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Uniqueness of Gibbs states in one-dimensional
antiferromagnetic model with long-range interaction

Azer Kerimov
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

(Received 28 May 1998; accepted for publication 2 April 1999

Uniqueness of Gibbs states in the one-dimensional antiferromagnetic model with
very long-range interaction is established. 1®99 American Institute of Physics.
[S0022-24889)03309-3

[. INTRODUCTION

We study a model on the latticg* with the Hamiltonian

Hle)= 2 UG=y)eey) = 2 ¢(X), (1)

X,yeZ x>y xeZ

where the spin variable(x) takes the values 0 and A, is a chemical potential. The antiferro-
magnetic potential (x) >0 satisfies the following conditions:

(1) U(x+y)+U(x—y)>2U(x);x,ye Z1 x>y.

(2) The functionU(x) can be extended to a twice continuously differentiable function such
thatU(x)~A(x) 7, U'~—Ayx~ " L andU"(x)~Ay(y+1)x ¥ 2 at x—=; wherey>1, and
A'is a strong positive constant.

The first convexity condition plays a significant role for the structure of the set of all ground
states of the modéll). The second condition determines the character of the potential’'s decrease
at infinity and is important in further calculations.

The hypothesis on the uniqueness of the Gibbs states in the rfigdehs stated by Sinai in
1983 (see Ref. 1, Problem)1

It is well known that the conditioi, . 71 4~ oXU(X) <o automatically implies the uniqueness
of the Gibbs state¥.* We investigate the phase transition problem in the m¢tein the alter-
native case, whelJ(x)~Ax"?, wherey=1+«, 0<a<1.

The ferromagnetic version of this modethen the potentidl (x) is negativé was considered
by Dyson in his well-known papers. He proved the existence of two extreme limit Gibbs states
P* andP~ corresponding to the ground staieéx)=+1 ande(x)=—1 at low temperatures.

lA7 _:,?t’aries of papers has been devoted to the investigation of the antiferromagnetic model
).~

The validity of Sinai's hypothesis for rational values of the denéfity almost each value of
the external fieldat low temperatures was proved in Ref. 13.

The main purpose of this paper is to extend the result of Ref. 13 to all values of the external
field and to all values of the temperature.

1Theorem 1: The model (1) has a unique limit Gibbs state at all values of the temperature
Bt

Let us introduce necessary definitions. The set of all periodic configurations we denote by
DP. For everyp e P, we defineq=2§i§+l<p(x), wherep is the period ofp. It is obvious that
g does not depend an Therefore, the density of each periodic configurationisg/p. It is more
convenient to work with the reciprocal of the density,¢(x))=p/q, which represents the aver-
age distance between neighboring points at whi¢k) = 1. For every configuratiop € ®"¢" the
mean energyn(¢) is defined as follows:

0022-2488/99/40(10)/4956/19/$15.00 4956 © 1999 American Institute of Physics
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X+p

h(e(x)= Eygﬂ <p<x>§0 U(z)e(y+2).

The last expression does not dependxon

The following definition is useful for describing the zero temperature phase diagram of the
model (1).

We fix a positive rational numbeg/q.

A configurationgy(x) e ®P with 7(¢o(x))=p/q is called a special ground staié

h(e(x))= inf h(e).
e ®P n(e)=piq
Hubbard’s criterion (Refs. 1 and 7):et ¢ € ®P¢"andr;(x; ¢) denotes the distance between a
particle placed ake Z* andith particle on the right. If for eack andi

[in]<ri(x;e)<[in]+1,

(the square brackets denote the integer part of the enclosed nutinder is a special ground
state.
The existence of configurations satisfying Hubbard's critefitve special ground stajes
shown in Ref. 1. The remarkable elegant formula for the special ground states was offered by
Aubry. Here we give the construction of the special ground states for each fixed rational value of
the densityx.!
Every rational numbep/q has a unique decomposition into a finite continued fraction:
p/q=[ng,Ny,...,Ns], this means that

No+
0 1
n,+

L 1
n,+...+ —
2 ns

The ground state for a configuration with=[ng,n,...,ns] will be constructed by recursion.
(1) »=ng=1, ny is an integer. The periodic configuration with equally distargt which
¢(x)=1 satisfies Hubbard's criterion i.e., is a special ground state. In thisrgase)=ing, i

>0.
(2) =ng+1/n,, whereny andn, are integersny=1, n;>1. Then the (yn;+ 1) periodic
configuration
00...01...0...01
——— N——
ng ng
ny ‘ti'mes

also satisfies Hubbard's criterion and is a special ground state.
(3) »=[ng,nq,...,ng], wherengy,n,...,ng are integersng,nq,...,ns=1. Fors=0 ands
=1 the required configurations are already constructed. Suppose we have already constructed a
ground state witrs=m and k=[ng,nq,...,n,]. Then the following configuration witls=m
+1 andk=[ng,nq,...,Nyh+1] iS constructed as

e(ng, ..., 0 )=@(ng, ...y 1) @(Rg, ... 1y) ... p(Rg, ... 1) .

n, 1 times
Here, ¢(Nng,...,nj), j=m—1, mm+1, are the blocks from which the ground states for
=[ng,...,n;] are obtained by periodic continuations.
The constructed configuration satisfies Hubbard’s criterion and therefore is a special ground
state forp=[ng,Ny,....Nm,Nm+1].>
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The following explicit expression for the mean energy of the special ground state follows
from Hubbard’s criteriort:

o

hK:K_Zl U(m)m+U(m+1)(1-m), 2

wherem;=[i7n], m=1+m,—in.

This formula shows that the function of mean energy as a function of the dewasgy
continuous on the set of all rationals and can be extended to a continuous function defined on
whole segmen{0, 1].

Theorem 2: (Refs. 9 and 1.§1) The function h is convex.

(2) In each rational point the function hhas a left-hand derivative.,, and a right-hand
derivativeu, , with !> pu, .

(3) The Lebesgue measure of the complement of theJsgt ,u) in the real lineR is
zero.

The following theorem gives the full description of the set of all special ground states of the
model (1) at rational densities.

Theorem 3: (Ref. 12.) Suppose that the value of the external fietd the model (1) belongs
to the interval(u, , ) for some numbek=q/p. Then the special ground state of the modg!
is unique up to translations.

Following Theorem 4 generalizes the main result of Ref. 13 for all values of the temperature
and is a special cadeational densitiesof Theorem 1.

Theorem 4: Suppose that the value of the external figldf the model(1) belongs to the
interval (u, ,u) for some numbek=q/p.

Then the mode(1) has a unique limit Gibbs state at all values of the temperaggure

Suppose that the value of the external figldof the model(1) belongs to the interval
(m, ,ur) for some numbek=q/p.

Let us consider an arbitrary configuratigiix). We say thatp([a,b]); a,be Z! is a preregu-
lar phase, if there exists a special ground stgte such that the restriction of this configuration to
[a,b] coincides withe([a,b]). We say thatp([c,d]); c,de Zt is a regular phase, if there exists
a preregular phase([a,b]); a,be Z!, such that—a>dyp andb—d>dyp. Thus, right and left
dop extensions of a regular phase are ground states.

Let us consider a s&=U [ a;,b;], wheree([a;,b;]) is a regular phase and suBB is the
complement ofA in Z1. The connected components of supP defined in such a way are called
supports of precontours and are denoted by SURpsuppPK= U . nq SUPPPK; .

For each fixed rational densitythe constantl, satisfies some technical conditiofidn this
work we do not need the explicit value df.

Definition 1 (Ref. 13)The pairPK= (suppPK, ¢’ (suppPK)) is called a precontour. The set
of all precontours is called a preboundd of the configurationp’(x). Two precontour K;
and PK, are said to be connected if dist(supl,suppPK,)<N,. The set of precontours
(PK;;i elnd) is called connected if for any two preconto®#&. andPKj;c,d e Ind there exists
a collection PKJ-1= PKe,....PK,...,PK; ,PK; = PKy); jielInd, i=1,...n; such that any two

precontoursPK; andPK; ., i=1,.n—1 are connected. Lat ", PK; be some maximal con-

nected component of the prebounddB. Suppose that sugpK;=[a;,b;] and b;<a; q; i
=,...,n—1.

The pairK = (suppK, ¢’ (suppPK)), where supfiK=[a;,b,] is called a contour. The set of
all contours is called a boundaByof the configurationy’(x).

In this work we do not need the exact value of the consknt'? From Ref. 12 it becomes
clear that limy_,.. N, =cc. Thus, for irrational values of the densikyN,, is not defined, but as will
be seen below, we do not need to defisyefor irrational densities.

Note that supf =(U!_, suppPK;)U([a;,b,]— (U, suppPK;)) =supg KUsupgK.
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The sets supiK and suppK will be, respectively, called the essential and regular parts of the
support supfK.

Let the boundary conditions(x) =[ ¢(x),xe (—,—V—-1]JU[V+1,:)] be fixed. The set of
all configurationsp(x); xe[—V,V] we denote viab(V).

It is obvious that for each contouf, such that supge[—V+(dy+1)p,V—(do+1)p],
there exists a configurations([—V,V]) such that the boundary of the configuration
Yk([—V,V]) includes the contoukK only:

B(yx([—V,V])=K.

Let suppK=[a,b]. It is obvious that the restrictions of the configuratigg([ —V,V]) to the
segment§ —V,a— 1] and[b+ 1,V] coincide with two ground states’(x) and ¢3(x).

A contourK is called an interface contour, q':fi(x)#@i(x).

Note that,gpi(x) can be obtained by some shifting of the configuraﬁnfyqx).

An interface contour will be denoted #s.

Let K be a usual contoufnot an interface contourK,suppKC[—V,V] and #K(x)
=y([—V,V]) if xe[-V,V], and ¢(x) if xe(—»,—V-1]JU[V+1x); IK,supplKC
[-V,V] be an interface contour andhx(x)=¢([—V,V]) if xe[—V,V], and ¢(x) if xe
(—o,V-1]U[V+12); and @i(X)=¢r(x), if xe[—V,V], and @(x) if xe(—=,—V
—1]U[V+1x).

Below the configuratiorﬁ(x) defined for usual contours will be denoted by(x).

The weights of the usual contoi{rand interface contouK will be calculated by the follow-
ing formulas:

Y(K)=H(g(x)) —H(@.(X)), ©)

y(IK) =H(¢hk (X)) —H(@k(x)). (4)

The proof of Theorem 4 is based on the following idea. Let the boundary condiifxs
=[¢(X),Xe(—»,—V-1]U[V+1x=)] be fixed. The set of all configurationg(x); Xxe
[—V,V] we denote viab (V). Suppose a configuratiap,;(X) e (V) be a configuration with the
minimal energy:

H(@min(X)) =min, ) c pvyH(@(X)) .

Then the configuratior,,i,(X) almost coincides with a special ground state of the métel
(Lemma 1 in Sec. )l This fact allows us, based on special ground states, to define a coffonon
all boundary conditionscontour model and after that by using well-known tfitkthis trick,
which was introduced in Ref. 14 for some special extensions of Pirogov—Sinai theory, is directly
applicable to one-dimensional models with long-range interactioncome to noninteracting
clusters from interacting contours. Consider an arbitrary segimarsufficiently large volum#¥,
two arbitrary boundary conditiong*(x) and ¢?(x). It turns out that the dependence of the
expressiorPY(¢'(1))/P?(¢’(1)) on the boundary conditiong’(x) and ¢?(x) can be estimated
through the sum of statistical weights of super clusters connecting the selgwiémthe boundary
and this sum is negligible. Thus, two arbitrary extreme Gibbs states are relatively continuous and
hence coincide. In Ref. 13 we developed this metfibeé estimation of dependence of the ex-
pressionP(¢’ (1))/P?(¢’ (1)) on the boundary conditions through the sum of statistical weights
of super clusters connecting the segmnlentth the boundaryat low temperatures. It turns out that
after some modification the method works at all temperatures.

The contents of this paper are as follows. In Sec. Il we prove Theorem 4, in Sec. Il we
complete the proof of Theorem 1.

II. UNIQUENESS OF GIBBS STATES: THE DENSITY « IS p/q

Let us now introduce some necessary facts.
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Suppose that the value of the external figldof the model(1) belongs to the interval
(u, ) for some numbek=q/p.
Let the boundary conditiong(x)=[ ¢*(x),xe (—%,—V—1]U[V+12<)] be fixed and

H(e(X)| (X)) =—pu > e(x)+ > UX—y)e(X)e(y)
XEZl,XE[—V,V] x,yeZl,x>y;x,ye[—V,V]
+ > U(x—y)e(x)e*(y)

x,yeZl,x>y;XE [-V,V];ye[—V,V]

+ > U(x=y)e*(x)¢(y). )
xyeztx>yixe[—V,V]ye[-V,V]

Lemma 1:Let ¢,in(X) e P(V) be a configuration with the minimal energy:

H(@min(X)|@1(X)) =min, ) caH(@(X)|e1(X)) .

Then the configuratio,,i,(X) has the following structure.

The restriction of the configuration,,,(X) on the sef —V+N,,V—Ny] contains at most
p—1 contours, moreover, all of them are interface contourg |K=1,...m, where m<p—1 and
|supplK;|<3dgp+Np.

Lemma 1 was proved in Ref. 13ee Lemma 12Ref. 13 and Sec. 5 of Ref. 13

Let H(o(x)|@1(X), emin(X)) denote the relative energy of a configuratiofx) [with respect to
Pmin(X)]:

H(e(X)|@*(X), @min(X) =H((X)|¢(X)) = H(@min(X)| @(X)).

Consider the Gibbs distributio! on ®(V) corresponding to the boundary conditions
e () =[e*(x),xe(—%,~V-1JU[V+1x)]:

exp — B(H(e' ()| e*(X), emin(X))))
(0 e d(v) XA = BH(@(X) [ @1 (X), @min(X))))

Let ¢(x) e (V) be an arbitrary configuration, the boundary of théx) includes a finite
number of usual contourk;; i=1,..n, and a finite number of interface contouts;; i=n
+1,..n+m. LetK;=K;; i=1,..n; K;=IK;; i=n+1,..n+m. The set of all contours of the

boundary conditiong*(x) will be denoted byK,.
The statistical weights of contours and interface contours are

w(Kj)=exp(—By(Kj)). @)

The following equation is a direct consequence of the form@as(4), and(7)

PL(¢' ()= g ©)

n+m

exp(— BH(@ ()| ¢*(X), @min(¥))) = Q1 il;[l w(Ki)exp(—BG(Ko,Ky,...Knim), ®

where the multiplieiG(Kq,K4,...,K,,+n) corresponds to the interaction between contdussial
and interfacg and with the boundary conditions'(x)

n+m
G(Ko, Ky, Knsm= 2 G(K Kp= X > (XY, @) (9)
i,j=0;i<]j i;1<]j (x,y)elnt(Ki,Kj)

and the multiplierQ;=Q;(V,¢(x),¢*(x)) is uniformly bounded from below and above: 0
<cons{<Q;<cons}. The factorQ, appears due to the facts that the configuratn,(x) not
necessarily coincides with a special ground state and is bounded due to Lemma 1.
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Now we write down the value of the interaction between the conti§yendK;, the value of
the interaction between the interface contdisandlK; and the value of the interaction between
contourK; and interface contourK; .

Suppose supld;=[a;,b|]; supplK,;=[a;,b;].

Let

supplK;"=[b;,a;;;] and suppK; =[b;_;,a],
wherebgy=c, if there existsK e B(¢'(x)), such that sup=[ —o0,c] andby= — otherwise;
an.1=d, if there existK e B(¢’(x)), such that supg=[d,>] anda,, ;== otherwise.

(1) The contourK; e B(¢’(x)) interacts with the contouK; e B(¢'(x)) through all pairs
(x,y), such that x,y) € Int(K; ,K;) andf’(x,y,¢)#0 where

Int(K; ,Kj)=[(x,y):X,y € Z*;x e suppK; ,y € suppK].

The value of the interaction

F(Y,0) =U(X=Y)(¢' ()¢ (¥) = th(X) thi,(¥) + @} () 9 (¥)
= U () U (V) + @L(X) ().

(2) The interface contourlK;eB(¢'(x)) interacts with the interface contoutK;
eB(¢'(x)) (leta;>b;) through all pairs X,y), such that X,y) e Int(IK;,IK;) and f"(x,y)#0,
where

Int(IK; 1K) = Int'(IK; , 1K) + Int2(1K; 1K) + Int(1K 1K)+ Int*(1K; 1K),
Int'(IK; 1K) =[(x,y):x,y e Z';x e supplK; and y e supplK;],
Int?(IK; 1K) =[(x,y):x,y e Z*;x e supplK; and y e supplK|],
Int3(1K; 1K) =[(x,y):x,y e Z};x e supplK;" andy e supplK;],
Int* (1K ,IK})=[(x,y):x,y € Z*;x e supplK;” and y e supplK;'].
The value of the interaction
(Y, ) =f1(x,y) =U(X=y) (@' (X) " (y) = ¢k, (X) ik (¥)
+ @@L~ i, () i, (Y) + P ()
if (x,y) e Int?(IK; ,1K}),
F(x,y) = 150,y) = U(x=y) (¢’ (X) @' (y) = th, () ., (¥) + @, (0 @l(y))
if (x,y) e Int(IK;,1K}),
F70,y) = F306Y) =U =) (@' (0@ (¥) = thix ()i (V) + @L(X) ()
if (x,y) e Int*(1K; 1K),
O =060 =U(x=y)(¢' ()¢ ()~ ¢ () 0 ()~ 9 () 92 ()

if (x,y) e Int*(IK; ,1K}).

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



4962 J. Math. Phys., Vol. 40, No. 10, October 1999 Azer Kerimov

(3) The contourK; e B(¢’ (X)) interacts with the interface contoliK; e B(¢'(x)) through all
pairs x,y), such that §,y) e Int(K; ,1K;) andf”(x,y) #0, where

Int(K; 1K) = Int}(K; 1K)+ Int?(K; 1K),
Int"(K; 1K) =[(x,y):x,y e Z";x e suppK; and y e supplK;],
Int?(K; 1K) =[(x,y):x,y € Z';xe suppK; andyesupplK;']
if a;>b;, and
Int?(K; ,IKJ-)=[(x,y):x,yezl;xEsuppKi and y e supplK; ]

if a;>b;.
The value of the interaction

£706y) = 17 06y) = U (X=y) (¢ (0@ (¥) = i (X) i (Y)
+ @0 @LY) =tk (0 ¥k (V) + k() eh(¥))

if (x,y) € Int(K; 1K),

F706Y) =15 (6Y) =U(X=y) (@ (X) 0" (¥) = th. () ¢, (¥) + @) @l(Y))

if (x,y) € Int(K; ,IK;).
For simplicity K;, i =1,...n+m will be denoted byK;, i € Ind, where the statistical weights
w(K;) are defined by the formulag), (3), and(4). Thus, the formuld8) has the form

eXIO(—BH(<P(X)|<P1(X),<Pmin(X)))=QliH w(Ki)exp(—BG(Ko,Ky,...Kn1m)). (10

elnd

The set of all pairgx,y) in the double sunt9) will be denoted byY =Y (Kq,K4,....Knim)-
Write (10) as follows:

exrx—ﬂH(<p<x>|qol<x>,<pmm<x>>>=Qlinw(Kn [T (a+expg—pf(xy.¢)—1). (12)

eln x,y)eY

From (11) we get

exp — BH(¢(X)|¢*(X), emin()))=Q1 IT TI wi(K) I1 gxy), (12

G'cg ielnd (x,y)eY';f(x,y,¢)#0

where the summation is taken over all subséts(including the empty s¢tof the setY, and
g(X,y,(,D):eXp(_ﬁf(X,y,(p))_l.

Consider an arbitrary term of the sui?2), which corresponds to the subsétCY. Let the
bond (x,y) e Y'. Below, contours and interface contours will be called contours. Consider the set
K of all contours such that for each contduC K, the set sup N (xUy) contains one point. We
call any two contours fronkK connected. The set of contoufsis calledY’ connected if for any
two contoursK, and K, there exists a collectionkK;=K,,K,,..., K,=Kj) such that any two
contoursK; andK; 4, i=1,..n—1, are connected by some bondy) e Y’'.

The pairD=[(K;,i=1,...s);Y'], whereY' is some set of bonds, is called a cluster provided
there exists a configuratiop(x) such thatk; e B(¢(x)); i=1,...s; Y'CY; and the setK;, i
=1,...s) is Y’ connected. The statistical weight of a clusiers defined by the formula.
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w<D>=iljlw<Ki> II gxy.e). (13)

(x.y)eY'

Two clusterdD, andD,, are called compatible provided any two contolrsandK, belong-
ing to D, and D,, respectively, are compatible and not connected. A set of clusters is called
compatible provided any two clusters of it are compatible.

If D=[(K;,i=1,...8);Y’'], then we say thaK;eD; i=1,...s.

The following lemma is a direct consequence of the definitions.

Lemma 2: Let the boundary conditions'(x)=[¢(x),xe(—%=,—V—1]U[V+1%=)] be
fixed

If [Dy,....Dn] is a compatible set of clusters andf™ ; suppD;C[ —V,V], then there exists a
configurationg(x) which contains this set of clusters. For each configuratig) we have

exp — BH(e(X)]¢*(X), emn(¥)))=Q1 > T w(Dy),

Y'cy

where the clusters Pare completely determined by the sét Yhe partition function is

E(o'(x)=Q>, w(Dy):-*w(Dp),

where the summation is taken over all nonordered compatible collections of clusters and the
factor Q=Q(V, ¢(x)) is uniformly boundedd< constQ<conss.

Lemma 2 shows that we come to noninteracting clusters from interacting contours.

Let P* andP? be two Gibbs states of the modd) corresponding to the boundary conditions
o1(x) and ¢?(x), respectively.

The following lemma has a key role in the proof of Theorem 4.

Lemma 3: Suppose that the value of the external fieldf the model (1) belongs to the
interval (u,. ,u, ) for some numbek=q/p.

Then the measure®' and P? are absolutely continuous with respect to each ather

Proof: Let | =[a,b] be an arbitrary segment ard (1) be an arbitrary configuration.

In order to prove the lemma we show that there exist two positive conssaautsl S not
depending on, ¢*(x), ¢?(x) and¢’(l), such that

s<PY(¢'())/IP?(¢'(1))=<S. 14
Let P\l, and P\Z, be Gibbs measures corresponding to the boundary conditid(s), and
©%(x), xe Zt—1y, respectively, wheré,=[ —V,V].

Therefore,

limPy=P' and limP{="P?,

V—o V-

where by convergence we mean weak convergence of probability measures.
In order to establish the inequalityl4) it will be proved that for each fixed intervdl
IC[—M,M] there exists a numbar,(M), which depends oM only, such that

s<PY(¢'(1)/Py(¢'(1)<S (15)

if V>Vg.
Consider
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o1y o) =¢' (1) €XP(— BH(@(1\)|@*(X), emin(¥))) O(e(1),V, @1
21y €X(— BH(@(1\)[0*(X), @min(¥)))O(e(1),V, ¢%)

_ E(ly=1e*x),¢"(1),0mn(X)O(e(1),V, b
Z‘P”(')E(IV_ I |(Pl(X)YQDN(I ),(,Dmm(X))O((P(I ):VaﬁDl)

>
Pl(e'(1)=

whereZ (1y—1|e(x), ¢’ (1), omin(X)) denotes the partition function corresponding to the bound-
ary conditionse?(x), xe Zt—1y, ¢'(l), xel and

O(¢(1),V, ¢ =exp(- B > U(x=y)(@*(X) @(¥) — ¢*(X) @min(X)))-

xyezlxezl-1y yel

We can expresE’\z,(cp’(I)) in just the same way.
In order to prove the inequalit{l5) it is enough to establish inequalitit6) and inequality

(17):
1/2<0(p(1),V,¢'(x))<2, =12 (16)

[where the inequalities ii16) are held uniformly with respect tg(l) and ¢': for eachl there
existsV, not depending orp(l) and¢'] and

_ By 1e00.¢"(1.gmin(¥) / E(ly=1162(0),¢"(D. @min(¥)) _
1/8\E(lv—lIsol(X),(P’(l),cpmm(X)) E(IV—||<p2(x),¢'(|),(pmm(x))\1/5 17

for arbitrary ¢"(1).
Indeed, if the inequality17) holds, then

E(ly—1e'(x),¢" (1), @min(X)) E(ly—1e%(x),¢" (1), @min(X))
S o EUv=1101 ), (D), @min(X) /=iy E(y=10%(X),@" (1), @min(X))

=AV(e"(NIAY(¢' (1))

:1/ (E¢”(I)E(IV_I|QD1(X),(P”(I)r‘Pmin(X))/2¢”(I)E(IV_||¢2(X)1<P"(I)a@min(x))
E(lyv=1e (X)), (1), @min(X)) E(ly—1e%(x),¢@" (1), @min(X))

(Z o Ey=1e* (%), @" (1, emin )N E(Iy—=1e%(X),@" (1), emin(X))

(2o E(y=10%(%),@"(1), emin( )N E(ly= @ (%), 0" (1), @min(X))

Therefore,
UAS)<AY (o' (1N)IAZ(e'(1))=<1/1/S)

since the quotient oE_,a; /=" ,b; lies between mirg /b;) and max; /b)).
Thus, if in addition, the inequalityl6) holds, then

274s<PL(e'(1)):Pi(¢’(1))<2%S.

Now we start to prove the inequaliti€¢$6) and (17).

It can be easily shown th&l6) is a direct consequence of the conditioifix) ~Ax™?, atx
—oo; wherey>1, andA is a strong positive constant.

So, in order to complete the proof of Lemma 3 we must establish the following inequality
[which is just transformed inequalit17)]:
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E(v=11900.¢" (1), @m0 E(ly =%, @' (1), omn(x))  EVE?

= <1/s.
E(ly=1e%(x),¢" (1), emn(X))NE(y=Ie*(X), 0 (1), emn(X) =251 >

1/S<

(18

Consider

EYEZ =E(1y—1]e%),¢"(1), emin X)) E(Ily—=102(x),@" (1), @min(X)).

The following generalization of the definition of the compatibility allows us to represent
5152 as a single partition function.

A set of clusters is called super compatible provided any of its two parts coming from two
partitions sums is compatible. In other words, in super compatibility an intersection of supports of
two clusters is allowed.

The following lemma is an analogue of Lemma 2.

Lemma 4: Let boundary conditiong(x)=[¢(x),xe(—%,—V—1]JU[V+1x)] and
©2(X)=[@?(X),xe (—%°,—V—1]U[V+1x)] be fixed

If [D4,...,Dy] is a super compatible set of clusters aod ;suppD;C[ —V,V], then there
exist two configurationg®(x) and ¢*(x) which contain this set of clusters. For each two con-
figurations¢3(x) and ¢*(x) we have

exp(— BH(3(X)| @(X), emin(¥))exp(— BH(* ()| (X), emin(¥)=Q1 > I w(Dy),

G'cG,G"cG

where the clusters Dare completely determined by the set$ éd G’. The super partition
function is

BV 2 =EYEY =QX w(Dy) - W(Dy),

where the summation is taken over all nonordered super compatible collections of clusters and the
factor Q=Q(V, ¢*(x),¢%(x)) is uniformly boundedd< cons{<Q<conss.

Lemma 4 is a direct consequence of the definitions.

An arbitrary connected component of an arbitrary super compatible set of clusters will be
called a super clusters. A super clus8b=[(K;,i=1,..r);G’] is said to be long if the inter-
section of the setW! ;suppK;))UG’ with both | and Z*—1,=(—%,-V—-1]JU[V+1%=) is
nonempty. In other words, a long super cluster connects the boundary with the segment

A set of super clusters is called compatible provided the set of all clusters belonging to these
super clusters are super compatible.

It turns out that in our estimates long super clusters are negligible.

Lemma 5: For each fixed interval |, there exists a numbg(l )/ which depends on | only,
such that if \=>V(l)

122 2 < g 2= w(SDy) - w(SDy) <3251 2,

where the summation is taken over all nonlong, nonordered compatible collections of super
clusters [SD;,...,SD,], U™ ;suppSD;)Cly—1 corresponding to the boundary conditions
e(x),9%(x), xe Z'=1y; ¢'(x) and ¢"(x), xel.

Consider a collection of contoui§y,K4,...,K,,. The value of the interaction of the contour
Ko with the contour,,... K, we denote byG(Kg|K4,...,K,):

G(KolKl,...,Kn)zB l(}l('o[‘1 , (1+exp—Bf(B)—1)), (19)
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wherelG(0|1,...n) is the set of all interaction elements intersecting the support of the contour
Ko-
Lemma 6:

G(KolKl,...,Kn>=BE|GE[|1_“m |(1+exp(— Bf(B)—1))

<constdist(0[1,...n)) " *(|supgKo) )1~ ¢, (20

wheredist(0|1,...n) is the distance between the support of &d the union of the supports of
contours K,... K.

In other words, the interaction d&€4,... K, on K, tends to zero when the distance between
them increases, and value of the interaction increases with a rate less than the length of the support
of Kg.

The technical Lemma 6 follows from the decreasing conditions of the poténfigl. For the
rigorous proof see Ref. 13, Lemma 4.

The following lemma is an analogue of Lemma 5 for clusi@st super clustejs

Lemma 7: For each fixed interval |, there exists a numbg(l )/ which depends on | only,
such that if \>V(I)

12EY <5t (=3 w(Dy).. w(D ) <3/2E",

where the summation is taken over all nonlong, nonordered compatible collections of clusters
[D1,....Dm], U™ suppD;Cly—1 corresponding to the boundary conditions'(x), xeZz?!
—ly; ¢ (X), xel.

Proof:

El,’ _ El,’,(n.l.)+(El,’ _ El,’,(n.l.)): El,’,(n.l.)+ El‘l’(l'),

where the summation & (") is taken over all nonordered compatible collections of clusters
[D1,...,.Dm] containing at least one long clustew™ ;suppD;CIy—I corresponding to the
boundary conditiong(x), xe Zt—1y; ¢’ (X), xel.

By dividing both sides of the last equality b?/l", we get

1=2%

g L gL gy, (21)

Now we are going to show that the second tdmifich is not necessarily positiyés negli-
gible, that is the absolute value of it is less than @&ually we can show that the absolute value
of the second term is less than any fixed positive number at sufficiently large valdgs of

The term= %"/ can be interpreted as a “probabilityP (Long) of the event that there
exists at least one long cluster.

We show that the absolute value of this “probability” is less than 1/2 by the following
method. We estimate the density of long clusters: the probability that a given segment belongs to
the support of some long cluster. Since some statistical weights of clusters are positive and some
negative, we estimate the absolute values of these “probabilities.” We show that for a fixed
segment the “probability” that this segment belongs to the support of some long cluster with
positive “probability” minus the “probability” that this segment belongs to the support of some
long cluster with negative “probability” is less than one. Since the density is less than one, by the
law of large numbers a “typical” long cluster has not very long support, and therefore has long
bonds. WherV tends to infinity, the total length of bonds tends to infinity, and the impact of these
bonds tends to zero.

Now we replace a statistical weight(D;) of each clusteD; belonging to the configuration
containing at least one long cluster with its absolute vaared “probability” of long cluster
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becomes positiveand the expressiof (/=% transfers intog (-2 Z1".(@9) |t can be
easily shown that, without loss of generality we can supposeﬂﬁéi"-)zo. Obviously,

:l,’,(l.)/:l,'|< :l,',(l.absl':l,’,(abs
L L = Ll .

Now the expressiorg " (1-20s)51/.(abs) can be interpreted as a “absolute probabilitp*s
(Long) of the event that there is at least one long cluster.

Now our aim is to estimate the “absolute probabilitPP®°Sof the event that a given segment
belongs to the support of long cluster. In other words, we are going to estimate the statistical
weights of long clusters after replacing of the values of all negative bonds in configurations
containing at least one long cluster with their absolute values.

Let ¢(ly—1) be an arbitrary subconfiguration which contains contdys... K, , belonging
to long clustersk = U'suppg K;, K!:=KN[ =V, —(|1]/2)] andK?=KN[]|I]/2V].

PutCY(e(ly—1))=|KY andC?(¢(ly—1))=|K?. We have

|P(Long)|=|E*"/EY|
<P Long)

=2, WDy) - W(D )/ EL (@09

p.l p,2
=2 WD) WD) BN @9+ X WD) WD)/ BN

=P¥{Long,>p)+ P Long,<p),

wherew?{D;)=|w(D;)| for all clusters belonging to the configuration containing at least one
long cluster andv®{D;)=w(D;) for other clustergnote that the statistical weight®*{D;) of
fixed cluster in one configuration can be positive, in other neghtlast two summations are
taken over all nonordered compatible collections of clugtérs,...,D,,] containing at least one
long cluster, U™ ;suppD;Cl,—I corresponding to the boundary conditiofg(x),xe Z?
—ly;e'(x),xel}, the summation ir=P! is taken over all configurationg(ly):¢(1)=¢’(1);
2CYHe(ly=V)/(IIV]= 1) >p; 2C2%(e(1y—V))/(|Iv]=|1])>p, the summation i=P? is taken
over all configurations ¢(ly):e()=¢'(1); 2CYHe(ly—=VD/(Iy|—[1)<p; 2C%*(e(ly
—V))/(|Iy|=]1])<p. It means that the density of contours belonging to long clusters in each
configuration from=P! (=P) in both segmentg—V,— (|1|/2)] and[|1|/2,V] is greater thap (is
not greater thamp).

We fixed the value op as 1—-q/2l, where the values af and| will be defined in the proof
of Lemma 9.

It turns out that the long clusters are negligible.

Lemma 8: For each fixed interval | there exists a value gf Such that if \>V,

PaY Long) = P?{Long,>p) + P®{Long,<p)<1/2. (22)

Lemma 8 is a consequence of the following two lemmas.
Lemma 9:For each fixed intervdl there exists a value of,, such that ifV>V,

P2 Long,>p)< 1/4.
Lemma 10:For each fixed interval there exists a value of,, such that ifV>V,

P2 Long,<p)< 1/4.
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Proof of Lemma 9: Consider the partition af* into segmentd,=T,(Ip), whereT,(Ip) is
the segment with the centerat (Ip/2)+ klp and with the lengthp (T, consists of segments$;
with the lengthp, wherep is the period of the special ground stat€he value of will be defined
later. Let us consider an arbitrary configuratip(x). We say that a segmeh is regular, ifl,
does not belong to the support of some long cluster. We say that a seggisrguper-regular, if
T, contains at least one regular segment.

Let P, be a Gibbs measure corresponding to the boundary condiidng, xeZ%, ¢'(1),
xel.

Let the segment,—1 consist ofn segmentdT ; k=1,...n.

We define a sample spa€kconsisting of 2 elementary event8/=[o(1),...,0(n)], where
o(k), k=1,...n takes two valueso(k)=0 corresponds to the case when the segnignis
super-regular and-(k) =1 corresponds to the case when the segrign$ not super-regular. On
the sample spac@ we define two different probability spacef (P,) and (2,P,) by the follow-
ing formulas:

Pl(AJ)ZPl[O'(l),,O'(n)]zpv[O'(l),,O'(n)],

wherePy is the Gibbs distributioP,, corresponding to the boundary conditiop¥x), xe Z%,
¢'(l), xel and

Py(A)=Po(1),....0(M]=q""%(1-0q)",

wheres denotes the total number of 1 entries of the veéb=[o(1),...,0(n)].

We define a random vectory(1),7(2),...,m(n)) on the probability space(},P;) and,
respectively, a random vecto&((1),&(2),...,£(n)) on the probability space(Y,P,) by the for-
mulas:

n(K)(A)=a(k) and &Kk)(A)=o(K).

The random variableg(k) and ¢(k) are defined on the same sample space but on different
probability spaces.

Due to the definitions, the random variablggk) are dependent, and the random variables
&(K) are independent and identically distributed.

Consider the two sums;_; 7(k) and=}_; (k).

Suppose that

P(7n(m)=1|any conditions outsideT)<1—q. (23

Note thatP( 7(m)= 1|any conditions outsidg,)<1—qg=P(&(m)=1) and therefore the fol-
lowing natural lemma holds.
Lemma 11:

P(E n(k)zl)sP(z g(k)zl)
ke K ke K

for all natural values of I.

The proof of the probabilistically clear Lemma is omitted. For the detailed proof see the
Proposition in Ref. 15.

The random variableg(k) are independent and identically distributed. The mathematical
expectation of(k) equals 1-g.

Now we show that

P3P »(m)=1|any conditions outsideT,,)<1—q. (24
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Let P, be a Gibbs measure corresponding to arbitrary boundary conditiond ,ahé an
arbitrary segment. Consider the set of all configurations on the int€peahd the restriction of the
measurd®, on this set. We show that at some valué tife “absolute probability”P2Sthat in T,
there is at least one regular segmppnis greater tham>0 for some constarg not depending on
k. The eventp(k)=1 means that all segments belonginglioare nonregular.

Suppose that a fixed configuratiari(T,,) does not coincide with the ground state atlall
eTh.

The Peierls argument method directly imply that for some positive confant

P35 ¢’ (T, |conditions outsideT,, are 9" (x))<exp — Btol).

Note that when we increase the valuel dhe influence of the conditions outsidg, on the
configuration inT ., increases with the rate less thaand therefore at some valuelaind for some
positive constant we have

P3¢’ (T,)|any conditions outsideT,,)<exp —Btl)<1—q,.

Thus, the probabilityP2®Y z(m) = 1|any conditions outsid€,) as a union of at most'2
events with probabilities less than-1,, is bounded by some number-XL. The inequality(24)
is proved.

Now Lemma 9 is a direct consequence of the strong law of large numbeg&kprand the
Lemma 11. Indeed, consider independent Bernoulli trials when the probability of success at each
trial is 1—q. According to the law of large numbers, the probability of the event that the density
of successes exceeds §1'; 0<q’<q, is less than 1/4, whe¥i tends to infinity. It means that the
“absolute probability” of the event that the density of non-super-regular segnignits greater
than 1—q’ is less than 1/4. Due to Lemma 11, this probability is greater tha¥probability
of the event that the density of non-super-regular segmepts greater than +q’. In other
words, theP2Sprobability of the event that the density of super-regular segnigpis less than
1—q’ is less than 1/4. Thus, th@®®s probability of the event that the density of super-regular
segmentd , is greater than 4 q’ is greater than 1/4. Taking into account that each super-regular
segmenfT,, contains at least one regular segment, one can see that the last statement implies the
Lemma 9 if the parametgris chosen from the open interval {1q'/1,1). We choose the value of
p as 1-qg/2l.

Lemma 9 is proved.

Proof of Lemma 10Let us consider the set of all long clust&swith the density of supports
less thamp. Let suppD) = U{:jsupp«j). These supportK; are connected between themselves
and with the boundary. Since the density of supports is not greaterpthan the sum of the
lengths of bonds in both halvgs-V,—|1]/2 and[|l|/2,V] is not less than\(—|I|/2)(1—p).
WhenV goes to infinity the sum of lengths of bonds of any long cluster with the density less than
p tends to infinity. As it becomes apparent from the proof of Lemni%Long,>p) does not
exceed one. And it does not exceed one, if we omit the faptery) corresponding to the long
bond and sincg(x,y,¢) =exp(— Bf(xy,¢))—1[see(12)] the impact of these bonds tends to zero.
By choosing the appropriate value éfwe complete the proof of Lemma 10.

Lemma 10 is proved.

We omit the huge proof of Lemma 5 since it is absolutely analogous to the proof of Lemma
6. The only difference is the fact that @\ 2 overlapped clusters are allowed, so the density of
nonregular segments of typical configurations in Lemmas 8,9 instepdmif be a number less
than 1-(1—-p)(1—p).

Partition functions including only non-long-super clusters satisfy the following key lemma
which has a geometrically-combinatorial explanation.

Lemma 12:

El,’,z,”,(n.l.): QE 1.2/, (nl.)
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where the factor GQ(¢(x),¢?(X),¢'(X),¢"(x)) is uniformly bounded: 0<cons{<Q
<conss.

The factor appears due to the fact that configurations with minimal energy corresponding to
the different boundary conditions do not coincide everywhghey coincide to within shifts,
everywhere but finite area

Proof of Lemma 12Due to the constan® without loss of generality we assume that the
configurations with minimal energy,i, for both boundary conditions coincide.

According to the definitions and Lemma 4

=120 = Q' E wW(SDy)---wW(SDy),

where the summation is taken over all nonlong, nonordered compatible collections of super clus-
ters.
According to the definition of the super cluster

* 1}! ’* 2'77’*

Q'Y W(SDy)--*W(SDy)=Q’ X w(Dj)---w(Dy) >, w(Dy)---w(D))

in =% and =2"* the summation is taken over all nonordered collections of clusters
w(D})---w(DE) andw(D?")---w(D?") such that their product belongs X5 .
Similarly,

*%*
E 1.2}, (n.l.) — QI!E W(S Dl) A W(S Dm)

11”'** 2Y”**

=Q" X w(Dy)-w(Dy) > w(Dy):--w(D)).

In order to prove Lemma 12 we put one-to-one correspondence between
>*w(SDy)...w(SD,) and=** w(SD;)...w(SDy,).

nplf'l_jos l%——m W‘ﬂ% M?’-

FIG. 1.
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Let us consider an arbitrary terbh=w(SD;)...w(SD,) of =*. By definitions
U=w(D1)---w(D% )w(D3")---w(DZ"),

where the factow(D}')---w(DZ%') belongs to thes>"* and the factow(D2")---w(D2") be-
longs to thez2"*.

A cluster D=[(K;,i=1,..r);G"] is said to be | basic, if the set
((UM ;suppD))UG")N((Z1—1y)Ul)) is not empty. In Fig. 1 all clusters are basic.

Consider the set of all clustel(U) of the termU: W(U)=U",D* U¥_,D?" and four
subsets ofV(U):

k
W’={D’=[(Ki,i=1,...r);G’]eEz": U suppD; |UG’ | N1 is not empt%,
i=1
n m
W'=|D"=[(K;,i=1,..r);G']Je EY:[ | UsuppD;|UG’ |NI is not empt%,
i=1
n m
Wi=|Dl=[(K;,i=1,..r);G']e EY:| | UsuppD;|UG’ |N(Zt-1y) is not empt%,
i=1
, K
W2=|D?=[(K;,i=1,..r);G']e E%: (UsuppDi UG’ |N(Zt-1y) is not empt%.
i=1

Note that the subseW’,W” ,W*, W? contain only basic clusters and the union of them contain
all basic clusters of the terrd.
Let us consider an arbitrary terth=w(SD,)---w(SD,) of 2** . By the definitions

U'=w(D}")---w(D})w(D2")---w(D?"),

where the factow(D1")---w(D%") belongs to thes'"™ and the factorw(D?')---w(D2")
belongs to thes?"™" .

Consider the set of all cluste®/(U’) of the termU’":W(U’)=U™,D* U¥_,D? . In just
the same way we can define four subset$\fJ ).

Consider a termU=w(D,)---w(D,) e 2*, containing only basic clusters. By definition
U}_,D; can be represented as{;D;=(U2;D)U(U . ;D;), where the clusters)™ ,D;
=WlUW'; andUf_,,;D;=WAUW".

From the definition of nonlong clusters akid ,W”,W* W? it easily follows that there exists
the same tern’ =w(D,)...w(D,) € 3**, such thatU{_,D;= (U2 ;D;)U(UL_,,,D;), where
the clustersu™;D;=W'UW'; and U, ;D;=W?UW".

Figure 1 shows four collections of clusters Cpt[Dl'",Dz'",D3'",D}1'"], COoL,
=[D2',p%' D% ,D2'], cOL,=[D} DI DY D}, coL=[D2" D% D2 ,D2].

Two coincident termdJ=U"=1II%_,w(D;) belonging to the sum&* and 3** are con-
structed by the Cartesian product of the collections E@OL,, and COL;, COL,, respectively.

We see that between terralse * andU’ € 3** containing only basic clusters we easily can
put a one-to-one correspondence.

Consider a termU=w(D;)---w(D)W(Dy,; 1) --w(D,) e 2*, containing basic clusters
D, --Dy and not basic clusteid, ,,---D,,.

It can be easily shown that there exists a teth=w(D;)---w(D)wW(D,1)---w(D,)
eX** coinciding with the termUeX*. Indeed, suppose that there is no terdY
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=wW(Dy)- - W(DW(Dy 1) - -'W(D,) e ** coinciding with the termJ e £*. Then, according to the
definition of the long clusters, we directly get that, the tédncontains long super cluster, which
contradicts the definition oE*.

Lemma 12 is proved.

Remark:The essential point of the proof of the important Lemmath2refore, of this paper
is the amusing fact thal*w(SD;)---w(SD,) and>** w(SD,)---w(SD,,) coincide.

Now the demanded inequalifi8) is a direct consequence of Lemmas 5 and 12. The inequal-
ity (18), therefore Lemma 3 is proved.

Let P! and P? be two different extreme Gibbs states of the modelcorresponding to the
boundary conditiong(x) and ¢?(x), respectively.

Theorem 5: (Ref. 16) P* and P? are singular or coincide

Proof of Theorem 4Let P* and P? be two different extreme Gibbs states of the modg!
corresponding to the boundary conditiop$(x) and ¢?(x) respectively. According to Lemma 3
P! and P? are not singular. Therefore, according to TheorenP5and P? coincide, which con-
tradicts the assumption. Theorem 4 is proved.

Ill. UNIQUENESS OF GIBBS STATES

In this section we prove the main Theorem 1.

The statement of Theorem 1 for rational densities coincides with Theorem 4. Thus, in order to
complete the proof of Theorem 1, we have to prove the following theorem, which covers the case
when the density of the special ground state is irrational.

Theorem 6: Suppose that the value of the external figldf the model (1) belongs to the set
C"=R1—UK(M; ,i.). Then the model (1) has a unique Gibbs state at all values of the tem-
perature 8 1.

It can be easily shown that the special ground states of the nibdaie not stable when the
density is irrational. In other words, the Peierls constdot the special ground state tends to zero,
whenp—«. The essence of this fact is the following.

For the fixed irrational number=[ng,ny,...,Ns,...] consider the corresponding special
ground statep(x) and its arbitrary perturbation(x). The configurationp(x) is not a special
ground state, therefore for some pair of points, g@ndy e Z%; ¢/ (x)=¢.(y)=1, we have a
violation of Hubbard'’s criterion. Lek andy be closest points with this property. When the
distance betweer andy tends to infinity, the Peierls constant tends to zero.

In the irrational case the special ground states are not stable, but this fact is not crucial for our
method. Since the essence of our method is the estimation of long super clusters connecting the
boundary with the segmernt small clusters not satisfying Peierls condition cannot “help” to
connect the boundary with and it turns out that big clusters satisfy the Peierls stability condition
and the method works. One can say that the special ground states in the irrational case are “stable
in general.”

Below we give the mathematical details of the last observation.

Considern(s)=[ng,Nq,...,Ng].

Lemma 13: Suppose that the value of the external fiekf the model (1) belongs to the
interval (u () ,,u:(s)) for some numbek(s)=7(s) 1. Let ¢'(x) be an arbitrary finite pertur-
bation of the special ground statg, (5 (x) such that the boundary B of the configuratipn(x)
includes a unique contour K. Then there exists a positive constadepgending only on the
Hamiltonian (1), such that

H(@" (X)) =H(@s)(x))=ts|suppB|

where|suppB| is the total area of the support of the boundary

Lemma 13 was proved in Ref. 18ee Lemma 1 and Sec.(Ref. 13].

Thus, for each nonnegative integethe numbet is defined. Suppose that a positive number
t less thart, is fixed. Lets be the maximal number meeting the conditiQprt.

Now we are ready to define the notion of a contour in the irrational case.
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Let us consider an arbitrary configuratigiix). Let C=U; _nd Xi,Yi], Wherex;,y; e Z* and
X;#Y; has the following properties:

(1) For each segmeffig; ,b;] from the seZ!— C there exists a special ground state, such
that the restriction of this configuration ¢a; ,b;] coincides withe([ a;,b;]).

(2) For anyC’'CC; C’'#C the property 1 is not held.

It can be easily shown that the $8t= C(¢(X)) is not uniquely defined. Suppose that, some
rule uniquely determines the sétfor each configuratiorp(x). Let Z1—C=U;[a;,b;]. We say
thate([a;,b;]); is a preregular phase. Consider any segrient; ] belonging toC. The segment
[X;,Yi] is said to be-negligible, if for each segmeft; ,w;] covering[ x; ,y;],w;—Vv;=p [pis the
numerator of7(s)] there exists a special ground state ), such that the restriction of this
configuration on [v;,w;] coincides with ¢([v;,w;i]). Let C=U;indX;,Yi]=(Uicind
X[Xi,Yi) U (Ui cind-mal Xi »Yil), where Ind{) means that the union is taken overtatiegligible
segments. The support of the preboundary suppof the configurationp(x) will be defined as
SUpPPPB= (Uj c ina[Xi »¥i1) U (Ui e ind-inay[ Xi — doP, Yi + dop]) = suppP B(main UsuppP B(t).
Each segment belonging to the union s&® will be called a support of a precontour and is
denoted by suppK. The supporf{x;,y;] of a precontour is said to benegligible, if [X;,y;]
belongs to supp B(t).

We define contours as in the Definition 1. The constgnty and Ny, for irrational density
7~ will be constants defined for rational densifys) ~*.

The pairPK=(suppPK, ¢’ (suppPK)) is called a precontour. The set of all precontours is
called a preboundariyB of the configurationp’(x). Two precontour®K,; andPK, are said to
be connected if dissuppP K, ,suppPK,) <N, and at least one of them is nshegligible. The set
of precontours PK; ;i e Ind) is called connected if for any two precontol®&. and PKg;c,d
eInd there exists a collection P(K1'1: PKC,...,PKJ-i,...,Panfl,Panz PKy); Jielnd, i
=1,..n; such that any two precontoui3K; and PKj., i=1,.., n—1 are connected. Let
U ,PK; be some maximal connected component of the preboun@®y Suppose that
suppPK;=[a;,b;] andb;<a;,; i=,....n—1.

The pairK = (suppK, ¢’ (suppPK)), where supfK=[a;,b,] is called a contour. The set of
all contours is called a boundaBy of the configurationp’ (x).

A contour is said to bé-negligible, if its support ig-negligible.

By the definitions, the distance between the supports ofttnegligible contours exceegs
wherep is the numerator ofy(s) and the length of the support of atwegligible contour is one.

The following lemma is reformulation of Lemma 13 for irrational densities.

Lemma 14: Suppose that the value of the external fietd the model (1) belongs to the set
Cr=R- U, (s ,u,). Lete’(x) be an arbitrary finite perturbation of the special ground state
¢,.(X) such that the boundary B of the configuratigri(x) includes a unique contour (not
t-negligible contour) K. Then there exists a positive constadepending only on the Hamiltonian
(2), such that

H(¢' (X)) =H(e(x))=tgsuppB|

where|suppB| is the total area of the support of the boundary

Suppose that the value of the external figlcbf the model(1) belongs to the se€”=R*?
—U,(u, ;). Lett,0<t<t, is fixed andt is chosen as above.

Lemma 15:.Let ¢,in(X) e P(V) be a configuration with the minimal energy:

H(@min(X)|@1(X)) =min,x caoH(@(X)] @1(X)).

Then the configuratio,,(X) has the following structure:
The restriction of the configuratioga,,,(X) on the sef —V+N,,V—N,] contains t-negligible
contours and p-1 non t-negligible contours, moreover the sum of weights of all t-negligible
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contours is bounded by constant, not depending on the boundary conditions, alt bfnpn
t-negligible contours are interface contours jIKi=1,...m, where m<p—1 and |supplK;]
<3dgp+Ng.

The proof of Lemma 15 is very similar to the proof of Lemm& and will be omitted.

From Lemma 15 follows that the density of possibleegligible contours ob,,,i,(X) tends to
zero, whenV goes to infinity.

Now the proof of Theorem 6 principally coincides with the proof of Theorem 3 and will be
omitted. Theorem 6, and hence main Theorem 1 is proved.

IV. FINAL REMARKS

The unique limit Gibbs state of the modél) is translationally invariant. This result was
proved independently in Ref. 1 by using of the method of the equivalence of boundary
conditionst” and in Ref. 11 by using of energy—entropy inequalities.

At low temperatures, the sum of the statistical weights of all clusters having fixed support has
an exponential estimatiofsee Lemma 16, Ref. 1&nd each limit Gibbs state of the mod#) is
a “small perturbation of special ground state@ee Lemma 17, Ref. 13

The essential points in the proof of the uniqueness of Gibbs states are the geometrically
combinatorial Lemma 12 and the estimation of long super clusters, connecting the boundary with
the segment. This estimation mainly works due to the fact that ground states of the nibdel
degenerate. In Ref. 13 we proved Theorem 4 at low temperatures. The temperature restriction was
related with the fact that at low temperatures the weight of the support of a cluster has an
exponential estimatiofLemmas 16 and 17Ref. 13] and hence long clusters are negligikief.

13). But at any temperature an exponential estimation is absent. In the general case, when we
estimate the statistical weight of long super clusters, a key role plays the Lemma 6 on the
estimation of the value of the interaction between contours.

In Ref. 15 at low temperatures the result of Ref. 13 is extended to more abstract models. The
method of the proof of Theorem 1 shows that the result of Ref. 15 can be extended to all values
of the temperatures.
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