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For a finite group G acting faithfully on a finite-dimensional F -vector space V , we show

that in the modular case, the top degree of the vector coinvariants grows unboundedly:

limm→∞ topdeg F [Vm]G = ∞. In contrast, in the nonmodular case we identify a situa-

tion where the top degree of the vector coinvariants remains constant. Furthermore, we

present a more elementary proof of Steinberg’s theorem which says that the group order

is a lower bound for the dimension of the coinvariants which is sharp if and only if the

invariant ring is polynomial.

1 Introduction

A central problem in invariant theory is to compute the generators of the invariants

of a group action. One crucial element in this task is determining the degrees of the

generators as the knowledge of these degrees reduces this problem to a problem in

a finite-dimensional vector space. This gives obtaining efficient degree bounds a big

computational significance and research in this direction has always been fashionable

since the days of Noether to our days, with some recent spectacular breakthroughs,

for example, [26]. Before we go into more details, we fix our setup. For a shorthand

notion, we will call a finite-dimensional representation V of a finite group G over a
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6080 M. Kohls and M. Sezer

field F a G-module. The action of G on V induces an action on the symmetric algebra

F [V ] = S(V∗) that is given by σ( f) = f ◦ σ−1 for σ ∈ G and f ∈ F [V ]. Let F [V ]G denote the

corresponding ring of invariants. By a classical theorem of Noether, it is a finitely gen-

erated algebra, and β(F [V ]G), the Noether number of the representation, denotes the

maximal degree of an indecomposable element, that is, the smallest number b such that

invariants of degree ≤ b generate the invariant ring. We direct the reader to [15] or [28] for

an account on this number. We also define β(G) = supV β(F [V ]G). Another central object

is the Hilbert ideal I := F [V ]G+ F [V ], the ideal in F [V ] generated by invariants of posi-

tive degree. In this paper, we study the algebra of coinvariants, which is the quotient

ring F [V ]G := F [V ]/I . This finite-dimensional, graded algebra encodes several interest-

ing properties of the invariant ring and there has been a fair amount of research on it,

see [2, 3, 8, 11, 14, 16, 21–25] and the references there. The top degree of the coinvari-

ants, denoted topdeg F [V ]G , is defined to be the largest degree in which F [V ]G is nonzero.

This number shares a similar interest for coinvariants as the Noether number does for

invariants.

Equivalently, the top degree can be defined as the smallest number d such that

every monomial m ∈ F [V ] of degree > d is contained in the Hilbert ideal. Note that this

also implies that the Hilbert ideal is generated by elements of degree at most d+ 1, a

fact that played an important role in the proof of the Noether bound in the nonmodular

case, that is, when the characteristic of F is zero or |G| ∈ F ∗. However, it is conjectured

[5, Conjecture 3.8.6] that even in the modular case, that is, when the order of the group

is divisible by the characteristic of F , the group order is an upper bound for the degrees

of the generators of the Hilbert ideal, which as we will see, may be much smaller than

the top degree.

Another natural interpretation comes from regarding F [V ] as a (finite) F [V ]G-

module. Take a minimal set of homogeneous module generators gi of F [V ] over F [V ]G , so

F [V ] = ∑t
i=1 F [V ]Ggi. From the graded Nakayama lemma, it follows that the top degree

d equals the maximum of the degrees of the generators, and the number of generators

equals the dimension of the coinvariants as a vector space.

Recall that the transfer of f ∈ F [V ] is defined by Tr( f) = ∑
σ∈G σ( f). Another

important application of the top degree is that in the modular case, it yields an upper

bound for the maximal degree of an indecomposable transfer: Take f ∈ F [V ] homoge-

neous. Then we can write f = ∑t
i=1 higi with homogeneous invariants hi and module

generators gi as above. Therefore, Tr( f) = ∑t
i=1 hiTr(gi). Assume deg( f) is bigger than

the top degree of F [V ]G . Then all hi’s are zero or of positive degree. We are done if also

all Tr(gi)’s are zero or of positive degree. Note that one of the module generators, say
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g1, is a constant. Since we are in the modular case we have Tr(1) = |G| · 1 = 0, so we are

done. Knowing the maximal degree of an indecomposable transfer has been very critical

so far, since in almost all modular cases where the Noether number is known, there

is an indecomposable transfer of degree equal to the Noether number, see [11]. In the

nonmodular case (i.e., the characteristic of F does not divide the group order |G|), the

invariant ring is generated by transfers and so a bound for the degree of an indecom-

posable transfer is a bound for the Noether number. Since Tr(1) 	= 0, the argument above

does not carry over to this characteristic. Nevertheless, in the nonmodular case, the top

degree plus one is an upper bound for the Noether number and this bound is sharp: The

Noether number corresponding to the natural action of S2 on F [x1, x2] is 2, while the top

degree of the coinvariants is 1.

We now give an outline of the paper. Section 2 is mainly concerned with the non-

modular case, where we collect some consequences of previous work on the top degree

of coinvariants. Most notably, a quite recent result of Cziszter and Domokos implies that

for a given nonmodular group G, the maximal top degree equals the maximal Noether

number minus one. In particular, |G| − 1 gives an upper bound for the top degree.

In contrast, we show in Section 3 that for a given faithful modular representation

V , the top degree of the vector coinvariants F [Vm]G grows unboundedly with m. This

also fits nicely with a result of Richman [19], which asserts the similar behavior for the

Noether number of the vector invariants F [Vm]G .

In Section 4, we consider a nonmodular situation where the lead term ideal of

F [V ]G+ F [V ] is generated by pure powers of the variables. In this case, we show that the

top degree of the vector coinvariants F [Vm]G is constant. This way, for the natural action

of the symmetric group Sn on a polynomial ring with nvariables we get a new proof that

the top degree of any of the vector coinvariants of this action is
(n

2

)
.

In Section 5, we will give a new elementary proof of Steinberg’s celebrated

theorem which states that the group order is a lower bound for the dimension of the

coinvariants with equality holding if and only if the invariant ring is polynomial.

2 Top Degree in the Nonmodular Case

In this section, we note several facts about the top degree of coinvariants in the

nonmodular case, which are a bit spread out in the literature. Although these state-

ments follow rather quickly from previous results, it seems that the statements them-

selves have not been formulated in terms of coinvariants before. Using a very recent

result of Cziszter and Domokos [4], we obtain in Theorem 1 that the supremum of the
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top degrees of coinvariants is one less than the Noether number of the group. Since the

Noether number is bounded by the group order, we establish |G| − 1 as an upper bound

for the top degree of coinvariants of any nonmodular representation. This upper bound

also follows directly from Fogarty’s proof of the Noether bound. We take the crucial part

of this proof here as Lemma 2. Using this lemma, we also obtain a relative bound for the

top degree of coinvariants, see Proposition 3. We end this section with a brief discus-

sion of the relation between the Davenport constant and the top degree in the abelian

group case.

Theorem 1. Assume that the characteristic of F does not divide the group order |G|.
Then, for any G-module V , we have

β(F [V ]G) ≤ topdeg F [V ]G + 1 ≤ β(G) ≤ |G|.

In particular, we have that

topdeg(G) + 1 := sup
V

topdeg F [V ]G + 1 = β(G). �

Proof. Let I denote the Hilbert ideal of F [V ]G and d denote the top degree of F [V ]G .

As mentioned in Section 1, I is generated by elements of degree at most d+ 1. As we

are in the nonmodular case, this implies that F [V ]G is generated by invariants of degree

at most d+ 1, which proves the first inequality. By [4, Lemma 3.1], for any G-module

V there exists an irreducible G-module U such that topdeg F [V ]G + 1 ≤ β(F [V ⊕ U ]G),

which proves the second inequality. Finally, the Noether number is at most the group

order in the nonmodular case, see [9, 12]. Now the last statement follows from choosing

a G-module V with β(F [V ]G) = β(G). �

There are many bounds for β(G) in invariant theory literature. By this theorem,

they translate into bounds for topdeg(G) + 1. For example, if H is a normal subgroup

of G, in the nonmodular case, we have β(G) ≤ β(H)β(G/H) [20, Lemma 3.1] (see also [10,

(3.1)]). So, we get topdeg(G) + 1 ≤ (topdeg(G/H) + 1)(topdeg(H) + 1).

However, for a given module V , its Noether number can be much smaller than the

top degree. For example, for the natural action of the symmetric group on n variables,

the invariants have Noether number n, while the top degree of the coinvariants is
(n

2

)
.

A key step in Fogarty’s proof of β(G) ≤ |G| in the nonmodular case is the follow-

ing lemma [12].
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Lemma 2 (see [5, Lemma 3.8.1]). Let A be a commutative ring with identity, G a finite

group of automorphisms of A, and J ⊆ A a G-stable ideal. If the order of G is invertible

in A, then J |G| ⊆ JG A. �

This lemma also yields a relative bound for the top degree of coinvariants.

Proposition 3. Assume H is a normal subgroup of G and the characteristic of F does

not divide the index (G : H). Then we have the inequality

topdeg(F [V ]G) + 1 ≤ (G : H)(topdeg(F [V ]H ) + 1). �

Proof. Let m denote the top degree of F [V ]H , and d denote the index (G : H). Then all

monomials of degree m + 1 of F [V ] lie in I := F [V ]H
+ · F [V ]. Therefore, all monomials of

degree d(m + 1) lie in

I d = (F [V ]H
+ · F [V ])d = (F [V ]H

+ )d · F [V ].

By the previous lemma, applied to the group (G/H) acting on A= F [V ]H and the G/H-

stable ideal J = F [V ]H
+ , we have

(F [V ]H
+ )d ⊆ (F [V ]H

+ )G/H F [V ]H = F [V ]G+ F [V ]H ⊆ F [V ]G+ F [V ].

Therefore, all monomials of degree d(m + 1) lie in F [V ]G+ F [V ]. �

For abelian groups, the top degree of the coinvariants has another interpreta-

tion in terms of the Davenport constant of the group. We conclude with a discussion

on this relationship. For the rest of this section assume that G is an abelian group with

|G| ∈ F ∗. Since extending the ground field does not change the top degree of coinvari-

ants we assume that F is algebraically closed. In this case, the action is diagonaliz-

able so we may as well assume that F [V ] = F [x1, . . . , xn], where x1, . . . , xn is a basis of

V∗ on which G acts diagonally. For each 1 ≤ i ≤ n, let κi denote the character corre-

sponding to the action on xi. Then a monomial xa1
1 · · · xan

n is in F [V ]G if
∑

1≤i≤n aiκi = 0.

Moreover, a monomial xa1
1 · · · xan

n is in the Hilbert ideal I if it is divisible by an invari-

ant monomial, that is there exist integers 0 ≤ bi ≤ ai such that
∑

1≤i≤n biκi = 0. For an

abelian group G, let S(G) denote the minimal integer such that every set of elements,

with repetitions allowed, of size S(G) in G has a subsequence that sums up to zero. It

also equals the length of the longest nonshortenable zero sum of elements (with rep-

etitions) of G. This number is called the Davenport constant of G. Since the character

Downloaded from https://academic.oup.com/imrn/article-abstract/2014/22/6079/666771
by BILKENT user
on 27 June 2018



6084 M. Kohls and M. Sezer

group of G is isomorphic to G it follows that every monomial in F [V ] of degree S(G) lies

in I . This gives topdeg(G) + 1 ≤ S(G). On the other hand, by constructing an action using

the characters in the longest sequence of elements with no subsequence summing up to

zero we get a G-module V with topdeg F [V ]G + 1 = S(G). Similarly, one can show that

β(G) = S(G), see also [20, Proposition 2.2]. So, it follows that

S(G) = topdeg(G) + 1 = β(G).

Results on the Davenport constant therefore apply to the top degree of the coin-

variants, and vice versa. See [13] for a survey on the Davenport constant. Here, we just

quote two famous results due to Olson [17, 18]: If Zn denotes the cyclic group of order

n, then if a|b, we have S(Za × Zb) = a + b − 1. If p is a prime, then S(Z pd1 × · · · × Z pdr ) =
1 + ∑r

i=1(pdi − 1).

3 The Unboundedness of the Top Degree for Modular Coinvariants

In this section, we specialize to the modular case and show that, in contrast to the

nonmodular case, the top degree of the coinvariants of a given group can become arbi-

trarily large. We start with a collection of observations which despite their simplicity

give useful upper and lower bounds.

Lemma 4. Let H be a subgroup of G and V be a G-module. Then

topdeg F [V ]H ≤ topdeg F [V ]G and dim F [V ]H ≤ dim F [V ]G . �

Proof. The inclusion F [V ]G+ ⊆ F [V ]H
+ induces a degree-preserving surjection

F [V ]G = F [V ]/F [V ]G+ F [V ] � F [V ]/F [V ]H
+ F [V ] = F [V ]H ,

which immediately establishes the claim. �

Lemma 5. Let U be a G-submodule of V . Then

topdeg F [U ]G ≤ topdeg F [V ]G and dim F [U ]G ≤ dim F [V ]G . �

Proof. The inclusion U ⊆ V induces the epimorphism

ϕ : F [V ] � F [U ], f �→ f |U ,
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which restricts to a (generally nonsurjective) morphism F [V ]G → F [U ]G . We therefore get

a degree-preserving epimorphism

ϕ : F [V ]G = F [V ]/F [V ]G+ F [V ] � F [U ]/F [U ]G+ F [U ] = F [U ]G,

which yields both inequalities. �

For a G-module V , let Vm denote the m-fold direct sum of V .

Lemma 6. For any two G-modules V and W, we have,

topdeg F [V ⊕ W]G ≤ topdeg F [V ]G + topdeg F [W]G .

In particular, we have topdeg F [Vm]G ≤ m topdeg F [V ]G for all m ∈ N. �

Proof. Assume that M ∈ F [V ⊕ W] is a monomial of degree at least topdeg F [V ]G +
topdeg F [W]G + 1. Write M = M′M′′ with M′ ∈ F [V ] and M′′ ∈ F [W]. Then we have either

deg M′ > topdeg F [V ]G or deg M′′ > topdeg F [W]G . Without loss of generality, we assume

the former inequality. Then M′ ∈ F [V ]G+ F [V ], which implies M ∈ F [V ]G+ F [V ⊕ W] ⊆ F [V ⊕
W]G+ F [V ⊕ W]. �

Let Vreg := F G denote the regular representation of G. For any G-module V ,

we have an embedding V ↪→ VdimF (V)
reg (choosing an arbitrary basis of V∗ yields an epi-

morphism (Vreg)
dimF (V) � V∗, and dualizing yields the desired embedding as Vreg is self

dual—see also [7, Proof of Corollary 3.11]). Thus, we get the following as a corollary to

the preceding lemmas.

Corollary 7. For any G-module V , we have

topdeg F [V ]G ≤ dimF (V) topdeg F [Vreg]G . �

In view of Theorem 1, the main result of this section nicely separates the modu-

lar coinvariants from the nonmodular ones.

Theorem 8. Let V be a faithful G-module and assume that the characteristic p> 0 of F

divides the group order |G|. Then

lim
m→∞ topdeg F [Vm]G = ∞. �
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Proof. Pick a subgroup H of G of size p. It is well known that the indecomposable

H-modules consist of modules Vk for 1 ≤ k≤ p, where Vk is a k-dimensional vector space

on which a generator of H acts via a single Jordan block with ones on the diagonal.

Therefore, as an H-module, V decomposes in a direct sum V = ⊕q
i=1 Vki . Note that V is

also faithful as an H-module, so, without loss of generality, we assume k1 ≥ 2. Note that

we have an H-module inclusion Vk ⊆ Vl for any pair of integers 1 ≤ k≤ l ≤ p. In particular,

we have the H-module inclusions

V2 ⊆ Vk1 ⊆
q⊕

i=1

Vki = V.

Therefore, for any m ∈ N, we have Vm
2 ⊆ Vm as H-modules. We now get

topdeg F [Vm]G ≥ topdeg F [Vm]H

by Lemma 4, and furthermore

topdeg F [Vm]H ≥ topdeg F [Vm
2 ]H

by Lemma 5. Moreover, from [22, Theorem 2.1], we get topdeg F [Vm
2 ]H = m(p− 1). So, it

follows that

topdeg F [Vm]G ≥ m(p− 1) for all m ∈ N. �

We will show next that the dimensions of the vector coinvariants always grow

unboundedly as well, even in the nonmodular case. We start again with a simple but

useful observation:

Lemma 9. For any G-module V , we have

dim F [V ]G ≥ topdeg F [V ]G + 1. �

Proof. If d is the top degree of F [V ]G , then there exists a monomial m of degree d which

is not in the Hilbert ideal I . Then every divisor of m is also not contained in I , which

means that F [V ]G contains a nonzero class in each degree ≤ d. As elements of different

degrees are linearly independent, this finishes the proof. �

Proposition 10. For any nontrivial G-module V , we have

lim
m→∞ dim F [Vm]G = ∞. �
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Proof. We can assume that the action of G is faithful. In the modular case, the result

follows from Lemma 9 and Theorem 8. In the nonmodular case, choose a subgroup H =
〈σ 〉 of G of prime order q, which is coprime to the characteristic of F . Choose a basis

x1, . . . , xn of V∗ on which σ acts diagonally. Since V is a faithful H-module as well, we

may assume that the action of σ on x1 is given by multiplication with a primitive qth

root of unity. Let x1,1, . . . , x1,m denote the copies of x1 in F [Vm]. Then none of the linear

combinations of these variables lie in the Hilbert ideal F [Vm]H
+ F [Vm], so they form an

independent set of classes in F [Vm]H . Therefore, by Lemma 4, we have

dim F [Vm]G ≥ dim F [Vm]H ≥ m,

which clearly establishes the claim. �

4 Top Degree of Vector Coinvariants in the Nonmodular Case

In this section, we study vector copies of an action of a group in the nonmodular case.

Obtaining generating invariants for these actions is generally a difficult problem nev-

ertheless the degrees of polynomials in minimal generating sets do not change in many

cases, see [7, Example 3.10] for a rare counter-example. Our computer-aided search of

examples indicate that many classes of coinvariants enjoy a similar type of saturation.

We note this as a problem for future study.

Problem 11. Assume that V is a nonmodular G-module. Prove or disprove that

topdeg F [Vm]G = topdeg F [V ]G

for any positive integer m. Find classes of groups and modules for which the equality

is true. �

We prove the equality above for a certain special case. First, we review

the concept of polarization as we use polarized polynomials in our computations.

Let V be a nonmodular G-module and set A := F [V ] = F [x1, . . . , xn] and B := F [Vm] =
F [x1,1, . . . , xn,1, . . . , x1,m, . . . , xn,m]. We use the lexicographic order on B such that

x1,1 > x1,2 > · · · > x1,m > · · · > xn,1 > · · · > xn,m

and the order on A is obtained by setting m = 1. For an ideal I in A or B, we denote the

lead term ideal of I with L(I ). Also L( f) denotes the lead term of a polynomial f in these

Downloaded from https://academic.oup.com/imrn/article-abstract/2014/22/6079/666771
by BILKENT user
on 27 June 2018



6088 M. Kohls and M. Sezer

rings. We introduce additional variables t1, . . . , tm and define an algebra homomorphism

φ : A→ B[t1, . . . , tm], xi �→ xi,1t1 + · · · + xi,mtm.

Then, for any f ∈ A, write

φ( f) =
∑

i1,...,im

fi1,...,imti1
1 · · · tim

m ,

where fi1,...,im ∈ B. This process is called polarization and we let Pol( f) denote the set of

coefficients φi1,...,im( f) := fi1,...,im of φ( f). Restricting to invariants, it is well known that

we get a map Pol : AG → P(BG), where P(BG) denotes the power set of BG . Let IA := AG
+ A

denote the Hilbert ideal of A, and similarly IB denote the Hilbert ideal of B. We show

that polarization of a polynomial in IA gives polynomials in IB .

Lemma 12. Let f ∈ IA. Then Pol( f) ∈ P(IB). �

Proof. Since each φi1,...,im is a linear map, we may take f = hg with h∈ AG
+ and g ∈ A.

Write φ(h) = ∑
j1,..., jm hj1,..., jmt j1

1 · · · t jm
m and φ(g) = ∑

q1,...,qm
gq1,...,qmtq1

1 · · · tqm
m . Note that we

have hj1,..., jm ∈ BG
+ since polarization preserves degrees. It follows that

fi1,...,im =
∑

jk+qk=ik, 1≤k≤m

hj1,..., jm gq1,...,qm ∈ BG
+ B,

which proves the lemma. �

We now identify a situation where the equality in Problem 11 holds.

Theorem 13. Let F be a field of characteristic p and V a G-module. Assume that there

exist integers a1, . . . , an, strictly smaller than p in the case of positive characteristic,

such that L(IA) = (xa1
1 , . . . , xan

n ). Then we have

topdeg F [Vm]G = topdeg F [V ]G =
n∑

i=1

(ai − 1) for all m ∈ N. �

Proof. Since the monomials in A that do not lie in L(IA) form a vector space basis for

F [V ]G , we have topdeg F [V ]G = ∑n
i=1(ai − 1). From Lemma 5, we also have topdeg F [V ]G ≤

topdeg F [Vm]G . Therefore, to prove the theorem it suffices to show topdeg F [Vm]G ≤

Downloaded from https://academic.oup.com/imrn/article-abstract/2014/22/6079/666771
by BILKENT user
on 27 June 2018



Top Degree of Coinvariants 6089

∑n
i=1(ai − 1). To this end, we demonstrate that the lead term ideal L(IB) contains the set

S := {xai,1

i,1 xai,2

i,2 · . . . · xai,m

i,m | i = 1, . . . , n, ai,1 + · · · + ai,m = ai}.

Take a homogeneous element f ∈ IA with L( f) = xai
i . So, f = xai

i + h where each term in

h is strictly lex-smaller than xai
i . Then each term of h is of the form xbi

i xbi+1
i+1 · · · xbn

n with

bi < ai. Considering

φ(xai
i ) = (t1xi,1 + · · · + tmxi,m)ai

and

φ(xbi
i xbi+1

i+1 · · · xbn
n ) = (t1xi,1 + · · · + tmxi,m)bi · · · (t1xn,1 + · · · + tmxn,m)bn,

we get by the choice of our order that, for any sequence ai,1, . . . , ai,m ∈ N0 satisfying ai,1 +
· · · + ai,m = ai, we have

L(φai,1,...,ai,m( f)) = L(φai,1,...,ai,m(xai
i )) = ai!

ai,1! · · · ai,m!
xai,1

i,1 xai,2

i,2 · . . . · xai,m

i,m .

For positive characteristic p, ai is strictly smaller than p by hypothesis, so the coefficient

is nonzero. Moreover, φai,1,...,ai,m( f) ∈ IB by the previous lemma. This finishes the proof. �

Consider the natural action of the symmetric group Sn on F [V ]. It is well known

that L(IA) = (x1, x2
2 , . . . , xn

n), see, for example, [27, Proposition 1.1]. So, the theorem applies

and we get the following corollary, which also appears as the special case q = 1 in [6,

Lemma 3.1].

Corollary 14. Let F be a field of characteristic p and V be the natural Sn-module. If p= 0

or p> n, then, for any positive integer m, we have

topdeg F [Vm]Sn =
(

n

2

)
. �

We want to emphasize here again the sharp contrast to the case 0 < p≤ n, where

by Theorem 8 we have limm→∞ topdeg F [Vm]Sn = ∞.
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5 A New Proof for Steinberg’s Theorem

The following might be one of the most celebrated results on coinvariants.

Theorem 15 (Steinberg). For any faithful G-module V , we have

|G| ≤ dim F [V ]G

with equality if and only if F [V ]G is polynomial. �

Note that by the famous Chevalley–Shephard-Todd–Serre–Theorem, F [V ]G being

polynomial always implies G is a reflection group, and in the nonmodular case the con-

verse is also true. Steinberg [25] proves the theorem above for the complex numbers

using analysis. More recently, Smith [23] generalized the theorem to arbitrary fields,

using some heavy machinery from homological algebra. We now give an almost elemen-

tary proof.

Proof. The group G acts naturally on the quotient field F (V), hence by Galois theory

we have dimF (V)G F (V) = |G|. Let S be a minimal generating set for F [V ] as a module

over F [V ]G . Then by the graded Nakayama lemma [5, Lemma 3.5.1], S projects injectively

onto a vector space basis for F [V ]G . Moreover, from Proposition 16, we get that S also

generates F (V) as an F (V)G-vector space. So, we have

dim F [V ]G = |S| ≥ dimF (V)G F (V) = |G|.

If equality holds, then S is a basis for F (V) over F (V)G , so it is F (V)G- and

hence F [V ]G-linearly independent. This implies that F [V ] is a free F [V ]G-module. Now by

[1, Corollary 6.2.3], we get that F [V ]G is polynomial. The reverse implication is straight-

forward: If F [V ]G is polynomially generated by invariants of degree d1, . . . , dn, the Cohen–

Macaulayness of F [V ] implies that F [V ] is freely generated over F [V ]G by d1 · . . . · dn many

generators, and it is well known that this product equals |G|, see Smith’s proof [23] for

the details. �

Above we used the following well-known proposition. We give a proof here due

to lack of reference. Let Quot(D) denote the quotient field of an integral domain D.

Proposition 16. Assume A⊆ R is an integral extension of integral domains. Then

Quot(R) =
{ r

a

∣∣∣ r ∈ R, a∈ A\ {0}
}

= (A\ {0})−1 R.
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In particular, if S ⊆ R generates R as an A-module, then S generates Quot(R) as a

Quot(A)-vector space. �

Proof. Assume f
g ∈ Quot(R) with f, g ∈ R and g 	= 0. Let

gt + at−1gt−1 + · · · + a1g + a0 = 0

be a monic equation of minimal degree satisfied by g. Then a0 	= 0 and dividing this

equation by g shows a0
g ∈ R. Therefore, f

g = f
a0

· a0
g ∈ (A\ {0})−1 R. �
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