overall
average.

Although the hypergraph models perform better than the graph models in
terms of number of messages, the performance gap is not as large as in the
communication volume metrics. However, the performance gap increases with
increasing K . As seen in Table 3.2, in the 64-way decomposition of the symmetric
test matrices, the hypergraph model using PaToH-HCC incurs 32% and 10% less
total and concurrent number of messages than the graph model, respectively.
As seen in Table 3.3, in the rowwise decomposition of the nonsymmetric test
matrices, PaToH-HCC incurs 32% and 26% less total and concurrent number of
messages than the graph model, respectively.

The performance comparison of the graph/hypergraph partitioning based
ID decomposition schemes with the conventional algorithms based on ID and
2D [39, 58, 57] decomposition schemes is as follows. As mentioned earlier, in A'-
way decompositions of M x M matrices, the conventional ID and 2D schemes
incur the total communication volume of {K — 1)M and 2 {y/K — 1)M words,
respectively. For example, in 64-way decompositions, the conventional ID and
2D schemes incur the total communication volumes of 63M and 14M words,
respectively. As seen at the bottom of Tables 3.2 and 3.3, PaToH-HCC reduces
the total communication volume to 1.91M and 0.90M words in the ID 64-way
decomposition of the symmetric and nonsymmetric test matrices, respectively,
on the overall average. In 64-way decompositions, the conventional ID and 2D
schemes incur the concurrent communication volumes of approximately M and
0.22M words, respectively. As seen in Tables 3.2 and 3.3, PaToH-HCC reduces
the concurrent communication volume to 0.052M and 0.025M words in the ID
64-way decomposition of the symmetric and nonsymmetric test matrices, respec
tively, on the overall average.

CHAPTER 3. HYPER.GRAPH MODELS FOR. ID DECOMPOSITION 42

Figure 3.5 illustrates the relative run-time performance of the proposed hyper-
graph model compared to the standard graph model in the rowwise/columnwise
decomposition of the symmetric test matrices. Figures 3.6 and 3.7 display the
relative run-time performance of the column-net and row-net hypergraph models
compared to the proposed graph models in the rowwise and columnwise decom
positions of the nonsymmetric test matrices, respectively. In Figs. 3.5-3.7, for
each decomposition instance, we plot the ratios of the average execution times
of the tools using the respective hypergraph model to that of pMeTiS using the
respective graph model. The results displayed in Figs. 3.5-3.7 are obtained by
assuming that the test matrix is given either in CSR or in CSC form which are
commonly used for SpMxV computations. The standard graph model does not
necessitate any preprocessing since CSR and CSC forms are equivalent in sym
metric matrices and both of them correspond to the adjacency list representation
of the standard graph model. However, in nonsymmetric matrices, construc
tion of the proposed graph model requires some amount of preprocessing time,
although we have implemented a very efficient construction code which totally
avoids index search. Thus, the execution time averages of the graph models for
the nons5'^mmetric test matrices include this preprocessing time. The preprocess
ing time constitutes approximately 3% of the total execution time on the overall
average. In the clique-net model, transforming the hypergraph representation of
the given matrices to graphs using the randomized clique-net model introduces
considerable amount of preprocessing time, despite the efficient implementation
scheme we have adopted. Hence, the execution time averages of the clique-net
model include this transformation time. The transformation time constitutes ap
proximately 23% of the total execution time on the overall average. As mentioned
earlier, the PaToH and liMeTiS tools use both CSR and CSC forms such that
the construction of the other form from the given one is performed within the

respective tool.

As seen in Figs. 3.5- 3.7, the tools using the hypergraph models run slower
than pMeTiS using the the graph models in most of the instances. The compar
ison of Fig. 3.5 with Figs. 3.6 and 3.7 shows that the gap between the run-time
I)erformances of the graph and hypergraph models is much less in the decom
position of the nonsymmetric test matrices than that of the symmetric test ma
trices. These experimental findings were expected, because the execution times

CHAPTER 3. HYPER.GRAPH MODELS FOR ID DECOMPOSITION 43

of graph partitioning tool pMeTiS, and hypergraph partitioning tools liMeTiS
and PaToH are proportional to the sizes of the graph and hypergraph, respec
tively. In the representation of an M x M square matrix with Z off-diagonal
nonzeros, the graph models contain \£\ = Z/2 and Z / 2 < ¡Sj < Z edges for
•symmetric and nonsymmetric matrices, respectively. However, the hypergraph
models contain p = M + Z pins for both symmetric and nonsymmetric matrices.
Hence, the size of the hypergraph representation of a matrix is always greater
than the size of its graph representation, and this gap in the sizes decreases in
favor of the hypergraph models in nonsymmetric matrices. Figure 3.7 displays
an interesting behavior that pMeTiS using the clique-net model runs faster than
pMeTiS using the graph model in the columnwise decomposition of 4 out of
9 nonsymmetric test matrices. In these 4 test matrices, the edge contractions
during the hypergraph-to-graph transformation through randomized clique-net
approach lead to less number of edges than the graph model.

As seen in Figs. 3.5-3.7, both PaToH-HCM and PaToH-HCC run considerably
faster than hMeTiS in each decomposition instance. This situation can be most
probably due to the design considerations of hMeTiS. hMeTiS mainly aims at par
titioning VLSI circuits of which hypergraph representations are much more sparse
than the hypergraph representations of the test matrices. In the comparison of the
HCM and HCC clustering schemes of PaToH, PaToH-HCM runs slightly faster
than PaToH-HCC in the decomposition of almost all test matrices except in the
decomposition of symmetric matrices KEN-11 and KEN-13, and nonsymmetric
matrices ONETONEl and ONETONE2. As seen in Fig. 3.5, PaToH-HCM us
ing the hypergraph model runs 1.47-2.93 times slower than pMeTiS using the
graph model in the decomposition of the symmetric test matrices. As seen in
Figs. 3.6 and 3.7, PaToH-HCM runs 1.04-1.63 times and 0.83-1.79 times slower
than pMeTiS using the graph model in the rowwise and columnwise decompo
sition of the nonsymmetric test matrices, respectively. Note that PaToH-HCM
runs 17%, 8% and 6% faster than pMeTiS using the graph model in the 8-way,
16-way and 32-way columnwise decompositions of nonsyrnmetric matrix LHR34,
respectively. PaToH-HCM achieves 64-way rowwise decomposition of the largest
test matrix BCSSTK32 containing 44.6K rows/columns and 1030K nonzeros in
only 25.6 seconds, which is equal to the sequential execution time of multiplying
matrix BCSSTK32 with a dense vector 73.5 times.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 44

The relative performance results of the hypergraph models with respect to
the graph models are summarized in Table 3.5 in terms of total communication
volume and execution time by averaging over different K values. This table also
displays the averages of the best and worst performance results of the tools using
the hypergraph models. In Table 3.5, the performance results for the hypergraph
models are normalized with respect to those of pMeTiS using the graph models.
In the symmetric test matrices, direct approaches PaToH and hMeTiS produce
30%-32% better partitions than pMeTiS using the graph model, whereas the
clique-net approach produces 16% better partitions, on the overall average. In the
nonsymmetric test matrices, the direct approaches achieve 34%-38% better de
composition quality than pMeTiS using the graph model, whereas the clique-net
approach achieves 21%-24% better decomposition quality. As seen in Table 3.5,
the clique-net approach is faster than the direct approaches in the decomposition
of the symmetric test matrices. However, PaToH-HCM achieves nearly equal
run-time performance as pMeTiS using the clique-net approach in the decom
position of the nonsymmetric test matrices. It is interesting to note that the
execution time of the clique-net approach relative to the graph model decreases
with increasing number of processors K . This is because of the fact that the
percent preprocessing overhead due to the hypergraph-to-graph transformation
in the total execution time of pMeTiS using the clique-net approach decreases
with increasing K .

As seen in Table 3.5, hMeTiS produces slightly (2%) better partitions at the
expense of considerably larger execution time in the decomposition of the sym
metric test matrices. However, PaToH-HCM achieves the same decomposition
quality as hMeTiS for the nonsyrnmetric test matrices, whereas PaToH-HCC
achieves slightly (2%-3%) better decomposition quality. In the decomposition of
the nonsymmetric test matrices, although PaToH-HCC performs slightly better
than PaToH-HCM in terms of decomposition quality, it is 13%-14% slower.

In the symmetric test matrices, the use of the proposed hypergraph model
instead of the graph model achieves 30% decrease in the communication volume
requirement of a single parallel SpMxV computation at the expense of 130%
increase in the decomposition time by using PaToH-HCM for hypergraph parti
tioning. In the nonsymmetric test matrices, the use of the proposed hypergraph

CHAPTER 3. HYPEB.GRAPH MODELS FOR ID DECOMPOSITION 45

Table 3.1: Properties of test matrices.

matrix name description
number

of
rows/cols

number of nonzeros
total avg. per

row/col
per column

min max std cov
per row

std

SHERMAN.3 [26] 3D finite difference grid 5005 20033 4.00 1 7 2.66 0.67 1 7 2.66 0.67
KEN-11 [16] linear programming 14694 82454 5.61 2 243 14.54 2.59 2 243 14.54 2.59
NL [20] linear programming 7039 105089 14.93 1 361 28.48 1.91 1 361 28.48 1.91
KEN-13 [16] linear programming 28632 161804 5.65 2 339 16.84 2.98 2 339 16.84 2.98
CQ9 [20] linear programming 9278 221590 23.88 1 702 54.46 2.28 1 702 54.46 2.28
C09 [20] linear programming 10789 249205 23.10 1 707 52.17 2.26 1 707 52.17 2.26
CRE-D [16] linear programming 8926 372266 41.71 1 845 76.46 1.83 1 845 76.46 1.83
CRE-B [16] linear programming 9648 398806 41.34 1 904 74.69 1.81 1 904 74.69 1.81
FINAN512 [25] stochastic programming 74752 615774 8.24 3 1449 20.00 2.43 3 1449 20.00 2.43

Structurally Nonsymmetric Matrices
GEMATll [26] optimal power flow 4929 38101 7.73 1 28 2.96 0.38 1 29 3.38 0.44
LHR07 [25] light hydrocarbon recovery 7337 163716 22.31 1 64 26.19 1.17 2 37 16.00 0.72
ONETONE2 [25] nonlinear analog circuit 36057 254595 7.06 2 34 5.13 0.73 2 66 6.67 0.94

[25] light hydrocarbon recovery 14270 321988 22.56 1 64 26.26 1.16 2 37 15.98 0.71
ONETONEl [25] nonlinear analog circuit 36057 368055 10.21 2 82 14.32 1.40 2 162 17.85 1.75
LHR17 [25] light hydrocarbon recovery 17576 399500 22.73 1 64 26.32 1.16 2 37 15.96 0.70
LHR34 [25] light hydrocarbon recovery 35152 799064 22.73 1 64 26.32 1.16 2 37 15.96 0.70
BCSSTK32 [26] 3D stiffness matrix 44609 1029655 23.08 1 141 10.10 0.44 1 192 10.45 0.45
BCSSTK30 [26] 3D stiffness matrix 28924 1036208 35.83 1 159 21.99 0.61 1 104 15.27 0.43

models instead of the graph model achieves 34%-35% decrease in the communica
tion volume requirement of a single parallel SpMxV computation at the expense
of onl}̂ 34%-39% increase in the decomposition time by using PaToH-HCM.

CHAPTER 3. HYPER.GRAPH MODELS FOR ID DECOMPOSITION 46

Table 3.2: Average communication requirements for rowwise/columnwise decom
position of structurally symmetric test matrices.

Graph Model Hypergraph Model: Column-net Model = Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume

avg max tot max avg max tot max avg max tot max avg max tot max
8 3.6 4.9 0.20 0.033 3.6 5.0 0.17 0.029 3.4 4.9 0.16 0.030 3.3 4.8 0.16 0.030

IG 5.3 8.2 0.31 0.028 5.2 7.8 0.27 0.024 4.5 7.4 0.25 0.024 4.7 7.8 0.25 0.025
SHERMAN3 32 6.5 11.0 0.46 0.021 6.7 10.9 0.39 0.018 5.7 10.1 0.37 0.019 5.9 10.5 0.37 0.019

64 7.5 13.6 0.64 0.016 7.9 13.6 0.55 0.013 7.0 13.1 0.53 0.014 7.0 13.4 0.53 0.014
8 7.0 7.0 0.70 0.116 6.9 7.0 0.47 0.078 6.9 7.0 0.51 0.083 7.0 7.0 0.55 0.094

16 13.8 15.0 0.92 0.080 12.4 15.0 0.57 0.047 12.8 15.0 0.59 0.046 13.7 15.0 0.66 0.057
KEN-11 32 26.1 30.5 1.16 0.055 19.8 30.3 0.70 0.032 21.2 31.0 0.73 0.033 22.1 30.5 0.79 0.034

64 40.9 54.9 1.44 0.038 30.1 58.6 0.90 0.024 32.1 60.4 0.92 0.025 30.1 54.2 0.96 0.025
8 7.0 7.0 1.33 0.192 6.8 7.0 0.72 0.110 6.8 7.0 0.76 0.124 7.0 7.0 0.79 0.135

16 15.0 15.0 1.71 0.147 13.5 15.0 0.99 0.085 13.2 15.0 1.05 0.097 13.7 15.0 1.14 0.101
NL 32 28.1 31.0 2.26 0.101 19.5 26.5 1.40 0.060 20.0 27.6 1.52 0.068 20.3 27.5 1.57 0.070

64 38.2 59.1 3.06 0.073 24.4 39.3 2.08 0.045 26.4 40.5 2.20 0.048 26.0 42.9 2.23 0.050
8 7.0 7.0 0.75 0.120 7.0 7.0 0.47 0.070 7.0 7.0 0.48 0.075 6.9 7.0 0.48 0.076

16 14.8 15.0 0.94 0.078 13.2 15.0 0.54 0.043 14.0 15.0 0.55 0.041 13.4 15.0 0.55 0.042
KEN-13 32 29.2 31.0 1.16 0.051 22.7 31.0 0.64 0.029 22.8 31.0 0.63 0.025 21.8 31.0 0.63 0.027

64 51.0 62.2 1.41 0.034 35.9 62.8 0.80 0.022 35.8 63.0 0.79 0.020 34.7 63.0 0.78 0.019
8 7.0 7.0 1.11 0.173 7.0 7.0 0.65 0.104 7.0 7.0 0.71 0.154 6.9 7.0 0.71 0.166

16 14.9 15.0 1.69 0.172 12.7 15.0 0.88 0.097 12.9 15.0 0.99 0.120 12.7 14.9 0.96 0.112
CQ9 32 21.8 30.7 2.42 0.148 18.6 26.6 1.36 0.075 18.0 27.0 1.47 0.086 17.6 26.9 1.40 0.082

64 32.1 56.4 3.71 0.115 23.7 38.4 2.27 0.061 22.7 41.0 2.34 0.065 22.7 39.5 2.31 0.064
8 7.0 7.0 0.96 0.156 7.0 7.0 0.67 0.110 7.0 7.0 0.68 0.133 7.0 7.0 0.67 0.139

16 14.8 15.0 1.51 0.157 12.4 14.9 0.87 0.091 12.7 14.9 0.94 0.110 12.7 14.9 0.92 0.107
C09 32 19.5 29.7 2.08 0.120 17.6 26.6 1.33 0.079 17.6 26.3 1.37 0.077 18.1 26.7 1.34 0.079

64 29.9 52.3 3.14 0.093 21.7 37.3 2.13 0.061 21.8 38.8 2.16 0.059 21.9 38.6 2.14 0.062
8 7.0 7.0 1.81 0.292 6.9 7.0 1.39 0.226 6.4 7.0 1.33 0.214 6.2 7.0 1.25 0.208

16 14.9 15.0 2.81 0.238 13.0 15.0 2.09 0.177 11.8 15.0 2.00 0.176 11.2 15.0 1.89 0.163
CRB-D 32 28.7 31.0 4.13 0.188 21.3 31.0 2.97 0.136 19.3 31.0 2.89 0.133 18.4 31.0 2.73 0.124

64 47.9 63.0 6.01 0.142 31.2 61.3 4.16 0.104 29.7 60.8 4.19 0.104 27.9 60.5 3.96 0.098
8 7.0 7.0 1.70 0.267 6.9 7.0 1.40 0.224 6.7 7.0 1.33 0.213 6.6 7.0 1.28 0.212

16 14.8 15.0 2.62 0.230 13.4 15.0 2.07 0.177 12.2 15.0 2.01 0.175 12.2 15.0 1.95 0.180
CRE-B 32 28.5 31.0 3.89 0.179 21.5 30.9 2.90 0.138 20.0 31.0 2.88 0.148 19.3 31.0 2.75 0.154

64 46.6 63.0 5.72 0.136 31.3 61.4 4.07 0.111 30.0 61.7 4.12 0.121 28.3 61.5 3.93 0.125
8 2.9 4.3 0.13 0.047 2.8 4.2 0.11 0.045 3.0 4.6 0.12 0.047 3.4 5.6 0.12 0.047

16 4.3 7.2 0.20 0.034 3.0 6.7 0.14 0.024 3.3 7.2 0.16 0.025 4.0 9.4 0.17 0.027
KINAN512 32 6.3 13.6 0.27 0.020 3.4 13.2 0.18 0.015 4.2 13.8 0.21 0.016 4.7 17.3 0.22 0.017

64 1 8.8 26.5 0.38 0.013 4.2 25.8 0.28 0.010 5.5 26.4 0.31 0.011 5.9 31.0 0.32 0.012
Averages over K

8 6.2 6.5 0.97 0.155 6.1 6.5 0.67 0.111 6.0 6.5 0.68 0.119 6.0 6.6 0.67 0.123
16 12.5 13.4 1.41 0.129 11.0 13.3 0.93 0.085 10.8 13.3 0.95 0.091 10.9 13.6 0.94 0.090
32 21.6 26.6 1.98 0.098 16.8 25.2 1.32 0.065 16.5 25.4 1.34 0.067 16.5 25.8 1.31 0.067
64 33.6 50.1 2.83 0.073 23.4 44.3 1.92 0.050 23.4 45.1 1.95 0.052 22.7 45.0 1.91 0.052

III the o f inssgs^^ colum n, “avg” an d “juax” den o te the average an d m ax im u m num -
^̂ cr o f inessciges, resp ec tive ly , h an d led b y a single processor. In the ^^comm. volume^^
‘̂o lum ii, ''tot/' d en o tes th e to ta l com m u nication volum e, w hereas “max” d en o tes th e

^i^iaximuni com m uniccition vo lu m e h a n d led b y a single processor. C om m u n ica tion vol-
^line vidues (in term s o f th e n u m b er o f w ords tra n sm itte d) are sca led b y th e n u m ber o f
^'(>ws/cohimns o f th e re sp e c tiv e te s t m atrices.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 47

Table 3.3: Average communication requirement for rowwise decomposition of
structurally nonsymmetric test matrices.

Graph Model Hypergraph Model : Column-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name К # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume

avg max tot max avg max tot max avg max tot max avg max tot max
8 7.0 7.0 1.33 0.201 7.0 7.0 0.79 0.111 7.0 7.0 0.75 0.109 7.0 7.0 0.73 0.106

16 15.0 15.0 1.85 0.144 14.8 15.0 1.00 0.071 14.7 15.0 0.96 0.070 14.6 15.0 0.93 0.067
GEM ATI 1 32 29.8 31.0 2.31 0.092 26.6 30.8 1.18 0.044 25.8 30.6 1.15 0.043 25.1 30.4 1.10 0.042

64 47.7 58.8 2.71 0.056 34.3 46.7 1.33 0.026 33.5 46.2 1.32 0.026 31.9 44.2 1.27 0.025
8 6.8 7.0 1.09 0.179 6.2 7.0 0.64 0.111 6.0 7.0 0.65 0.106 5.8 7.0 0.66 0.116

16 13.0 15.0 1.52 0.130 10.3 13.9 0.93 0.089 9.7 13.8 0.91 0.081 9.2 13.1 0.90 0.083
LHR07 32 20.1 29.1 1.96 0.094 13.9 22.3 1.30 0.081 13.0 21.7 1.24 0.066 12.5 20.5 1.24 0.064

64 24.4 44.8 2.49 0.079 16.8 33.5 1.84 0.077 15.6 30.0 1.65 0.056 15.9 30.7 1.64 0.059
8 2.8 4.3 0.08 0.014 2.6 3.8 0.06 0.010 2.4 3.5 0.06 0.011 2.5 3.6 0.06 0.010

16 4.9 7.5 0.17 0.015 4.9 7.3 0.11 0.010 4.7 6.9 0.12 0.011 4.7 6.8 0.12 0.011
ONETONE2 32 7.0 11.9 0.28 0.014 7.5 13.3 0.20 0.009 8.0 11.9 0.22 0.009 7.1 10.9 0.21 0.009

64 9.4 18.6 0.39 0.011 10.1 20.1 0.29 0.007 10.7 17.2 0.31 0.008 9.4 15.8 0.31 0.008
8 7.0 7.0 0.99 0.157 6.6 7.0 0.61 0.100 6.4 7.0 0.59 0.095 6.2 7.0 0.59 0.097

16 14.0 15.0 1.33 0.116 11.4 14.6 0.84 0.074 10.3 13.5 0.81 0.071 10.0 13.6 0.82 0.072
LH1U4 32 22.9 29.4 1.71 0.078 15.5 23.2 1.10 0.056 13.5 20.7 1.05 0.050 13.1 20.9 1.07 0.053

64 29.9 48.6 2.14 0.054 18.1 31.5 1.44 0.048 15.4 27.5 1.34 0.040 15.6 29.0 1.36 0.041
8 5.1 6.5 0.42 0.067 3.7 5.0 0.16 0.025 3.5 4.9 0.16 0.026 3.6 4.9 0.16 0.025

16 8.5 11.8 0.59 0.050 7.9 10.4 0.29 0.023 7.6 9.8 0.30 0.026 7.8 10.1 0.29 0.024
OXETONEl 32 13.6 19.1 0.78 0.035 14.2 19.7 0.42 0.017 13.8 19.1 0.45 0.020 14.2 18.9 0.42 0.019

64 18.7 28.9 0.97 0.025 22.0 33.0 0.57 0.013 19.3 29.2 0.61 0.016 19.8 29.7 0.56 0.015
8 7.0 7.0 0.94 0.143 6.9 7.0 0.62 0.094 6.7 7.0 0.57 0.090 6.5 7.0 0.60 0.095

16 14.3 15.0 1.28 0.110 12.4 14.8 0.82 0.068 11.0 13.8 0.77 0.066 10.8 13.7 0.80 0.068
LHR17 32 23.5 29.6 1.62 0.074 17.1 23.8 1.07 0.052 14.4 21.0 1.00 0.047 14.1 21.5 1.03 0.047

64 30.3 46.9 2.04 0.048 19.6 33.0 1.38 0.041 16.4 29.4 1.29 0.036 16.0 30.3 1.30 0.036
8 3.5 4.8 0.61 0.088 3.6 5.3 0.42 0.063 3.5 5.0 0.38 0.056 3.4 4.5 0.40 0.061

16 7.3 9.5 0.95 0.075 7.3 10.1 0.62 0.049 7.0 9.7 0.57 0.046 6.8 8.8 0.60 0.050
LHR34 32 14.5 17.5 1.28 0.055 12.6 16.8 0.84 0.037 11.1 15.3 0.77 0.034 10.9 14.6 0.80 0.035

64 23.7 30.6 1.63 0.038 17.2 24.9 1.08 0.027 14.6 22.7 1.00 0.025 14.3 22.5 1.03 0.025
8 3.5 5.4 0.07 0.015 3.7 5.7 0.05 0.012 3.5 5.4 0.05 0.013 3.6 5.5 0.05 0.012

16 4.4 7.6 0.12 0.013 4.2 8.3 0.09 0.011 4.0 7.3 0.09 0.011 4.0 7.3 0.09 0.011
1K:SSTK32 32 5.1 9.4 0.20 0.011 4.7 10.6 0.14 0.008 4.7 9.6 0.15 0.009 4.6 9.7 0.14 0.008

64 5.7 11.3 0.30 0.008 4.8 11.6 0.22 0.006 4.9 11.0 0.24 0.007 4.7 10.8 0.22 0.006
8 2.3 3.9 0.10 0.018 2.3 3.6 0.09 0.018 2.2 3.4 0.09 0.017 2.2 3.4 0.08 0.017

16 3.7 6.3 0.21 0.022 3.3 5.4 0.18 0.018 3.3 5.6 0.18 0.018 3.3 5.6 0.16 0.017
BCSSTK30 32 4.9 8.7 0.36 0.019 4.4 7.9 0.29 0.015 4.6 8.0 0.31 0.016 4.4 7.8 0.28 0.014

64 5.8 11.3 0.57 0.016 5.3 10.6 0.45 0.013 5.6 10.3 0.48 0.013 5.3 10.0 0.45 0.012
Average.s over К

8 5.0 5.9 0.03 0.098 4.7 5.7 0.38 0.060 4.6 5.6 0.37 0.058 4.5 5.5 0.37 0.060
16 9.5 11.4 0.89 0.075 8.5 11.1 0.54 0.046 8.0 10.6 0.53 0.045 7.9 10.4 0.52 0.045
32 15.7 20.6 1.17 0.052 12.9 18.7 0.73 0.036 12.1 17.5 0.70 0.033 11.8 17.3 0.70 0.032
64 21.7 33.3 1.47 0.037 16.5 27.2 0.96 0.029 15.1 24.8 0.92 0.025 14.8 24.8 0.90 0.025

In the ofm ssgs'^ column^ ^^avg” an d “max” d en o te th e average an d m ciximuin nuni-
her o f m essages, resp ec tive ly , h an d led b y a single processor. In the ''comm, volum e''
colum n, "tot/' d en o tes the to ta l com m uniccition volum e, w hereas "max" d en o tes the
inaxim um com m u n ica tion vo lu m e h an d led b y a single processor. C om m u n ication vol
um e Vcilues (in term s o f the n u m ber o f w ords tra n sm itte d) are sca led b y the n u m ber o f
ro w s/co lu m n s o f the re sp e c tiv e te s t m atrices.

CHAPTER 3. HYPER,GRAPH MODELS FOR ID DECOMPOSITION 48

Table 3.4: Average communication requirements for columnwise decomposition
of structurally nonsymmetric test matrices.

Graph Model Hypergraph Model: Row-net Model
pMeTiS hMeTiS PaToH-HCM PaToH-HCC

name K # of mssgs comm. # of mssgs comm. # of mssgs comm. # of mssgs comm.
per proc. volume per proc. volume per proc. volume per proc. volume

avg max tot max avg max tot max avg max tot max avg max tot max
8 7.0 7.0 1.44 0.213 7.0 7.0 0.75 0.108 7.0 7.0 0.76 0.110 7.0 7.0 0.72 0.108

16 15.0 15.0 1.98 0.145 14.7 15.0 0.95 0.071 14.7 15.0 0.97 0.072 14.6 15.0 0.93 0.069
GEM ATI 1 32 29.9 31.0 2.46 0.091 25.6 30.0 1.13 0.043 25.9 30.3 1.15 0.043 25.0 29.9 1.10 0.042

64 47.9 58.5 2.85 0.056 32.7 43.9 1.28 0.026 33.6 45.3 1.33 0.026 31.6 43.8 1.27 0.025
8 6.9 7.0 1.10 0.188 6.5 7.0 0.75 0.123 6.4 7.0 0.67 0.107 6.4 7.0 0.66 0.105

16 12.5 15.0 1.54 0.141 11.1 15.0 1.10 0.094 10.6 15.0 0.96 0.081 10.8 15.0 0.95 0.081
LHR07 32 19.3 30.3 2.05 0.112 16.4 28.7 1.52 0.068 15.1 29.5 1.32 0.059 15.6 29.0 1.31 0.059

64 23.5 56.7 2.60 0.088 22.0 39.2 2.03 0.050 19.7 40.5 1.76 0.042 19.8 41.2 1.74 0.042
8 2.6 3.8 0.09 0.017 2.4 3.2 0.07 0.012 2.2 3.1 0.08 0.013 3.1 4.5 0.08 0.013

16 4.8 7.4 0.20 0.019 4.7 6.6 0.13 0.012 4.6 6.2 0.16 0.014 5.4 8.7 0.15 0.014
ONETONE2 32 7.5 12.7 0.34 0.016 7.6 11.2 0.24 0.010 7.6 11.1 0.27 0.011 8.3 14.8 0.25 0.011

64 10.2 21.4 0.46 0.013 9.6 15.8 0.33 0.008 10.5 16.4 0.35 0.008 10.4 23.5 0.34 0.009
8 7.0 7.0 1.05 0.168 6.6 7.0 0.67 0.109 6.6 7.0 0.61 0.096 6.7 7.0 0.61 0.096

16 13.9 15.0 1.43 0.123 11.4 14.7 0.95 0.077 11.6 15.0 0.85 0.069 11.7 15.0 0.84 0.069
LHR14 32 22.9 30.4 1.85 0.087 16.8 27.9 1.26 0.054 16.4 29.6 1.11 0.047 16.5 30.5 1.11 0.049

64 29.3 55.3 2.32 0.069 21.3 45.7 1.65 0.038 19.8 54.2 1.45 0.035 20.3 56.2 1.44 0.036
8 5.1 6.5 0.44 0.067 3.7 5.0 0.19 0.031 3.5 4.7 0.21 0.033 3.5 4.9 0.20 0.034

16 8.7 11.6 0.62 0.051 7.8 10.2 0.34 0.026 7.6 9.6 0.38 0.032 7.8 10.1 0.36 0.029
ONETONEl 32 14.4 20.0 0.81 0.035 13.3 18.6 0.49 0.021 13.4 18.6 0.54 0.026 14.0 19.1 0.51 0.024

64 19.9 30.2 1.08 0.024 19.9 31.5 0.65 0.017 19.6 30.5 0.72 0.018 19.3 30.4 0.69 0.019
8 7.0 7.0 1.02 0.164 6.8 7.0 0.66 0.100 6.8 7.0 0.59 0.087 6.9 7.0 0.58 0.087

16 14.4 15.0 1.40 0.117 12.2 15.0 0.91 0.074 12.3 15.0 0.81 0.064 12.3 15.0 0.80 0.063
LHR17 32 24.2 30.6 1.78 0.080 18.0 30.0 1.22 0.052 17.1 30.6 1.06 0.044 17.2 30.8 1.05 0.044

64 31.4 53.3 2.21 0.062 22.9 51.9 1.58 0.037 20.7 55.0 1.37 0.031 20.8 55.8 1.36 0.032
8 3.4 4.5 0.67 0.103 3.4 4.1 0.43 0.065 3.4 4.1 0.39 0.056 3.4 4.1 0.39 0.055

16 7.3 8.6 1.02 0.086 7.1 8.4 0.66 0.053 7.2 8.3 0.59 0.046 7.1 8.3 0.59 0.046
LHR34 32 14.7 16.8 1.40 0.061 12.4 15.9 0.92 0.040 12.4 15.6 0.81 0.033 12.5 15.7 0.80 0.033

64 24.2 31.4 1.78 0.043 18.2 30.3 1.22 0.028 17.3 30.8 1.06 0.023 17.3 31.0 1.06 0.023
8 3.6 5.3 0.07 0.016 3.1 4.6 0.05 0.013 3.9 5.8 0.06 0.014 3.4 5.2 0.05 0.012

16 4.3 7.3 0.12 0.014 3.9 7.0 0.08 0.010 4.4 7.9 0.10 0.012 4.1 7.7 0.08 0.011
BC:SSTK32 32 5.1 9.5 0.19 0.011 4.4 8.9 0.14 0.008 4.7 9.9 0.15 0.009 4.6 9.4 0.14 0.009

64 5.5 11.6 0.29 0.009 4.5 10.1 0.21 0.007 4.9 11.4 0.23 0.008 4.7 11.2 0.21 0.007
8 2.5 4.0 0.08 0.017 2.8 4.6 0.08 0.017 2.2 3.4 0.07 0.014 2.4 4.2 0.06 0.013

16 3.6 6.2 0.18 0.018 3.4 6.0 0.14 0.015 3.0 5.0 0.14 0.016 3.1 5.2 0.13 0.014
BCSSTK3Ü 32 4.7 8.2 0.31 0.015 4.0 8.0 0.22 0.012 4.0 6.9 0.24 0.013 3.9 7.1 0.21 0.012

64 5.7 10.0 0.50 0.013 4.6 9.0 0.34 0.010 4.5 8.4 0.37 0.010 4.5 9.3 0.34 0.010
Averages over K

8 5.0 5.8 0.66 0.106 4 .7 5.5 0.40 0.064 4.7 5.5 0.38 0.059 4.8 5.7 0.37 0.058
16 9.4 11.2 0.94 0.079 8.5 10.9 0.59 0.048 8.4 10.8 0.55 0.045 8.6 11.1 0.54 0.044
32 15.8 21.1 1.24 0.057 13.2 19.9 0.79 0.034 13.0 20.2 0.74 0.032 13.1 20.7 0.72 0.031
6̂ 22.0 36.5 1.57 0.042 17.3 30.8 1.03 0.024 16.7 32.5 0.96 0.022 16.5 33.6 0.94 0.023

In the ofinssgs^' colum n, m id d en o te the average and m axim u m n u m
ber o f m essages, resp ec tive ly , h an dled b y a single processor. In the ^^comm. voiume”
eolum ig "'tot/' d en o tes th e to ta l com m u nication volum e, w hereas d en o tes the
n iaxim um com m u n ica tion vo lum e hcindled b y a sing le processor. C om m unication vol
um e Vcilues (in term s o f the n u m ber o f w ords tra n sm itte d) are sca led b y th e n u m ber o f
n ow s/co lu m n s o f th e re sp e c tiv e te s t nm trices.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 49

Relative run-times for 8-way decompositions

■ PaToH -H C M E Z IZ U lP a T o H - H C C · •p M e T IS

u nilflilljliljlllill
Relative run-times for 32-way decompositions _

-Net I lh M « T ig ■ ■ ■ ■ P a T o H - H C M IH Z = I lP a T o H - H C C ·■

lbi l] h lir I II i \
11 1 II I II I II I II I II I II I II I

Relative run-times for 16-way decompositions

a c iiq u e -N c t CZI—'..JhM eTIS ■ ■ ■ ■ P a T o H - H C M C Z Z Z iP a T o H - H C C <■

Ifi i y j i l u i i j f

16.0

14.0

12.0

10.0

Relative run-times for 64-way decompositions
Met C Z Z Z S h M e T IS ■ ■ ■ ■ P a T o H - H C M E = Z a P a T o H - H C C -

I F #

Figure 3.5: Relative run-tirne performance of the proposed column-net/row-net
h,ypergraph model (Clique-net, hMeTiS, PaToH-HCM and PaToH-HCC) to the
graph model (pMeTiS) in rowwise/columnwise decomposition of symmetric test
matrices. Bars above 1.0 indicate that the hypergraph model leads to slower
decomposition time than the graph model.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 50

Relative run-times for 8-way decompositions
a c liq u e -N c t C Z Z U H h M e T IS ■ ■ ■ ■ P a T o H - H C M C Z H Z lP a T o H -H C - p M e T IS

¡nil ill ill 111 III III

_____ run-times for 16-way decompositions
a C liq u c -N e t C Z Z - J h M e T iS I ■ P aT o H -H C M I iP n T n H .H r r ■ •p M c T tS

iilin ilililiiiiilililiilii]

Figure 3.6: Relative run-time performance of the proposed column-net hyper
graph model (Clique-net, liMeTiS, PaToH-HCM and PaToH-HCC) to the graph
model (pMeTiS) in rowwise decomposition of symmetric test matrices. Bars
above 1.0 indicate that the hypergraph model leads to slower decomposition time
than the graph model.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 51

10.0
9 0

Relative run-times for 64-vyay decompositions
■ PaToH -H C M C Z Z Z 3 P aToH -H C C ■

i n I 1 1 lE I H I i n i n i n i n
I n

II
.cT

Figure 3.7: Relative run-time performance of the proposed row-net hypergraph
model (Clique-net, liMeTiS, PaToH-HCM and PaToH-HCC) to the graph model
(pMeTiS) in columnwise decomposition of symmetric test matrices. Bars above
1.0 indicate that the hypergraph model leads to slower decomposition time than
the graph model.

CHAPTER 3. HYPERGRAPH MODELS FOR ID DECOMPOSITION 52

Table 3.5: Overall performance averages of the proposed hypergraph models nor
malized with respect to those of the graph models using pMeTiS.

pMeTiS (clique-net model) hMeTiS PaToH-HCM PaToH-HCC
K Tot. Comm. Volume Time Tot. Comm. Volume Time Tot. Comm. Volume Time Tot. Comm. Volume Time

best worst avg best worst avg best worst avg best worst avg
Symmetric Matrices: Column-net Model = Row-net Model

8 0.86 0.84 0.85 2.08 0.73 0.70 0.71 8.13 0.73 0.73 0.73 2.19 0.73 0.73 0.73 2.42
16 0.86 0.84 0.83 1.90 0.70 0.66 0.66 8.95 0.70 0.69 0.68 2.25 0.71 0.69 0.69 2.43
32 0.85 0.84 0.84 1.79 0.68 0.65 0.66 9.72 0.69 0.68 0.68 2.33 0.69 0.68 0.68 2.44
64 0.85 0.84 0.84 1.78 0.71 0.68 0.69 10.64 0.72 0.69 0.70 2.41 0.72 0.69 0.70 2.56

avg 0.86 0.84 0.84 1.89 0.70 0.67 0.68 9.36 0.71 0.70 0.70 2.30 0.71 0.70 0.70 2.46
Nonsymmetric Matrices: Column-net Model

8 0.78 0.78 0.78 1.48 0.68 0.63 0.64 5.31 0.67 0.64 0.64 1.32 0.66 0.62 0.63 1.50
16 0.80 0.78 0.78 1.44 0.66 0.63 0.64 5.53 0.67 0.64 0.65 1.37 0.65 0.62 0.63 1.56
32 0.79 0.78 0.78 1.34 0.66 0.64 0.66 5.88 0.67 0.65 0.66 1.44 0.65 0.63 0.64 1.61
64 0.80 0.79 0.79 1.34 0.69 0.68 0.68 6.17 0.69 0.68 0.68 1.45 0.67 0.66 0.66 1.62

a\'g 0.79 0.78 0.79 1.40 0.67 0.64 0.66 5.72 0.67 0.65 0.66 1.39 0.66 0.63 0.64 1.57
Nonsymmetric Matrices: Row-net Model

8 0.75 0.74 0.76 1.25 0.64 0.62 0.63 5.22 0.64 0.63 0.63 1.29 0.62 0.60 0.61 1.50
16 0.75 0.74 0.75 1.15 0.65 0.63 0.64 5.34 0.65 0.63 0.65 1.33 0.62 0.61 0.62 1.54
32 0.75 0.75 0.75 1.12 0.67 0.65 0.66 5.55 0.66 0.64 0.66 1.38 0.63 0.62 0.63 1.58
64 0.76 0.77 0.76 1.09 0.67 0.67 0.67 5.84 0.66 0.65 0.66 1.36 0.64 0.63 0.63 1.50

a\̂ g 0.75 0.75 0.76 1.15 0.66 0.64 0.65 5.49 0.65 0.64 0.65 1.34 0.63 0.61 0.62 1.53

In to ta l com m u n ica tion volume^ a ra tio sm aller than LOO in d ica tes th a t th e h yp ergraph
m o d el p ro d u ces b e t te r d eco m p o sitio n s than th e graph m odel. In execu tion tim e, a ra tio
grea ter than 1.00 in d ica te s th a t th e h ypergraph m o d e l leads to slow er d eco m p o sitio n
tim e than th e graph m odel.

Chapter 4

Hypergraph M odels for 2D
D ecom position

The atomic task definition in the ID decomposition ensures that either row stripes
or column stripes are distributed among the processors. That is computations for
a row and column are considered as indivisible tasks in rowwise and columnwise
decomposition, respectively. This atomic task definition can be unnecessarily
restricted. Consider the sparse matrices which have some dense rows/columns.
Load balancing problem becomes very hard for this kind of matrices. It is conjec
tured that columnwise decomposition can be more appropriate for the matrices
with dense rows, and rowwise decomposition can be appropriate for the ones with
dense columns. However, this precaution can be valuable for only nonsymmet-
ric matrices. Furthermore, columnwise (rowwise) decomposition of matrices with
dense rows (columns) is likely to induce high volume of communication during the
post (pre) communication phase. The 2D decomposition approach is expected to
yield better decomposition in terms of both load balancing and communication
requirements since it has more degree of freedom.

Unfortunately, in the literature there is not too much work on 2D decom-
I)osition of matrices, and existing heuristics address only the load balancing
j)roblern [64, 58, 57, .39]. The matrix-vector multiplication algorithm proposed
by Hendrickson et. al. [39] is based on 2D block checkerboard partitioning and
minimizes the communication requirement implicitly. Lewis and Geijn [58] and

53

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 54

Lewis et.al. [57] proposed different parallel SpMxV computation approaches one
of which eliminates the transpose operation required in method proposed by Hen
drickson et. al. [39].

There is no work on 2D decomposition which directly aims at minimizing
communication volume while maintaining the load balance. In this section, three
different hypergraph models will be introduced for 2D decomposition of sparse
matrices. Here, we propose a fine-grain hypergraph model which considers each
multiply operation in SpMxV as atomic tasks during the decomposition. Two
new coarse-grain hypergraph models are proposed for reducing the decomposi
tion overhead. Another objective in the coarse-grain hypergraph models is an im
plicit effort towards reducing the amount of communication. The first hypergraph
model produces jagged-like 2D decompositions of the sparse matrices. The second
coarse-grain hypergraph model is specifically designed for checkerboard partition
ing which is commonly used in the literature by the matrix-vector multiplication
algorithms [64, 58, 57, 39]. Experimental results presented in Section 4.4 show
that the fine-grain hypergraph model for 2D decomposition produces superior
results over ID decomposition results produced by both graph and hypergraph
models, in terms of total communication volume. The coarse-grain models also
produce better decompositions then the graph model in terms of total commu
nication volume. In terms of number of messages, checkerboard decomposition
displays its strength over all models.

As mentioned earlier, parallel SpMxV computations based on 2D decomposi
tion schemes, necessitates both pre and post communication. That is, the entries
in X vector need to be communicated just before the local SpMxV computations,
and the result of partial y vector need to be communicated after local SpMxV
computations. Here and after, we will use the term expand to denote the per
sonalized communication of the entries in x, and fold to denote the personalized
communication of entries in y.

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 55

4.1 A Fine-grain Hypergraph Model

In this model, an M x M matrix A with Z nonzero elements is represented as
a hypergraph — with |V| = Z vertices and lA/”! = 2 xM nets for 2D
decomposition which uses both pre and post communication. There exists one
vertex Vij G V corresponding to each nonzero aij in matrix A. For each row
and for each column there exists a net in J\f. For simplicity in the presentation
let Af — Af-ji U Aic such that Af-n = {m i ,m 2 , . . . ,mM} represents the set of
nets corresponding to the rows and Afc = {ni ,n 2 , . . . ,71^} represents the set
of nets corresponding to the columns of the matrix A. Net rrij C V contains
the vertices corresponding to the nonzeros in row j , and net rij C V contains
the vertices corresponding to the nonzeros in column j . That is, V{j G rui and
Vij G rij if and only if â j ^ 0. Note that each vertex Vij is connected exactly
two nets. Each vertex Vij G V corresponds to the atomic task of computing
the scalar multiplication operation yf = aijXj. Hence, each vertex Vij G V has
unit computational weight Wij = 1. The nets in Me represent the dependency
relations of the atomic tasks to the x-vector components, that is, they model the
expand operation in the pre communication phase. The nets in M-ji represent the
dependency relations of the atomic tasks on the y-vector components, in other
words, they model the fold operation in the post communication phase. Hence,
each column-net rij denotes the set of atomic tasks (vertices) that need Xj during
pre communication, and each row-net rrii denotes the set of atomic task results
needed to accumulate yi during the post communication. Figure 4.1 illustrates
the dependency relation view of 2D fine-grain model. As seen in this figure,
column-net rij = Vjj, vij} of size 3 represents the dependency of atomic tasks
Vij, Vjj, Vij to Xj because of the 3 multiplication operations yj = a.ij-Xj, Hj—ajj-Xj
and yj = (iij-Xj. In this figure, row-net m,i = {vih,vu,Vik,Vij} of size 4 represents
the dependency of accumulating yi = y i+ yl + Ui+yj to the 4 partial yi results
yi=(iih-Xh,yi=a.nXi,yi=aik-Xk and yf =a.ij-Xj. Figure 4.3 displays the 2D fine-
grain hypergraph representation of the sample 8 x 8 nonsymmetric matrix with
21 nonzero elements displayed in Figure 4.2. In Figure 4.3 pins of the row net
rn.\ = {'(•’1,1,'^1,2) corresponding to row 1, represent the nonzeros o i,i, 0,1,2,
and oi,6 in that row. Net roi also represents the dependency of accumulating
the yi = y\ + y'i + y\ on the partial y\ results y\ = oi,]a:i, xj\ = 01,23:2, and

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 56

' ''ii

mi(r7y.)

Figure 4.1: Dependency relation of 2D fine-grain hypergraph mode

l/i = Similarly, pins of the column net nr = {̂ ’4,7, '«5,7, ^7,7} corresponding
to column 7, represents the nonzeros 04j , 05 7̂, and ayj in that column. Net ny
is also represents the dependency of atomic tasks V4J , vsj and vyj to xy because
of the computation ÿj = ü4jXy, yl = a^jXy and yy — ayjXy.

By assigning unit costs to the nets (i.e. Cj = 1 for each net nj e Af), the
proposed fine-grain hypergraph model reduces the decomposition problem to the
K -way hypergraph partitioning problem according to the cutsize definition given
in (2.4.b) for 2D schemes which requires both the pre and post communication.
Nets corresponding to rows of matrix (i.e. nets in Ain) model the communica
tion volume requirement of folds, and nets corresponding the columns of matrix
(i.e. nets in A/c) model the communication volume requirement of expands.
Consistency of the proposed hypergraph models for accurate representation of
communication volume requirement while maintaining the symmetric partition
ing depends on the condition that “va € m,; and vu G Ui for each row-net mi
and column-net nj ”. We first assume that this condition holds in the discussion
throughout the following paragraphs and then discuss the appropriateness of the
assumption in the last paragraph of this section.

Consider a partition 11 of in the fine-grain hypergraph model for 2D de
composition of a matrix A. Without loss of generality, we assume that part Vk
is a,ssigned to processor Pk for k = 1,2, . . . , /C Recall that, fl is defined as a
partition on the vertex set of 7/, hence it does not induce any part assignment
for the nets. Since column and row nets of Pi denotes the expand and fold opera
tions on X and y vectors, we need to decode IT as inducing a partition on nets to
formulate communication volume requirements. Let A[nj] and A[mj] denote the

CHAPTER 4. HYPERGBAPH MODELS FOR 2D DECOMPOSITION 57

1 2 3 4 5 6 7 8
X X X

X X X
X X X

X X X
X X

X X
X X X
X X

Figure 4.2: A 8 x 8 nonsymmetric matrix A

P P

Figure 4.3: 2D fine-grain hypergraph representation R of the matrix A displayed
in Figure 4.2 and 3-way partition IT of "H.

CHAPTER 4. HYPERGRAPH MODELS FOR, 2D DECOMPOSITION 58

connectivity sets of column-net nj and row-net mj in IT, and part[vjj] denotes
the part (hence processor) assignment for vertex Vjj.

Consider an internal column-net Uj of part Vk (i-e. A[nj] = {Vk})· As
all pins of net rij lie in Vk, all nonzeros in column j (including a ĵ by the
consistency condition) which need Xj for their multiplication are already assigned
to processor Pk. Hence, internal column-net rij of Vk, which does not contribute
to the cutsize (2.4.b) of partition II, does not necessitate any expand operation
if Xj is assigned to processor Pk- Similarly, consider an internal row-net mj of
part Vk ■ As all pins of row-net rrij lie in Vk, all nonzeros in row j which will
contribute in the accumulation of yj are already assigned to processor Pk ■ Hence,
internal row-net rrij of Vk, which does not contribute to the cutsize (2.4.b) of
partition H, does not necessitate any fold operation if yj is assigned to processor

Pk.

Consider an external column-net rij (i.e., X[rij] > 1) . As all pins of net

rtj lie in the parts in its connectivity set A[rij], all nonzeros (including ajj by
the consistency condition) which need Xj for multiplication are assigned to the
parts (processors) in Afn^j. Hence, contribution A[nj] —1 of external net Uj to
the cutsize according to (2.4.b) accurately models the amount of communication
volume to incur during the expand of Xj if Xj is assigned to any processor in
A[uj]. Let map[rij] € A[ny] denote the part and hence processor assignment for Xj
corresponding to cut net rij. Cut net rij indicates that processor map[nj] should
send its local Xj to those processors in connectivity set Afn]̂ except itself (i.e., to
processors in the set A[nj]—{map[nj]]). Hence, processor map[nj] should send its
local Xj to |A[nj]|—1 = A[n,]—1 distinct processors. Similarly, consider an external
row-net rrij. As all pins of net rrij lie in the parts in its connectivity set A[rrij],
all nonzeros which will contribute in the accumulation of yj are already assigned
to the parts (processors) in A[mj]. Cut net m,j indicates that the processors
in the connectivity set A[m.j] except owner of rrij (i.e., processors in the set
A\mj]—{map[mj]]) should send their partial y j results to the processor map[m,j] .

Hence, contribution Ap/rij] - 1 of external row-net rn.j to the cutsize according
to (2.4.b) accurately models the amount of communication volume to incur during
the fold of yj if y.j is assigned to any processor in A[m,j].

The connectivity sets A[nj] and A[mj] of column-net n,j and row-net rrij must

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 59

have at least one common part, since they share exactly one common pin, which
is (ijj by the consistency condition, i.e., {part[vjj\} C (A[nj] n A[mj]). There are
four distinct cases to consider:

Case 1 Both row-net nij and column-net rij are internal to part part[vjj] (note
that they cannot be internal to different parts, since both of them contains

) >

Case 2 Both row-net rrij and column-net Uj are external (cut) nets connected
to part part[vjj] ,

Case 3 Row-net mj is internal to part part[vjj] , and column-net rij is external
net connected to part part[vjj] ,

Case 4 Column-net nj is internal to part part[vjj], and row-net mj is external
net connected to part part[vjj]

For “Case 1”, using the discussion in the previous paragraph, we can safely assign
internal nets m.i and n, to part p a r t [v j j] . We know that external nets exactly
model the communication requirement if their corresponding variable is also as
signed to a part in connectivity set. Hence, for “Case 2”, we can again safely
assign external nets to part p a r t [v j j] , since it is already in the connectivity sets
of both external nets. In cases 3 and 4 again since the part, which one of them is
internal to, { p a r t [v j j]) is already in the connectivity set of the other one, we can
also assign both nets to p a r t [v j j] .

In essence, in the fine-grain l^pergraph model, any partition H of with
part[vii] = Vk can be safely decoded as assigning row-net rrii (hence pi) and
column-net n,; (hence Xi) to part V k , i.e., rnap[n i] · m a p [m i] — p a r t [u u] . With
this assignment, both symmetric partitioning (in other words conformal parti
tioning) on X and y vectors is maintained and also total communication volume
is exactly modeled. Thus, in the fine-grain model, minimizing the cutsize ac
cording to (2.4.b) corresponds to minimizing the actual volume of interprocessor
communication during the pre and post communication phases.

Figure 4.3 displays a 3-way partition of the fine-grain hypergraph. The cost
of this partition is 8. There are 6 cut nets with connectivity 2, hence their

CHAPTER 4. HYPER.GRAPH MODELS FOR 2D DECOMPOSITION 60

1 2 3 4 5 6 7 8
1 1 2 12 2 2 23 2 2 34 1 3 3
5 3 36 1 17 3 1 28 3 1

Figure 4.4; Decomposition result of the sample given in Figure 4.3

total contribution to the cost is 6 x (2 — 1) = 6. The connectivity set Afmy]
of cut net mj is A[m7] = {P i,7̂ 2, "Pa}. Hence its contribution to the cost is
A[mr] - 1 = 3 - 1 = 2. Figure 4.4 displays the 3-way partitioning result obtained
in Figure 4.3 in matrix view. Here we put the part number of each nonzero as its
value. In this figure you can identify the row cutnets mi, m 3 , m^, my and mg
as the rows containing different numbers. With this partition, processors P3 and
Pi will send their partial yy results yy = ay,4 -X4 and y® = ay^ -xg to processor P2,
which already contains ayj, during the fold operation of yy. Thus contribution
A[m,7] — 1 = 2 of row-net my to the cost exactly models volume of communication
required in the fold of yy.

Nonzero diagonal entries automatically satisfy the condition “vu G mi and
'(>ii S n-i for each row-net m,i and column-net nC thus enabling both accurate
representation of communication requirement and symmetric partitioning of x
and y vectors. A nonzero diagonal entry a,jj already implies that both column-
net n.j and row-net m , j contains vertex Vjj as their pin. If however some diagonal
entries of the given matrix are zeros then the consistency of the proposed model
is easily maintained by simply adding dummy vertex Vjj for each ajj - 0 with

= 0 to the vertex set V oi H. Vertex Vjj is also added to the both pin
list pins[nj] of column-net rij and pins[mj] of row-net mj. The net list of this
dummy vertex Vjj is simply set to nets[vjj] = {rij,mj}. These vertex additions
do not affect the weight computations, since we give zero as the weight of dummy
vertices.

4.2 Hypergraph Model for Jagged-like Decom
position

CHAPTER 4. HYPER.GRAPH MODELS FOR 2D DECOMPOSITION 61

In this section, we propose coarse-grain hypergraph model for jagged-like 2D
decomposition of the sparse matrices for parallel SpMxV computations. As stated
earlier, SpMxV algorithms that are based on 2D decomposition must use both pre
and post communication schemes together. The proposed decomposition method
is a two-phase method, in which each phase models either the pre communication
cost or post communication cost. Therefore, we have two alternative schemes for
this decomposition method. For the sake of simplicity in the presentation we will
discuss only one scheme, the one which models the pre communication in the
first phase and the post communication in the second phase. The dual discussion
holds for the other scheme, that is the one which models the post communication
in the first phase and the pre communication in the second phase.

In the jagged-like decomposition model, AT-way 2D decomposition of a sparse
matrix is achieved by first decomposing the matrix into ' / K parts using the
column-net model proposed in Section 3.3 (rowwise), then each part further de
composed into y/K parts using the row-net model (columnwise). Thus resulting
decomposition is a 2D decomposition. Figures 4.5-4.9 display each step of this
process on a sample 16x16 matrix. Let the input matrix A be an ilf x M matrix.
In the first phase, A is represented by the column-net hypergraph H-ji. For the
sake of simplicity in the presentation, we assume that underlying parallel archi
tecture is a y/K X y/K 2D mesh. Consider a \/A-way partition II of H ti- If we
partially permute the matrix according to the row partitioning induced by the
partition n , we obtain a matrix Â ̂ which contains roughly x M submatri
ces. In fact, since column-net model tries the work load balance on local SpMxV
computations, the resulting submatrices may not contain same number of rows
but they will contain roughly equal number of nonzeros. We can assign each
submatrix to a row group in 2D mesh. Clearly assignment of submatrices to row
groups does not change the total communication volume, so we can safely assume
that first submatrix is assigned to first row group and so on. For now, just assume
that we will not assign the nonzeros in a column of each submatrix to more than

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 62

one processor in each row processor group, i.e., columns of submatrices are indi
visible. We will later explain the correctness of this assumption in our jagged-like
decomposition model. The expand operation on the x vector components will
require communication among the row processor groups, not between any pair of
processors in a processor row of 2D mesh. Thus this phase minimizes the total
volume of communication among the y/K row processor groups required during
the pre communication step. Figure 4.6 illustrated the column-net representation
of the sample hypergraph given in Figure 4.5. We labeled the vertices and nets
of hypergraphs with letters “r” and “c” to denote row and column of matrix, for
simplicity in the presentation. For a 4-way decomposition of the sample matrix
we first decompose matrix into \/4 = 2 parts, to assign each part to a row group,
namely to row groups {P i,P2} «iid {Hs,Pa}· The resulting permuted matrix is
displayed in Figure 4.7.

In the second phase, each submatrix of is independently decomposed into
\ iK column stripes u.sing the row-net model described in Section 3.3. Since the
A ortices in the row-net hypergraph model correspond to the columns of the matri
ces, all nonzeros in a column of each submatrices will be assigned exactly to one
processor. Hence, this verifies the assumption in the previous paragraph. That

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 63

Figure 4.6: Jagged-like 4-way decomposition, Phase 1: Colurnn-riet representa
tion Ti-jz of A and 2-way partitioning IT of the Ha

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 64

6
14
11

3
8

16
12
4

L

î i f c î
X

iX ·
IXX X X

X X X
X X

■■! X'S;V“X

■ v;̂ ■' X X
I X X X X

P1&P2

P & P ^3 ” *̂4 I

Figure 4.7: Jagged-like 4-way decomposition, Phase 1: 2-way rowwise decom
position of matrix obtained by permuting A according to the partitioning
induced by fl

is, applying the row-net model in the second phase does not disturb the commu
nication requirements of expand operation which is modeled in the first phase.
Clearly, the columnwise decomposition in each row processor group, minimizes
the total communication volume required during the post communication step,
among the \ /K processors in respective row of 2D mesh . Since each group of
processors are assigned different rows of matrix A'^, only the processors in each
group must communicate to obtain full y vector. Therefore, sum of the volume
of communications of the each processor group exactly models the total volume
of communication among the K processors required during the post communica
tion step. Figure 4.8 displays the two row-net hypergraphs corresponding to each
submatrix displayed in Figure 4.7. Each hypergraph is partitioned independeritl.y,
sample partitions of these hypergraphs are also presented in this figure. The final
permutation hence processor assignments is displayed in Figure 4.9.

Note that, in the second phase, some vertices may need to exist in more than
one hypergraph. These vertices are the vertices corresponding to the columns
which have nonzero in more than one row group of A ̂ . In other words, they are
the cutnets of the first phase. In the second phase, we simply create a copy of
each such column in the decomposition of each submatrix if there is at least one

CHAPTER. 4. HYPEP.GRAPH MODELS FOR 2D DECOMPOSITION 65

Figure 4.8: Jagged-like 4-way decomposition, Phase 2: Row-net representations
of submatrices of A and 2-way partitionings

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 66

K]

L A .

Figure 4.9: Jagged-like 4-way decomposition, Phase 2: Final permuted matrix.

nonzero in that column of submatrix. In other words, for each cutnet nj in the
first phase, we create exactly \[nj] copies of vertex Vj in the second phase. For
example, as seen in Figure 4.6 the column-net C5 is a cutnet with A[cs] = 2, hence
as displayed in Figure 4.8 each hypergraph contains a vertex for column 5, namely
cr,. The computational weight of each vertex is just the number of nonzeros in
the corresponding column of each submatrix. Hence, maintaining the balance
criterion (2.1) corresponds to maintaining the computational load balance during
the local SpMxV computations.

In terms of number of messages, the jagged-like decomposition has some nice
features over 2D fine-grain hypergraph model. Recall that there is no restriction
in the communication pattern of 2D fine-grain model, hence in both pre and post
communication phases each processor can communicate with any processor. Thus
the bound of total number of message is 2K{K — 1). In jagged-like communi
cation, in the pre communication phase, the maximum number of messages per
processor is K — \ f K . Since the processors in the same row group of 2D mesh do
not require communication of x vector components. In the post communication
j:)hase, the maximum number of communication for each processor is \ ÎK — 1.
Hence the bound of total number of messages in jagged-like decomposition is
K (K - i) .

4.3 Hypergraph Model for Checkerboard D e
composition

CHAPTER 4. HYPER.GRAPH MODELS FOR 2D DECOMPOSITION 67

Most of the SpMxV kernels in the literature [64, 58, 57, 39] work on the 2D
checkerboard partitioning with the assumption that underlying interconnection
topology is 2D processor rnesh. The nice property of 2D checkerboard decomposi
tion is that, all expand operations are only performed among the processors in the
same column, and all fold operations are only performed among the processors
in the same row of 2D mesh. This nice property is the result of maintaining both
row and column integrity, that is, the nonzeros of each column (row) of the ma
trix is assigned to same column (row) of 2D processor mesh. As you may notice,
the proposed jagged-like decomposition presented in the previous section already
has some part of this nice property. Using the jagged-like decomposition, all fold
operations are only performed among the processors in the same row of 2D mesh.
However, for expand operations we should take care of extra precautions. In this
section, we propose a hypergraph model for 2D checkerboard decomposition of
sparse matrices for parallel SpMxV. In the second phase of jagged-like decom
position each column segment assigned to processor groups are represented by a
vertex in the row-net model and decomposition in each processor group is done
independently. That is, there is no restriction in the assignment of the column
segments in the final decomposition. For example, as displayed in Figure 4.8 al
though both copies of the vertex Cs is assigned to first parts of two hypergraphs,
the copies of the vertex C2 are assigned to different parts in those h}'^pergraphs.
Hence as we can see in the matrix displayed in Figure 4.9, although the column
integrity of column 5 is maintained, the integrity of the column 2 is not main
tained. The simplest way to achieve column integrity, is to force the partitioner
to put the copied vertices into same part in decomposition of the subsequent ma
trices. That is, the decomposition of the first submatrix can be done without any
restriction, however, in the decomposition of the subsequent matrices the vertices
corresponding to cutnet in the first phase are forced to be assigned to same part
with the all previous decompositions in the second phase. As .you may notice,
this enforcement limits the search space of the decomposition of the subsequent
subrnatrices. Furthermore, even the decomposition of first submatrix may blindly
cause extra fold operations in the next decompositions.

CHAPTER 4. HYPERGRAPH MODELS FOR. 2D DECOMPOSITION 68

Here we propose a new method which uses hypergraph model for 2D checker
board decomposition of sparse matrices for parallel SpMxV computations. The
proposed method is again a two phase method where the first phase is identical
with the jagged-like decomposition. For the second phase we introduce new hy
pergraph partitioning problem; Multi-Constraint Hypergraph Partitioning. The
notion of multi-constraint and multi-objective partitioning has recently become
popular in graph partitioning [47, 73] for the parallelization of multi-physics and
multi-phase applications. In these applications each constraint effectively corre
sponds to the computational load of the vertex in different phase of the target
parallel algorithm. Hence maintaining balance on each constraint corresponds to
maintaining load balance in each phase of the parallel algorithm. The intuition
behind the new model for checkerboard decomposition is as follows. Since, the
first decomposition in the second phase locks the vertices to the parts in the sub
sequent decompositions, the locked vertices may cause communication and there
is no way to get rid of this communication in the subsequent decompositions.
We should find a way to compute these extra communication before locking the
vertices. Luckily, we can easily integrate the computation of this cost. That
is, we can safely add the nets of hypergraphs of subsequent submatrices to the
hypergraph of the first submatrix. Furthermore, we can add all the nets of all
submatrices and solve the second phase just in one step. Recall that, in jagged-
like decomposition the second phase contains \ /K steps such that each of them
is a y/K-way decomposition.

The computational weight assignment is as follows. Since we have already
decided that “which rows of the matrix will be assigned to which row of the
2D processor mesh”, we have also decided computational weight of each column
segment. In the new model, each vertex corresponding to columns of matrix will
have V H weights. Each weight of a vertex corresponds to the number of nonzeros
of the corresponding column in the corresponding row processor group. Hence,
maintaining the balance on each weight constraint corresponds to maintaining
computational load balance among the processors of each row of 2D mesh. For
our specific application, multiple weights of the vertices do not correspond to the
weight of different phases. In fact they represent the load of computation that
will be executed concurrently.

CHAPTER 4. HYPERGRAPH MODELS FOR. 2D DECOMPOSITION 69

We can summarize the proposed checkerboard decomposition method as fol
lows. First decompose matrix A rowwise into VK-way using column-net repre
sentation Hn- Let partition II = { P i , , V ^ } of Un be the partition obtained
in the first phase. In the second phase decompose the matrix A columnwise
into \/i?-way using row-net representation Tic with multi-constraint on vertex
weights. Let wnAhj] denotes the j th weight of vertex Vi in hypergraph Uc,
representing the number of nonzeros of the column i in the jth. row group, i.e.,
w-Hc [L j] = ¡pinsm^ [ui] oV j\ .

4.4 Experimental Results

We have tested the validity of the proposed hypergraph models for 2D decompo
sition by running PaToH on the hypergraphs for the decompositions of various re
alistic sparse test matrices arising in different application domains [26, 16, 20, 25].
Table 4.1 illustrates the properties of the test matrices listed in the order of in
creasing number of nonzeros. PaToH is modified to handle multi-constraints to
present the checkerboard decomposition results. These 2D decomposition results
are compared with the ID decompositions obtained by running MeTiS using the
standard graph models, and PaToH using the ID column/row-net hypergraph
model presented in Section 3.3 (Recall that column-net and row-net models be
come equivalent in symmetric matrices). As PaToH achieves K-way partitioning
through recursive bisection, recursive MeTiS (pMeTiS) was used for the sake of
a fair comparison. Another reason for using pMeTiS is that direct K-way parti
tioning version of MeTiS (kMeTiS) produces 3% worse partitions than pMeTiS
in the decomposition of the test matrices, although it is approximately 2 times
faster, on the average.

All experiments were carried out on a workstation equipped with a 133 MHz
PowerPC processor with 512-Kbyte external cache and 64 Mbytes of memory.
We have tested K — 16, 32 and 64 way decompositions of every test matrix. For
a specific K value, K-way decomposition of a test matrix constitutes a decompo
sition instance. For jagged-like and checkerboard decompositions we assume that
underlying architecture is 4x4, 4x8 and 8 x 8 2D processor mesh. pMeTiS and

CHAPTER 4. HYPER.GRAPH MODELS FOR 2D DECOMPOSITION 70

Table 4.1: Properties of test matrices

name
number of
rows/cols

number of nonzero

total
per row/col

mm max avg
sherrnanS
bcspwrlO
ken-11
111

ken-13
cq9
co9
pltexpA4-6
vibrobox
cre-d
cre-b
world
mod2
finan512

5005
5300

14694
7039

28632
9278

10789
26894
12328
8926
9648

34506
34774
74752

20033
21842
82454

105089
161804
221590
249205
269736
342828
372266
398806
582064
604910
615774

1
2
2
1
2
1
1
5
9
1
1
1
1
3

7
14

243
361
339
702
707
204
121
845
904
972
941

1449

4.00
4.12
5.61

14.93
5.65

23.88
23.10
10.03
27.81
41.71
41.34
16.87
17.40
8.24

PaToH were run 50 times starting from different random seeds for each decompo
sition instance. The average performance results are displayed in Tables 4.2-4.4
for each decomposition instance. The percent load imbalance values are below 3%
for all decomposition results displayed in these figures, where percent imbalance
ratio is defined as 100 X {Wmax - ^^avi^l^^avg·

Table 4.2 displays the decomposition performance of the proposed hypergraph
models in 2D decomposition together with the standard graph model and ID hy
pergraph model. Communication volume values (in terms of the number of words
transmitted) are scaled by the number of rows/columns of the respective test ma
trices. As you can see average percent imbalance values are also displayed in this
table. Since both MeTiS and PaToH use recursive bisection to achieve /P-way
partitioning, it is very hard to impose exact load balance for all instances in both
of the tools. Although the main objective of this work is the minimization of the
total communication volume, the results for the other performance metrics such
as the maximum volume, average number and maximum number of messages
handled by a single processor are also displayed in Table 4.3. Recall that, by its
nature 2D checkerboard partitioning also minimizes these quantities implicitly.
Note that the maximum volume and maximum number of messages determine

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 71

the concurrent communication volume and concurrent number of messages, re
spectively, under the assumption that no congestion occurs in the network.

As seen in Table 4.2, the proposed hypergraph models produce substantially
better partitions than the graph model at each decomposition instance in terms of
total communication volume. 2D fine-grain hypergraph model is clear winner in
the communication volume cost as expected, since it has more degree of freedoms.
On the overall average, 2D fine-grain hypergraph model produces 59%, 43% and
34% better decompositions than the ID graph model, ID hypergraph model and
2D jagged-like decomposition, respectively. As expected, when the limitations
increase in the decomposition, the total volume of communication also increases.
However, even the most restricted decomposition method checkerboard decompo
sition produces 26% better decompositions than the graph model, on the overall
average.

Table 4.3 displays the average communication requirements of the proposed
hypergraph models in terms of number of messages handled by a single proces
sor. As seen in table, checkerboard decomposition result is shining. This result
was expected since the theoretical bound on the maximum number of messages
handled by a single processor is 2{\fK — 1). For example, for K = 64, the
maximum number of messages is 2{^J{Q4) — 1) = 2(8 — 1) = 14. Whereas, this
number is /T — 1 = 63 for ID graph and hypergraph models, 2{K — 1) = 126
for 2D fine-grain hypergraph model, and AT — 1 = 63 for jagged-like decompo
sition. Although theoretical bound on the number of messages in ID graph and
hypergraph models and 2D jagged-like decomposition are same, the hypergraph
models produce 27% less number of messages than the ID graph model.

Table 4.4 displays the average execution times of the MeTiS and PaToH for the
standard graph and proposed hypergraph models. As seen in the table, 2D fine-
grain model has the largest execution time. 2D fine-grain hypergraph model is
approximately 2.4 times slower than the ID hypergraph model. This was expected
since 2D fine grain contains 2 times more pins and nets than the ID hj'^pergraph
model, and also number of vertices in the 2D fine-grain model is equal to the
number of nonzeros in the matrix, whereas it is the number of rows/colurnns
in ID hypergraph model. The execution time of jagged-like decomposition is
29% less than the ID hypergraph decomposition, since it achieves the 7<-way

CHAPTER 4. HYPER.GRAPH MODELS FOR 2D DECOMPOSITION 72

decomposition by y/K times ' /K-wny decomposition. As also seen in Table 4.4,
both ID hypergraph decomposition and 2D checkerboard decomposition using
PaToH is approximately 3 times slower than the standard graph model using
MeTiS. Here, we should note that we have used PaToH without any modification
(except multi-constraint code added for checkerboard), that is, current version of
PaToH contains net weight variables, and is able to balance on nets, hence there
are some variables for each cell and net which are maintained during coarse of
partitioning. By modifying PaToH (i.e., removing the unnecessary code segments
and variables) we may expect substantial reduce in running time of hypergraph
models.

CHAPTER 4. HYPERGRAPH MODELS FOR, 2D DECOMPOSITION 73

Table 4.2: Average communication volume requirements of the proposed hyper
graph models and standard graph model, “tot” denotes the total communication
volume, whereas “max” denotes the maximum communication volume handled
by a single processor, “bal” denotes the percent imbalance ratio found by the
respective tool for each instance.

name I<

Graph Model ID Hypergraph 2D Fine-grain 2D Jagged-like 2D Checkerboard
comm. vol. comm. vol. comm. vol. comm. vol. comm. vol.
tot max bal tot max bal tot max bal tot max bal tot max bal

16 0.31 0.03 0.1 0.25 0.02 0.5 0.25 0.02 0.4 0.26 0.03 0.4 0.30 0.03 1.1
sherinari3 32 0.46 0.02 0.3 0.37 0.02 1.0 0.36 0.02 0.6 0.38 0.02 1.0 0.45 0.02 4.0

64 0.64 0.02 2.3 0.53 0.01 2.2 0.50 0.01 1.0 0.51 0.01 2.0 0.72 0.02 9.0
16 0.09 0.01 0.2 0.08 0.01 1.0 0.07 0.01 0.9 0.08 0.01 1.6 0.10 0.01 1.1

bcspwrIO 32 0.15 0.01 0.9 0.13 0.01 1.5 0.12 0.01 1.7 0.13 0.01 2.5 0.17 0.01 1.5
64 0.23 0.01 2.7 0.22 0.01 2.5 0.19 0.01 2.2 0.21 0.01 3.1 0.28 0.01 1.7
16 0.93 0.08 0.3 0.60 0.05 2.1 0.14 0.02 3.5 0.73 0.07 1.1 0.84 0.08 1.4

ken-11 32 1.17 0.06 4.8 0.74 0.03 2.6 0.29 0.02 3.6 0.88 0.05 2.1 0.98 0.06 2.7
64 1.45 0.04 13.5 0.93 0.02 3.9 0.48 0.02 3.7 1.03 0.03 2.8 1.17 0.04 3.4
16 1.70 0.15 0.5 1.06 0.10 0.3 0.74 0.08 0.1 1.00 0.09 0.5 1.15 0.10 0.1

111 32 2.25 0.10 1.7 1.49 0.07 1.6 1.05 0.07 0.1 1.30 0.07 1.3 1.54 0.07 0.8
64 3.04 0.07 7.7 2.20 0.05 4.5 1.38 0.05 0.3 1.63 0.05 2.0 2.11 0.05 l.i
16 0.94 0.08 0.3 0.55 0.04 2.2 0.08 0.01 4.1 0.72 0.07 2.6 0.79 0.07 2.7

ken-13 32 1.17 0.05 1.9 0.63 0.03 3.1 0.17 0.02 5.2 0.81 0.05 3.7 0.89 0.06 3.9
64 1.40 0.03 8.3 0.79 0.02 4.0 0.39 0.02 5.3 0.92 0.03 4.0 1.03 0.03 5.0
16 1.70 0.17 0.3 0.99 0.12 1.0 0.50 0.08 1.1 0.91 0.12 2.0 1.15 0.13 0.8

cq9 32 2.43 0.15 1.2 ■ 1.45 0.08 1.8 0.79 0.09 1.6 1.27 0.08 2.4 1.62 0.10 1.5
64 3.73 0.12 6.0 2.33 0.06 8.3 1.22 0.07 1.8 1.72 0.06 3.0 2.42 0.08 2.1
16 1.50 0.16 0.3 0.94 0.11 0.9 0.47 0.07 0.9 0.88 0.11 1.3 1.12 0.12 0.4

co9 32 2.07 0.12 0.9 1.36 0.08 1.9 0.74 0.07 1.3 1.20 0.08 2.0 1.55 0.09 1.9
64 3.10 0.09 3.4 2.17 0.06 3.8 1.09 0.06 1.8 1.63 0.05 3.0 2.24 0.07 1.8
16 0.34 0.03 0.1 0.30 0.03 0.1 0.20 0.02 1.1 0.27 0.03 1.7 0.29 0.03 0.1

pl1,expA4-G 32 0.55 0.03 0.3 0.51 0.02 0.2 0.29 0.01 1.3 0.47 0.02 3.1 0.53 0.02 0.6
64 0.98 0.03 0.6 0.86 0.02 1.0 0.51 0.01 1.4 0.74 0.02 2.9 0.85 0.02 1.3
16 1.24 0.11 0.3 1.06 0.08 0.1 0.79 0.07 0.0 0.95 0.07 0.1 1.07 0.08 0.1

vibrobox 32 1.73 0.08 0.8 1.53 0.06 0.4 1.06 0.06 0.0 1.31 0.05 1.1 1.49 0.06 0.2
64 2.28 0.05 2.0 2.08 0.05 1.1 1.43 0.05 0.3 1.64 0.03 1.6 2.01 0.04 0.4
16 2.82 0.24 0.9 2.00 0.17 1.3 1.15 0.12 0.0 1.63 0.19 1.3 1.81 0.20 1.4

cre-d 32 4.12 0.19 2.5 2.90 0.14 2.6 1.77 0.11 0.1 2.22 0.16 1.9 2.53 0.17 2.3
64 5.95 0.14 5.6 4.14 0.10 6.6 2.55 0.10 0.2 2.72 0.10 2.7 3.44 0.10 4.5
16 2.62 0.23 0.9 2.02 0.18 1.0 1.01 0.11 0.0 1.58 0.21 1.0 1.81 0.22 0.7

cre-b 32 3.90 0.18 2.2 2.88 0.15 1.5 1.55 0.11 0.0 2.15 0.18 1.8 2.55 0.20 1.9
64 5.73 0.14 5.6 4.08 0.12 5.8 2.26 0.10 0.0 2.73 0.11 2.3 3.49 0.12 3.2
16 0.59 0.05 0.1 0.54 0.06 0.6 0.23 0.05 1.5 0.63 0.08 1.5 0.70 0.09 1.5

world 32 0.84 0.04 0.3 0.76 0.05 1.1 0.41 0.04 1.8 0.86 0.06 2.1 0.96 0.07 1.7
64 1.19 0.03 0.7 1.06 0.04 1.7 0.62 0.04 1.9 1.07 0.04 2.9 1.30 0.04 2.1
16 0.57 0.05 0.1 0.52 0.06 0.8 0.24 0.05 1.8 0.60 0.08 1.7 0.67 0.09 1.5

in 0(12 32 0.79 0.04 0.3 0.72 0.04 1.2 0.41 0.05 2.1 0.82 0.06 2.1 0.91 0.07 1.6
64 1.14 0.03 0.8 1.02 0.04 1.8 0.62 0.04 1.8 1.03 0.04 3.1 1.27 0.04 2.3
16 0.20 0.03 0.0 0.16 0.03 2.8 0.07 0.02 3.5 0.20 0.06 5.2 0.21 0.07 4.5

iiiianr) 12 32 0.27 0.02 1.0 0.21 0.02 3.2 0.10 0.02 3.8 0.25 0.07 5.4 0.28 0.08 5.3
64 0.38 0.01 1.7 0.31 0.01 4.3 0.20 0.02 4.1 0.38 0.05 6.2 0.46 0.05 4.9

Averages over K

16 1.11 0.10 0.3 0.79 0.08 1.1 0.42 0.05 1.4 0.74 0.09 1.6 0.86 0.09 1.2
av(iriî (i 32 1.56 0.08 1.4 1.12 0.06 1.7 0.65 0.05 1.7 1.00 0.07 2.3 1.17 0.08 2.1

64 2.23 0.06 4.4 1.62 0.04 3.7 0.96 0.04 1.8 1.28 0.04 3.0 1.63 0.05 3.1
ov(;rall averap,e 1.63 0.08 2.0 1.18 0.0(i 1 2.1 0.68 0.05 1 1.6 1.01 0.07 2.3 1.22 0.07 2.1

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 74

Table 4.3: Average communication requirements of the proposed hypergraph
models and standard graph model, “avg” and “max” denote the average and
maximum number of messages handled by a single processor

Graph Model ID Hypergraph 2D Fine-grain 2D Jagged-like 2D Checkerboard
name K avg max avg max avg max avg max avg max

16 5.30 8.10 4.46 7.22 8.38 13.90 5.16 8.36 4.09 5.34
•shermanS 32 6.48 10.94 5.81 10.44 10.07 17.60 6.34 11.00 5.83 8.92

64 7.42 13.40 6.94 13.40 11.01 20.78 7.20 13.00 7.26 11.14
16 4.21 7.28 4.29 7.30 7.14 12.04 4.31 7.20 3.99 5.58

bcspwrlO 32 4.79 9.30 4.65 8.80 7.49 13.86 4.70 9.18 4.94 8.04
64 5.20 10.24 4.93 9.56 7.32 13.80 4.94 9.70 5.52 9.50
16 13.99 15.00 12.91 15.00 10.79 21.16 13.69 15.00 5.98 6.00

ken-11 32 26.00 30.48 21.19 30.96 18.85 40.90 22.84 28.88 9.62 10.00
64 40.48 55.14 32.22 60.80 28.23 76.28 28.93 45.04 13.21 14.00
16 14.99 15.00 13.30 15.00 23.87 28.56 13.75 15.00 6.00 6.00

111 32 27.88 31.00 20.39 27.58 35.98 50.48 21.61 27.80 9.95 10.00
64 38.35 58.98 26.13 41.32 42.43 75.94 25.67 40.68 13.39 14.00
16 14.77 15.00 13.87 15.00 9.39 19.28 12.52 15.00 6.00 6.00

ken-13 32 29.02 31.00 22.79 31.00 11.22 35.62 21.07 29.92 9.81 10.00
64 50.81 61.92 35.93 63.00 20.51 71.54 29.29 47.96 13.28 14.00
16 14.88 15.00 12.62 14.92 18.03 26.08 13.36 14.96 6.00 6.00

cqi) 32 21.96 30.60 17.87 26.78 24.54 45.38 18.37 28.00 9.75 10.00
64 32.27 56.58 22.67 41.12 30.72 75.26 21.27 42.32 12.89 14.00
16 14.81 15.00 12.82 14.92 20.00 26.40 13.47 15.00 6.00 6.00

co9 32 19.62 29.46 17.55 26.20 26.84 45.57 17.93 27.68 9.66 10.00
64 29.99 53.04 21.85 39.52 31.13 73.50 20.37 40.04 12.77 14.00
16 10.05 13.62 10.11 13.62 14.78 22.80 7.53 10.84 5.47 6.00

pltexpA4-G 32 15.86 25.40 14.73 25.38 20.51 36.96 11.23 19.54 8.43 10.00
64 20.48 45.20 17.35 38.12 21.40 52.88 14.86 32.64 9.95 12.58
16 12.84 14.86 10.14 12.42 23.27 28.32 10.64 13.20 5.82 6.00

vibrobox 32 20.85 27.20 14.77 20.14 31.28 47.88 15.24 20.44 9.26 10.00
64 28.85 40.48 19.58 30.84 35.38 80.68 19.74 27.38 11.53 13.04
16 14.90 15.00 11.78 15.00 26.05 29.67 12.26 15.00 5.80 6.00

cie-(l 32 28.59 31.00 19.49 31.00 41.37 54.87 18.84 28.44 9.19 10.00
64 47.36 63.00 29.73 61.28 55.76 92.27 24.86 51.48 11.78 14.00
16 14.78 15.00 12.13 15.00 25.91 29.60 12.87 15.00 5.91 6.00

c.re-b 32 28.57 31.00 19.97 31.00 40.33 55.47 19.49 28.44 9.51 10.00
64 46.42 63.00 29.98 61.34 52.72 89.80 25.10 50.32 12.29 14.00
16 11.78 15.00 6.09 15.00 16.57 27.68 9.29 14.38 5.12 6.00

work) 32 18.00 .30.94 8.19 30.94 23.14 51.36 13.79 25.68 7.46 10.00
64 20.58 57.58 11.58 58.08 27.42 87.52 16.37 41.78 9.47 14.00
16 10.95 15.00 5.59 14.92 13.02 27.12 8.71 14.16 4.92 6.00

1110(12 32 14.59 29.72 7.42 27.84 18.68 48.44 12.10 24.24 7.12 10.00
64 17.84 50.84 10.51 46.42 24.44 80.72 14.56 37.96 8.92 14.00
16 4.35 7.40 3.48 7.40 9.24 19.53 4.50 9.20 4.08 5.90

iinanr)I2 32 6.39 13.64 4.15 13.58 10.75 34.47 5.33 14.04 5.12 9.46
64 8.80 26.40 5.37 26.40 14.90 62.33 5.82 20.36 6.12 11.80

Averages over K

16 11.61 13.30 9.54 13.05 16.17 23.72 10.15 13.02 5.37 5.92
average! 32 19.19 25.83 14.21 24.40 22.93 41.35 14.92 23.09 8.26 9.74

64 28.20 46.84 19.63 42.23 28.81 68.09 18.50 35.76 10.60 13.15
overall average 19.67 28.66 14.46 26.56 22.04 44.39 14.52 23.96 8.08 9.60

CHAPTER 4. HYPERGRAPH MODELS FOR 2D DECOMPOSITION 75

Table 4.4: Average execution times, in seconds, of the MeTiS and PaToH for
the standard graph model and proposed hypergraph models. Numbers in the
parentheses are the normalized execution times with respect to Graph Model
using MeTiS.

Graph Model ID Hypergraph 2D Fine-grain 2D Jagged-like 2D Checkerboard
naiTKi K exec, time exec, time exec, time exec, time exec. time

16 0.53 (1.00) 0.94 (1.77) 1.60 (3.03) 0.60 (1.13) 0.85 (1.61)
shermari3 32 0.61 (1.00) 1.10 (1,79) 2.05 (3.34) 0.65 (1.06) 1.07 (1.75)

64 0.71 (1.00) 1.22 (1.71) 2.42 (3.39) 0.82 (1.15) 1.29 (1.80)
16 0.28 (1.00) 1.01 (3.62) 2.04 (7.28) 0.66 (2.35) 0.86 (3.06)

bcspwrlO 32 0.34 (1.00) 1.24 (3.63) 2.47 (7.25) 0.70 (2.05) 1.02 (3.01)
64 0.42 (1.00) 1.39 (3.34) 2.86 (6.86) 0.85 (2.03) 1.30 (3.13)
16 1.77 (1.00) 3.86 (2.19) 6.47 (3.66) 2.51 (1.42) 3.21 (1.82)

ken-11 32 1.98 (1.00) 4.74 (2.39) 8.10 (4.09) 2.78 (1.40) 3.73 (1.88)
64 2.35 (1.00) 5.31 (2.26) 9.87 (4.20) 3.19 (1.36) 4.39 (1.87)
16 1.21 (1.00) 3.75 (3.09) 8.58 (7.07) 2.54 (2.09) 3.39 (2.79)

111 32 1.43 (1.00) 4.46 (3.12) 10.56 (7.39) 2.59 (1.81) 3.84 (2.68)
64 1.54 (1.00) 5.13 (3.34) 12.33 (8,03) 3.13 (2.04) 4.48 (2.92)
16 3.84 (1.00) 8.33 (2.17) 12.81 (3.33) 5.20 (1.35) 6.69 (1.74)

keii-13 32 4.50 (1.00) 9.81 (2.18) 16.39 (3.64) 5.80 (1.29) 7.77 (1.73)
64 4.78 (1.00) 10.99 (2.30) 20.71 (4.33) 6.67 (1.40) 9.16 (1.92)
16 2.12 (1.00) 5.58 (2.64) 14.41 (6.81) 4.15 (1.96) 5.42 (2.56)

cq9 32 2.46 (1.00) 6.43 (2.61) 17.13 (6,96) 4.47 (1.82) 6.37 (2.59)
64 2.80 (1.00) 7.90 (2.82) 20.49 (7,31) 5.16 (1.84) 7.20 (2.57)
16 2.42 (1.00) 6.58 (2.72) 16.01 (6.63) 4.78 (1.98) 6.21 (2.57)

CO 9 32 2.84 (1.00) 7.89 (2.78) 20.29 (7.14) 5.10 (1.80) 7.52 (2.65)
64 3.07 (1.00) 9.15 (2.99) 24.54 (8.01) 6.17 (2.01) 8.72 (2.84)
16 3.22 (1.00) 12.26 (3.81) 28.69 (8.92) 8.78 (2,73) 11.27 (3.50)

pltexpA4-G 32 3.84 (1.00) 15.87 (4.13) 36.92 (9.61) 9.02 (2.35) 13.67 (3.56)
64 4.32 (1.00) 18.20 (4.21) 42.06 (9.73) 11.41 (2.64) 17.09 (3.95)
16 2.77 (1.00) 12.64 (4.56) 28.83 (10.40) 10.92 (3.94) 15.88 (5.73)

vibrobox 32 3.25 (1.00) 15.11 (4.65) 35.43 (10.90) 11.52 (3.54) 18.86 (5.80)
64 3.49 (1.00) 17.35 (4.97) 41.50 (11.88) 13.27 (3.80) 21.81 (6.24)
16 4.18 (1.00) 9.76 (2.34) 31.30 (7.49) 11.14 (2.67) 13.27 (3.18)

cre-cJ 32 4.80 (1.00) 11.71 (2.44) 38.77 (8.08) 12.88 (2.69) 14.92 (3.11)
64 5.03 (1.00) 13.66 (2.72) 45.50 (9.05) 14.10 (2.80) 17.48 (3,48)
16 4.41 (1.00) 10.47 (2.38) 32.05 (7.27) 11.04 (2.50) 14.06 (3.19)

cre-b 32 5.01 (1.00) 12.13 (2.42) 39.88 (7.96) 11.77 (2.35) 15.73 (3.14)
64 5.42 (1.00) 14.20 (2.62) 46.92 (8.66) 13.83 (2.55) 18.63 (3.44)
16 5.76 (1.00) 19.37 (3.30) 48.24 (8.37) 15.28 (2.65) 20.88 (3.62)

world 32 7.04 (1.00) 23.52 (3..34) 63.34 (9.00) 17.13 (2.43) 25.10 (3.57)
64 8.16 (1.00) 28.89 (3.54) 77.90 (9.54) 19.59 (2.40) 29.79 (3.65)
16 5.85 (1.00) 20.51 (3.51) 52.13 (8,92) 16.22 (2,77) 20.57 (3.52)

mod2 32 7.19 (1.00) 23.85 (3.32) 66.18 (9.20) 17.42 (2.42) 25.72 (3.58)
64 7.96 (1.00) 29.30 (3.08) 74.27 (9.33) 20.93 (2.63) 30.32 (3.81)
16 7.84 (1.00) 25.72 (3.28) 55.13 (7.03) 16.49 (2.10) 20.05 (2.56)

iiiiariol 2 32 9.56 (1.00) 31.49 (3.30) 67.26 (7.04) 17.01 (1.78) 25.62 (2.68)
64 11.17 (1.00) 1 37.29 (3..34) 79.71 (7.13) 21.69 (1.94) 31.12 (2.78)

Averages over K

16 - (1.00) - (2.96) - (6.87) - (2.26) - (2.96)
a\Hirag(‘ 32 - (1.00) - (3.01) - (7.26) - (2.00) - (2.98)

64 - (1.00) - (3.13) - (7.08) - (2.18) - (3.17)
()V(!rall average - (1.00) - (3,03) - (7.27) - (2.17) - (3.04)

Chapter 5

Hypergraph Partitioning-Based
Sparse M atrix Ordering

The first step of a direct method to solve linear system Zx = 6 is a heuristic
reordering of the rows and columns of Z to reduce fiii in the factor matrices. The
fill is the set of zero entries in Z that become nonzero in the factor matrices.
Reducing the fill usually causes a faster and less memory intensive factorization.
Minimum degree [76] algorithm (MD) is the most commonly used heuristic for re
ordering. An alternative for reordering is nested dissection [29]. Although nested
dissection has some nice theoretical results [29], it has not been used widely un
til the development of recent multilevel graph partitioning tools. Here, we will
demonstrate the flaw of the graph model for sparse matrix ordering in multilevel
framework. We will propose a novel hypergraph partitioning-based nested dis
section ordering for matrices arising in the solution of Linear Programming (LP)
problems using an interior point method. Furthermore, we will generalize the
proposed method to order any symmetric matrices.

76

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 77

5.1 Flaws of the Graph Model in M ultilevel
Framework

As discussed in Sections 2.4 and 2.5, most of the nested dissection tools [33, 40, 46]
are based on successful multilevel graph partitioning tools [33, 38, 46] with some
extra initial partitioning and refinement strategies specific to the solution of the
GPVS problem. As also discussed in Section 2.4, a multilevel partitioning tool
basically contains three phases; coarsening, initial partitioning and uncoarsening.
During the coarsening phase, vertices are visited in some order and usually two
(or more) of them selected according to a some criteria to construct the vertices
of coarsened graph. Consider the two examples displayed in Figure 5.1 as partial
illustration of two different GPVS partitioning results at some level m of multi
level GPVS tool. In the first one, i - I l vertices {vi,Vi+i, . . . are coalesced
to construct vertex Vi-i as a result of one or more levels of coarsening. This is
a valid and narrow separator for level rn. GPVS tool computes the cost of this
separator as ^4-1 at this level. However, obviously this separator is not a narrow
separator in the original graph, it is a wide separator in the original graph. In
other words, there is a subset of those vertices which is a valid narrow separator
of the original graph. In fact anyone of the vertices is a valid separator of cost
1 in the original graph. Similarly, for the second example, GPVS tool computes
the cost of the separator as 3, however, there is a subset of constituent vertices
of Vijk = {vi,Vj,Vk] which is a valid narrow separator of cost 1 in the original
graph (i.e., either {u,;} or {ua:})·

In GPES, the multilevel framework does not have this kind of flaw. That is,
for an edge separator Es at level m, there is no subset of £s which is a valid
edge separator of the original graph.

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 78

V.

V;
- V;) i-l

' V i 1

V̂. oi 1+2 '

------ f

V.

Figure 5.1: Partial illustration of two sample GPVS result to demonstrate the
flaw of the graph model in multilevel framework.

5.2 Describing GPVS Problem as a HP Prob

lem

Consider a hypergraph H = {U,M) and its NIG representation <5 = (V, as
discussed in Section 2.3. A /F-way vertex partition ri//p = \lAyM2 ·, · · · M k) of
Ti can be decoded as {K + l)-way net partitioning 11// ̂ = {V , A/2, .. .
of % as follows. Here, A4 corresponds to the internal nets of part 1·̂ ·, for
f < k < K , A4 = {nj\'pins[nj\ nUk = pins[nj]}. J\fs corresponds to the external
nets. In particular, a 2-way vertex partition Ifhp = of T-L can be decoded
as 3-way net partitioning II//p = {A/i,A/2;A/p} of %. Here, we consider net-
partition H//P = {A/i ,A/2;V s} of as inducing a GPVS Hgp\/5 = {Vi, V2; V5}
on its NIG repre.sentation where V] = V , V2 =J^2 i V5 =J^s- Let Adj-H{ni)
denote the set of nets that share pin(s) with net n .̂ Consider an internal net
rii of part ¿Yi,i.e., riy € U\. It is clear that we have either Adjy îrii) C My or
Adj-ulrii) C My uM s- Recall that NIG Q contains a vertex vy for each net uy
of H. So we have either Adjg{vy) C Vi or Adjg{vy) C Vi U Vs in NIG Q. In
other words, Adjg{vy) fi V2 = 0. In the respective Ugpvs , this corresponds to
Adjg{Vy) n 14 = Adjg{V2) n Vi = 0 which in turn corresponds to Adjg{Vy) C Vs
and AdjgM-i) C Vs. Thus, Vs of Hcp^s constitutes a valid separator of size
|Vs| = |A/s|. Recall that in the GPVS problem, balancing is defined on the

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 79

vertex counts of parts Vi and V2. Hence, the GPVS problem on NIG Q can be
described as an HP problem according to the net-cut metric (Equation (2.4.a)
with Cj = 1) with balancing on the internal nets of parts Ui and IA2 .

From a matrix theoretical point of view, let ^ be a matrix and 1-L be its
row-net hypergraph representation, the NIG Q would be the standard graph rep
resentation of matrix AA?~. Hence, finding a doubly-bordered form of matrix
AA^' (finding GPVS on Q) is equivalent to finding a singly-bordered form of
matrix A (finding a net partition on PL). Although this finding looks very im
pressive, it is not very useful on itself. For a general GPVS problem on which
is equivalent to finding a doubly-bordered form of associated matrix (say Z) of
Q, we should know the decomposition of matrix Z as Z = AAA .

5.3 Ordering for LP Problems

The interior point methods for solving linear programming (LP) problems require
the solution of Zx = b repeatedly, where Z = ADA^ . Here, D is a diagonal ma
trix whose numerical values change in each iteration, however constraint matrix
A remains unchanged. The linear systems are usually solved by factoring matrix
Z . As discussed earlier, factorization introduces fills, and hence, the fill-reducing
reordering heuristics are used just before the factorization.

Here, we propose a hypergraph-partitioning-based nested dissection ordering
for the ordering of matrix Z = ADA^' . Nested dissection ordering requires finding
a doubl3̂ -bordered (DB) form of the matrix. In DB form, borders correspond
to separator 5 , and block-diagonals correspond to X and Y parts of nested
dissection as mentioned earlier. Nested dissection simply orders rows/colurnns
of S after the rows/columns of X and Y . Together with the formulation of
GPVS problem as an HP problem, described in the previous section, we can
construct an ordering of Z by just recursively dissecting A. That is, in each
bisection of A cutnets in Ms correspond to separator vertices in S in the nested
dissection. Figure 5.2 and 5.3 illustrate this finding in a two level incomplete
nested dissection.

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 80

Figure 5.2: 2 level recursive partitioning of A and its transpose A'^

A „ A " „
1
t

1
1

CO

< c
r**

<

; ; « ; i

^ 1 2 ^ ^ 1 2
■<c:]

^ 1 8 ^ ^ 1 1 '^i s A''^i2

A AT' 2̂S'̂ 21

Â22̂ 22

<
H*·'' 'i

U. <ls, ' =··̂

w
<

?,r <M̂;̂

'Sl?W

f ·
\<€

A^Al·^

•"*"A'' 'AT '‘fc'ôs7.2av,

SI

A**’»».

</>''

A'" AilAT,, r o s ^ 21

Figure 5.3; Resulting DB form of AA"^, for matrix A displayed in Figure 5.2

CHAPTER. 5. HP-BASED SPARSE MATRIX ORDERING 81

initialize delete[ui] -f- FALSE for u,; € ¿1
for node Ui E ¿1 in non-increasing degree order

if delete[ui] — FALSE then
for each nj G nets[ui] do

if d,egg{vj) = deg-u{ui) — 1 then
for each Uk G pms[nj] do

if Uk 7̂ Ui and delete[uk] = FALSE then
delete[uk] TRUE

delete all nodes Ui of H with delete[ui] — TRUE

Figure 5.4: Clique discarding algorithm for H = Here, Q = (V,S) is the
NIG representation of R

Since our main aim is to achieve a GPVS on NIG Q through a partitioning
on H , we may simplify R without disturbing its NIG representation Q. That is,
let R' be the simplified version of R such that the NIG representation of both
of them is exactly the same (i.e., Q), then we can safely use R' instead of R to
find a GPVS partition on Q. Here, we propose two simplification methods.

5.3.1 Clique Discarding

Let R be the row-net hypergraph representation of matrix A, clearly its NIG
Q is the graph representation of matrix AA^ . As mentioned in Section 2.3, the
NIG representation G for a hypergraph R can also be obtained by applying the
c:lique-net model to the dual hypergraph of R . In other words, each node of R
(columns of A) induces a clique among the vertices of G that correspond to nets
incident on that node in R (rows with nonzero at that column). Hence, if the two
columns have exactly the same sparsity pattern (i.e., have nonzeros in the same
rows) they induce the same clique in G ■ Furthermore, if the sparsity pattern of a
vertex, say w,;, is a subset of another vei'tex, say v j , then clique edges which are
induced by v,, are a subset of clique edges which are induced by Vj, so Vi become
redundant in the partitioning of R to find a GPVS partition on NIG G-

Here we present a simple yet effective algorithm to find the redundant nodes

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 8 2

(V,:---------< V.,

Figure 5.5: A sample partial matrix and NIG representation of associated hyper-
graph to illustrate the clique discarding algorithm

of hypergraph in the solution of GPVS problem through hypergraph partitioning
methods. Figure 5.4 displays the proposed algorithm. The algorithm works as
follows; nodes of hypergraphs are visited in the non-increasing degree order. If
the currently visited node Uj in H is not marked for deletion yet, we check the
degree of vertex Vj corresponding to the incident net rij of Ui. If the degree of
vertex Vj in Q is equal to the degree of Ui minus one, this means that Ui is the
node that induced the largest clique which includes Vj. In other words, all other
nodes connected to nj in PL will induce cliques whose edges are subset of the
clique edges induced by u,;. So we can safely delete all other nodes connected to
rij in PL. Gonsider the example sketched in Figure 5.5. Our algorithm works as
follows. The columns of the sample matrix are visited in the order a, c, b, d. For
the first column a with 4 nonzeros, we check the degree of vertices Vj, Vk, u/, Vm, ■
Since degree of vj is 4 in ^ (not equal to deg-fi{ua) — 1 = 4 —1 = 3) we just skip
it. The degree of Vk is 3 in Q, therefore all the nodes, except node Ua, incident
to net TLj will be marked for deletion. Hence, is marked for deletion. Since
the degree of vi is also 3 in this cause to mark Uc for deletion. Although the
degree of Vm is also 3 in ^ , since the only node Uc incident to n„i already marked
for deletion, no extra vertex is marked. In the outer-most loop, we will skip nodes
u,· and ui, since they are marked for deletion. For node Ud, no other node will be
marked. Although degree of w, is 1 which is equal to deg-u{ud) — 1 = 2 — 1 = 1,
there is no other node in the hypergraph (except uj.) which is connected to rii.
Since the degree of Vj is not 1, it will be skipped. At the end of the execution
nodes vi, and Vc is marked for deletion, so we can safely discard those nodes in
the hypergraph.

CHAPTEE. 5. HP-BASED SPARSE MAIHIX ORDERING 83

5.3.2 Sparsening

Here, we propose a second hypergraph simplification algorithm for solving GPVS
problem through hypergraph partitioning. Recall from Section 2.3 that, two
vertices of NIG are adjacent if the respective nets share at least one pin in the
hypergraph. However, if they share more than one pin, only one of them suffices
in our application, because our goal is to achieve a GPVS partitioning on NIG
through hypergraph partitioning. Here we present a simple yet effective algorithm
for pin deletion based sparsening. We need to first identify the pins that can be
deleted. Let W[i,j] denotes the number of common pins of nets and Uj. We
have the following lemma for pin deletion:

Lem ma 1 For each u G pins[ni], pin (ni,u) can be deleted if W[iO] > 1 for all
r i j G nets[u] — {ni}.

Obviously, W[i,j] must be greater than or equal to 1, since u is common a pin of
both ni and n j . If W[i, j] = 1 for a net n j , this means that u is the only common
pin between n̂ and nj, so we cannot delete it, since we loose edge {vi,Vj} in
NIG. If W[i,j] > 1 for all rij, this means that n̂ and rij share more than one
pin, including M, so we can safely delete pin (ni,u). Consider the example given
in Figure 5.6. In this figure NIG edges are labeled both with W[i,j] values and
the set of common nodes for the sake of simplicity of presentation. Consider
the possible deletion of pins of net n\. Pin (ni,ui) cannot be deleted since
W[l, 3] = 1, that is U] is the only common node in the pin lists of nets nj and
77,3. Pin (77i ,'«2) be deleted since both W [l,2] = 2 and TV[1,4] = 4. Pin
(«1, 7/3) can also be deleted since W[l, 4] = 2. However, pins («i, «2) and (?7,], «3)
cannot be deleted together, since deleting both of them makes W[l,4] = 0.

The proposed pin deletion-based sparsening algorithm is displayed in Fig
ure 5.7. The algorithm does not require the NIG G as input. Edge weight values
W[i,j] of G are recomputed for each net rij. When pin {n,i,u) is identified for
deletion, since pin (n,;, u) stored both in the net list of node u and in the pin list
of net Hi, we delete both n.i from nets[u] and u from pins[ni] to effectively delete
{riipa) in 'H. Note that when pin («¿,7/) is deleted, weights of edges between rii

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 84

Figure 5.6: A sample matrix, its associated row-net hypergraph and NIG repre
sentation of the associated hypergraph

and Uj are decremented by 1, for each rij e nets[u] to reflect the pin deletion in
the edge weights of NIG.

5.4 Generalization

Until here, we have assumed that for ordering Z we have also given its decompo
sition Z = A À ^ . However, in most of the applications this is not the case, that
is, A is usually unknown. Here, we propose a simple 3'̂ et effective decomposition
of symmetric matrices for hypergraph partitioning-based nested dissection. Let
Ç be the standard graph model representation of matrix Z . Our aim is to find a
matrix A such that AA^ = Z. In graph theoretical view, we are trying to find a
hj^pergraph % such that its NIG is Q. Obviously net set of the target hypergraph
H is already identified by the definition of NIG. That is, there must be a net n,;
in Itypergraph T-L corresponding to each vertex Vi in Q. The node set of PL is
defined as follows. There is a node uij in Pi corresponding to edge eij G £ with
the net list nets[uij] = {n,;,nj}. As mentioned earlier, during the construction of
NIG G from a hypergraph Pi, each node of Pi induces a clique among the vertices
of G that correspond to nets incident to that node in Pi. It is clear that, with
the proposed decomposition, each node of Pi induces distinct 2-cliques, therefore
the proposed decomposition is referred to here as 2 -clique decomposition.

In matrix theoretical view, matrix A is the edge-incidence matrix of NIG G ■
That is, each row of matrix A corresponds to a vertex in G- Each column of
matrix A corresponds to an edge in G, such that there are exactly two nonzeros

CHAPTER. 5. HP-BASED SPAR.SE MATRIX OR.DERING 85

initialize W[j] 4— 0 for ¿ = 1, , lA/"!
for each net Uj € A/" do

for each node u G 'pins\ni\ do
for each U j G nets[u] do

W[j] ^ W[j] + 1
for each node u G pins[ni] do

flag ^ T R U E
for each rij G nets[u] do

if n,· Hi and W\j] = 1 then
flag ^ FALSE
break

if flag = T R U E then
nets[v] 4— nets[u] — {n¿}
pins[n,j] 4— pins[rij] — {u}
for each Uj G nets[u] do

W[j] 4 - W[j] - 1
for each node u G pins[ni] do

for each n,· G nets\u] do
W[j] 4 - 0

Figure 5.7; Hypergraph Sparsening A lgorithm for PL =

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 86

in each column representing the two end points of the edge. Note that, the
hypergraph mentioned in the previous paragraph is the row-net representation of
the edge-incident matrix A.

5.5 Extending Supernode Concept

Supernode concept has been widely used in MD ordering [76, 59]. In matrix
theoretical view, supernodes correspond to the columns with identical sparsity
pattern. In graph theoretical view, a supernode corresponds to a clique of vertices
with identical adjacency structure. The nice property of a supernode is that all
nodes in the supernode can be eliminated in one step. In MD-based ordering
algorithms, supernodes are identified and the ordering algorithm works on the
compressed graph obtained by merging vertices constituting the supernodes. The
supernode concept has also been exploited in a dynamic manner by identifying
supernodes formed during the elimination.

The supernode concept has also been exploited in nested dissection based
ordering algorithms as follows. If any constituent vertex of a supernode belongs to
vertex separator V5 in TIcpvs = {Vi,V2; V5}, then all other constituent vertices
of the supernode belong to separator V5 . In a similar manner, if any constituent
vertex of a supernode belongs to Vi (V2), then all other constituent vertices of the
supernode belong to Vi (V2). So nested bisection based algorithms can also work
on compressed graphs. In this work, we extend the supernode concept for nested
dissection based ordering. We claim that for nested dissection based ordering,
the constituent vertices of a supernode need not to be connected. That is, a set of
disconnected (non-adjacent) vertices with identical adjacency structure can also
be merged to form supernodes. The former and latter types of supernodes will
Ije referred to here as connected (conventional) and disconnected supernodes.

The algorithm [4] used for identifying connected supernodes computes a hash
value for each vertex w, as

hash{vi) — i ^ (5.1)
V j £ A d j { v i)

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 87

These hash values are exploited to quickly identify connected supernodes. It is
obvious that, if two vertices have different hash values, then they have different
adjacency structure. The algorithm first sorts the vertices in G by hash value.
The sorted list is divided into subsets so that each subset contains the vertices
with identical hash value. Then only adjacency structures of the vertices in these
subsets are compared. We made some enhancements in the implementation of
this algorithm as follows. The degree of the vertices are used as a secondary key
in the sorting to reduce the number of vertices with identical key. The sorted
list is again divided into subsets so that each subset contains the vertices with
identical hash value and degree. For each vertex Vi in this subset (if it is not
selected as a constituent of a supernode yet), adjacent vertices are marked with
i in a mark array (i.e., mark[vj] = i for Vj G Adj{vi)). Then only the adjacency
structure of the vertices, in the same subset, adjacent to Vi are compared with
the adjacency structure of Vi. Note that we can skip the adjacency structure
comparison for a vertex Vj if it is not adjacent to Vi (i.e., mark[vj\ During
the adjacenc}^ structure comparison for a vertex Uj, we check if all its adjacent
vertices are also marked with i.

The algorithm for identifying disconnected supernodes works as follows. The
hash values are computed as

hash{vi) = X) j.
Vj£Adj[vi)

(5.2)

Vertices of graph G are sorted by hash value and degree. The sorted list is again
divided into subset containing identical key values. For each vertex Vi in each
subset (if it is not selected as a constituent of a supernode yet), adjacent vertices
are marked with i in amark array (i.e., ma.rk[vj] = i for Vj G Adj{vi)). Then only
the adjacency structure of the vertices, in the same subset, non-adjacent to Vi are
compared with the adjacency structure of u,;. That is, in this algorithm, we can
skip the adjacency comparison of a vertex Vj if it is adjacent to u,; {i.e.,mark[vj] =

'0·

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 88

5.6 Experimental Results

We have tested the proposed hypergraph partitioning-based nested dissection
method on the ordering of various realistic sparse test matrices arising in differ
ent application domains [26, 16, 20, 25]. Table 5.1 illustrates the properties of the
test matrices. In this table, M denotes the number of rows/columns of matrix Z ,
and N Z denotes the total number of nonzeros. For the matrices arising from LP
problems, number of columns N and total number of nonzeros N Z are also listed
for matrix A, where Z = A A ^ . The number of rows of A is equal to the number
of rows/columns of Z . This table also displays the Multiple Minimum Degree [59]
(MMD) ordering results in terms of operation count (shown as “OPC”) and total
number of nonzeros after factorization (shown as “NZF”). We have used MMD
implementation of SMOOTH [7] with the parameters: compressFlag=6 for com
pression before elimination and after each elimination step, prioType=l for exact
external degree for each vertex, stepType=l for independent set elimination.

Table 5.2 displays the the number of connected and disconnected supernodes
identified by the algorithms described in Section 5.5, as percent of M . For the
matrices arising from LP problems, the clique discarding and sparsening algo
rithms presented in Section 5.3.1 and Section 5.3.2 are also applied. The number
of discarded/deleted columns and nonzeros of A are also display in this table
as percents of N and N Z , respectively^ As seen in Table 5.2, general matri
ces have considerable amount of connected supernodes (approximately 26% on
the average), however disconnected supernodes are very rare (less than 1% on
the average). In LP problems, percent of disconnected supernodes is 3.64 and
percent of connected supernodes is 5.48, on the average. Approximately 2% of
the columns and nonzeros of A is identified as redundant by clique discarding
algorithm, on the average. As seen Table 5.2, considerable amount (20% on the
average) of nonzeros (pins) of A {R) are deleted by the sparsening algorithm.

The nested dissection based algorithms usually work in an incomplete manner.
That is, nested dissection is applied until the parts are fairly small, since the
MD algorithm is quite effective for modest-size graphs. The subgraphs induced
by the parts correspond to the standard graph representation of the decoupled
l)lock-diagonal submatrices. There are various possible ordering schemes for the

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 89

parts and separators after a /< = 2^-way nested dissection. Let Z i ,Z 2 , . . . , Z k
be decoupled parts of symmetric matrix Z by separators Si, S2 , ■.. ,Se at each
level of recursion. Figure 5.8 illustrates a sample for this decoupling process for
/v = 4. The difference of the ordering schemes lies in which ordering method is
used to order vertices in the decoupled parts, and how the vertices in separators
are ordered. Four possible ordering schemes as follows;

ND-M D all decoupled block-diagonal submatrices are ordered first by MD,
then all separators are ordered in depth-first order, i.e., Se is ordered just
after the orderings of Zi, Z 2 , ■ ■ ■, Zk , then Si-\ is ordered and so on, such
that S\ is ordered last.

ND -CM D all decoupled block-diagonal submatrices are ordered first by con
straint minimum degree [61] (CMD), then all separators are ordered in
depth-first order.

m ultisection-M D all decoupled block-diagonal submatrices are ordered first
by MD, then all separators are ordered together.

m ultisection-C M D all decoupled block-diagonal submatrices are ordered first
by CMD, then all separators are ordered together.

With this classification, ordering code of MeTiS [46] falls into the class ND-MD,
and BEND [40] falls into the class ND-CMD. In their recent work [9], Ashcraft
and Liu states that CMD [61] algorithm produces better orderings in nested dis
section and multisection ordering. The results presented in their work also show
that multisection generates better orderings than nested dissection. Hence, their
ordering code, we call it SMOOTH as the name of whole package is SMOOTH [7],
falls into class multisection-CMD.

MSMD object in the SMOOTH software package [7], is a piece-of-art ordering
object. It contains both CMD and MMD features combined in a brilliant wa3c
The idea is as follows, MSMD orders the vertices by stages, i.e., vertices in stage
k will be ordered before vertices in stage A: -t- 1. Inside the stages, it basically
does MMD ordering, however, selection criteria can also be changed, i.e., instead
of using actual degree, approximate degree can be used. With this code, devel
opment of “ND-CMD” and “multisection-CMD” ordering codes are simple tasks.

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 90

Figure 5.8: 4-way decoupled matrix Z using recursive dissection.

Therefore, we have used MSMD object of SMOOTH [7] in the development of
our hypergraph partitioning-based nested dissection ordering tool oPaToH. We
have incorporated, both ND-CMD and multisection-CMD schemes. In the cur
rent implementation oPaToH-ND stands for ordering code of PaToH which uses
ND-CMD, and oPaToH-MS stands for multisection version.

The average ordering performance of the various tools are displayed in Ta
bles 5.3-5.5 relative to MMD. The results of GP-based nested dissection ordering
tools onmetis and oernetis, graph partitioning-based multisection ordering tool
SMOOTH are displayed in these tables. The proposed HP-based multisection and
nested dissection ordering results using PaToH are also displayed in these tables.
In Tables 5.3-5.5, “2-Clique oPaToH” denotes the hypergraph partitioning-based
ordering of matrix Z using the 2-Clique decomposition described in Section 5.4,
whereas “oPaToH using A ” denotes the hypergraph partitioning-based ordering
of matrix Z using the given constraint matrix A for LP problems. Hence, no
result is displayed in those columns for general matrices. For each problem, order
ing tools were run 50 times starting from different random seeds and the average
results are displayed in the tables.

Table 5.3 displays the average ordering performance of the tools in terms
of operation count. For general matrices, best ordering results are obtain by
SMOOTH, on the average, SMOOTH produces 27% better orderings than MMD.
The proposed HP-based multisection ordering (oPaToH-MS) produces the second

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 91

best solutions, on the average. oPaToH-MS produces consistently better order
ings than MMD for each problem, and produces 25% better orderings than MMD
on the average. In the ordering of matrices arising from LP problems, ND ver
sion of PaToH produces better orderings than MS based version, achieving 45%
better orderings than MMD heuristic. For these matrices, oPaToH-ND using A
produces 17% and 43% better orderings than onmetis and SMOOTH. It is inter
esting to note that indirect GPVS based nested dissection tool oemetis produces
very inconsistent results.

Average ordering performance of the tools in terms of nonzero counts in the
factor matrices are presented in Table 5.4. For general matrices, there is no clear
winner. All the nested dissection and multisection based tools perform equally
well by producing approximately 10% less nonzero than MMD. In LP problems,
again oPaToH-ND produces best results in terms of nonzero counts. oPaToH-
ND produces approximately 22% less nonzeros than MMD, and 9% less nonzeros
than onmetis. For these problems, SMOOTH produces nearly the same amount
of nonzeros with MMD.

Table 5.5 displays the average execution times of the tools relative to MMD
ordering. In this table, a ratio smaller than 1.0 indicates that the respective tool
is faster than the MMD ordering. The fastest tool is the direct GPVS based
ordering code onmetis of MeTiS. Although it is only 5% faster than MMD in
the ordering of general matrices, it runs approximately 3.6 times faster than
MMD in the ordering of matrices arising from LP problems. SMOOTH runs
4.7 and 1.8 times slower than MMD in the ordering of general matrices and
matrices arising from LP problems. 2-clique decomposition yields the slowest
ordering. This is an expected result, since the running time of the hypergraph
partitioning is proportional to the number of pins and nodes, and the 2-clique
model generates a hypergraph with N Z nodes and 2NZ pins. However, the
proposed HP-based ordering methods is only 21% slower than MMD ordering
while producing superior results than MMD.

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 92

Table 5.1: Properties of test matrices and results of MMD orderings

m atrix Z m atrix A where Z = AM' MMD
name M NZ N NZ NZF OPC

General M atrices
BC SST K 23 3,134 45,178 - - 461,697 1.46E +08
BCSSTK 21 3,600 26,600 - - 116,083 6 .75E + 06
BC SSTK 15 3,948 117,816 - - 653,831 1 .68E +08
3elt 4,720 32,164 - - 92,188 3 .11E + 06
BC SSTK 16 4,884 290,378 - - 741,200 1.45E +08
BC SST K 17 10,974 428,650 - - 1,136,428 1.99E +08
BC SSTK 18 11,948 149,090 - - 642,176 1 .30E +08
BC SSTK 25 15,439 252,241 - - 1,515,540 3 .31E + 08
BC SSTK 32 44,609 2,014,701 - - 5,146,621 1.05E +09
brack2 62,631 795,749 - - 7,482,073 3 .22E + 09
o98a 110,971 1,594,839 - - 45,116,662 5 .87E + 10
crystkOl 4,875 315,891 - - 1,094,672 3 .46E + 08
lshp3025 3,025 20,833 - - 75,332 3 .46E + 06
Lshp3466 3,466 23,896 - - 89,551 4 .39E + 06
m plate 5,962 142,190 - - 2,172,166 1.53E +09
na-sa4704 4,704 104,756 - - 269,427 3 .24E + 07
pwt 36,519 326,107 - - 1,810,221 2 .38E + 08
slrm q 4 m l 5,489 281,111 - - 658,508 1 .15E + 08
s2rrnq4m l 5,489 281,111 - - 658,508 1 .15E + 08
s3rm q4m l 5,489 281,111 - - 658,508 1.15E +08
shuttle-eddy 10,429 103,599 - - 389,810 2 .61E + 07
skirt 12,598 196,520 - - 494,045 3 .63E + 07
vibrobox 12,328 342,828 - - 2,119,728 9 .16E + 08

LP Problem s
NL 7,039 105,089 9,718 41,428 282,929 3 .78E + 07
CQ9 9,278 221,590 13,778 88,897 451,108 5 .74E + 07
GE 10,099 112,129 11,098 39,554 294,188 3 .4 7 E + 0 7
C 0 9 10,789 249,205 14,851 101,578 499,511 6 .40E + 07
fom el2 24,284 329,068 48,920 142,528 6,314,673 5 .19E + 09
pltexpA 4-6 26,894 269,736 70,364 143,059 2,329,048 l.lO E + 0 9
world 34,506 582,064 32,734 164,470 1,789,127 2 .77E + 08
mod2 34,774 604,910 31,728 165,129 1,823,079 2 .72E + 08
Ipll 39,951 541,217 125,000 381,259 3,146,595 1.21E +09
fxrn3-16 41,340 765,526 64,162 370,839 637,294 1 .97E + 07
cre-b 9,648 398,806 72,447 256,095 954,754 3 .82E + 08
cre-d 8,926 372,266 69,980 242,646 870,409 3 .01E + 08
delf036 3,170 33,508 5,459 14,202 50,025 1 .78E + 06
(ihOOl 6,071 82,267 12,230 35,632 1,599,555 1.34E +09
ex3sta l 17,443 679,857 8,156 59,419 25,649,479 7 .28E + 10
ken-07 2,426 14,382 3,602 8,404 15,553 2 .17E + 05
ken-11 14,694 82,454 21,349 49,058 134,394 4 .18E + 06
ken-13 28,632 161,804 42,659 97,246 355,934 1.71E +07
large036 4,282 50,696 6,822 18,840 75,363 3 .17E + 06
model 10 4,400 293,260 15,447 149,000 516,068 1.14E +08
[)ds-02 2,953 23,281 7,535 16,390 40,920 1 .73E +06
pds-06 9,881 88,003 28,655 62,524 573,506 2 .05E + 08
pds-10 16,558 149,658 48,763 106,436 1,618,218 1.05E +09
pds-20 33,874 320,196 105,728 230,200 6,889,030 9 .22E + 09
rlfprim 58,866 9,119,596 8,052 265,927 301,830,670 2 .56E + 12

CHAPTER. 5. HP-BASED SPARSE MATRIX ORDERING 93

Table 5.2: Compression and sparsening results

Supernodes
connected disconnected Clique D iscarding Sparsening

nam e %M %M %N %NZ %N %NZ
General M atrices

B C SST K 23 6.51 0.00 - - - -

BC SSTK 21 0.00 0.00 - - - -

B C SST K 15 0.00 0.13 - - - -

3elt 0.00 0.00 - - - -

BC SST K 16 63.60 1.86 - - - -

B C SST K 17 52.44 4.79 - - - -

BC SST K 18 8.55 6.65 - - - -

BC SST K 25 14.61 0.05 - - - -

B C SST K 32 66.78 0.07 - - - -

brack2 0.00 0.00 - - - -

598a 0.00 0.00 - - - -

crystkOl 64.78 0.10 - - - -

lshp3025 0.00 0.00 - - - -

lshp3466 0.00 0.00 - - - -

m plate 5.67 0.00 - - - -

nasa4704 50.51 0.62 - - - -

pwt 0.01 0.16 - - - -

s lrm q 4 m l 82.49 0.00 - - - -

s2rm q4m l 82.49 0.00 - - - -

s3rm q4m l 82.49 0.00 - - - -

shuttle-eddy 0.63 0.00 - - - -

skirt 15.46 0.02 - - - -

vibrobox 0.10 0.00 - - -

average 25.96 0.63 - - - -

LP Problem s
NL 0.38 0.75 1.76 0.62 17.03 13.85
CQ9 4.67 1.46 5.12 0.82 12.91 31.40
GE 12.18 2.11 1.39 2.47 18.16 31.25
C 0 9 6.83 1.21 7.75 1.44 11.90 34.47
fom el2 0.00 0.96 0.01 0.01 14.93 7.88
pltexpA 4-6 0.00 5.78 0.00 0.00 56.24 43.96
world 8.67 1.28 0.62 0.26 7.76 11.43
mod 2 9.61 1.29 0.60 0.24 6.45 12.27
Ipll 0.00 6.34 0.04 0.03 53.84 52.99
fxrri3-16 14.51 9.95 9.59 24.49 37.41 65.01
cre-b 0.07 25.01 0.00 0.00 2.26 12.47
cre-d 0.10 27.48 0.00 0.00 2.47 12.81
delf036 11.29 0.00 7.07 5.08 26.93 37.90
dflOOl 0.00 0.96 0.01 0.01 14.93 7.88
ex 3 sta l 26.83 0.00 0.01 0.00 12.75 21.21
ken-07 0.00 0.00 0.00 0.00 2.05 1.46
ken-11 0.00 3.29 0.00 0.00 3.65 3.07
ken-13 0.59 1.77 0.00 0.00 2.15 1.81
large036 18.52 0.00 7.07 6.38 26.93 40.90
modellO 21.34 1.09 1.30 0.16 7.30 55.18
pds-02 0.00 0.07 0.00 0.00 0.15 0.20
pds-06 0.00 0.04 0.00 0.00 0.08 0.11
pds-10 0.00 0.04 0.00 0.00 0.07 0.09
pds-20 0.00 0.25 0.00 0.00 0.05 0.07
rlfprim 1.34 0.00 0.00 0.00 0.00 0.30

average 5.48 3.64 1.69 1.68 13.54 20.00

CHAPTER. 5. HP-BASED SPARSE MATRIX ORDERING 94

Table 5.3: Operation counts of various methods relative to MMD

name onrnetis oemetis SMOOTH
2-Clique oPaToH
MS ND

oPaToH using A
MS ND

General M atrices
B C SST K 23
B C SST K 21
BC SST K 15
3elt
B C SST K 16
B C SST K 17
B C SST K 18
B C SST K 25
BC SST K 32
brack2
598a
crystkOl
lshp3025
lshp3466
m plate
nasa4704
pwt
slrm q 4 m l
s2rm q4m l
s3rm q4m l
shuttle-eddy
skirt

0.65
0.94
0.53
0.93
1.02
0.97
0.68
1.14
1.27
0.58
0.34
0.79
0.92
0.89
0.39
1.08
0.46
0.94
0.95
0.95
0.84
0.86

0.69
1.09
0.53
0.97
1.02
0.94
0.70
1.16
1.51
0.60
0.34
0.63
0.92
0.91
0.35
1.07
0.46
0.76
0.76
0.76
0.86
0.87

0.65
0.73
0.61
0.84
0.84
0.68
0.71
0.77
0.83
0.65
0.48
0.65
0.77
0.76
0.47
0.98
0.52
0.82
0.82
0.82
0.63
0.67

0.73
0.93
0.71
0.82
0.92
0.76
0.72
0.91
0.84
0.67
0.53
0.70
0.78
0.77
0.49
0.85
0.54
0.80
0.82
0.82
0.68
0.79

0.71
0.94
0.70
0.85
1.11
0.83
0.77
1.21
0.90
0.70
0.48
0.78
0.81
0.80
0.45
0.79
0.53
0.82
0.89
0.84
0.83
0.80

vibrobox 1.06 1.06 1.88 0.95 0.84 - -
geom ean 0.79 0.78 0.73 0.75 0.78 - -

LP Problem s
NL 1.16 20.16 1.02 0.94 0.97 0.95 0.97
CQ9 0.79 28.35 0.74 0.71 0.71 0.65 0.67
GE 0.68 0.90 0.61 0.82 0.81 0.66 0.64
C 0 9 0.88 33.48 0.76 0.75 0.77 0.74 0.77
fornel2 0.58 0.93 2.01 0.46 0.46 0.46 0.46
pltexpA 4-6 0.16 0.24 0.38 0.13 0.13 0.09 0.10
world 1.48 2.78 1.66 0.92 0.92 0.82 0.81
rnod2 1.56 2.93 1.57 0.91 0.90 0.80 0.81
Ipll 1.57 12.33 1.25 0.96 0.94 0.94 0.96
fxni3-16 1.41 1.59 1.29 0.99 0.99 0.97 0.97
cre-b 0.58 0.67 0.78 0.49 0.56 0.51 0.57
cre-d 0.56 0.63 1.17 0.56 0.56 0.57 0.60
delf036 1.02 1.26 0.92 0.79 0.95 0.79 0.92
dflOOl 0.59 0.91 1.89 0.45 0.40 0.44 0.39
ex 3 sta l 0.11 0.11 0.18 0.16 0.14 0.14 0.11
ken-07 1.06 18.16 1.00 0.95 0.95 0.95 0.95
ken-11 1.00 113.04 0.98 0.97 0.97 0.97 0.97
ken-13 1.07 307.63 1.09 0.99 0.98 0.99 0.99
large036 1.05 1.08 1.10 0.77 0.92 0.76 0.92
model 10 0.55 0.50 0.73 0.54 0.49 0.70 0.51
pds-02 1.21 1.25 1.51 0.95 0.99 0.91 0.89
I)ds-06 0.33 0.48 0.94 0.54 0.44 0.49 0.37
pd.s-10 0.35 0.67 1.24 0.67 0.49 0.65 0.39
pds-20 0.41 0.71 0.89 0.79 0.70 0.72 0.48
rlfprirn 1 0.14 0.14 0.65 - - 0.17 0.13

geom ean 0.66 2.22 0.95 0.65 0.64 0.59 0.55

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 95

Table 5.4: Nonzero counts of various methods relative to MMD

name onmetis oeinetis SMOOTH
2-Clique oPaToH
MS ND

oPaToH using A
MS ND

General M atrices
BC SSTK 23
BCSSTK 21
B C SST K 15
3elt
BC SST K 16
B C SST K 17
BC SST K 18
BC SSTK 25
BC SSTK 32
brack2
598a
crystkOl
lshp3025
lshp3466
m plate
nasa4704
pwt
slrm q 4 m l
s2rrnq4m l
s3rm q4m l
shuttle-eddy
skirt
vibrobox

0.85
0.96
0.76
1.00
1.00
1.00
0.92
1.06
1.12
0.81
0.60
0.92
0.99
0.98
0.65
1.09
0.76
0.99
0.99
0.99
0.93
0.98
1.01

0.87
1.04
0.76
1.02
1.01
0.99
0.94
1.08
1.17
0.82
0.60
0.82
0.99
0.98
0.62
1.08
0.76
0.92
0.92
0.92
0.93
0.98
1.03

0.83
0.88
0.80
0.95
0.92
0.87
0.90
0.89
0.94
0.84
0.69
0.83
0.92
0.91
0.70
1.01
0.77
0.92
0.92
0.92
0.83
0.86
1.29

0.89
0.99
0.85
0.94
0.96
0.91
0.89
0.95
0.95
0.84
0.72
0.86
0.92
0.92
0.71
0.94
0.78
0.92
0.93
0.93
0.85
0.92
0.91

0.89
0.99
0.85
0.95
1.03
0.93
0.91
1.04
0.96
0.85
0.69
0.90
0.93
0.92
0.69
0.92
0.78
0.93
0.95
0.94
0.91
0.93
0.87

geom ean 0.92 0.91 0.88 0.89 0.90
LP Problem s

NL 1.09 3.83 1.03 0.98 0.99 0.98 0.99
CQ9 0.94 4.05 0.92 0.89 0.89 0.87 0.88
GE 0.94 1.02 0.88 0.94 0.94 0.89 0.88
C 0 9 0.99 4.51 0.92 0.91 0.92 0.90 0.91
forriel2 0.81 1.04 1.50 0.71 0.71 0.70 0.71
pltcxpA 4-6 0.55 0.67 0.96 0.46 0.46 0.42 0.43
world 1.20 1.63 1.31 0.97 0.97 0.93 0.92
mod 2 1.22 1.67 1.28 0.97 0.96 0.93 0.92
Ipll 1.24 3.73 1.11 0.98 0.97 0.97 0.97
fxni3-16 1.12 1.17 1.06 1.00 1.00 1.00 1.00
cre-b 0.83 0.87 0.93 0.76 0.79 0.77 0.80
cre-d 0.82 0.84 1.09 0.79 0.79 0.79 0.81
delf036 1.04 1.13 0.99 0.94 0.98 0.94 0.97
dflOOl 0.82 1.03 1.46 0.70 0.67 0.69 0.66
ex3sta l 0.31 0.32 0.38 0.36 0.34 0.33 0.31
keii-07 1.04 2.31 1.00 0.99 0.99 0.99 0.99
ken-11 1.02 5.38 1.02 0.99 0.99 0.99 0.99
ken-13 1.06 8.11 1.07 1.01 1.00 1.01 1.00
large036 1.06 1.08 1.05 0.94 0.98 0.93 0.97
m odel 10 0.80 0.77 0.90 0.77 0.75 0.85 0.76
l)ds-02 1.09 1.10 1.14 0.98 1.00 0.97 0.97
pds-OG 0.70 0.87 1.09 0.80 0.74 0.77 0.71
pds-10 0.72 0.97 1.24 0.83 0.74 0.82 0.70
pds-20 0.70 0.93 1.07 0.85 0.81 0.82 0.71
rlfprim 0.38 0.38 0.83 - - 0.40 0.36

geornean 0.86 1.40 1.02 0.83 0.83 0.80 0.78

CHAPTER 5. HP-BASED SPARSE MATRIX ORDERING 96

Table 5.5; Ordering runtimes of various methods relative to MMD

name onmetis oemeti.s SMOOTH
2-Clique oPaToH
MS ND

oPaToH using A
MS ND

General Aiatrices
BC SSTK 23 0.63 0.50 1.80 4.14 4.10 - -

BCSSTK 21 0.77 0.65 1.73 4.90 4.84 - _

BC SSTK 15 1.07 0.86 2.76 14.76 14.84 - -

3elt 1.01 0.98 3.03 6.60 6.64 - -

BC SSTK 16 1.12 4.56 14.74 8.75 8.70 - -

BC SSTK 17 1.67 3.70 9.18 11.13 11.13 - -

BC SSTK 18 1.00 0.82 3.28 8.01 8.03 - -

BCSSTK 25 1.16 0.96 2.82 7.53 7.53 - -

BCSSTK 32 1.66 5.55 11.67 10.42 10.46 - -

brack2 0.91 0.84 2.49 8.72 8.67 - -

598a 0.74 0.69 2.39 8.43 8.45 - -

crystkOl 1.04 4.63 16.16 7.91 7.92 - -

lshp3025 0.97 0.93 2.92 6.82 6.80 - -

lshp3466 1.00 0.89 2.82 6.61 6.66 - -

rriplate 0.50 0.40 1.75 5.41 5.43 - -

nasa4704 0.98 2.54 5.89 5.64 5.87 - -

pwt 1.19 1.19 3.32 10.15 10.16 - -

s lrm q 4m l 0.76 8.01 18.90 2.52 2.55 - -

s2rmq4iril 0.73 8.30 19.86 2.43 2.43 - -

s3rm q4m l 0.70 8.07 18.96 2.49 2.52 - -
shuttle-eddy 1.20 1.18 3.30 10.58 10.61 - -

skirt 1.31 1.42 2.97 14.30 14.34 - -

vibrobox 0.71 0.65 4.28 11.93 1 11.91 - -

geom ean 0.95 1.57 4.71 7.00 7.02 - -

LP Problems
NL 0.17 0.16 2.13 2.90 2.84 0.99 0.82
CQ9 0.14 0.14 1.78 5.24 4.70 1.18 0.87
GE 1.06 0.86 2.82 5.12 5.08 2.04 1.96
C 0 9 0.12 0.12 1.37 3.97 3.86 0.98 0.78
fem e 12 0.10 0.08 0.92 2.42 2.58 1.74 1.61
pltexpA4-6 1.05 0.83 1.86 4.72 4.72 2.09 2.00
world 0.24 0.21 1.35 3.78 3.72 0.92 0.73
mod2 0.30 0.25 1.57 4.21 4.19 0.92 0.81
Ipll 0.23 0.21 1.56 2.21 2.21 0.99 0.93
fxm 3-16 1.83 1.90 2.96 14.77 15.05 2.61 2.51
cre-b 0.21 0.18 3.66 14.02 14.51 3.17 3.06
cre-d 0.15 0.14 2.62 9.26 9.21 2.62 2.56
delf03G 1.26 1.11 3.23 7.28 7.27 2.62 2.67
dfiOOl 0.08 0.06 0.96 2.14 0.81 1.61 0.48
ex3sta l 0.36 0.45 11.09 4.43 4.47 0.75 0.71
ken-07 0.78 0.94 1.14 4.57 4.74 3.29 3.22
ken-11 0.72 0.84 1.89 6.49 6.12 3.20 3.20
ken-13 0.31 0.35 0.85 6.30 4.16 4.97 2.25
large03G 1.13 1.26 3.72 7.67 7.70 2.52 2.55
model 10 0.65 0.97 7.63 16.56 16.11 3.28 3.33
j)ds-02 0.80 0.62 2.73 3.56 3.59 3.29 3.37
pds-OG 0.14 0.12 0.84 0.91 0.79 0.82 0.76
])ds-10 0.05 0.04 0.38 0.47 0.32 0.42 0.30
pds-20 0.01 0.01 0.11 0.37 0.17 0.24 0.14
rlfprim 1 0.35 0.35 8.47 - - 0.12 0.12

geomean 0.29 0.28 1.82 3.9G 3.53 1.43 1.19

Chapter 6

PaToH: A M ultilevel Hypergraph
Partitioning Tool

We exploit the successful multilevel methodology [13, 37, 48] proposed and im
plemented for graph partitioning [38, 46] to develop a new multilevel hypergraph
partitioning tool, called PaToH (PaToH: Partitioning Tools for Hypergraphs).

The data structures used to store hypergraphs in PaToH mainly consist of
the following arrays. The NETLST array stores the net lists of the vertices. The
PINLST array stores the pin lists of the nets. The size of both arrays is equal to
the total number of pins in the hypergraph. Two auxiliary index arrays VTXS
and NETS of sizes |V|-I-1 and |A/’[-l-l hold the starting indices of the net lists and
pin lists of the vertices and nets in the NETLST and PINLST arrays, respectivel}c
In sparse matrix storage terminology, this scheme corresponds to storing the given
matrix both in Compressed Sparse Row (CSR) and Compressed Sparse Column
(CSC) formats [52] without storing the numerical data. In the column-net model
])roposed for rowwise decomposition, the VTXS and NETLST arrays correspond
to the CSR. storage scheme, and the NETS and PINLST arrays correspond to the
CSC storage scheme. This correspondence is dual in the row-net model proposed
for columnwise decomposition.

The storage requirement of the proposed hypergraph models is as follows. For
an M X M square matrix with Z off-diagonal nonzero entries, the hypergraph

97

CHAPTER 6. РАТОН: MULTILEVEL HYPERGRAPH PART. TOOL 98

Figure 6.1: Cut-net splitting during recursive bisection.

models contain |V| = M vertices, lA/"! = M nets and p = M + Z pins for both
sj^mmetric and unsymmetric matrices. Note that M pins comes from maintain
ing the diagonal entries of the matrix. Hence, the storage requirement of both
hypergraph models is S-u = 5M 4- 2 Z words, where 2 M words come from index
arrays VTXS and NETS, M words are required to store vertex weights, and
2(M + Z) words come from NETLST and PINLST arra}^s.

The A'-way graph/hypergraph partitioning problem is usually solved by re
cursive bisection. In this scheme, first a 2-way partition oï G f Li is obtained, and
then this bipartition is further partitioned in a recursive manner. After lg2 K
phases, graph Ç f Li is partitioned into K parts. PaToH achieves K-way hyper
graph partitioning by recursive bisection for any K value (i.e., K is not restricted
to be a power of 2).

The connectivity cutsize metric given in (2.4.b) needs special attention in K -
way hypergraph partitioning by recursive bisection. Note that the cutsize metrics
given in (2.4.a) and (2.4.b) become equivalent in hypergraph bisection. Consider
a bipartition V_a and Vb of V obtained after a bisection step. It is clear that
and Vs and the internal nets of parts A and B will become the vertex and net
sets of and Hs·, respectively, for the following recursive bisection steps. Note
that each cut net of this bipartition already contributes 1 to the total cutsize of
the final K-vray partition to be obtained by further recursive bisections. How
ever, the further recursive bisections of and Vs may increase the connectivity
of these cut nets. In parallel SpMxV view, while each cut net already incurs

CHAPTER 6. РАТОН: MULTILEVEL HYPER.GBAPH PART. TOOL 99

the communication of a single word, these nets may induce additional commu
nication because of the following recursive bisection steps. Hence, after every
hypergraph bisection step, each cut net r?,j is split into two pin-wise disjoint nets
n'· — pins[rii]P\VA and n'l = pms‘[n,:]nVb , and then these two nets are added
to the net lists of PL a and Hs if |n'| > 1 and \n'!\ > 1, respectively. Note that
the single-pin nets are discarded during the split operation since such nets cannot
contribute to the cutsize in the following recursive bisection steps. Thus, the total
outsize according to (2.4.b) will become equal to the sum of the number of cut
nets at every bisection step by using the above cut-net split method. Figure 6.1
illustrates two cut nets Ui and in a bipartition, and their splits into nets n ' ,
n'l and , n'j., respectively. Note that net becomes a single-pin net and it is
discarded.

Similar to multilevel graph and hypergraph partitioning tools Chaco [38],
MeTiS [46] and hMeTiS [49], the multilevel hypergraph bisection algorithm used
in PaToH consists of 3 phases: coarsening, initial partitioning and uncoarsening.
The following sections briefly summarize our multilevel bisection algorithm. Al
though PaToH works on weighted nets, we will assume unit cost nets both for
the sake of simplicity of presentation and for the fact that all nets are assigned
unit cost in the hypergraph representation of sparse matrices.

6.1 Coarsening Phase

In this phase, the given hypergraph 'H = 'Ho = (Vo, Ao) is coarsened into a se
quence of smaller hypergraphs Ph = (Vi, A/]), PL2 — (V2, A/2) , . . . , PLm = (V^, Aim)
•satisfying |Vo| > |Vi|> IV2I > ... > |V,nJ· This coarsening is achieved by coalesc
ing disjoint subsets of vertices of hypergraph PLi into rnultinodes such that each
multinode in Pii forms a single vertex of Pli+\ ■ The weight of each vertex of
becomes equal to the sum of its constituent vertices of the respective multinode
in Pi·, . The net set of each vertex of PLi.̂ \ becomes equal to the union of the net
sets of the constituent vertices of the respective multinode in PLi. Here, multiple
])ins of a net neA/i in a multinode cluster of Pi, are contracted to a single pin of
the re.spective net ri eJVi+i of PLi+]. Furthermore, the singie-pin nets obtained
during this contraction are discarded. Note that such single-pin nets correspond

C4iAPTER 6. РАТОН: MULTILEVEL HYPERGRAPH PART. TOOL 100

to the internal nets of the clustering performed on H i. The coarsening phase ter
minates when the number of vertices in the coarsened hypergraph reduces below
100 (i.e. |Vm|<100).

Clustering approaches can be classified as a.gglomerative and hierarchical. In
the agglomerative clustering, new clusters are formed one at a time, whereas in
the hierarchical clustering several new clusters may be formed simultaneously.
In PaToH, we have implemented both randomized matching-based hierarchical
clustering and randomized hierarchic-agglomerative clustering. The former and
latter approaches will be abbreviated as matching-based clustering and agglom
erative clustering, respectively.

The matching-based clustering works as follows. Vertices of Hi are visited in
a random order. If a vertex uEVi has not been matched yet, one of its unmatched
adjacent vertices is selected according to a criterion. If such a vertex v exists,
we merge the matched pair u and v into a cluster. If there is no unmatched
adjacent vertex of u, then vertex u remains unmatched, i.e., u remains as a
singleton cluster. Here, two vertices u and v are said to be adjacent if they share
at least one net, i.e., nets[a]r\nets[v] ^ 0. The selection criterion used in PaToH
for matching chooses a vertex v with the highest connectivity value Nuv ■ Here,
connectivit}^ Nuv — \nets[u]r\nets[v\\ refers to the number of shared nets between
u and V. This matching-based scheme is referred to here as Heavy Connectivity
Matching (HCM).

The matching-based clustering allows the clustering of only pairs of vertices in
a level. In order to enable the clustering of more than two vertices at each level,
we have implemented a randomized agglomerative clustering approach. In this
scheme, each vertex is assumed to constitute a singleton cluster Cu = {u} at the
beginning of each coarsening level. Then, vertices are visited in a random order. If
a vertex u has already been clustered (i.e. \Cu\ > 1) it is not considered for being
the source of a new clustering. However, an unclustered vertex u can choose to
join a multinode cluster as well as a singleton cluster. That is, all adjacent vertices
of an unclustered vertex u are considered for selection according to a criterion.
The selection of a vertex w adjacent to u corresponds to including vertex u to
cluster Cv to grow a new multinode cluster (7„ = C,, — Cy U {w,}. Note that no
singleton cluster remains at the end of this process as far as there exists no isolated

CHAPTER 6. РАТОН: MULTILEVEL HYPERGRAPH PART TOOL 101

Ao= ,

aHCC . ■̂1

i
X

2 3 4
X

X X

X X

X

X

X

X

1,2,3
4,5

6,7,8

5 6
r

X

C X

7 8
X

X

дЯСМ _
1,3
2,6
4,5
7
8

2
X

X

3 4 7 8
X

X X

1 2 3 4 5 6 7 8 1 4 5 6 8
X X X X X X _ 1,2,3 X X X X

X X X 4,5 X X X
X X X X X 6,7,8 X X X X

Figure 6.2: Matching-based clustering and agglomerative clustering
of the rows of matrix A q.

vertex. The selection criterion used in PaToH for agglomerative clustering chooses
a singleton or multinode cluster Cy with the highest A^u,c„/hFu,c„ value, where
Nu,c,.· = \nets[u] nUieCv nets[x]\ and Ŵ ^Cv is the weight of the multinode cluster
candidate {u} U Cy ■ The division of Nu,Cv is a.n effort for avoiding the
polarization towards very large clusters. This agglomerative clustering scheme is
referred to here as Heavy Connectivity Clustering (HCC).

The objective in both HCM and HCC is to find highly connected vertex clus
ters. Connectivity values and used for selection serve this objective.
Note that Nyy (Ny^c\) also denotes the lower bound in the amount of decrease
in the number of pins because of the pin contractions to be performed when
u joins V (Cy). Recall that there might be additional decrease in the number
of pins because of single-pin nets that may occur after clustering. Hence, the
connectivity metric is also an effort towards minimizing the complexity of the fol
lowing coarsening levels, partitioning phase and refinement phase since the size
of a hypergraph is equal to the number of its pins.

In rowwise matrix decomposition context (i.e. column-net model), the con-
necti^·ity metric corresponds to the number of common column indices between
two rows or row groups. Hence, both HCM and HCC try to combine rows or
row groups with similar sparsity patterns. This in turn corresponds to combining
rows or row groups which need similar sets of x-vector components in the pre
communication scheme. A dual discussion holds for the row-net model. Figure C

CHAPTER 6. РАТОН: MULTILEVEL HYPERGRAPH PART. TOOL 102

illustrates a single level coarsening of an 8 x 8 sample matrix A q in the column-
net model using HCM and HCC. The original decimal ordering of the rows is
assumed to be the random vertex visit order. As seen in Fig. 6, HChd matches
row pairs {1,3}, {2,6} and {4,5} with the connectivity values of 3, 2 and 2,
respectively. Note that the total number of nonzeros of A q reduces from 28 to
21 in after clustering. This difference is equal to the sum 3-|-2+2 = 7 of
the connectivity values of the matched row-vertex pairs since pin contractions do
not lead to any single-pin nets. As seen in Fig. 6, HCC constructs three clusters
{1,2,3}, {4,5} and {6,7,8} through the clustering sequence of {1,3}, {1,2,3},
{4,5}, {6,7} and {6,7,8} with the connectivity values of 3, 4, 2, 3 and 2, re
spectively. Note that pin contractions lead to three single-pin nets U2 , and
v?7, thus columns 2, 3 and 7 are removed. As also seen in Fig. 6, although rows 7
curd 8 remain unmatched in HCM, every row is involved in at least one clustering
in HCC.

Both HCM and HCC necessitate scanning the pin lists of all nets in the net
list of the source vertex to find its adjacent vertices for matching and clustering.
In the column-net (row-net) model, the total cost of these scan operations can be
as expensive as the total number of multiply and add operations which lead to
nonzero entries in the computation of A A ^ (A^A). In HCM, the key point to
efficient implementation is to move the matched vertices encountered during the
scan of the pin list of a net to the end of its pin list through a simple swap opera
tion. This scheme avoids the re-visits of the matched vertices during the following
matching operations at that level. Although this scheme requires an additional
index array to maintain the temporary tail indices of the pin lists, it achieves
substantial decrease in the run-time of the coarsening phase. Unfortunatel}^, this
simple yet effective scheme cannot be fully used in HCC. Since a singleton vertex
can select a multinode cluster, the re-visits of the clustered vertices are partially
aA'oided by maintaining only a single vertex to represent the multinode cluster
in the pin-list of each net connected to the cluster, through simple swap opera
tions. Through the use of these efficient implementation schemes the total cost
of the scan operations in the column-net (row-net) model can be as low as the
total number of nonzeros in A A ^ (A^A). In order to maintain this cost within
reasonable limits, all nets of size greater than 4s„„p are not considered in a bi
partitioning step, where denotes the average net size of the hypergraph to

CHAPTER 6. PATOH: MULTILEVEL HYPERGRAPH PART TOOL 103

be partitioned in that step. Note that such nets can be reconsidered during the
further levels of recursion because of net splitting.

The cluster growing operation in HCC requires disjoint-set opercitions for
maintaining the representatives of the clusters, where the union operations are
i-estricted to the union of a singleton source cluster with a singleton or a multinode
target cluster. This restriction is exploited by always choosing the representative
of the target cluster as the representative of the new cluster. Hence, it is sufficient
to update the representative pointer of only the singleton source cluster joining
to a multinode target cluster. Therefore, each disjoint-set operation required in
this scheme is performed in 0 (1) time.

6.2 Initial Partitioning Phase

The goal in this phase is to find a bipartition on the coarsest hypergraph Tim-
In PaToH, we use Greedy Hypergraph Growing (GHG) algorithm for bisecting
Tim- This algorithm can be considered as an extension of the GGGP algorithm
used in MeTiS to hypergraphs. In GHG, we grow a cluster around a randomly
selected vertex. During the coarse of the algorithm, the selected and unselected
vertices induce a bipartition on Tim· The unselected vertices connected to the
growing cluster are inserted into a priority queue according to their FM gains.
Here, the giiin of an unselected vertex corresponds to the decrease in the cutsize
of the current bipartition if the vertex moves to the growing cluster. Then, a
\'ertex with the highest gain is selected Ifom the priority queue. After a vertex
moves to the growing cluster, the gains of its unselected adjacent vertices which
are currently in the priority queue are updated and those not in the priority
queue are inserted. This cluster growing operation continues until a predeter
mined bipartition balance criterion is reached. As also mentioned in MeTiS, the
c|uality of this algorithm is sensitive to the choice of the initial random vertex.
Since the coarsest hypergraph Tim is small, we nm GHG 4 times starting from
different random vertices and select the best bipartition for refinement during the
u n coarsen i ng ph ase.

CHAPTER 6. РАТОН: MULTILEVEL HYPERGRAPH PART. TOOL 104

6.3 Uncoarsening Phase

At each level i (for i = — . . , 1), bipartition IT,· found on Hi is projected
back to a bipartition !!,■_] on H i- i . The constituent vertices of each multinode
in Hi-i is assigned to the part of the respective vertex in Hi. Obviously,
of Hi-\ has the same outsize with IT,· of Hi. Then, we refine this bipartition
by running a Boundary EM (BFM) hypergraph bipartitioning algorithm on Hi-\
starting from initial bipartition Hi_i. BFM moves only the boundary vertices
from the overloaded part to the under-loaded part, where a vertex is said to be a
boundary vertex if it is connected to an at least one cut net.

BFM requires maintaining the pin-connectivity of each net for both initial
gain computations and gain updates. The pin-connectivity <Jk[n] = |?r OVk\ of a
net n to a part Vk denotes the number of pins of net n that lie in part Vk , for
k = 1 / 2 . In order to avoid the scan of the pin lists of all nets, we adopt an efficient
scheme to initialize the a values for the first BFM pass in a level. It is clear that
initial bipaxtition II,;_i of Hi-i has the same cut-net set with IT,· of Hi. Hence,
we scan only the pin lists of the cut nets of lT,-_i to initialize their a values. For
each other net ?r, cr/n] and cr2[??.] values are easily initialized as <Ti[?r] = s„ and
o'2 [n] = 0 if net n is internal to part V-i, and cri[n] = 0 and (j2[?r] = s„ otherwise.
.After initializing the gain value of each vertex v as g[v] = — we exploit a values
as follows. We re-scan the pin list of each external net n and update the gain
value of each vertex v G pins[n] as g[v] = ^[u] 2 or g[v] = ¿rju] 1 depending
on whether net n is critical to the part containing v or not, respectively. An
e.xternal net n is said to be critical to a part k if a/n] = 1 so that moving
the single vertex of net ti tha.t lies in that part to the other part removes net n
IVom the cut. Note that two-pin cut nets are critical to both parts. The vertices
\’isited while scanning the pin-lists of the external nets are identified as boundary
vertices and only these vertices are inserted into the priorit} ̂ queue according to
their computed gains.

In each pass of the BFM algorithm, a sequence of unmoved vertices with
tlie highest gains are selected to move to the other part. As in the original
FM algorithm, a. vertex move necessitates gain updates of its adjacent vertices.
However, in the BFM algorithm, some of the adjacent vertices of the moved

CHAPTER 6. РАТОН: MULTILEVEL HYPERGRAPH PART. TOOL 105

vertex rna.y not be in the priority queue, because the}̂ not be boundary
vertices before the move. Hence, such vertices which become boundary vertices
after the move are inserted into the priority queue according to their updated
gain values. The refinement process within a pass terminates either no feasible
move remains or the sequence of last max{50, 0.0011 Vi |} moves does not yield a
decrease in the total cutsize. A move is said to be feasible if it does not disturb
the load balance criterion (2.1) with K = 2 . At the end of a BFM pass, we have a
sequence of tentative vertex moves cind their respective gains. We then construct
from this sequence the maximum prefix subsequence of moves with the maximum
prefix sum which incurs the maximum decrease in the cutsize. The permanent
realization of the moves in this maximum prefix subsequence is efficiently achieved
by rolling back the remaining moves at the end of the overall sequence. The
initial gain computations for the following pass in a level is achieved through this
rollback. The overall refinement process in a level terminates if the maximum
prefix sum of a pass is not positive. In the current implementation of PaToH, at
most 2 BFM passes are allowed at each level of the uncoarsening phase.

Chapter 7

Conclusion

Two computational hypergraph models were proposed to decompose sparse ma
trices in ID for minimizing communication volume while maintaining load bal
ance during repeated parallel matrix-vector product computations. The proposed
models enable the representation and hence the decomposition of structurally
nonsymmetric matrices as well as structurally symmetric matrices. Furthermore,
they introduce a much more accurate representation for the communication re
quirement than the standard computational graph model widely used in the lit
erature for the parallelization of various scientific applicatioirs. The proposed
models reduce the ID decomposition problem to the well-known hypergraph par
titioning problem thus enabling the use of circuit partitioning heuristics widely
used in VLSI design. Experimental results carried out on a wide range of sparse
test matrices arising in different application domains confirmed the validity of
the proposed hypergrciph models. In the ID decomposition of the test matrices,
the use of the proposed hypergraph models instead of the graph models achieved
30%-38% decrease in the communication volume requirement of a. single pcirallel
matrix-vector multiplication at the expense of only 34%-130% increase in the
decomposition time by using PaToH, on the average.

In the literature, there was a lack of existence of 2D decomposition heuristics
for parallel SpMxV computations. Tins thesis provides three different hyper-
gj-aph models for 2D decomposition of sparse mcxtrices, a fine-grain hypergraph
model and hypergraph models for jagged-like and checkerboard decompositions.

106

CHAPTER 7. CONCLUSION 107

The proposed fine-grain hypergraph model produced the best decompositions in
terms of communication volume. For the architecture with high start-up costs,
number of messages is also important. For those kind of architectures, checker-
board decomposition model is a good choice, since it restricts the communication
to be done only on the rows or columns of the 2D processor mesh, hence the
upper bound on the number of messages is very low. In the 2D decomposition
of the test matrices, all of the proposed hypergraph models produces 26%-59%
better decompositions, on the overall average, than the standard graph model
that enables ID decompositions.

Graph and graph partitioning are also widely used in nested dissection based
low fill ordering tools. Graph partitioning encountered in this domain is formu
lated as graph partitioning by vertex sepcU'ator (GPVS). In this thesis, we showed
that GPVS problem can be formulated as hj^pergraph partitioning problem. We
have exploited this finding to develop a novel hypergraph partitioning based fill
reducing ordering method, to order the AA'^ kind matrices encountered in the
solution of LP problems. For general symmetric matrices, the proposed method
extended b}̂ the notion of 2-clique decomposition of the matrix. In the order
ing of matrices arising from LP problems, the proposed method produced 45%
I^etter orderings than MMD ordering heuristic in terms of operation count, by
the expense of 20% larger execution time. In the ordering of general symmetric
test matrices, the proposed method produces 25% better orderings than MMD,
however it is approximately 7 times slower than MMD implementation we have
used.

In this work, a. successful multilevel hypergraph partitioning tool PaToH Wcis

also implemented. PaToH is found to be approximately 4 times faster than its
only competitor liMeTiS while producing the same quality results. 2D checker-
board decomposition requires multi-constraint hypergraph partitioning. Hence,
PaToH was extended to handle the multi-constraints. Hypergraph partitioning
based nested dissection also requires additional extensions, such as balance on
iiel.s, embedded constrained minimum degree, etc. PaToH was also modified to
handle balance on nets, and multi-stage ordering code of SMOOTH is embedded
to produce nested dissection and multisection ordering results based on hyper
graph partitioning.

ci-lAFTER 7. (JONCLUSION 108

This work was an effort towards showing that the computational hypergraph
model is more powerful than the standard computational graph model as it pro
vides a more versa.tile representation for the interactions among the atomic tasks
of the computational domains. In the computational graph model for general
applications, each edge usually represents a two-way interaction between a. pair
of atomic tasks implicitl}^ The net (hyperedge) concept in the computational hy
pergraph model has the additional power of representing a multiway interaction
e.xplicitly among a set of atomic tasks through a shared data item in data parallel
applications. Hence, the graph model suffices when an edge represents a unique
delta item of which intermediate result(s) should be communicated between ex
actly two processors if the atomic tasks represented by the two end vertices of this
edge are assigned to different processors. Unfortunately, this is not the case in all
scientific applications. There is usually a multiway interaction among the atomic
tasks and thus the hypergraph is a more promising model for the decomposition
of the computational domains.

Bibliography

[1] C. J. Alpert, L. W. Hagen, and A. B. Kahng. A hybrid multilevel/genetic
approach for circuit ¡partitioning. Technical report, UCLA Computer Science
Department, 1996.

[2] C. .J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A
survey. VLSI Joiirnal, 19(1-2):1-81, 1995.

[3] P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering
algorithm. Technical Report TR-94-039, University of Florida, Dec 1994.

[4] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM
J. Sci. Statist. Co-input., 16:1404-1411, 1995.

[5] C. Ashcraft and .J. W. H. Liu. A partition improvement algorithm for gener
alized nested dissection. Technical Report BCSTECH-94-020, Boeing Com
puter Services, Seattle, WA, 1994.

[6] C. Ashcraft and J. W. H. Liu. Using domain decomposition to find gra.ph
bisectors. Technical Report ISSTECH-95-024, Boeing Information and Sup
port Service, 1995.

[7] C. Ashcraft and .J. W. H. Liu. SMOOTH: A software package for ordering
sparse matrices. 1996.

[8] C. Ashcraft and .1. W. H. Liu. Applications of the dulmage-mendelsohn
decomposition and network flow to graph bisection improvement. SIAM
.Jo'irriial on Matrir Analysis and ApphcaUons, 19(2):325-354, 1998.

109

BIBLIOGRAPHY 110

[9] C. Ashcraft and J. W. H. Liu. Robust ordering of sparse matrices using
multisection. SIAM Journal on Matrix Analysis and Applications, 19(3):816-
832, 1998.

[10] C. Aykanat, F. Ozguner, F. Ercal, and P. Sada.ya.ppan. Iterative algorithms
for solution of large sparse systems of linear equations on hypercubes. IEEE
Transactions on Computers, 37:1554-1567, Dec 1988.

[11] C. Aykanat, A. Pınar, and U. V. Çatalyürek. Permuting sparse rectangular
matrices into singly-bordered block-diagonal form for parallel solution of
Ip problems, submitted to IEEE Transactions on Parallel and Distributed
Systems.

[12] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions
is NP-hard. Infomation Processing Letters, 42(3):153-159, May 1992.

[13] T. N. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factoriza.-
tion. In Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing,
pages 445-452, 1993.

[14] T. Bultan and C. Aykanat. A new mapping heuristic based on mean field
annealing. Journal of Parallel and Distributed Computing, 16:292-305, 1992.

[15] W. Camp, S. J. Plimpton, B.A Hendrickson, and R. W. Leland. Mcissively
parallel methods for engineering and science problems. Communication of
ACM, 37(4):31-41, April 1994.

[16] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann.
An empirical evaluation of the korbx algorithms for military airlift applica
tions. Operations Research, 38(2):240-248, 1990.

[17] Ü. V. Çatalyürek and C. Aykanat. A hypergraph model for mapping re
peated sparse matrix-vector product computations onto multicomputers. In
Proceedings of International Conference on High Performance Computing,
December 1995.

[18] U. V. Çatalyürek and C. Aykanat. Decomposing irreguhvrly sparse matri
ces for parallel matrix-vector multiplications. Lecture Notes in Computer
Science, 1117:75-86, 1996.

BIBLIOGRAPHY 111

[19] U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decom
position for parallel sparse-matrix vector multiplication. IEEE Transactions
on Parallel and Distributed Systems, 10(7):673-693, 1999.

[20] IOWA Optimization Center. Linear programming problems,
ftp: / / col.biz.uiov^a.edu:pub/testprob/lp/gondzio.

[21] C.-K. Cheng and Y.-C. Wei. An improved two-way partitioning algorithm
with stable performance. IEEE Transactions on Com,puter-Aided Design,
10(12):1502-1511, December 1991.

[22] J. Cong, L. Hagen, and A. B. Kahng. Net partitions yield better module par
titions. In Proceedings of 29th ACM/IEEE Design Automation Conference,
pages 47-52, 1992.

[23] .J. Cong, W. Labio, and N. Shivakuinar. Multi-way vlsi circuit partitioning
based on dual net representation. In Proceedings of IEEE International
Conference on Computer-Aided Design, pages 56-62, 1994.

[24] .1. Cong and M’L. Smith. A parallel bottom-up clustering algorithm with
applications to circuit partitioning in vlsi design. In Proceedings of the 30th
ACM/IEEE Design Automation Conference, pages 755-760, 1993.

[25] T. Davis. UniversiW of florida sparse matrix collection:
http://www.cise.ufl.edu/ da,vis/sparse/. NA Digest, 92/96/97(42/28/23),
1994/1996/1997.

[26] I. S. Duff, R. Grimes, and .J. Lewis. Sparse ma.trix test problems. ACM
Transactions on Mathematical Software, 15(1):1-14, march 1989.

[27] C. M. F'iduccia and R. M. Mattheyses. A linecU'-time heuristic for improving

network pai’titions. In Proceedings of the 19th ACM/IEEE Design Automa
tion Conference, pages 175-181, 1982.

[28] .M. R. Carey, D. S. Johnson, cind L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1:237-267, 1976.

[29] J. A. George. Nested dissection of a regular finite element mesh. SIAM
Journal on Numerical Analysis. 10:345-363, 1973.

http://www.cise.ufl.edu/

BIBLIOGRAPHY 112

[30] J. Л. George and З. ДАЛ H. Liu. Computer solution of large sparse positive
definite systems. Prentice-Hall, 1981.

[31] M. K. Goldberg and M. Burstein. lieuri.stic improvement technique.s for
bisection of vlsi networks. In Proc. IEEE Inti. Conf. Computer Design.,
pages 122-125, 1983.

[32] A. Gupta. Fast and effective algorithms for graph partitioning and sparse
matrix ordering. Technical Report RC 20453, IBM T. J. Watson Research
Center, Yorktown Pleights, NY, 1996.

[33] A. Gupta. Watson graph partitioning package. Technical Report RC 20453,
IBM T. .1. Watson Research Center, Yorktown Heights, NY, 1996.

[34] G. Hachtel, A.R. Newton, and A. Sangiovanni-Vincentelli. An algorithm
for optimal pla folding. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems., l(2):63-77, 1982.

[35] B. Hendrickson. Graph partitioning and parallel solvers: has the emperor
no clothes? Lecture Notes in Computer Science., 1457:218-225, 1998.

[36] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally
nonsymmetric sparse matrices for parallel processing, submitted to SIAM
.Journal on Scientific Com.puting.

[37] B. Hendrickson and R. Leland. A multilevel algorithm for piU'titioning
graphs. Technical report, Sandia Na.tional Laboratories, 1993.

[38] B. Llendrickson cuid R. Leland. The Chaco user's guide, version 2.0. Sandia
National Laboratories, Alburquerque, NM, 87185, 1995.

[39] B. Hendrickson, R. Leland, cind S. Plimpton. An efficient parallel algorithm
for matrix-vector multiplication. Int. ,/. High Speed Computmg, 7(l):73-88,

1995.

[10] B. Hendrickson and E. Rothberg. Effective sparse matrix ordering: just
around the Irend. In Proc. Eighth SIAM Conf. Parallel Processing for Sci-
(■ n t ific Co nip u t i ng.

BIBLIOGRAPHY И З

[41] B. Hendrickson and E. Rothberg. Improving the runtime and cpialit}' of
nested dissection ordering. Techniccd Report SAND96-0868.J, Sandia Na
tional Laboratories, Mar 1996.

[42] E. Ihler, D. Wagner, and F. Wagner. Modeling hypergraphs by graphs with
the same mincut properties. Information Processing Letters, 45(4):171-175,
March 1993.

[43] M. Kaddoura, C. W. Qu, and S. Ranka. Partitioning unstructured compu
tational graphs for nonuniforrn and adaptive environments. IEEE Parallel
and Distributed Technology, 3(3):63-69, 1995.

[44] A. B. Kahng. Fast hзφergraph partition. In Proceedings of the 26th
ACM/IEEE Design Automation Conference, pages 762-766, 1989.

[45] G. Kaiypis and V. Kumar. A fast and high quality multilevel scheme for
pcU’titioning irregular graphs. Technical Report TR 95-035, Department of
Computer Science, University of Minnesota, 1995.

[46] G. Karypis and V. Kumar. MeTiS A Software Package for Partitioning Un-
strxi,ctured Graphs. Partitioning Meshes, and Compxiting Fill-Reducing Or
derings of Sparse Matrices Version 3.0. IJniversitj^ of Minnesota, Department
of Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[47] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph
partitioning. Technical Report 98-019, University of Minnesota, Department
of Computer Science/Arniy HPC Research Center, Minneapolis, MN 55455,
May 1998.

[18] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM .Journal on Scientific Computing, to
a.]:>];)ear.

[49] G. Karypis. V. Kumar, R. Aggarwal, and S. Shekhar. liMeTiS A Hypergraph
PartUioniiig Package Version 1.0.1. University of Minnesota, Department
of Comp. Sci. and Eng., Arm}' HPC Research Center, Minneapolis, 1998.

[50] B. W. Kerniglian and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System J'echnical Joxmial, 49(2):291-307, February 1970.

BIBLIOGRAPHY 114

[51] T. G. Kolda. Partitioning sparse rectangular matrices for parallel processing.
Lecture Notes in Computer Science, 1457:68-79, 1998.

[52] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Paral
lel Computing: Design and Analysis of Algorithms. Benjamin/Cummings
Publishing Company, Redwood City, CA, 1994.

[53] V. Lakamsani, L. N. Bhuyan, and D. S. Linthicum. Aiapping molecular
dynamics computations on to liypercubes. Parallel Computing, 21:993-1013,
1995.

[54] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart, and Winston, 1976.

[55] C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric
matrix factorization. In Third SIAM Conference on Parallel Processing for
Scientific Com.puting, pages 27-31, 1987.

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
Willey-Teubner, Chichester, U.K., 199.

.J. G. Lewis, D. G. Payne, and R. A. van de Geijn. Matrix-vector multiplica
tion and conjugate gradient algorithms on distributed memory computers. In
Proceedings of the Scalable High Performance Computing Conference, 1994.

[58] J. G. Lewis and R. A. van de Geijn. Distributed memory matrix-vector
multiplication and conjugate gradient algorithms. In Proceedings of Super-
computing’9'3. pages 15-19, Portland, OR, November 1993.

[59] .]. W. H. Liu. Modihcation of the minimum degree algorith by multiple elim
ination. ACM Transactions on Mathematical Sofhoare, 11:141-153, 1985.

[56]

57

)(JJ .1. W. H. Liu. A graph partitioning algorithm by node seperator. ACM
Transactions on Mathematical Software, 15(3):198-219, Sep 1989.

[61] .). W. II. Liu. On the minimum degree ordering with constraints. SIAM J.
Set. Statist. Cornpui., 10:1136-1145, 1989.

[62] 0. C. Martin and S. W. Otto. Partitioning of unstructured meshes for load
bcilancing. Concurrency: Practice and Experience, 7(4):303-314, 1995.

BIBLIOGRAPHY 115

[63] S. G. Nastea, 0 . Friecler, and T. El-Ghaza.wi. Load-balanced sparse matrix-
vector multiplication on parallel computers. Journal of Parallel and Dis
tributed Computing^ 46:439-458, 1997.

[64] A. T. Ogielski and W. Aielo. .Sparse matrix computations on parallel pro
cessor arrays. SIAM Journal on Ahtm.eri.cal Analysis, 1993.

[65] A. Pınar, U. V. Çatalyürek, C. Aykaiicit, and M. Pınar. Decomposing linear
programs for parallel solution. LecUire Notes in Computer Science, 1041:473-
482, 1996.

[66] C. Pommerell, M. Annaratone, and W. Fichtner. A set of new mapping and
colloring heuristics for distributed-memory j^arallel processors. SIAM Jour
nal of Scientific and Statistical Com.put.ing, 13(l):194-226, January 1992.

[67] A. Pothen and C. J. Fan. Computing the block triangular form of a sparse
matri.x. ACM Transactions on Mathematical Softioare, 16(4):303-324, 1990.

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications,
ll(3):4.30-4.52, 1990.

A. Pothen, H. D. Simon, L. Wang, and S. T. Bernhard. Towards a fast
implementation of spectral nested dissection. In Proceedings of Supercom-
puting’92, pages 42-51, 1992.

[70] C.-W. Qu and S. Ranka. Parallel incremented graph partitioning. IEEE
Transactions on Parallel and Distributed Systems, 8(8):884-896, 1997.

[71] E. Rothberg. Ordering sparse matrices using approximate minimum local
fill, submitted for publication, 1996.

[72] Y. Saad, K. Wu, and S. Petiton. Sparse ma.trix computations on the cm-5.
In Proc. 6th SIAM Conf. on Parallel Processing for Scientifical Computing,
1993.

[7.3] K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for multi-objective
graplr partitioning. Technical Ikeport 99-003, University of Minnesota, De-
|)artment of Computer Science/Army HPC Research Center, Minneapolis,
MN 55455, Sep 1999.

BIBLIOGRAPHY 116

[74] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning
of electrical circuits. In Proceedings of the 9th ACM/IEEE Design Automa
tion Conference, pages 57-62, 1972.

[75] H. Shin and C. Kim. A simple yet effective technique for partitioning. IEEE
Transactions on VLSI Systems, l(3):380-386, Sep 1993.

[76] W. F. Tinney and J. W. Walker. Direct solution of sparse network equations
by optimally ordered triangular factorization. In Proc. IEEE, volume 55,
pages 1801-1809, 1967.

[77] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical designs.
IEEE Transactions on Computer-Aided Design, 10(7):911-921, July 1991.

