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Uniqueness of Gibbs states in the one-dimensional antiferromagnetic model with
very long-range interaction is established. ©1999 American Institute of Physics.
@S0022-2488~99!03309-5#

I. INTRODUCTION

We study a model on the latticeZ1 with the Hamiltonian

H~w~x!!5 (
x,yPZ1;x.y

U~x2y!w~x!w~y!2m (
xPZ1

w~x!, ~1!

where the spin variablew(x) takes the values 0 and 1,m is a chemical potential. The antiferro
magnetic potentialU(x).0 satisfies the following conditions:

~1! U(x1y)1U(x2y).2U(x);x,yPZ1,x.y.
~2! The functionU(x) can be extended to a twice continuously differentiable function s

that U(x);A(x)2g, U8;2Agx2g21 andU9(x);Ag(g11)x2g22 at x→`; whereg.1, and
A is a strong positive constant.

The first convexity condition plays a significant role for the structure of the set of all gro
states of the model~1!. The second condition determines the character of the potential’s dec
at infinity and is important in further calculations.

The hypothesis on the uniqueness of the Gibbs states in the model~1! was stated by Sinai in
1983 ~see Ref. 1, Problem 1!.

It is well known that the conditionSxPZ1,x.0xU(x),` automatically implies the uniquenes
of the Gibbs states.2–4 We investigate the phase transition problem in the model~1! in the alter-
native case, whenU(x);Ax2g, whereg511a, 0,a,1.

The ferromagnetic version of this model@when the potentialU(x) is negative# was considered
by Dyson in his well-known papers.5,6 He proved the existence of two extreme limit Gibbs sta
P1 andP2 corresponding to the ground statesw(x)511 andw(x)521 at low temperatures.

A series of papers has been devoted to the investigation of the antiferromagnetic
~1!.1,7–13

The validity of Sinai’s hypothesis for rational values of the density~for almost each value o
the external field! at low temperatures was proved in Ref. 13.

The main purpose of this paper is to extend the result of Ref. 13 to all values of the ex
field and to all values of the temperature.

Theorem 1: The model (1) has a unique limit Gibbs state at all values of the tempera
b21.

Let us introduce necessary definitions. The set of all periodic configurations we deno
Fper. For everywPFper, we defineq5Sy5x11

x1p w(x), wherep is the period ofw. It is obvious that
q does not depend onx. Therefore, the density of each periodic configuration isk5q/p. It is more
convenient to work with the reciprocal of the density,h(w(x))5p/q, which represents the aver
age distance between neighboring points at whichw(x)51. For every configurationwPFper the
mean energyh(w) is defined as follows:
49560022-2488/99/40(10)/4956/19/$15.00 © 1999 American Institute of Physics
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h~w~x!!5
1

p (
y5x11

x1p

w~x!(
z.0

U~z!w~y1z!.

The last expression does not depend onx.
The following definition is useful for describing the zero temperature phase diagram o

model ~1!.
We fix a positive rational numberp/q.
A configurationw0(x)PFper with h(w0(x))5p/q is called a special ground state1 if

h~w~x!!5 inf
wPFper,h~w!5p/q

h~w!.

Hubbard’s criterion (Refs. 1 and 7):Let wPFper andr i(x;w) denotes the distance between
particle placed atxPZ1 and i th particle on the right. If for eachx and i

@ ih#<r i~x;w!<@ ih#11,

~the square brackets denote the integer part of the enclosed number! then w is a special ground
state.

The existence of configurations satisfying Hubbard’s criterion~the special ground states! is
shown in Ref. 1. The remarkable elegant formula for the special ground states was offe
Aubry. Here we give the construction of the special ground states for each fixed rational va
the densityk.1

Every rational numberp/q has a unique decomposition into a finite continued fraction:
p/q5@n0 ,n1 ,...,ns#, this means that

n01
1

n11
1

n21...1
1

ns

.

The ground state for a configuration withh5@n0 ,n1 ,...,ns# will be constructed by recursion
~1! h5n0>1, n0 is an integer. The periodic configuration with equally distantx at which

w(x)51 satisfies Hubbard’s criterion i.e., is a special ground state. In this caser i(x;w)5 in0 , i
.0.

~2! h5n011/n1 , wheren0 andn1 are integers,n0>1, n1.1. Then the (n0n111) periodic
configuration

also satisfies Hubbard’s criterion and is a special ground state.
~3! h5@n0 ,n1 ,...,ns#, where n0 ,n1 ,...,ns are integers,n0 ,n1 ,...,ns>1. For s50 and s

51 the required configurations are already constructed. Suppose we have already constr
ground state withs5m and k5@n0 ,n1 ,...,nm#. Then the following configuration withs5m
11 andk5@n0 ,n1 ,...,nm11# is constructed as

Here, w(n0 ,...,n j), j 5m21, m,m11, are the blocks from which the ground states forh
5@n0 ,...,nj # are obtained by periodic continuations.

The constructed configuration satisfies Hubbard’s criterion and therefore is a special g
state forh5@n0 ,n1 ,...,nm ,nm11#.1
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The following explicit expression for the mean energy of the special ground state fo
from Hubbard’s criterion:1

hk5k(
i 51

`

U~mi !p i1U~mi11!~12p i !, ~2!

wheremi5@ ih#, p i511mi2 ih.
This formula shows that the function of mean energy as a function of the densityk is

continuous on the set of all rationals and can be extended to a continuous function defin
whole segment@0, 1#.

Theorem 2: (Refs. 9 and 1.)~1! The function hk is convex.
~2! In each rational point the function hk has a left-hand derivativemk

2 and a right-hand
derivativemk

1 , with mk
1.mk

2 .
~3! The Lebesgue measure of the complement of the setøk(mk

2 ,mk
1) in the real lineR is

zero.
The following theorem gives the full description of the set of all special ground states o

model ~1! at rational densities.
Theorem 3: (Ref. 12.) Suppose that the value of the external fieldm of the model (1) belongs

to the interval(mk
2 ,mk

1) for some numberk5q/p. Then the special ground state of the model~1!
is unique up to translations.

Following Theorem 4 generalizes the main result of Ref. 13 for all values of the temper
and is a special case~rational densities! of Theorem 1.

Theorem 4: Suppose that the value of the external fieldm of the model~1! belongs to the
interval (mk

2 ,mk
1) for some numberk5q/p.

Then the model~1! has a unique limit Gibbs state at all values of the temperatureb21.
Suppose that the value of the external fieldm of the model ~1! belongs to the interva

(mk
2 ,mk

1) for some numberk5q/p.
Let us consider an arbitrary configurationw(x). We say thatw(@a,b#); a,bPZ1 is a preregu-

lar phase, if there exists a special ground statewk , such that the restriction of this configuration
@a,b# coincides withw(@a,b#). We say thatw(@c,d#); c,dPZ1 is a regular phase, if there exis
a preregular phasew(@a,b#); a,bPZ1, such thatc2a.d0p andb2d.d0p. Thus, right and left
d0p extensions of a regular phase are ground states.

Let us consider a setA5ø i@ai ,bi #, wherew(@ai ,bi #) is a regular phase and suppPB is the
complement ofA in Z1. The connected components of suppPB defined in such a way are calle
supports of precontours and are denoted by suppPK: suppPK5ø i PInd suppPKi .

For each fixed rational densityk the constantd0 satisfies some technical conditions.13 In this
work we do not need the explicit value ofd0 .

Definition 1 (Ref. 13):The pairPK5(suppPK,w8(suppPK)) is called a precontour. The se
of all precontours is called a preboundaryPB of the configurationw8(x). Two precontoursPK1

and PK2 are said to be connected if dist(suppPK1 ,suppPK2),Nb . The set of precontours
(PKi ; i PInd) is called connected if for any two precontoursPKc andPKd ;c,dPInd there exists
a collection (PKj 1

5PKc ,...,PKj i
,...,PKj n21

,PKj n
5PKd); j iPInd, i 51,...,n; such that any two

precontoursPKj i
andPKj i 11

, i 51,...,n21 are connected. Letø i 51
n PKi be some maximal con

nected component of the preboundaryPB. Suppose that suppPKi5@ai ,bi # and bi,ai 11 ; i
5,...,n21.

The pairK5(suppK,w8(suppPK)), where suppK5@a1 ,bn# is called a contour. The set o
all contours is called a boundaryB of the configurationw8(x).

In this work we do not need the exact value of the constantNb .12 From Ref. 12 it becomes
clear that limp→` Nb5`. Thus, for irrational values of the densityk Nb is not defined, but as will
be seen below, we do not need to defineNb for irrational densities.

Note that suppK5(ø i 51
n suppPKi)ø(@a1 ,bn#2(ø i 51

n suppPKi))5supp1 Køsupp2 K.
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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The sets supp1 K and supp2K will be, respectively, called the essential and regular parts of
support suppK.

Let the boundary conditionsw̄(x)5@w(x),xP(2`,2V21#ø@V11,̀ )# be fixed. The set of
all configurationsw(x); xP@2V,V# we denote viaF(V).

It is obvious that for each contourK, such that suppKP@2V1(d011)p,V2(d011)p#,
there exists a configurationcK(@2V,V#) such that the boundary of the configuratio
cK(@2V,V#) includes the contourK only:

B~cK~@2V,V# !!5K.

Let suppK5@a,b#. It is obvious that the restrictions of the configurationcK(@2V,V#) to the
segments@2V,a21# and @b11,V# coincide with two ground stateswk

1(x) andwk
2(x).

A contourK is called an interface contour, ifwk
1(x)Þwk

2(x).
Note that,wk

1(x) can be obtained by some shifting of the configurationwk
2(x).

An interface contour will be denoted asIK.
Let K be a usual contour~not an interface contour! K,suppK,@2V,V# and cK~x!

5c([ 2V,V]) if xP@2V,V#, and w̄(x) if xP(2`,2V21#ø@V11,̀ ); IK ,suppIK ,
@2V,V# be an interface contour andc IK(x)5c(@2V,V#) if xP@2V,V#, and w̄(x) if xP
(2`,V21#ø@V11,̀ ); and w̄k

1(x)5wk
1(x), if xP@2V,V#, and w̄(x) if xP(2`,2V

21#ø@V11,̀ ).
Below the configurationw̄k

1(x) defined for usual contours will be denoted byw̄k(x).
The weights of the usual contourK and interface contourIK will be calculated by the follow-

ing formulas:

g~K !5H~cK~x!!2H~ w̄k~x!!, ~3!

g~ IK !5H~c IK~x!!2H~ w̄k
1~x!!. ~4!

The proof of Theorem 4 is based on the following idea. Let the boundary conditionsw̄(x)
5@w(x),xP(2`,2V21#ø@V11,̀ )# be fixed. The set of all configurationsw(x); xP
@2V,V# we denote viaF(V). Suppose a configurationwmin(x)PF(V) be a configuration with the
minimal energy:

H~wmin~x!!5minw~x!PF~V!H~w~x!! .

Then the configurationwmin(x) almost coincides with a special ground state of the model~1!
~Lemma 1 in Sec. II!. This fact allows us, based on special ground states, to define a commo~for
all boundary conditions! contour model and after that by using well-known trick14 ~this trick,
which was introduced in Ref. 14 for some special extensions of Pirogov–Sinai theory, is di
applicable to one-dimensional models with long-range interaction! to come to noninteracting
clusters from interacting contours. Consider an arbitrary segmentI, a sufficiently large volumeV,
two arbitrary boundary conditionsw1(x) and w2(x). It turns out that the dependence of th
expressionP1(w8(I ))/P2(w8(I )) on the boundary conditionsw1(x) and w2(x) can be estimated
through the sum of statistical weights of super clusters connecting the segmentI with the boundary
and this sum is negligible. Thus, two arbitrary extreme Gibbs states are relatively continuou
hence coincide. In Ref. 13 we developed this method@the estimation of dependence of the e
pressionP1(w8(I ))/P2(w8(I )) on the boundary conditions through the sum of statistical weig
of super clusters connecting the segmentI with the boundary# at low temperatures. It turns out tha
after some modification the method works at all temperatures.

The contents of this paper are as follows. In Sec. II we prove Theorem 4, in Sec. I
complete the proof of Theorem 1.

II. UNIQUENESS OF GIBBS STATES: THE DENSITY k IS p /q

Let us now introduce some necessary facts.
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Suppose that the value of the external fieldm of the model ~1! belongs to the interva
(mk

2 ,mk
1) for some numberk5q/p.

Let the boundary conditionsw1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )# be fixed and

H~w~x!uw1~x!!52m (
xPZ1,xP@2V,V#

w~x!1 (
x,yPZ1,x.y;x,yP@2V,V#

U~x2y!w~x!w~y!

1 (
x,yPZ1,x.y;xP@2V,V#;y¹@2V,V#

U~x2y!w~x!w1~y!

1 (
x,yPZ1,x.y;x¹@2V,V#,yP@2V,V#

U~x2y!w1~x!w~y!. ~5!

Lemma 1:Let wmin(x)PF(V) be a configuration with the minimal energy:

H~wmin~x!uw1~x!!5minw~x!PF~V!H~w~x!uw1~x!! .

Then the configurationwmin(x) has the following structure.
The restriction of the configurationwmin(x) on the set@2V1Nb ,V2Nb# contains at most

p21 contours, moreover, all of them are interface contours IKi , , i 51,...,m, where m,p21 and
usuppIK i u,3d0p1Nb .

Lemma 1 was proved in Ref. 13@see Lemma 12~Ref. 13! and Sec. 5 of Ref. 13#.
Let H(w(x)uw1(x),wmin(x)) denote the relative energy of a configurationw(x) @with respect to

wmin(x)]:

H~w~x!uw1~x!,wmin~x!!5H~w~x!uw1~x!!2H~wmin~x!uw1~x!!.

Consider the Gibbs distributionP1 on F(V) corresponding to the boundary condition
w1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )#:

P1~w8~x!!5
exp~2b~H~w8~x!uw1~x!,wmin~x!!!!

Sw~x!PF~V! exp~2b~H~w~x!uw1~x!,wmin~x!!!!
. ~6!

Let w(x)PF(V) be an arbitrary configuration, the boundary of thew(x) includes a finite
number of usual contoursKi ; i 51,...,n, and a finite number of interface contoursIK i ; i 5n
11,...,n1m. Let Ki5Ki ; i 51,...,n; Ki5IK i ; i 5n11,...,n1m. The set of all contours of the
boundary conditionsw1(x) will be denoted byK0 .

The statistical weights of contours and interface contours are

w~Ki !5exp~2bg~Ki !!. ~7!

The following equation is a direct consequence of the formulas~3!, ~4!, and~7!

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
i 51

n1m

w~Ki !exp~2bG~K0 ,K1 ,...,Kn1m!, ~8!

where the multiplierG(K0 ,K1 ,...,Kn1m) corresponds to the interaction between contours~usual
and interface!, and with the boundary conditionsw1(x)

G~K0 ,K1 ,...,Kn1m!5 (
i , j 50;i , j

n1m

G~Ki ,K j !5 (
i , j ; i , j

(
~x,y!PInt~Ki ,K j !

f ~x,y,w! ~9!

and the multiplierQ15Q1(V,w(x),w1(x)) is uniformly bounded from below and above:
,const1,Q1,const2. The factorQ1 appears due to the facts that the configurationwmin(x) not
necessarily coincides with a special ground state and is bounded due to Lemma 1.
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Now we write down the value of the interaction between the contoursKi andK j , the value of
the interaction between the interface contoursIK i andIK j and the value of the interaction betwee
contourKi and interface contourIK j .

Suppose suppKl5@al ,bl #; suppIK l5@al ,bl #.
Let

suppIK i
15@bi ,ai 11# and suppIK i

25@bi 21 ,ai #,

whereb05c, if there existsKPB(w8(x)), such that suppK5@2`,c# andb052` otherwise;
am115d, if there existsKPB(w8(x)), such that suppK5@d,`# andam115` otherwise.

~1! The contourKiPB(w8(x)) interacts with the contourK jPB(w8(x)) through all pairs
(x,y), such that (x,y)PInt(Ki ,K j ) and f 8(x,y,w)Þ0 where

Int~Ki ,K j !5@~x,y!:x,yPZ1;xPsuppKi ,yPsuppK j #.

The value of the interaction

f 8~x,y,w!5U~x2y!~w8~x!w8~y!2cKi
~x!cKi

~y!1w̄k
i ~x!w̄k

i ~y!

2cK j
~x!cK j

~y!1w̄k
j ~x!w̄k

j ~y!!.

~2! The interface contourIK iPB(w8(x)) interacts with the interface contourIK j

PB(w8(x)) ~let aj.bi) through all pairs (x,y), such that (x,y)PInt(IK i ,IK j ) and f 9(x,y)Þ0,
where

Int~ IK i ,IK j !5Int1~ IK i ,IK j !1Int2~ IK i ,IK j !1Int3~ IK i ,IK j !1Int4~ IK i ,IK j !,

Int1~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i and yPsuppIK j #,

Int2~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i and yPsuppIK j
1#,

Int3~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i
2 and yPsuppIK j #,

Int4~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i
2 and yPsuppIK j

1#.

The value of the interaction

f 9~x,y,w!5 f 19~x,y!5U~x2y!~w8~x!w8~y!2c IK i
~x!c IK i

~y!

1w̄k
i ~x!w̄k

i ~y!2c IK j
~x!c IK j

~y!1w̄k
j ~x!w̄k

j ~y!!

if ( x,y)PInt2(IK i ,IK j ),

f 9~x,y!5 f 29~x,y!5U~x2y!~w8~x!w8~y!2c IK i
~x!c IK i

~y!1w̄k
i ~x!w̄k

i ~y!!

if ( x,y)PInt2(IK i ,IK j ),

f 9~x,y!5 f 39~x,y!5U~x2y!~w8~x!w8~y!2c IK j
~x!c IK j

~y!!1w̄k
j ~x!w̄k

j ~y!)

if ( x,y)PInt3(IK i ,IK j ),

f 9~x,y!5 f 49~x,y!5U~x2y!~w8~x!w8~y!2w̄k
1,i~x!w̄k

1,i~y!2w̄k
2,j~x!w̄k

2,j~y!!

if ( x,y)PInt4(IK i ,IK j ).
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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~3! The contourKiPB(w8(x)) interacts with the interface contourIK jPB(w8(x)) through all
pairs (x,y), such that (x,y)PInt(Ki ,IK j ) and f-(x,y)Þ0, where

Int~Ki ,IK j !5Int1~Ki ,IK j !1Int2~Ki ,IK j !,

Int1~Ki ,IK j !5@~x,y!:x,yPZ1;xPsuppKi and yPsuppIK j #,

Int2~Ki ,IK j !5@~x,y!:x,yPZ1;xPsuppKi and yPsuppIK j
1#

if aj.bi , and

Int2~Ki ,IK j !5@~x,y!:x,yPZ1;xPsuppKi and yPsuppIK j
2#

if ai.bj .
The value of the interaction

f-~x,y!5 f 1-~x,y!5U~x2y!~w8~x!w8~y!2cKi
~x!cKi

~y!

1w̄k
i ~x!w̄k

i ~y!2c IK j
~x!c IK j

~y!!1w̄k
j ~x!w̄k

j ~y!)

if ( x,y)PInt1(Ki ,IK j ),

f-~x,y!5 f 2-~x,y!5U~x2y!~w8~x!w8~y!2cKi
~x!cKi

~y!1w̄k
i ~x!w̄k

i ~y!!

if ( x,y)PInt2(Ki ,IK j ).
For simplicity Ki , i 51,...,n1m will be denoted byKi , i PInd, where the statistical weight

w(Ki) are defined by the formulas~7!, ~3!, and~4!. Thus, the formula~8! has the form

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
i PInd

w~Ki !exp~2bG~K0 ,K1 ,...,Kn1m!!. ~10!

The set of all pairs~x,y! in the double sum~9! will be denoted byY5Y(K0 ,K1 ,...,Kn1m).
Write ~10! as follows:

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
i PInd

w~Ki ! )
~x,y!PY

~11exp~2b f ~x,y,w!21!. ~11!

From ~11! we get

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
G8,G

)
i PInd

w~Ki ! )
~x,y!PY8; f ~x,y,w!Þ0

g~x,y!, ~12!

where the summation is taken over all subsetsY8 ~including the empty set! of the setY, and
g(x,y,w)5exp(2bf(x,y,w))21.

Consider an arbitrary term of the sum~12!, which corresponds to the subsetY8,Y. Let the
bond (x,y)PY8. Below, contours and interface contours will be called contours. Consider th
K of all contours such that for each contourK,K , the set suppKù(xøy) contains one point. We
call any two contours fromK connected. The set of contoursK is calledY8 connected if for any
two contoursKa and Kb there exists a collection (K15Ka ,K2 ,..., Kn5Kb) such that any two
contoursKi andKi 11 , i 51,...,n21, are connected by some bond (x,y)PY8.

The pairD5@(Ki ,i 51,...,s);Y8#, whereY8 is some set of bonds, is called a cluster provid
there exists a configurationw(x) such thatKiPB(w(x)); i 51,...,s; Y8,Y; and the set (Ki , i
51,...,s) is Y8 connected. The statistical weight of a clusterD is defined by the formula.
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w~D !5)
i 51

s

w~Ki ! )
~x,y!PY8

g~x,y,w!. ~13!

Two clustersD1 andD2 are called compatible provided any two contoursK1 andK2 belong-
ing to D1 and D2 , respectively, are compatible and not connected. A set of clusters is c
compatible provided any two clusters of it are compatible.

If D5@(Ki ,i 51,...,s);Y8#, then we say thatKiPD; i 51,...,s.
The following lemma is a direct consequence of the definitions.
Lemma 2: Let the boundary conditionsw1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )# be

fixed.
If @D1 ,...,Dm# is a compatible set of clusters andø i 51

m suppDi,@2V,V#, then there exists a
configurationw(x) which contains this set of clusters. For each configurationw(x) we have

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 (
Y8,Y

) w~Di !,

where the clusters Di are completely determined by the set Y8. The partition function is

J~w1~x!!5Q( w~D1!¯w~Dm!,

where the summation is taken over all nonordered compatible collections of clusters an
factor Q5Q(V,w1(x)) is uniformly bounded:0,const,Q,const2.

Lemma 2 shows that we come to noninteracting clusters from interacting contours.
Let P1 andP2 be two Gibbs states of the model~1! corresponding to the boundary condition

w1(x) andw2(x), respectively.
The following lemma has a key role in the proof of Theorem 4.
Lemma 3: Suppose that the value of the external fieldm of the model (1) belongs to th

interval (mk
2 ,mk

1) for some numberk5q/p.
Then the measuresP1 and P2 are absolutely continuous with respect to each other.
Proof: Let I 5@a,b# be an arbitrary segment andw8(I ) be an arbitrary configuration.
In order to prove the lemma we show that there exist two positive constantss and S not

depending onI, w1(x), w2(x) andw8(I ), such that

s<P1~w8~ I !!/P2~w8~ I !!<S. ~14!

Let PV
1 and PV

2 be Gibbs measures corresponding to the boundary conditionsw1(x), and
w2(x), xPZ12I V , respectively, whereI V5@2V,V#.

Therefore,

lim
V→`

PV
1 5P1 and lim

V→`

PV
2 5P2,

where by convergence we mean weak convergence of probability measures.
In order to establish the inequality~14! it will be proved that for each fixed intervalI,

I ,@2M ,M # there exists a numberV0(M ), which depends onM only, such that

s<PV
1 ~w8~ I !!/PV

2 ~w8~ I !!<S ~15!

if V.V0 .
Consider
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PV
1 ~w8~ I !!5

(w~ I V!:w~ I !5w8~ I ! exp~2bH~w~ I V!uw1~x!,wmin~x!!!O~w~ I !,V,w1!

(w~ I V! exp~2bH~w~ I V!uw1~x!,wmin~x!!!O~w~ I !,V,w1!

5
J~ I V2I uw1~x!,w8~ I !,wmin~x!!O~w~ I !,V,w1!

(w9~ I !J~ I V2I uw1~x!,w9~ I !,wmin~x!!O~w~ I !,V,w1!

whereJ(I V2I uw1(x),w8(I ),wmin(x)) denotes the partition function corresponding to the bou
ary conditionsw1(x), xPZ12I V , w8(I ), xPI and

O~w~ I !,V,w1!5exp(2b (
x,yPZ1;xPZ12I V ,yPI

U~x2y!~w1~x!w~y!2w1~x!wmin~x!!).

We can expressPV
2 (w8(I )) in just the same way.

In order to prove the inequality~15! it is enough to establish inequality~16! and inequality
~17!:

1/2,O~w~ I !,V,w i~x!!,2, i 51,2 ~16!

@where the inequalities in~16! are held uniformly with respect tow(I ) and w i : for eachI there
existsV, not depending onw(I ) andw i ] and

1/S<
J~ I V2I uw1~x!,w9~ I !,wmin~x!!

J~ I V2I uw1~x!,w8~ I !,wmin~x!!Y J~ I V2I uw2~x!,w9~ I !,wmin~x!!

J~ I V2I uw2~x!,w8~ I !,wmin~x!!
<1/s ~17!

for arbitraryw9(I ).
Indeed, if the inequality~17! holds, then

J~ I V2I uw1~x!,w8~ I !,wmin~x!!

(w9~ I !J~ I V2I uw1~x!,w9~ I !,wmin~x!!Y J~ I V2I uw2~x!,w8~ I !,wmin~x!!

(w9~ I !J~ I V2I uw2~x!,w9~ I !,wmin~x!!

5AV
1 ~w8~ I !!/AV

2 ~w8~ I !!

51Y S (w9~ I !J~ I V2I uw1~x!,w9~ I !,wmin~x!!

J~ I V2I uw1~x!,w8~ I !,wmin~x!! Y (w9~ I !J~ I V2I uw2~x!,w9~ I !,wmin~x!!

J~ I V2I uw2~x!,w8~ I !,wmin~x!! D
51Y ~(w9~ I !J~ I V2I uw1~x!,w9~ I ,wmin~x!!!J~ I V2I uw2~x!,w8~ I !,wmin~x!!

~(w9~ I !J~ I V2I uw2~x!,w9~ I !,wmin~x!!!J~ I V2I uw1~x!,w8~ I !,wmin~x!!
.

Therefore,

1/~1/s!<AV
1 ~w8~ I !!/AV

2 ~w8~ I !!<1/~1/S!

since the quotient of( i 51
n ai /( i 51

n bi lies between min(ai /bi) and max(ai /bi).
Thus, if in addition, the inequality~16! holds, then

224s,PV
1 ~w8~ I !!:PV

2 ~w8~ I !!,24S.

Now we start to prove the inequalities~16! and ~17!.
It can be easily shown that~16! is a direct consequence of the conditionU(x);Ax2g, at x

→`; whereg.1, andA is a strong positive constant.
So, in order to complete the proof of Lemma 3 we must establish the following inequ

@which is just transformed inequality~17!#:
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1/S<
J~ I V2I uw1~x!,w9~ I !,wmin~x!!)J~ I V2I uw2~x!,w8~ I !,wmin~x!!

J~ I V2I uw2~x!,w9~ I !,wmin~x!!)J~ I V2I uw1~x!,w8~ I !,wmin~x!!
5

J1,9J2,8

J2,9J1,8
<1/s.

~18!

Consider

J1,9J2,85J~ I V2I uw1~x!,w9~ I !,wmin~x!!J~ I V2I uw2~x!,w8~ I !,wmin~x!!.

The following generalization of the definition of the compatibility allows us to repres
J1,9J2,8 as a single partition function.

A set of clusters is called super compatible provided any of its two parts coming from
partitions sums is compatible. In other words, in super compatibility an intersection of suppo
two clusters is allowed.

The following lemma is an analogue of Lemma 2.
Lemma 4: Let boundary conditionsw1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )# and

w2(x)5@w2(x),xP(2`,2V21#ø@V11,̀ )# be fixed.
If @D1 ,...,Dm# is a super compatible set of clusters andø i 51

m suppDi,@2V,V#, then there
exist two configurationsw3(x) and w4(x) which contain this set of clusters. For each two co
figurationsw3(x) and w4(x) we have

exp(2bH~w3~x!uw1~x!,wmin~x!!exp(2bH~w4~x!uw1~x!,wmin~x!!5Q1 (
G8,G,G9,G

) w~Di !,

where the clusters Di are completely determined by the sets G8 and G9. The super partition
function is

J1,9,2,85J1,9J2,85Q( w~D1!¯w~Dm!,

where the summation is taken over all nonordered super compatible collections of clusters a
factor Q5Q(V,w1(x),w2(x)) is uniformly bounded:0,const1,Q,const2.

Lemma 4 is a direct consequence of the definitions.
An arbitrary connected component of an arbitrary super compatible set of clusters w

called a super clusters. A super clusterSD5@(Ki ,i 51,...,r );G8# is said to be long if the inter-
section of the set (ø i 51

m suppKi))øG8 with both I and Z12I V5(2`,2V21#ø@V11,̀ ) is
nonempty. In other words, a long super cluster connects the boundary with the segmentI.

A set of super clusters is called compatible provided the set of all clusters belonging to
super clusters are super compatible.

It turns out that in our estimates long super clusters are negligible.
Lemma 5: For each fixed interval I, there exists a number V0(I ), which depends on I only

such that if V.V0(I )

1/2J1,8,2,9,J1,8,2,9,~n.l .!5( w~SD1!¯w~SDm!,3/2J1,8,2,9,

where the summation is taken over all nonlong, nonordered compatible collections of
clusters @SD1 ,...,SDm#, ø i 51

m supp(SDi),I N2I corresponding to the boundary condition
w1(x),w2(x), xPZ12I V ; w8(x) and w9(x), xPI .

Consider a collection of contoursK0 ,K1 ,...,Kn . The value of the interaction of the contou
K0 with the contoursK1 ,...,Kn we denote byG(K0uK1 ,...,Kn):

G~K0uK1 ,...,Kn!5 )
BPIG~0u1,...,n!

~11exp~2b f ~B!21!!, ~19!
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where IG(0u1,...,n) is the set of all interaction elements intersecting the support of the con
K0 .

Lemma 6:

G~K0uK1 ,...,Kn!5 )
BPIG~0u1,...,n!

u~11exp~2b f ~B!21!!

<const~dist~0u1,...,n!!2a~ usupp~K0!u!12a, ~20!

wheredist(0u1,...,n) is the distance between the support of K0 and the union of the supports o
contours K1 ,...,Kn .

In other words, the interaction ofK1 ,...,Kn on K0 tends to zero when the distance betwe
them increases, and value of the interaction increases with a rate less than the length of the
of K0 .

The technical Lemma 6 follows from the decreasing conditions of the potentialU(x). For the
rigorous proof see Ref. 13, Lemma 4.

The following lemma is an analogue of Lemma 5 for clusters~not super clusters!.
Lemma 7: For each fixed interval I, there exists a number V0(I ), which depends on I only

such that if V.V0(I )

1/2J1,8,J1,8,~n.l .!5( w~D1!...w~Dm!,3/2J1,8,

where the summation is taken over all nonlong, nonordered compatible collections of cl
@D1 ,...,Dm#, ø i 51

m suppDi,I N2I corresponding to the boundary conditionsw1(x), xPZ1

2I V ; w8(x), xPI .
Proof:

J1,85J1,8,~n.l .!1~J1,82J1,8,~n.l .!!5J1,8,~n.l .!1J1,8,~ l .!,

where the summation inJ1,8,(l .) is taken over all nonordered compatible collections of clust
@D1 ,...,Dm# containing at least one long cluster,ø i 51

m suppDi,I N2I corresponding to the
boundary conditionsw1(x), xPZ12I V ; w8(x), xPI .

By dividing both sides of the last equality byJ1,8, we get

15J1,8,~n.l .!/J1,81J1,8,~ l .!/J1,8. ~21!

Now we are going to show that the second term~which is not necessarily positive! is negli-
gible, that is the absolute value of it is less than 1/2~actually we can show that the absolute val
of the second term is less than any fixed positive number at sufficiently large values ofV).

The termJ1,8,(l .)/J1,8 can be interpreted as a ‘‘probability’’P ~Long! of the event that there
exists at least one long cluster.

We show that the absolute value of this ‘‘probability’’ is less than 1/2 by the follow
method. We estimate the density of long clusters: the probability that a given segment belo
the support of some long cluster. Since some statistical weights of clusters are positive an
negative, we estimate the absolute values of these ‘‘probabilities.’’ We show that for a
segment the ‘‘probability’’ that this segment belongs to the support of some long cluster
positive ‘‘probability’’ minus the ‘‘probability’’ that this segment belongs to the support of so
long cluster with negative ‘‘probability’’ is less than one. Since the density is less than one, b
law of large numbers a ‘‘typical’’ long cluster has not very long support, and therefore has
bonds. WhenV tends to infinity, the total length of bonds tends to infinity, and the impact of th
bonds tends to zero.

Now we replace a statistical weightw(Di) of each clusterDi belonging to the configuration
containing at least one long cluster with its absolute value~and ‘‘probability’’ of long cluster
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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becomes positive! and the expressionJ1,8,(l .)/J1,8 transfers intoJ1,8,(l .abs)/J1,8,(abs). It can be

easily shown that, without loss of generality we can suppose thatJ1,8,(l .)>0. Obviously,

uJ1,8,~ l .!/J1,8u<J1,8,~ l .abs!/J1,8,~abs! .

Now the expressionJ1,8,(l .abs)/J1,8,(abs) can be interpreted as a ‘‘absolute probability’’Pabs

~Long! of the event that there is at least one long cluster.
Now our aim is to estimate the ‘‘absolute probability’’Pabsof the event that a given segme

belongs to the support of long cluster. In other words, we are going to estimate the sta
weights of long clusters after replacing of the values of all negative bonds in configura
containing at least one long cluster with their absolute values.

Let w(I V2I ) be an arbitrary subconfiguration which contains contoursK1 ,...,Kl , belonging
to long clusters,K5ø1

l supp1 Ki , K15Kù@2V,2(uI u/2)# andK25Kù@ uI u/2,V#.
Put C1(w(I V2I ))5uK1u andC2(w(I V2I ))5uK2u. We have

uP~Long!u5uJ1,8,~ l .!/J1,8u

<Pabs~Long!

5( wabs~D1!¯w~Dm!/J1,8,~abs!

5(
p,1

wabs~D1!...wabs~Dm!/J1,8,~abs!1(
p,2

wabs~D1!...wabs~Dm!/J1,8,~abs!

5Pabs~Long,.p!1Pabs~Long,<p!,

wherewabs(Di)5uw(Di)u for all clusters belonging to the configuration containing at least
long cluster andwabs(Di)5w(Di) for other clusters@note that the statistical weightwabs(Di) of
fixed cluster in one configuration can be positive, in other negative#, last two summations are
taken over all nonordered compatible collections of clusters@D1 ,...,Dm# containing at least one
long cluster, ø i 51

m suppDi,I V2I corresponding to the boundary conditions$w1(x),xPZ1

2I V ;w8(x),xPI %, the summation in(p,1 is taken over all configurationsw(I V):w(I )5w8(I );
2C1(w(I V2V))/(uI Vu2uI u).p; 2C2(w(I V2V))/(uI Vu2uI u).p, the summation in(p,2 is taken
over all configurations w(I V):w(I )5w8(I ); 2C1(w(I V2V))/(uI Vu2uI u)<p; 2C2(w(I V

2V))/(uI Vu2uI u)<p. It means that the density of contours belonging to long clusters in e
configuration from(p,1 ((p,2) in both segments@2V,2(uI u/2)# and@ uI u/2,V# is greater thanp ~is
not greater thanp!.

We fixed the value ofp as 12q/2l , where the values ofq and l will be defined in the proof
of Lemma 9.

It turns out that the long clusters are negligible.
Lemma 8: For each fixed interval I there exists a value of V0 , such that if V.V0

Pabs~Long!5Pabs~Long,.p!1Pabs~Long,<p!,1/2. ~22!

Lemma 8 is a consequence of the following two lemmas.
Lemma 9:For each fixed intervalI there exists a value ofV0 , such that ifV.V0

Pabs~Long,.p!,1/4.

Lemma 10:For each fixed intervalI there exists a value ofV0 , such that ifV.V0

Pabs~Long,<p!,1/4.
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Proof of Lemma 9: Consider the partition ofZ1 into segmentsTk5Tk( lp), whereTk( lp) is
the segment with the center atx5( lp/2)1klp and with the lengthlp (Tk consists ofl segmentsI k

with the lengthp, wherep is the period of the special ground state!. The value ofl will be defined
later. Let us consider an arbitrary configurationw(x). We say that a segmentI k is regular, if I k

does not belong to the support of some long cluster. We say that a segmentTk is super-regular, if
Tk contains at least one regular segment.

Let PV be a Gibbs measure corresponding to the boundary conditionsw1(x), xPZ1, w8(I ),
xPI .

Let the segmentI V2I consist ofn segmentsTk ; k51,...,n.
We define a sample spaceV consisting of 2n elementary eventsAj5@s(1),...,s(n)#, where

s(k), k51,...,n takes two values:s(k)50 corresponds to the case when the segmentTk is
super-regular ands(k)51 corresponds to the case when the segmentTk is not super-regular. On
the sample spaceV we define two different probability spaces (V,P1) and (V,P2) by the follow-
ing formulas:

P1~Aj !5P1@s~1!,...,s~n!#5PV@s~1!,...,s~n!#,

wherePV is the Gibbs distributionPV , corresponding to the boundary conditionsw1(x), xPZ1,
w8(I ), xPI and

P2~Aj !5P2@s~1!,...,s~n!#5qn2s~12q!s,

wheres denotes the total number of 1 entries of the vectorAj5@s(1),...,s(n)#.
We define a random vector (h(1),h(2),...,h(n)) on the probability space (V,P1) and,

respectively, a random vector (j(1),j(2),...,j(n)) on the probability space (V,P2) by the for-
mulas:

h~k!~Aj !5s~k! and j~k!~Aj !5s~k! .

The random variablesh(k) andj(k) are defined on the same sample space but on diffe
probability spaces.

Due to the definitions, the random variablesh(k) are dependent, and the random variab
j(k) are independent and identically distributed.

Consider the two sums(k51
n h(k) and(k51

n j(k).
Suppose that

P~h~m!51uany conditions outsideTm!<12q. ~23!

Note thatP(h(m)51uany conditions outsideTm)<12q5P(j(m)51) and therefore the fol-
lowing natural lemma holds.

Lemma 11:

PS (
kPK

h~k!> l D<PS (
kPK

j~k!> l D
for all natural values of l.
The proof of the probabilistically clear Lemma is omitted. For the detailed proof see

Proposition in Ref. 15.
The random variablesj(k) are independent and identically distributed. The mathema

expectation ofj(k) equals 12q.
Now we show that

Pabs~h~m!51uany conditions outsideTm!<12q. ~24!
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Let PV be a Gibbs measure corresponding to arbitrary boundary conditions andTk be an
arbitrary segment. Consider the set of all configurations on the intervalTk and the restriction of the
measurePV on this set. We show that at some value ofl the ‘‘absolute probability’’Pabsthat inTk

there is at least one regular segmentI k is greater thanq.0 for some constantq not depending on
k. The eventh(k)51 means that all segments belonging toTk are nonregular.

Suppose that a fixed configurationw8(Tm) does not coincide with the ground state at allI i

PTm .
The Peierls argument method directly imply that for some positive constantt0

Pabs~w8~Tm!uconditions outsideTm are wgr~x!!<exp~2bt0l !.

Note that when we increase the value ofl the influence of the conditions outsideTm on the
configuration inTm increases with the rate less thanl and therefore at some value ofl and for some
positive constantt we have

Pabs~w8~Tk!uany conditions outsideTm!<exp~2bt l !<12q0 .

Thus, the probabilityPabs(h(m)51uany conditions outsideTm) as a union of at most 2lp

events with probabilities less than 12q0 , is bounded by some number 12q. The inequality~24!
is proved.

Now Lemma 9 is a direct consequence of the strong law of large numbers forj(k) and the
Lemma 11. Indeed, consider independent Bernoulli trials when the probability of success a
trial is 12q. According to the law of large numbers, the probability of the event that the de
of successes exceeds 12q8; 0,q8,q, is less than 1/4, whenV tends to infinity. It means that the
‘‘absolute probability’’ of the event that the density of non-super-regular segmentsTk is greater
than 12q8 is less than 1/4. Due to Lemma 11, this probability is greater than thePabsprobability
of the event that the density of non-super-regular segmentsTm is greater than 12q8. In other
words, thePabsprobability of the event that the density of super-regular segmentsTm is less than
12q8 is less than 1/4. Thus, thePabs probability of the event that the density of super-regu
segmentsTm is greater than 12q8 is greater than 1/4. Taking into account that each super-reg
segmentTm contains at least one regular segment, one can see that the last statement imp
Lemma 9 if the parameterp is chosen from the open interval (12q8/ l ,1). We choose the value o
p as 12q/2l .

Lemma 9 is proved.
Proof of Lemma 10:Let us consider the set of all long clustersDi with the density of supports

less thanp. Let supp(D)5ø i 5 j
r supp(K j ). These supportsKi are connected between themselv

and with the boundary. Since the density of supports is not greater thanp,1, the sum of the
lengths of bonds in both halves@2V,2uI u/2 and @ uI u/2,V# is not less than (V2uI u/2)(12p).
WhenV goes to infinity the sum of lengths of bonds of any long cluster with the density less
p tends to infinity. As it becomes apparent from the proof of Lemma 8Pabs(Long,.p) does not
exceed one. And it does not exceed one, if we omit the factorg(x,y) corresponding to the long
bond and sinceg(x,y,w)5exp(2bf(x,y,w))21 @see~12!# the impact of these bonds tends to ze
By choosing the appropriate value ofV we complete the proof of Lemma 10.

Lemma 10 is proved.
We omit the huge proof of Lemma 5 since it is absolutely analogous to the proof of Le

6. The only difference is the fact that inJ1,8,2,9 overlapped clusters are allowed, so the density
nonregular segments of typical configurations in Lemmas 8,9 instead ofp will be a number less
than 12(12p)(12p).

Partition functions including only non-long-super clusters satisfy the following key lem
which has a geometrically-combinatorial explanation.

Lemma 12:

J1,8,2,9,~n.l .!5QJ1,9,2,8,~n.l .!
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where the factor Q5Q(w1(x),w2(x),w8(x),w9(x)) is uniformly bounded: 0,const1,Q
,const2.

The factor appears due to the fact that configurations with minimal energy correspond
the different boundary conditions do not coincide everywhere~they coincide to within shifts,
everywhere but finite area!.

Proof of Lemma 12:Due to the constantQ without loss of generality we assume that t
configurations with minimal energywmin for both boundary conditions coincide.

According to the definitions and Lemma 4

J1,9,28,~n.l .!5Q8(
*

w~SD1!¯w~SDm!,

where the summation is taken over all nonlong, nonordered compatible collections of supe
ters.

According to the definition of the super cluster

Q8(
*

w~SD1!¯w~SDm!5Q8 (
1,8,*

w~D1!¯w~Dk! (
2,9,*

w~D1!¯w~Dl !

in (1,8,* and (2,9,* the summation is taken over all nonordered collections of clus

w(D1
1,8)¯w(Dk

1,8) andw(D1
2,9)¯w(Dl

2,9) such that their product belongs to(* .
Similarly,

J1,9,2,8,~n.l .!5Q9(
**

w~SD1!¯w~SDm!

5Q9 (
1,9,**

w~D1!¯w~Dk! (
2,8,**

w~D1!¯w~Dl !.

In order to prove Lemma 12 we put one-to-one correspondence bet
(* w(SD1)...w(SDm) and(** w(SD1)...w(SDm).

FIG. 1.
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Let us consider an arbitrary termU5w(SD1)...w(SDa) of (* . By definitions

U5w~D1
1,8!¯w~Dm

1,8!w~D1
2,9!¯w~Dk

2,9!,

where the factorw(D1
1,8)¯w(Dm

1,8) belongs to the(1,8,* and the factorw(D1
2,9)¯w(Dk

2,9) be-
longs to the(2,9,* .

A cluster D5@(Ki ,i 51,...,r );G9# is said to be basic, if the se
((ø i 51

m suppDi)øG9)ù((Z12I N)øI )) is not empty. In Fig. 1 all clusters are basic.

Consider the set of all clustersW(U) of the termU: W(U)5ø i 51
m Di

1,9 ø i 51
k Di

2,8 and four
subsets ofW(U):

W85FD85@(Ki ,i 51,...,r );G8#PJ2,8:S S ø
i 51

k

suppDi D øG8D ùI is not emptyG ,

W95FD95@~Ki ,i 51,...,r !;G8#PJ1,9:S S ø
i 51

m

suppDi D øG8D ùI is not emptyG ,

W15FD15@~Ki ,i 51,...,r !;G8#PJ1,9:S S ø
i 51

m

suppDi D øG8D ù~Z12I N! is not emptyG ,

W25FD25@~Ki ,i 51,...,r !;G8#PJ2,8:S S ø
i 51

k

suppDi D øG8D ù~Z12I N! is not emptyG .

Note that the subsetsW8,W9,W1,W2 contain only basic clusters and the union of them cont
all basic clusters of the termU.

Let us consider an arbitrary termU5w(SD1)¯w(SDb) of S** . By the definitions

U85w~D1
1,9!¯w~Dl

1,9!w~D1
2,8!¯w~Dn

2,8!,

where the factorw(D1
1,9)¯w(Dm

1,9) belongs to theS1,9,** and the factorw(D1
2,8)¯w(Dk

2,8)
belongs to theS2,8,** .

Consider the set of all clustersW(U8) of the termU8:W(U8)5ø i 51
m Di

1,9ø i 51
k Di

2,8 . In just
the same way we can define four subsets ofW(U8).

Consider a termU5w(D1)¯w(Dk)PS* , containing only basic clusters. By definitio
ø i 51

k Di can be represented asø i 51
k Di5(ø i 51

m Di)ø(ø i 5m11
k D j ), where the clustersø i 51

m Di

5W1øW8; andø i 5m11
k D j5W2øW9.

From the definition of nonlong clusters andW8,W9,W1,W2 it easily follows that there exists
the same termU85w(D1)...w(Dk)PS** , such thatø i 51

k Di5(ø i 51
m Di)ø(ø i 5m11

k D j ), where
the clustersø i 51

m Di5W1øW8; andø i 5m11
k D j5W2øW9.

Figure 1 shows four collections of clusters COL15@D1
1,9 ,D2

1,9 ,D3
1,9 ,D4

1,9#, COL2

5@D5
2,8 ,D6

2,8 ,D7
2,8 ,D8

2,8#, COL35@D1
1,8 ,D6

1,8 ,D7
1,8 ,D4

1,8#, COL45@D5
2,9 ,D2

2,9 ,D3
2,9 ,D8

2,9#.
Two coincident termsU5U85P i 51

8 w(Di) belonging to the sumsS* and S** are con-
structed by the Cartesian product of the collections COL1, COL2, and COL3, COL4, respectively.

We see that between termsUPS* andU8PS** containing only basic clusters we easily ca
put a one-to-one correspondence.

Consider a termU5w(D1)¯w(Dk)w(Dk11)¯w(Dn)PS* , containing basic clusters
D1¯Dk and not basic clustersDk11¯Dn .

It can be easily shown that there exists a termU85w(D1)¯w(Dk)w(Dk11)¯w(Dn)
PS** coinciding with the term UPS* . Indeed, suppose that there is no termU8
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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5w(D1)¯w(Dk)w(Dk11)¯w(Dn)PS** coinciding with the termUPS* . Then, according to the
definition of the long clusters, we directly get that, the termU contains long super cluster, whic
contradicts the definition ofS* .

Lemma 12 is proved.
Remark:The essential point of the proof of the important Lemma 12~therefore, of this paper!

is the amusing fact thatS* w(SD1)¯w(SDm) andS** w(SD1)¯w(SDm) coincide.
Now the demanded inequality~18! is a direct consequence of Lemmas 5 and 12. The ineq

ity ~18!, therefore Lemma 3 is proved.
Let P1 and P2 be two different extreme Gibbs states of the model~1! corresponding to the

boundary conditionsw1(x) andw2(x), respectively.
Theorem 5: ~Ref. 16.! P1 and P2 are singular or coincide.
Proof of Theorem 4:Let P1 and P2 be two different extreme Gibbs states of the model~1!

corresponding to the boundary conditionsw1(x) andw2(x) respectively. According to Lemma 3
P1 andP2 are not singular. Therefore, according to Theorem 5P1 andP2 coincide, which con-
tradicts the assumption. Theorem 4 is proved.

III. UNIQUENESS OF GIBBS STATES

In this section we prove the main Theorem 1.
The statement of Theorem 1 for rational densities coincides with Theorem 4. Thus, in or

complete the proof of Theorem 1, we have to prove the following theorem, which covers the
when the density of the special ground state is irrational.

Theorem 6: Suppose that the value of the external fieldm of the model (1) belongs to the s
Cir 5R12øk(mk

2 ,mk
1). Then the model (1) has a unique Gibbs state at all values of the

peratureb21.
It can be easily shown that the special ground states of the model~1! are not stable when the

density is irrational. In other words, the Peierls constantt for the special ground state tends to ze
whenp→`. The essence of this fact is the following.

For the fixed irrational numberh5@n0 ,n1 ,...,ns ,...# consider the corresponding speci
ground statewk(x) and its arbitrary perturbationwk8(x). The configurationwk8(x) is not a special
ground state, therefore for some pair of points, sayx and yPZ1; wk8(x)5wk8(y)51, we have a
violation of Hubbard’s criterion. Letx and y be closest points with this property. When th
distance betweenx andy tends to infinity, the Peierls constant tends to zero.

In the irrational case the special ground states are not stable, but this fact is not crucial
method. Since the essence of our method is the estimation of long super clusters connec
boundary with the segmentI, small clusters not satisfying Peierls condition cannot ‘‘help’’
connect the boundary withI, and it turns out that big clusters satisfy the Peierls stability condi
and the method works. One can say that the special ground states in the irrational case are
in general.’’

Below we give the mathematical details of the last observation.
Considerh(s)5@n0 ,n1 ,...,ns#.
Lemma 13: Suppose that the value of the external fieldm of the model (1) belongs to th

interval (mk(s)
2 ,mk(s)

1 ) for some numberk(s)5h(s)21. Let w8(x) be an arbitrary finite pertur-
bation of the special ground statewk(s)(x) such that the boundary B of the configurationw8(x)
includes a unique contour K. Then there exists a positive constant ts depending only on the
Hamiltonian (1), such that

H~w8~x!!2H~wk~s!~x!!>tsusuppBu

whereusuppBu is the total area of the support of the boundary.
Lemma 13 was proved in Ref. 13@see Lemma 1 and Sec. 5~Ref. 13!#.
Thus, for each nonnegative integers the numberts is defined. Suppose that a positive numb

t less thant1 is fixed. Lets be the maximal number meeting the conditionts.t.
Now we are ready to define the notion of a contour in the irrational case.
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Let us consider an arbitrary configurationw(x). Let C5ø i PInd@xi ,yi #, wherexi ,yiPZ1 and
xiÞyi has the following properties:

~1! For each segment@ai ,bi # from the setZ12C there exists a special ground statewk , such
that the restriction of this configuration on@ai ,bi # coincides withw(@ai ,bi #).

~2! For anyC8,C; C8ÞC the property 1 is not held.
It can be easily shown that the setC5C(w(x)) is not uniquely defined. Suppose that, som

rule uniquely determines the setC for each configurationw(x). Let Z12C5ø i@ai ,bi #. We say
thatw(@ai ,bi #); is a preregular phase. Consider any segment@xi ,yi # belonging toC. The segment
@xi ,yi # is said to bet-negligible, if for each segment@v i ,wi # covering@xi ,yi #,wi2v i5p @p is the
numerator ofh(s)] there exists a special ground statewk(s) , such that the restriction of this
configuration on @v i ,wi # coincides with w(@v i ,wi #). Let C5ø i PInd@xi ,yi #5(ø i PInd(t)

3@xi ,yi #)ø(ø i PInd-Ind(t)@xi ,yi #), where Ind(t) means that the union is taken over allt-negligible
segments. The support of the preboundary suppPB of the configurationw(x) will be defined as
suppPB5(ø i PInd(t)@xi ,yi #)ø(ø i PInd-Ind(t)@xi2d0p,yi1d0p#)5suppPB~main!øsuppPB(t).
Each segment belonging to the union suppPB will be called a support of a precontour and
denoted by suppPK. The support@xi ,yi # of a precontour is said to bet-negligible, if @xi ,yi #
belongs to suppPB(t).

We define contours as in the Definition 1. The constantsp,d0 and Nb for irrational density
h21 will be constants defined for rational densityh(s)21.

The pairPK5(suppPK,w8(suppPK)) is called a precontour. The set of all precontours
called a preboundaryPB of the configurationw8(x). Two precontoursPK1 andPK2 are said to
be connected if dist~suppPK1 ,suppPK2),Nb and at least one of them is nott-negligible. The set
of precontours (PKi ; i PInd) is called connected if for any two precontoursPKc and PKd ;c,d
PInd there exists a collection (PKj 1

5PKc ,...,PKj i
,...,PKj n21

,PKj n
5PKd); j iPInd, i

51,...,n; such that any two precontoursPKj i
and PKj i 11

, i 51,..., n21 are connected. Le

ø i 51
n PKi be some maximal connected component of the preboundaryPB. Suppose that

suppPKi5@ai ,bi # andbi,ai 11 ; i 5,...,n21.
The pairK5(suppK,w8(suppPK)), where suppK5@a1 ,bn# is called a contour. The set o

all contours is called a boundaryB of the configurationw8(x).
A contour is said to bet-negligible, if its support ist-negligible.
By the definitions, the distance between the supports of twot-negligible contours exceedsp,

wherep is the numerator ofh(s) and the length of the support of anyt-negligible contour is one.
The following lemma is reformulation of Lemma 13 for irrational densities.
Lemma 14: Suppose that the value of the external fieldm of the model (1) belongs to the s

Cir 5R12øk(mk
2 ,mk

1). Let w8(x) be an arbitrary finite perturbation of the special ground sta
wk(x) such that the boundary B of the configurationw8(x) includes a unique contour (no
t-negligible contour) K. Then there exists a positive constant ts depending only on the Hamiltonia
(1), such that

H~w8~x!!2H~wk~x!!>tsusuppBu

whereusuppBu is the total area of the support of the boundary.
Suppose that the value of the external fieldm of the model~1! belongs to the setCir 5R1

2øk(mk
2 ,mk

1). Let t,0,t,t1 is fixed andts is chosen as above.
Lemma 15:Let wmin(x)PF(V) be a configuration with the minimal energy:

H~wmin~x!uw1~x!!5minw~x!PF~V!H~w~x!uw1~x!!.

Then the configurationwmin(x) has the following structure:
The restriction of the configurationwmin(x) on the set@2V1Nb ,V2Nb# contains t-negligible

contours and p21 non t-negligible contours, moreover the sum of weights of all t-neglig
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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contours is bounded by constant, not depending on the boundary conditions, all of p21 non
t-negligible contours are interface contours IKi , i 51,...,m, where m,p21 and usuppIK i u
,3d0p1Nb .

The proof of Lemma 15 is very similar to the proof of Lemma 113 and will be omitted.
From Lemma 15 follows that the density of possiblet-negligible contours ofwmin(x) tends to

zero, whenV goes to infinity.
Now the proof of Theorem 6 principally coincides with the proof of Theorem 3 and wil

omitted. Theorem 6, and hence main Theorem 1 is proved.

IV. FINAL REMARKS

The unique limit Gibbs state of the model~1! is translationally invariant. This result wa
proved independently in Ref. 1 by using of the method of the equivalence of boun
conditions,17 and in Ref. 11 by using of energy–entropy inequalities.

At low temperatures, the sum of the statistical weights of all clusters having fixed suppo
an exponential estimation~see Lemma 16, Ref. 13! and each limit Gibbs state of the model~1! is
a ‘‘small perturbation of special ground states’’~see Lemma 17, Ref. 13!.

The essential points in the proof of the uniqueness of Gibbs states are the geome
combinatorial Lemma 12 and the estimation of long super clusters, connecting the boundar
the segmentI. This estimation mainly works due to the fact that ground states of the mode~1!
degenerate. In Ref. 13 we proved Theorem 4 at low temperatures. The temperature restrict
related with the fact that at low temperatures the weight of the support of a cluster h
exponential estimation@Lemmas 16 and 17~Ref. 13!# and hence long clusters are negligible~Ref.
13!. But at any temperature an exponential estimation is absent. In the general case, wh
estimate the statistical weight of long super clusters, a key role plays the Lemma 6 o
estimation of the value of the interaction between contours.

In Ref. 15 at low temperatures the result of Ref. 13 is extended to more abstract model
method of the proof of Theorem 1 shows that the result of Ref. 15 can be extended to all
of the temperatures.
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