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ABSTRACT

ORDER TIMING FOR SEASONAL PRODUCTS WITH
DEMAND LEARNING AND CAPACITY

CONSTRAINTS

Ece Zeliha Demirci

M.S. in Industrial Engineering

Supervisors: Asst. Prof. Dr. Alper Şen and

Prof. Dr. Nesim Erkip

August, 2009

Order time and order quantity of seasonal products significantly affect profits

gained at the end of the period due to high demand uncertainty. Delaying order

time enables a company to gain more information on demand, while decreasing

the possibility of realizing the best order quantity due to capacity constraints.

This thesis analyzes the problem of determining the best order time for a seasonal

product manufacturer in an environment, where there exists a single opportunity

for ordering and capacity is a decreasing function of the order time. Main feature

of the study is utilizing demand information collected until the order time for

resolving some portion of the demand uncertainty. A Bayesian update procedure

is utilized to capture the essence of the gathered demand information. Three

models are proposed for determining the order time, each having a different level

of flexibility with respect to possible order times considered. Analytical results

for structural properties, as well as extensive numerical results are obtained. A

computational study is carried out in order to compare the performance of the

models under different settings and to identify the conditions under which the

demand learning is most beneficial.

Keywords: seasonal products inventory problem, order time, Bayesian informa-

tion updating.
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ÖZET

SEZONSAL ÜRÜNLER İÇİN TALEP BİLGİSİ
GÜNCELLEME VE KAPASİTE KISITI ALTINDA

SİPARİŞ ZAMANLAMASI

Ece Zeliha Demirci

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Yrd. Doç. Dr. Alper Şen ve

Prof. Dr. Nesim Erkip

Ağustos, 2009

Talep belirsizliği yüksek olan sezonsal ürünler için verilen siparişin zamanı ve

miktarı dönem sonunda elde edilecek karlılığı önemli ölçüde etkiler. Sipariş za-

manını geciktirmek, bir yanda, belirsiz talep hakknda daha fazla bilgi edinilmesine

imkan verirken, öte yanda, kapasite kısıtlarından dolayı istenen ideal sipariş mik-

tarının üretilme olasılığını azaltabilir. Bu çalışmada, tek sezonda satılan bir ürün

ve üretim için kullanılabilecek kapasitenin dönem sonuna kadar olan zamanının

doğrusal bir fonksiyonu olduğu bir ortamda en iyi sipariş zamanını belirleme

problemi incelenmiştir. Yapılan çalmanın ana öğesi, sipariş zamanına kadar ver-

ilen müşteri siparişlerini gözlemleyerek talep dağılımının parametrelerinin Bayes

yaklaşımı ile güncellenebilmesidir. Sipariş zamanının statik olarak belirlenebildiği

iki model ve dinamik olarak belirlenebildiği bir model geliştirilmiş, bu kararın ver-

ilmesine ışık tutacak analitik ve sayısal sonuçlar elde edilmiştir.

Anahtar sözcükler : sezonsal ürünler, sipariş zamanı, Bayes tipi güncelleme.
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for their moral support and help during my graduate study. I am also thankful

to my officemates and classmates Karca Duru Aral, Efe Burak Bozkaya, Utku
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Chapter 1

Introduction

Main features of seasonal products (e.g. style goods) are short selling season

with a definite beginning and end, demand uncertainty arising from both long

period of inactivity between seasons and introduction of newly designed products

in each season, long lead time between order and delivery, and commitment of

order amounts prior to the selling season [19]. In order to resolve demand uncer-

tainty, sales data of similar products sold in previous years or expert opinions are

used. However, most of the uncertainty still remains because of ever changing

consumer tastes and varying economic conditions. Due to high setup costs and

other economies of scale, usually one setup is made for production of this type of

products. Facing with long lead times, high setup cost and short selling season

constrain order times for both manufacturers and retailers. Generally, order de-

cisions are taken prior to the season, before any demand is realized. Therefore,

matching supply and demand becomes increasingly difficult, which results in ei-

ther excess inventory leading to high inventory carrying costs and high markdown

costs or stockouts leading to high stockout costs and low service levels. Frazier

[10] estimates the profit losses in U.S. apparel industry as $25 billion due to excess

supply and shortages. The rapid developments in technology and innovations in-

crease variety of products, which increase the difficulty of matching supply and

demand tremendously. In department stores markdowns increase from 8% to 26%

of sales between 1972 and 1990 [8].

1



CHAPTER 1. INTRODUCTION 2

A classical example of mismatch between supply and demand is the case of Sport

Obermeyer [9, 8, 7]. Sport Obermeyer is a major supplier of U.S. fashion ski-

wear industry that both designs and manufactures ski apparel products. As it is

known, in this industry it is hard to forecast the demand due to fashion trends,

weather conditions, economic conditions and newly designed products each year.

The retail selling season is between September 1 and December for urban stores

and September 1 and mid-February for ski-area stores. The products are man-

ufactured in different countries like Hong Kong, China, Japan, Korea, Jamaica,

Bangladesh, and United States. The production starts on January 1, nearly eight

months in advance of the season, and ends on September 1. The suppliers pro-

duce based on production orders of Obermeyer. The samples of the products

are shown to retailers in February, they order between mid-February and May,

and the orders are delivered to them by October. Reorders between October and

December, which is approximately 10% of sales, are satisfied from available in-

ventory and after January 1 remaining inventory is sold with markdowns. Since

manufacturer starts production without observing any demand and finishes be-

fore realizing all of the demand, the risk of mismatched supply and demand is

very high and determining production order quantities is a challenging task. For

example; in 91/92 season, sales of a group of women parkas were 200% higher

than the forecasted value, whereas sales were 15% lower than the forecasted value

for another group.

By the initiative of U.S. apparel industry, a strategy called Quick Response

(QR) is developed in response to inflexible production environment and uncer-

tain demand of style goods [13]. QR focuses on shortening lead times through

developments in various operations like manufacturing methods, information and

communication technologies, and logistics. As a result, order or production deci-

sions can be made closer to the selling season or in the initial part of the season.

An essential benefit gained from QR is that forecasts can be adjusted by utiliz-

ing early sales information collected from the market, which reduces the forecast

errors and consequently inventory and stockout costs.
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As mentioned below, a strategy for resolving demand uncertainty is gathering

information from the market for a certain amount of time and improving the

quality of the forecasts based on market signals. In this case, production or or-

der amounts are determined based on the new estimate of demand, which reduces

the mismatches between supply and demand. Fisher and Raman [9] illustrate the

enormous improvement in forecasts by comparing initial forecasts and updated

forecasts based on the first 20% of demand. While deciding on the duration of

demand observation (order time), capacity constraint should also be considered.

A key point that should be taken into account is that delaying production or-

der time on one hand provides more accurate demand information; on the other

hand reduces the possibility of realizing optimal order quantity due to capacity

restrictions.

One of the widely used approaches for updating demand forecasts by incorpo-

rating observations is Bayesian approach. It is generally assumed that demand is

distributed with a known parameter (or parameters), however this is not always

the case. Especially for the style goods, whose demand uncertainty is high due

to inconsiderable demand history, it is hard to estimate the true value of the

distribution parameters. For this reason, it is assumed that demand through the

season is random with a specified distribution, whose parameter is not known. A

prior distribution is assigned to the unknown parameter, which denotes the initial

estimate or beliefs on demand. This distribution is updated as new information

on demand becomes available. As new information becomes available, the distri-

bution is improved continuously so that the demand can be represented with its

true distribution. For efficient use of Bayesian approach, there exist conjugate

prior distributions corresponding to a specified demand distribution, which can

be used for the unknown parameter. It is obvious that different choices from the

conjugate priors will increase the difficulty of the update procedure. However,

the use of the conjugate priors makes the demand learning a dynamic process,

in which parameters of posterior distribution change with information over time.

A few examples are as follows. Gamma is conjugate for Normal, Exponential

and Poisson distributions, Beta is conjugate for Geometric, Binomial, Negative

Binomial and Bernoulli distributions etc. (See [11] for more examples). The only
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disadvantage of this approach is that the formulation of a prior distribution for

the unknown parameter is a very hard task when the decision maker has abso-

lutely no idea about the unknown parameter. Fortunately, this is not valid for

our problem.

For our problem we consider environments similar to Sport Obermeyer’s case.

There is a manufacturer that supplies a seasonal product to several retailers.

There is a well defined period before the retail selling season, in which the man-

ufacturer places order once to its supplier. The end of this period is at least

as early as the lead time, which is required for manufacturing and distribution

of the product, so that the products reach to the retailers on time. Hence, the

manufacturer has to determine the order time and quantity carefully. Note that

retailers can place orders to the manufacturer based on catalogs sent or samples

shown through this ordering period; by this way manufacturer can observe the

demand.

This thesis analyzes the problem of determining the best order time and corre-

sponding order quantity for the aforementioned environment by utilizing demand

learning. By demand learning, the demand information collected until the or-

der time is used for increasing the quality of the demand estimate. Note that

the problem under consideration focuses on environments in which there exists

a single opportunity for ordering and no further opportunities for adjusting the

order quantity. We assume that the supplier has linearly decreasing capacity

with respect to time, but nonlinear decreasing structure can also be analyzed

with a similar fashion. We use a specific form of Bayesian approach for our de-

mand model, which assumes that the demand is distributed by Poisson with an

unknown parameter. The unknown parameter’s prior distribution is assumed to

be Gamma, which produces Negative Binomial distribution for the unconditional

distribution of demand. (These standard distributions are also used in Sen and

Zhang’s [5] study on style goods pricing.) One dynamic and two static models

are developed for choosing the best order time under these assumptions. The

first model chooses the order time from two predetermined order times, while the

second model finds the best order time depending on the observed demand until
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a predetermined time. Contrary to these models, the third model is a dynamic

one which evaluates each time point as a possible order time. Note that the

models focus on the trade-off between capacity and demand learning. Analytical

and numerical results are derived in order to understand the behavior of the best

order time. We also carry out computational studies in order to compare differ-

ent models under different settings and it is observed that Model 3 outperforms

the other models for the majority of the cases considered. Lastly, the value of

demand learning is assessed by changing the true value of the Poisson rate and

the variance of the initial point estimate. The details of this study can be found

in Chapter 5.

The rest of this thesis is organized as follows. In Chapter 2, related literature is

summarized. In Chapter 3, demand model and models developed for specifica-

tion of the best order time are presented. In Chapter 4, analytical and numerical

results are derived to understand how each model operates. In Chapter 5 compu-

tational studies are carried out under different settings for comparison of different

models and the conditions under which demand learning is most beneficial are

highlighted. Finally, the thesis is concluded with a summary of results and pos-

sible extensions in Chapter 6.



Chapter 2

Literature Review

Inventory management is a key issue faced by managers dealing with seasonal

products. As a consequence of rapid developments and innovations in the tech-

nology, and globalization, product life cycles shorten tremendously and matching

supply with demand becomes a major challenge. Demand learning is a current

solution for resolving some portion of demand uncertainty. By demand learning,

we imply the revision of forecasts based on early sales information. In this chap-

ter, we present a brief review of studies concerned with inventory management of

seasonal products and demand learning.

The stochastic single period inventory model is known as Newsboy Model and

dates back to 1950s. The classical Newsboy Model assumes that orders are com-

mitted once at the beginning of the season, backorders are fully backlogged and

inventory surplus is not transferred to the next season [19]. It focuses on find-

ing order quantity that minimizes the expected cost or maximizes the expected

profit. An extensive literature deals with newsboy type problems and various

extensions for the classical model have been suggested. Khouja [14] presents an

intense discussion of extensions suggested for single period problem and provides

a taxonomy of the literature so far.

Inventory models including demand learning has received considerable attention

6
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in the literature. Scarf [20] is the first author that incorporates demand learn-

ing in an inventory modeling context. He develops a dynamic inventory model

that uses observed demand information and current stock level together in the

decision process. He assumes that demand is generated from exponential class of

distributions and a conjugate prior distribution is used for the unknown param-

eter. The distribution is updated by Bayesian approach at the beginning of each

period. Scarf [21] and Azoury [1] are other two examples of early studies that

incorporate demand learning in dynamic inventory systems.

Inventory models of seasonal products incorporating demand learning have been

extensively studied. Demand learning is crucial for this type of products due to

inflexible production environment and highly uncertain nature of the products.

The models have considered different scenarios, but most of them use Bayesian

approach for adjustment of demand distribution parameters by utilizing early

sales information. Murray and Silver [18] present one of the earliest work that

considers demand learning for inventory modeling of style goods. They assume

that there are known number of customers, but buying potential of each customer

is stochastic. Beta distribution is used for prior distribution of purchase proba-

bilities. At each acquisition time, the purchase probabilities are updated based

on observed sales and optimal order quantity is decided considering both stock

on hand and sales information.

Iyer and Bergen [13] analyze the effects of QR on manufacturer-retailer chan-

nel by using newsboy type inventory models that incorporates demand learning

through Bayesian approach. They assume that the demand includes two sources

of uncertainty; uncertainty due to product and mean demand uncertainty at the

beginning of the season. They use a particular form of Bayesian approach that

assumes Normal distribution for both demand and unknown parameter. Eppen

and Iyer [6] present a special form of quantity flexibility contracts, backup agree-

ments between a catalog company and manufacturer for a two period setting.

They introduce a different version of Bayesian approach, in which it is assumed

that demand through the season is from a set of pure demand processes and the
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true demand process is unknown at the beginning of the season. Prior probabil-

ities are assigned to demand processes and these are updated by Bayes’ rule as

demand information becomes available. The approach restricts the distributions

that can be used for demand processes; some appropriate distributions are Nor-

mal, Negative Binomial and Poisson.

There are also alternative methods used for updating forecasts in the literature.

Chang and Fyffe [3] propose a methodology for revising forecasts based on early

sales considering a season with multiple periods. They assume that demand in

each period is a fixed fraction of the aggregate demand plus a noise term. Total

demand distribution is updated as new demand information becomes available.

Hausman [12] shows that successive demand forecasts are independent random

variables and distributed by lognormal distribution, under certain conditions. He

assumes that demand shows markovian property; demand in each period is re-

lated to past demand only through the demand in the previous period.

There is also substantial amount of research concerned with determining order

quantities of seasonal products at two order opportunities by including demand

learning. The studies on this issue show difference in terms of scenarios on or-

der times, order or production cost and supplier capacity. Fisher and Raman [9]

model a fashion goods production environment as a two stage stochastic program

and solve it using Lagrangian relaxation method. One of the main assumption

is that production decisions are taken at predetermined two distinct time points.

Firstly, an initial production order is given before observing any demand, then a

second order is placed based on updated forecasts. The model focuses on finding

distinct production amounts at two points subject to minimum lot size quantities

and second period’s production capacity. Also, the paper presents a method for

the estimation of demand probability distributions that combines historical data

of similar products and expert opinions. A key feature of demand distributions is

that it allows correlation between demand of first and second period; in particular

the total and first period’s demand is assumed to be Bivariate Normal. Choi et

al. [4] also derive an optimal two stage ordering policy for a single seasonal prod-

uct by utilizing dynamic programming and Bayesian information updating. The
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demand model is similar to one used in Iyer and Bergen [13]. At the first stage,

ordering cost is known and the demand forecast uncertainty is high whereas at

the second stage ordering cost is uncertain and the demand forecast uncertainty

is lower. They also study the performance of optimal ordering policy in terms of

service level and variance of profit and present further numerical analysis to show

performance of the policy under different parameter settings. One of the recent

works on this issue is Miltenburg and Pong [16] that also uses Bayesian informa-

tion updating. They consider two order opportunities; one with low ordering cost

and one with higher ordering cost. The total order quantity calculated at first

order time is adjusted at the second order opportunity based on updated demand

distribution. They also examine some standard distributions used for Bayesian

procedure by providing examples for each. Miltenburg and Pong [17] extends this

study by including capacity restriction at each order opportunity.

All of these studies ignore one crucial aspect: the impact of the order time.

Fisher et al. [8] analyze the impact of several operational changes on the profit

of the system including order time, verbally. They perform a simulation study

with the data of Sport Obermeyer in order to quantify effects of the operational

parameters like production capacity, minimum production lot size and lead time

on the expected cost. The company under investigation gives production orders

at two distinct time points and the model in Fisher and Raman [9] is used for

finding allocation of production quantities of items between two points and its

associated expected costs. Their results indicate that the expected stockout and

markdown costs decrease with the increase in the percentage of demand observed,

as long as there exists considerable capacity.

All of these studies discussed above ignore the determination of the order time,

which may has a significant impact on the end of period profits. Main focus of

our study is the determination of the best order time and the corresponding order

quantity by minimizing total expected costs subject to remaining capacity. Our

main contribution to the literature is that we present static and dynamic mod-

els that incorporate Bayesian type demand learning and illustrate the trade-off

between more accurate demand information and decreasing capacity.



Chapter 3

Model Formulation

In this chapter, we first introduce the demand model. Then, basic definitions

and assumptions of the problem are briefly explained. This is followed by the

description of static and dynamic models that we develop to solve order timing

problem by incorporating demand learning.

3.1 Demand Model

In this section, we explain our demand model and show how demand learning is

used to update the parameters of demand distribution. Note that the derivation

of the prior and posterior distributions can be found in Chapter 4 in [2].

We assume, without loss of generality, that the ordering period is of unit length.

Let there be T − 1 possible order times during the period, denoted by t1, t2, · · · ,
tT−1. Also, denote t0 = 0 and tT = 1. Denote Xij to be the demand between

ti and tj (with X0T corresponding to the total demand during the period). An

example with T = 3 is given in Figure 3.1.

Assume that the demand during the whole period (X0T ) is distributed with Pois-

son with an unknown parameter Λ, i.e.,

10
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Figure 3.1: Time Line of Ordering Period for Model 1

p(x0T ) = e−ΛΛx0T

x0T !
, for x0T = 0, 1, 2, · · ·

This leads to demand in each interval (ti, tj] to be distributed by Poisson with

parameter Λ(tj − ti).

Assume that Λ’s prior distribution is Gamma with parameters α and β, i.e.,

f(λ) = βαλα−1e−βλ

Γ(α)
, λ > 0

Then, the prior distribution of total demand unconditional of Λ can be found as

follows:

p(x0T ) =

∫ ∞
0

p(x0T |Λ = λ)f(λ)dλ

=

∫ ∞
0

e−λλx0T

x0T !

βαλα−1e−βλ

Γ(α)
dλ

=
βα

x0T !Γ(α)

∫ ∞
0

λ(x0T+α)−1e−λ(1+β)dλ

=
βα

x0T !Γ(α)

Γ(x0T + α)

(1 + β)x0T+α

=
Γ(x0T + α)

Γ(α)x0T !

(
β

β + 1

)α(
1

β + 1

)x0T

=

(
x0T + α− 1

x0T

)(
β

β + 1

)α(
1

β + 1

)x0T
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which is the distribution function of a Negative Binomial random variable with

parameters α and β/(β + 1). Thus, we write,

X0T ∼ NB

(
α,

β

β + 1

)
. (3.1)

Similarly, unconditional distribution of the demand in interval (ti, tj] can be

found to be (prior to any observation) Negative Binomial with parameters α

and β/(β + tj − ti):

p(xij) =

(
xij + α− 1

xij

)(
β

β + tj − ti

)α(
tj − ti

β + tj − ti

)xij
, or

Xij ∼ NB

(
α,

β

β + tj − ti

)
. (3.2)

If the realized demand in an interval (ti, tj] is xij, then the posterior distribution

of the demand rate can be derived by Bayes’ rule as follows:

f(λ|Xij = xij) =
f(λ)p(xij|Λ = λ)∫∞

0
f(λ)p(xij|Λ = λ)dλ

=
λα+xij−1(β + tj − ti)α+xije−(β+tj−ti)λ

Γ(α + xij)

After evaluating the integral and some simplification, the posterior distribution

of Λ can be shown to be Gamma with shape parameter (α + xij) and scale pa-

rameter (β + tj − ti).

Therefore, the posterior distribution of a future interval (tk, tl] will be distributed

with Negative Binomial distribution as follows:

(Xkl|Xij = xij) ∼ NB

(
α + xij,

β + tj − ti
β + tj − ti + tl − tk

)
. (3.3)

As anticipated, the expected value of demand in a future period (tk, tl] linearly

depends on observed sales in period (ti, tj] as follows:
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E[Xkl|Xij = xij] =
(α+xij)(tl−tk)

β+tj−ti .

We know that utilizing Bayesian approach brings convergence of posterior dis-

tribution of demand to its underlying true distribution as length of the period

approaches to infinity. Then, as time passes and more information is accumu-

lated posterior distribution of total demand approaches to the true distribution

of total demand. Thus, most of the demand uncertainty is resolved and the pos-

sibility of mismatch between supply and demand decreases. The general line of

the argument can be followed by Figure 3.2, over an example with period length

of 1. The figure includes cumulative distribution function of total demand for

the true distribution, prior distribution and posterior distribution at three time

points with different observations. For the example, we assume that underlying

true distribution of demand is Poisson with Λ = 20 and the prior distribution of

Λ is Gamma with parameters 15 and 0.5. We choose the distribution parame-

ters, time points and associated observed demand values arbitrarily so that this

argument can be seen clearly. For this particular case, as time passes and more

observations are collected the posterior distribution progressively approaches to

the true distribution starting from the prior distribution. Note that for this case,

the convergence may not always be observed, since the period of finite length.

3.2 Assumptions and Problem Definition

There is a well-defined ordering period for manufacturers before the retail selling

season, which is assumed to be of unit length and includes the potential order

times. The end of the ordering period is defined, so that it is at least lead time

(of manufacturing and distributing products) earlier than the start of the selling

season. The manufacturer has a single opportunity to order from its suppliers

throughout the period. Starting from the start of the period, the demand from

retailers is observed until each given possible order time point and these obser-

vations are used to update the forecasts for the remainder of the period. Costs

under consideration are unit purchase, inventory holding and shortage costs. Note

that the problem is modeled using the notation given in Table 3.1 and additional
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Figure 3.2: An example for Bayesian approach with Λ=20, α=10, β = 0.5

notation is defined and explained as needed. If total demand in the period turns

out to be higher than the order quantity, for every unit short a shortage cost b

is charged to the manufacturer at the end of the period. If total demand is less

than the order quantity, inventory holding cost h is charged per unit at the end of

the period. Fixed costs of ordering (or setup) and the cost of observing demand

are neglected. A total capacity of c units is assigned for the whole period and it

is assumed that the capacity is linearly decreasing over time.

The problem under consideration is to determine the best order time and the

corresponding order quantity given that capacity is decreasing and more demand

information is gathered as time progresses. The primary trade-off in this problem

is the trade-off between additional demand information and remaining capacity.

We prepare three different models for this problem. The first model chooses the

best order time from two possible order times t1 and t2, at t1 that are defined

well in advance of the ordering period. This could be the case, when supplier has
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m : Unit purchasing cost
b : Unit shortage cost, b > m
h : Unit inventory holding cost
c : Total capacity through the period

Xij : Demand between ti and tj (a r.v.)
p(xij) : Probability mass function of Xij

P (xij) : Cumulative distribution function of Xij

µxij |xkl : Expected value of Xij given Xkl = xkl
C(ti) : Remaining capacity at ti, C(ti) = (1− ti)c

yi : Order quantity at ith order time
yi : Optimal order quantity at ith order time
yi
∗ : Optimal order quantity at ith order time under capacity restriction

ECti,x0i
[yi] : Expected total cost of ordering yi units at ti given that total

observed demand until ti is x0i

EC∗ti,x0i
: Optimal expected total cost of ordering at ti given that total

observed demand until ti is x0i

Table 3.1: Notation

more power than the manufacturer and so controls the order time by dictating

two possible order times before the ordering period. He forces the manufacturer

to decide at t1 whether to place the order at this instant or delay to t2. The

second model finds the best order time based on the observed demand until pre-

determined first possible order time t1. For this case, the supplier provides more

flexibility regarding the order time. He announces the first possible order time

and allow the manufacturer to determine and declare the order time based on

the observations until t1. The last model is a dynamic one, which considers each

time point as a possible order time and decides to order or continue observing

demand based on the total observed demand until that point. This could be

the case, when the manufacturer has more control over the order time and can

place the order whenever he wants. For all models, the objective function is

the expected total cost including purchasing, inventory and shortage costs. The

detailed discussion of the models are presented in Sections 3.3, 3.4 and 3.5.
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3.3 Model 1

For this model it is assumed that there are two fixed order times at t1 and t2 that

are specified prior to the ordering period. The period is divided into three subpe-

riods which are defined as [0, t1], (t1, t2] and (t2, 1] and the demand observed in

them are x01, x12 and x23, respectively as seen from Figure 3.1. The problem is to

choose the order time, from these two predetermined times, which minimizes the

expected cost of the decision maker. t1 is the earliest time that the manufacturer

can order. Until t1, manufacturer collects information from the market and up-

dates the demand distribution accordingly by utilizing demand model described

in Section 3.1. At this point retailer has to decide whether to order at this instant

or delay it until t2 by comparing the expected cost of ordering at t1 and t2. Note

that the order quantities and its associated expected costs are calculated by using

updated distribution of demand. After comparison, the time point with smaller

expected cost is chosen as the order time. If retailer chooses to wait until t2, then

the demand distribution is again updated with respect to realized demand in the

second subperiod and the order quantity is decided based on the new distribution.

While deciding on the order time, the remaining capacity at each order time is

also considered. Delaying order time from t1 to t2 allows the decision maker to

learn more about the demand, hence makes the order quantity to better respond

to demand. On the other hand, it decreases the possibility of ordering the desired

amount due to capacity constraints. In other words, at t2 we have more accurate

demand information at the risk of insufficient capacity.

Observation 0: When we evaluate the expected cost of ordering at t1 with small

grid size between 0 and 1, we see that it is decreasing until a certain point and

then it shows sawtooth structure between two capacity change points. In Figure

3.3, we illustrate an example for this. The reason behind this is that remaining

capacity for such a time point and the subsequent point is the same. To be more

explicit, since the demand is discrete a capacity of 34.99 and 34 is the same.

However the uncertainty decreases by the information obtained over time and

this makes the value of delaying the order decision always positive. Therefore,

the order times should be chosen from the time points for which a capacity change
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occurs.

Figure 3.3: An example for Observation 0 with m=2, b=10, h=1, c=40, x01=4,
α=10, β = 0.5

In accordance with this observation, throughout the study we choose the pos-

sible order times from points where capacity changes. Hence, optimization is

carried out over discrete time points. Note that in our models, the possible order

times under consideration are multiples of 1/c due to remaining capacity struc-

ture.

The decision process of the model is summarized in four steps.

Step 1: Given that order decision is made at t1 and x01 is observed so far, find the

best order quantity and the corresponding expected cost based on the updated

demand distribution with x01.
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y∗1=min0≤y1≤C(t1) ECt1,x01 [y1]

where ECt1,x01 [y1] = my1 +

y1−x01−1∑
x13=0

h(y1 − x01 − x13)p(x13|x01)

+
∞∑

x13=y1−x01

b(x13 − (y1 − x01))p(x13|x01)

Note that p(xij|Xkl = xkl) is denoted by p(xij|xkl) and P (xij|Xkl = xkl) is de-

noted by P (xij|xkl) in the formulation of the models.

The expected cost can be simplified as follows:

ECt1,x01 [y1] = my1 +

y1−x01−1∑
x13=0

h(y1 − x01 − x13)p(x13|x01)

+
∞∑

x13=y1−x1

b(x13 − (y1 − x01))p(x13|x01)

+

y1−x01−1∑
x13=0

b(x13 − (y1 − x01))p(x13|x01)

−
y1−x01−1∑
x13=0

b(x13 − (y1 − x01))p(x13|x01)

= my1 +

y1−x01−1∑
x13=0

(b+ h)(y1 − x01 − x13)p(x13|x01)

+
∞∑

x13=0

b(x13 − y1 + x01)p(x13|x01)

= (m− b)y1 + b(x01 + µx13|x01)

+ (b+ h)

y1−x01−1∑
x13=0

(y1 − x01 − x13)p(x13|x01).
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Let

∆ECt1,x01 [y1] = ECt1,x01 [y1 + 1]− ECt1,x01 [y1]

= (m− b)(y1 + 1) + b(x01 + µx13|x01)

+ (b+ h)

y1−x01∑
x13=0

(y1 + 1− x01 − x13)p(x13|x01)

− (m− b)y1 − b(x01 + µx13|x01)

− (b+ h)

y1−x01−1∑
x13=0

(y1 − x01 − x13)p(x13|x01)

= (m− b) + (b+ h)P (y1 − x01|x01).

∆ECt1,x01 [y1] is the change in the expected total cost, when we switch from order

quantity of y1 to y1+1. Since the cost function is discrete convex [19], the smallest

y1 which makes this value greater than zero will give the optimal y1. Then, the

decision rule is to select the smallest y1 value (y1) that satisfies:

P (y1 − x01|x01) ≥ b−m
b+ h

. (3.4)

The optimal order quantity at t1 under capacity restriction and the optimal ex-

pected cost are:

y∗1 =

{
y1 if y1 ≤ C(t1),

C(t1) otherwise.
(3.5)

EC∗t1,x01
=


(m− b)y∗1 + b(x01 + µx13|x01) if x01 ≤ C(t1),

+(b+ h)
∑y∗1−x01−1

x13=0 (y∗1 − x01 − x13)p(x13|x01)

(m− b)C(t1) + b(x01 + µx13|x01) if x01 > C(t1).

(3.6)
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Step 2: Given that order decision is made at t2 and x02 is observed so far, find

the optimal order quantity and corresponding expected cost based on updated

demand distribution with x02.

y∗2=min0≤y2≤C(t2) ECt2,x02 [y2]

By similar reasoning with the previous problem, optimal order quantity y2 is the

smallest value of y2 that satisfies:

P (y2 − x02|x02) ≥ b−m
b+ h

. (3.7)

The optimal order quantity at t2 under capacity restriction and the optimal ex-

pected cost are:

y∗2 =

{
y2 if y2 ≤ C(t2),

C(t2) otherwise.
(3.8)

EC∗t2,x02
=


(m− b)y∗2 + b(x02 + µx23|x02) if x02 ≤ C(t2),

+(b+ h)
∑y∗2−x02−1

x23=0 (y∗2 − x02 − x23)p(x23|x02)

(m− b)C(t2) + b(x02 + µx23|x02) if x02 > C(t2).

(3.9)

Step 3: Given that x01 is observed at t1, find the expected cost of ordering

at t2. To do this, take the expectation of EC∗t2,x01+X12
.

E[EC∗t2,x01+X12
]=
∑∞

x12=0 p(x12|x01)EC∗t2,x01+x12

While calculating E[EC∗t2,x01+X12
], we should consider that the distribution pa-

rameters of last subperiod’s demand changes with different values x12 which conse-

quently produces different y∗2s. In order to find a compact form of E[EC∗t2,x01+X12
],
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we need to find the largest x12 value which produces optimal order quantity with-

out being subject to capacity constraint. This value is denoted by x12 and found

by selecting the largest x12 satisfying the following inequality:

P (C(t2)− x01 − x12|x01 + x12) ≥ b−m
b+ h

. (3.10)

At t1, the optimal expected total cost of ordering at t2 is;

E[EC∗t2,x01+X12
] =

∞∑
x12=0

p(x12|x01)EC∗t2,x01+x12

=

x12∑
x12=0

[(m− b)y∗2 + b(x02 + µx23|x02)

+ (b+ h)

y∗2−x02−1∑
x23=0

(y∗2 − x02 − x23)p(x23|x02)]p(x12|x01)

+

C(t2)−x01∑
x12=x12+1

[(m− b)C(t2) + b(x02 + µx23|x02)

+ (b+ h)

C(t2)−x02−1∑
x23=0

(C(t2)− x02 − x23)p(x23|x02)]p(x12|x01)

+
∞∑

x12=C(t2)−x01+1

[(m− b)C(t2) + b(x02 + µx23|x02)]p(x12|x01)

(3.11)

Step 4: Compare EC∗t1,x01
and E[EC∗t2,x01+X12

] and choose the time with the

smaller expected cost as the order time.

We now state an important property of the order decision at t1.

Property 1: Optimal order quantity at t1 is a non-decreasing function of the

observed demand.

Proof. Let P1 be the cdf of the remaining demand at t1 when the observed de-

mand is x01 and P2 be the cdf of the remaining demand at t1 when the observed

demand is x01 + 1. Let (r1, p) and (r2, p) be the Negative Binomial distribution’s
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parameters for P1 and P2 respectively, where r1 = α + x01, r2 = α + x01 + 1 and

p = (β + t1)/(β + 1). And let y1 and y2 be the smallest y value satisfying the

following inequalities respectively.

P1(y − x01|x01) ≥ b−m
b+ h

(3.12)

P2(y − x01 − 1|x01 + 1) ≥ b−m
b+ h

(3.13)

Note that the optimal order quantity belonging to j=1,2 are;

y∗j =

{
yj if yj ≤ C(t1);

C(t1) otherwise.

If P2(x) ≤ P1(x) ∀x, then P2(y1−x01−1) ≤ P1(y1−x01−1) and P1(y1−x01−1) <

(b−m)/(b+h), since y1 is the smallest y value satisfying (3.16). Therefore, y2 > y1

and y∗2 ≥ y∗1, which is the desired result.

The only thing that needs to be shown is P2(x) ≤ P1(x) ∀x, which indicates that

a Negative Binomial random variable with parameters (r2, p) dominates another

Negative Binomial random variable with parameters (r1, p) in the sense of first

order stochastic dominance, where r2 > r1. This result follows from Lemma 1 in

[15].

Note that this property also holds for the optimal order quantity at any ti; the

optimal order quantity is nondecreasing as demand observed until ti increases.

3.4 Model 2

The starting point of this model is the existence of a t2 value minimizing the

expected cost of ordering at t2 calculated at t1. Notation, main assumptions and

Observation 0 of Model 1 are also valid for this model. Hence, t1 and t2, over

which optimization is carried out, belong to the set of time points on which ca-

pacity change occurs.



CHAPTER 3. MODEL FORMULATION 23

Similar with Model 1, there exists a fixed order point t1 that is known at the

beginning of the period and demand information accumulates progressively until

this point. Note that the manufacturer is allowed to order for the first time at t1.

At this point the manufacturer has to decide whether to place the order instantly

or delay it. Our observations reveal that E[EC∗t2,x01+X12
] is discrete convex with

respect to t2, so there exists a t∗2 that minimizes the expected cost of ordering at

t2. So, the order time is set at t∗2.

The model can be summarized as follows:

Find t∗2 that minimizes E[EC∗t2,x01+X12
].

t∗2 = min
t1≤t2≤1

E[EC∗t2,x01+X12
]

Note that t∗2 can be found by simple search method; by evaluating E[EC∗t2,x01+X12
]

depicted in Equation (3.11) for t2 values between t1 and 1 with grid size 1/c due

to uniformly decreasing capacity structure.

If t∗2=t1, order at t1.

Otherwise, delay the order time to t∗2.

3.5 Model 3

The first model is a static model that chooses the best order time from given

two possible order times. The second model is also a static model, which chooses

the order time at predetermined first possible order time based on observations

so far. Contrary to the first two models, Model 3 is a dynamic model focusing

on determining the best order time by considering all possible time points. Note

that Observation 0, which highlights that the possible order points should be

chosen from the time points on which capacity change occurs, is also valid for

this model. Thus, c order time points are evaluated between 0 and (c − 1)/c

that are multiples of 1/c, where c is the total supplier capacity (See Figure 3.4).
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The decision process at each time point starts with the revision of demand dis-

tribution based on realized demand thus far. It is followed by the calculation

of order quantities and expected costs of ordering at that epoch and the next

decision epoch. The decision process continues until ordering instantly produces

an expected cost lower than the expected cost of ordering at the next decision

epoch. Each time the order time is postponed, forecast accuracy is increased at

the expense of losing one unit of available capacity.

Figure 3.4: Time Line of Ordering Period for Model 3

The dynamic model starts with the calculation and comparison of the expected

cost of ordering at time 0 and delaying the order until (1/c) and proceeds for-

wards in time until stopping condition is satisfied.

Given that it is ordered at ti and demand of x0i is observed so far, the opti-

mal order quantity and corresponding expected cost at any ti can be found as

follows.

Select the smallest yi value (yi) that satisfies;

P (yi − x0i|x0i) ≥
b−m
b+ h

. (3.14)

Then, the optimal order quantity is;

y∗i =

{
yi if yi ≤ C(ti),

C(ti) otherwise.
(3.15)



CHAPTER 3. MODEL FORMULATION 25

The optimal expected total cost of ordering at ti is;

EC∗ti,x0i
=


(m− b)y∗i + b(x0i + µxic|x0i

) if x0i ≤ C(ti);

+(b+ h)
∑y∗i−x0i−1

xic=0 (y∗i − x0i − xic)p(xic|x0i)

(m− b)C(ti) + b(x0i + µxic|x0i
) if x0i > C(ti).

(3.16)

Given that it is delayed until ti+1 at ti, the expected cost of delaying until ti+1

can be found as follows.

Find yi+1, which is the smallest value that satisfies:

P (yi+1 − x0,i+1|x0,i+1) ≥ b−m
b+ h

. (3.17)

The optimal order quantity at ti+1 under capacity restriction is;

y∗i+1 =

{
yi+1 if yi+1 ≤ C(ti+1),

C(ti+1) otherwise.
(3.18)

xi,i+1 is found by selecting the largest xi,i+1 satisfying the following inequality;

P (C(ti+1)− x0i − xi,i+1|x0i + xi,i+1) ≥ b−m
b+ h

. (3.19)
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At ti, the optimal expected total cost of ordering at ti+1 is;

E[EC∗ti+1,x0i+Xi,i+1
] =

∞∑
xi,i+1=0

p(xi,i+1|x0i)EC
∗
ti+1,x0i+xi,i+1

=

xi,i+1∑
xi,i+1=0

[(m− b)y∗i+1 + b(x0,i+1 + µxi+1,c|x0,i+1
)

+ (b+ h)

y∗i+1−x0,i+1−1∑
xi+1,c=0

(y∗i+1 − x0,i+1 − xi+1,c)p(xi+1,c|x0,i+1)]p(xi,i+1|x0i)

+

C(ti+1)−x0i∑
xi,i+1=xi,i+1+1

[(m− b)C(ti+1) + b(x0,i+1 + µxi+1,c|x0,i+1
)

+ (b+ h)

C(ti+1)−x0,i+1−1∑
xi+1,c=0

(C(ti+1)− x0,i+1 − xi+1,c)p(xi+1,c|x0,i+1)]p(xi,i+1|x0i)

+
∞∑

xi,i+1=C(ti+1)−x0i+1

[(m− b)C(ti+1) + b(x0,i+1 + µxi+1,c|x0,i+1
)]p(xi,i+1|x0i)

(3.20)

The dynamic process is summarized as follows:

Step 0: Begin with i = 0. Calculate y∗0, EC∗t0,x00
with Equations (3.15) and

(3.16) and E[EC∗t1,x00+X01
] with Equation (3.20), where x00 = 0.

If EC∗t0,x00
<E[EC∗t1,x00+X01

], stop. Set time 0 as the order time.

Otherwise, continue with Step 1 by i = 1.

Step 1: Calculate y∗i , EC
∗
ti,x0i

with Equations (3.15) and (3.16) and

E[EC∗ti+1,x0i+Xi,i+1
] with Equation (3.20).

Step 2: If EC∗ti,x0i
< E[EC∗ti+1,x0i+Xi,i+1

], stop. Set ti as the order time.

Otherwise, go back to Step 1 with i = i+ 1.



Chapter 4

Characteristics of the Individual

Models

In this chapter, we provide the characteristics of the three models that are inferred

from extensive computational analysis performed and related examples. In the

examples, the parameter set m=2, b=10, h=1, c=40, t1=0.25, t2=0.5, x01=4,

α=10, β = 0.5 is used unless otherwise stated.

4.1 Model 1

In this section, we present the computational analysis performed for Model 1 in

order to investigate the impact of the parameters on the expected cost and the

behavior of the optimal order time. Under the light of this study some interesting

properties are conjectured that have not been proven analytically, yet.

Firstly, we plot an example for Property 1 presented in the previous chapter

(See Figure 4.1). In this example, remaining capacity of 30 is an upper limit for

the optimal order quantity at t1. As x01 increases, higher demand is expected in

the remaining part of the ordering period and this is reflected by an increase in

the optimal order quantity until it reaches capacity limit at x01=9.

27
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Figure 4.1: The impact of x01 on optimal order quantity at t1, with m=2, b=10,
h=1, c=40, t1=0.25, α=10, β = 0.5

Observation 1: As x01 increases the decision maker’s tendency to place the order

at t1 increases. Therefore, there exists a threshold x01 value above which ordering

at t1 is better than ordering at t2.

Figure 4.2 shows the expected costs of ordering at t1 and t2 for our standard

parameter set, when x01 takes values between 0 and 10. We first note that both

of the expected costs are increasing with x01. Since higher values of x01 indicates

higher demand in the future, expected shortage costs increase for both of the

cases. However, expected cost of ordering at t2 shows a rather sharp increase due

to less available capacity at this point. For this particular example, the threshold

x01 value is 5. This means that delaying order time until 0.5 is better for all x01

values less than 5 and ordering at 0.25 is always optimal when x01 is 5 or higher

than 5.

Observation 2: As unit shortage cost increases, the decision maker’s tendency to
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Figure 4.2: The impact of x01 on expected costs, with m=2, b=10, h=1, c=40,
t1=0.25, t2=0.5, α=10, β = 0.5

place the order at t1 increases. Thus, there exists a threshold b value above which

ordering at t1 is better than ordering at t2.

Figure 4.3 illustrates the relationship between the expected costs of ordering

at t1 and t2 and b, when b takes values between 5 and 11. Clearly, expected

costs increase with an increase in the unit shortage cost. As b increases capacity

becomes more restrictive and with this joint effect ordering at t1 becomes less

costly. For this case, the threshold b value is 14. When b is greater than equal to

14, delaying order time to 0.5 is not optimal.

Observation 3: As capacity increases, both EC∗t1,x01
and E[EC∗t2,x01+X12

] decreases

or stays the same. However, the impact on E[EC∗t2,x01+X12
] is more pronounced.

Therefore, retailer’s tendency to delay ordering to t2 increases. There exists a

threshold c value, above which ordering at t2 is better than ordering at t1.
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Figure 4.3: Impact of shortage cost on expected costs, with m=2, h=1, c=40,
t1=0.25, t2=0.5, x01=4, α=10, β = 0.5

Figure 4.4 shows the expected costs of ordering at t1 and t2 for fifteen differ-

ent values of c (c = 10, 20, · · · , 150). We observe that expected costs decrease

sharply for the first part of the capacity increase, but the rate of decrease slows

and the expected costs become constant afterwards. Since the first few units

of capacity are used to materialize the best order quantity at each order point,

the decrease in the expected costs are considerable. Subsequent increases in the

capacity makes the expected cost of ordering at t2 lower than expected cost of

ordering at t1, since t2 has both sufficient capacity and more accurate demand

information. For this example, ordering at t2 is always preferred when c is greater

than equal to 38.
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Figure 4.4: The impact of capacity on expected costs, with m=2, b=10, h=1,
t1=0.25, t2=0.5, x01=4, α=10, β = 0.5

4.2 Model 2

We now present our numerical findings for Model 2 with related examples and

plots.

Observation 4: For given t1 and x01 values, E[EC∗t2,x01+X12
] shows discrete con-

vex structure as t2 is increasing from t1 to 1. Therefore, t2 value that minimizes

E[EC∗t2,x01+X12
] can be found by a simple search procedure. Note that t∗2 may not

be unique due to discrete cost function.

This finding is similar with results of simulation study conducted at Sport Ober-

meyer depicted in Figure 7 in Fisher et al. [8]. Fisher et al. highlight that

expected markdown and stockout costs decrease until some portion of the orders

are observed and quality of information is improved. The expected cost starts

to increase after it reaches the minimum in the middle part of the curve, since
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hereafter there is enough accumulated information but the remaining capacity

is inadequate. Similar reasoning is valid for our observation. In Figure 4.5 the

Figure 4.5: The impact of t2 on expected cost of ordering at t2, with m=2, b=10,
h=1, c=40, t1=0.25, x01=4, α=10, β = 0.5

expected cost of ordering at t2 is plotted, when t2 takes values between 0.25 and

1 with increments of 0.025. We see that the expected cost is minimized when t2

is 0.425.

Observation 5: As x01 increases, t∗2 approaches to t1. Therefore, there exists

a threshold x01 value above which t∗2 = t1 and so expected cost of ordering at t∗2

is equal to expected cost of ordering at t1.

Figure 4.6 shows the expected cost of ordering at t1 and determined t∗2 and Figure

4.7 shows t∗2 for x01 values between 0 and 10. We observe that as x01 increases

the difference between expected costs decreases progressively and becomes zero

afterwards. Also, we notice that t∗2 approaches to t1 as x01 increases. The intu-

ition behind this is as follows: The increase in the observed demand increases the

expectations on future demand and so delaying the order time to a further time
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Figure 4.6: The impact of x01 on expected costs, with m=2, b=10, h=1, c=40,
t1=0.25, t2=0.5, α=10, β = 0.5

point increases the expected shortage costs. For this particular case, t∗2 = t1 if

x01 is greater than equal to 9.

4.3 Model 3

In this section, we present the numerical analysis performed for Model 3 in order

to find out how the model operates under different settings.

Observation 6: Observation 1 of Model 1 is also applicable at each decision

point of this dynamic model. In other words, there exists a threshold observed

demand value (x0i) above which ordering instantly is better than delaying order

time (1/c) units more.

Model 3 decides whether to order or continue collecting demand information
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Figure 4.7: The impact of x01 on t∗2, with m=2, b=10, h=1, c=40, t1=0.25, t2=0.5,
α=10, β = 0.5

depending on this threshold value. Nothing can be said whether this threshold

is always increasing or decreasing as time progresses. Figure 4.8 is plotted to

show how this decision process works on an example. The plot includes threshold

x0i value at each time point, which are derived by comparing expected cost of

ordering immediately and delaying one more time unit over x0i values. For this

example; if the decision maker observes 6 or more units of demand until time

0.025, he should give order immediately, otherwise he should continue observing

demand. Note that under these parameters, it is not optimal to order at time 0

since the threshold value is 5. The decision maker should collect information at

least until 0.025. The order decision at time 0 is given if and only if the threshold

value is equal to zero and generally this is the case when shortage cost is very high

or capacity is very limited. Furthermore, for this example the threshold values

are firstly increasing and after remaining constant for a while they are decreasing

quickly due to scarce capacity. The increase in the first part can be explained as

follows: Observing high demand in a short time indicates that higher demand will

be observed in the remaining part of the period due to demand learning. Since
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Figure 4.8: Threshold observed demand values, with m=2, b=10, h=1, c=40,
α=10, β = 0.5

capacity decreases as time passes, order should be given at these early values in

order to decrease shortages at the end of the period. Furthermore, the threshold

demand values are decreasing in the latter parts of the period, since the possibil-

ity of realizing optimal order quantity is decreasing due to very limited capacity.

The decrease through the end of the period is always true, since the capacity is

very limited in the latter parts of the period.

As a next step, we focus on the impact of total available capacity and unit short-

age cost on this curve. Figure 4.9 and 4.10 include threshold observed demand

values for three different levels of total capacity and unit shortage cost respec-

tively. Note that an increase (or a decrease) in one of these two parameters has

reverse effect on the shape of the curve. The reason behind this is as follows:

As capacity increases, the competition between capacity and accurate demand

information softens and possibility of an additional shortage in the future de-

creases. So, the retailer can continue collecting more information by observing
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Figure 4.9: The impact of capacity on threshold observed demand values, with
m=2, b=10, h=1, α=10, β = 0.5

Figure 4.10: The impact of unit shortage cost on threshold observed demand
values, with m=2, h=1, c=40, α=10, β = 0.5
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demand at each time point as capacity increases. On the contrary as shortage

cost increases, the competition between capacity and accurate demand informa-

tion toughens and significance of capacity increases. Because of this, the decision

maker decides to place the order at lower values of observed demand.

We analyze the impact of the initial estimate of the mean demand on the shape

of the curve by Figure 4.11 using three different (α, β) pairs ((α = 10, β = 0.5),

(α = 15, β = 0.75), (α = 40, β = 2)). For all pairs (α/β) kept constant at 20,

while the variance decreases as α or β increases. We know that as the initial

variance gets smaller, the decision maker gets more confident about his estimate

of total demand and the effect of demand learning decreases. For this particular

Figure 4.11: The impact of initial mean demand estimate on threshold observed
demand values, with m=2, b=10, h=1, c=40

example, this is reflected by an increase in the threshold values for the initial part

of the period before capacity becomes a significant constraint and by a decrease

latterly. However, we cannot claim that the change in the threshold values will

be always the same as in this example, when the variance decreases.
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Figure 4.12: The optimal order quantities based on threshold observed demand
values, with m=2, b=10, h=1, c=40, α=10, β=0.5

Finally, we investigate that the optimal order quantities at each ti found based

on the threshold observed demand value is equal to the remaining capacity at ti.

We understand that the ordering decision is delayed until the observed demand

value restricts the optimal order quantity with capacity. Note that under the

light of this observation, we can determine the order time by checking whether

the optimal order quantity (found based on observed demand so far) hits the

remaining capacity or not at each time point instead of comparing expected costs

over x0i values. Figure 4.12 presents an example, which clearly shows that the

optimal order quantities at each time point is same as the remaining capacity at

that point.



Chapter 5

Numerical Comparison of

Different Models

In this chapter, we provide a summary of the results obtained from our computa-

tional studies and draw conclusions and insights from them accordingly. The aim

of these studies is to investigate the performance of different models with varying

levels of factors and discover how well demand learning performs under different

conditions.

Thus far, we determine the best order time by assuming that the decision maker

is totally unaware of the true value of the demand rate. We derive the threshold

demand value, above which ordering instantly is more economical, and the opti-

mal order quantity based on the updated Negative Binomial distribution. Note

that the optimality of the decisions taken is dependent on the true value of the

demand rate. In this section, we evaluate the models with the true value of the

Poisson rate. In other words, firstly threshold values and optimal order quanti-

ties are found based on Bayesian approach using Negative Binomial distribution,

then the expected cost of the models are calculated by the exact value of Λ. This

expected cost is used for comparisons in this chapter. Also, note that the true

demand rate is not known by the decision maker prior to the ordering period, so

the evaluation of the models with the true Poisson rate cannot lead the decision

39
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maker at the beginning of the ordering period.

As mentioned before, the performance of the models developed significantly de-

pends on the demand updating process and the updating process depends on

the accuracy of the initial estimate of the mean demand(or parameters of the

prior distribution). We assume that at the beginning of the ordering period the

demand rate Λ has a Gamma distribution with parameters α and β. (α/β) is

the expected value and (α/β2) is the variance of Λ. Therefore, (α/β) gives us

the initial estimate of the mean demand. When α or β is increased while keeping

(α/β) at a constant value, variance decreases. Small variance indicates that the

decision maker relies on the initial estimate and so is less willing to update the

demand distribution with the observed demand. On the other hand, for a high

variance case the weight of the accumulated demand information is higher in the

update procedure. Under the light of this information, we divide our compu-

tational studies into two parts. In the first part, we investigate the impact of

the parameters on the models, when the underlying initial estimate of the mean

demand is true. In the second part, we discover the effects of over or under es-

timating the mean demand and the initial level of demand uncertainty on the

performance of the models and the benefits of demand learning.

In our computational studies, we consider seven models: four of them are the

models we developed and three of them are benchmark models introduced specif-

ically for this study in order to obtain a baseline to compare with our models.

The models under consideration are as follows:

1. Model 1 (t1 = 0.2, t2 = 0.5):

2. Model 1 (t1 = 0.2, t2 = 0.7):

The first two models belong to Model 1 class with the same t1 but different

t2 values. Since t2 significantly affects the delaying decision, its impact on the

performance of the model will be observed clearly by taking t2 = 0.5 in the middle

of the period and t2 = 0.7 at a later part of the period. These models are denoted
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by ”Model-1(t1, t2)” in the tables.

3. Model 2 (t1 = 0.2): The third model is Model 2 with the same t1 value used

for the previous models in order to obtain a comparison base between Model 1

and Model 2. It is denoted by ”Model-2(t1)” in the tables.

The threshold demand values and order quantities of these two models are found

by Negative Binomial distribution and expectation is taken over Poisson distri-

bution.

4. Model 3: The fourth model is Model 3 that incorporates demand learning

at each time point. The threshold demand values of each decision epoch and the

order quantities are derived based on the updated Negative Binomial distribution

and evaluated by Poisson distribution. It is denoted by ”Model-3” in the tables.

5. Model 3 with perfect information: This model is introduced in order to observe

the ideal behavior of the dynamic model, when the true value of demand rate is

known. The threshold demand values of each decision epoch are derived based on

the Poisson distribution and evaluated also by Poisson distribution. It is denoted

by ”Model-3-Perf-Info” in the tables.

6. Newsboy Model: This model commits order quantity once at time 0 with-

out observing any demand based on the initial Negative Binomial distribution.

It is included in the computational studies in order to observe the effect of de-

mand learning. It is denoted by ”Newsboy” in the tables.

7. Newsboy Model with perfect information: Similar to the Newsboy Model,

it decides on the order quantity once at time 0 without realizing any demand.

The order quantity is found based on the correct value of Λ. This model is in-

troduced in order to observe the effect of not utilizing demand learning when the

true demand rate is known. It is denoted by ”Newsboy-Perf-Info” in the tables.

Throughout our computational studies, we assume that capacity is a linearly
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decreasing function of the remaining time before the end of the ordering period.

Note that other structures describing the decrease in the capacity can also be an-

alyzed. For possible order times, we select the time points from the ones on which

capacity change occurs. It is clear that for the uniformly decreasing capacity case,

these points are multiples of 1/c and take values between 0 and (c− 1)/c, includ-

ing 0. Also, note that the t1 and t2 values used in the computational studies are

chosen such that they are common factors of capacity values under investigation.

In comparisons, we use two different performance measures. First one is the

percent improvement (PI) in expected cost compared with Newsboy Model that

is defined as the following quantity for any model:

PI =
Exp. Cost of Newsboy-Exp. Cost of Model

Exp. Cost of Newsboy
× 100.

For the second one, we use the realized percent improvement (RPI) with respect

to Newsboy Model and Model 3 under perfect information, which is defined by

the following equation:

RPI =
Exp. Cost of Newsboy-Exp. Cost of Model

Exp. Cost of Newsboy-Exp. Cost of Model-3-Perf-Info
× 100.

The RPI gives us the percent improvement in the expected cost gained by the

model under investigation compared to the base case Newsboy Model and relative

to the percent improvement gained by utilizing Model 3 under perfect informa-

tion.
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5.1 Comparative Performance of the Models-

Correct Prior Estimate of the Mean De-

mand

In this section, we assess the impact of the parameters on the performance of

the models, when the underlying initial estimate of the mean demand is true.

Throughout the analysis, we assume that m=2, b=10, h=1, c=40, α = 10,

β = 0.5, and Λ = 20 unless otherwise stated.

In Table 5.1, the percent improvements in the expected costs are shown when

capacity is equal to the true value of the mean demand rate. It is clearly seen

that when b=5, even Model-3-Perf-Info shows insignificant improvement and all

of the models developed show worse performance than Newsboy. For this case,

Model-3-Perf-Info chooses to order at time 0 as Newsboy. Since the critical frac-

tile is low (0.5) and the demand has considerable variance, Newsboy commits for

a lower order quantity and this is why Model-3-Perf-Info and Newsboy-Perf-Info

is better than Newsboy. We know that Model-1 and Model-2 will produce higher

expected costs than Newsboy, since they have to wait at least until 0.2 and lose

an important portion of the capacity. In addition to this, we observe that Model-

Models b=5 b=15
Expected Cost Newsboy 50.84 68.43

(percentage)

Model-1(0.2,0.5) -8.39 -43.96
PI Model-1(0.2,0.7) -8.28 -43.96

Model-2(0.2) -8.60 -44.17
Model-3 -1.28 0
Model-3-Perf-Info 0.35 0
Newsboy-Perf-Info 0.35 0

Table 5.1: The impact of shortage cost and limited capacity on PI in expected
costs, (m=2, h = 1, c=20, α=10, β=0.5, Λ=20)

1(0.2, 0.5) delays the order to 0.5 if there is no demand realization until 0.2 and

Model-2(0.2) delays the order to a determined time (0.4, 0.3 and 0.25 respec-

tively) if 2 units of demand is observed until 0.2. These cause more decrease in

the percent improvements. Moreover, we notice that Model-2(0.2,0.7) is better
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than Model-1(0.2, 0.5) and Model-2(0.2), because it place the order at 0.2 under

almost all circumstances. For Model-3 it is not optimal to order at time 0. This

means delaying decision is taken at least until 0.025 in spite of the decreasing ca-

pacity and this is the reason why it also shows worse performance than Newsboy.

When b=15; Model-3, Model-3-Perf-Info, Newsboy, and Newsboy-Perf-Info show

no improvement in the expected costs since all of them choose to order at time

0 due to limited capacity and high shortage cost and decide on the same order

quantity with Newsboy, as we would expect. Note that Newsboy commits for a

higher quantity compared compared with b=5 since the critical fractile is higher

(0.73). Other models produce higher expected costs than Newsboy, since they

have to wait at least until 0.2. Model-1s produce the same result since both of

them set the order time as 0.2 for all observed demand values until 0.2. However,

Model-2 delay the order time to 0.25 if no demand is realized until 0.2. And

this is why it produces a lower percentage value. From this table, we can draw

the conclusion that demand learning may mislead the decision maker under very

limited capacity.

Since demand learning does not have any importance under very limited ca-

pacity, from now on we will not compare the results of the models for c=20.

Table 5.2 and Table 5.3 display the percent improvement and the realized per-

cent improvement in the expected costs of the models with different values of

shortage cost (5, 10, 15, 25) and capacity (40, 50). We observe that as capacity

increases the improvement in Model 1(0.2,0.5) increases, while it is decreasing for

Model-1(0.2,0.7), for all shortage cost values. The reason for this is as follows:

As capacity increases, the model tends to decide for waiting until the second

order time. For Model-1(0.2,0.5) there exists enough remaining capacity for the

mean demand and more accurate demand information at 0.5. On the other hand

for Model-1(0.2,0.7), there is more demand information but not enough capac-

ity for responding it at 0.7, which consequently increases the expected shortage

costs. This observation shows us that performance of Model 1 is quite sensitive

to the location of t2, which is consistent with our expectations. The percent

improvement in Model-2(0.2) is also increasing with the increase in the capacity.
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Models c=40 c=50

b=5

Expected Cost Newsboy 50.84 50.84

(percentage)

Model-1(0.2,0.5) 2.36 4.50
PI Model-1(0.2,0.7) -0.98 -1.35

Model-2(0.2) 3.47 5.10
Model-3 5.04 6.67
Model-3-Perf-Info 6.42 7.99
Newsboy-Perf-Info 0.35 0.35

b=10

Expected Cost Newsboy 57.36 57.36

(percentage)

Model-1(0.2,0.5) 1.16 4.17
PI Model-1(0.2,0.7) 0.03 -0.41

Model-2(0.2) 3.76 5.73
Model-3 4.63 8.14
Model-3-Perf-Info 8.43 10.77
Newsboy-Perf-Info 1.15 1.15

b=15

Expected Cost Newsboy 63.25 63.25

(percentage)

Model-1(0.2,0.5) 4.54 8.07
PI Model-1(0.2,0.7) 4.23 3.26

Model-2(0.2) 7.26 9.42
Model-3 7.61 11.81
Model-3-Perf-Info 12.56 15.18
Newsboy-Perf-Info 5.46 5.46

b=25

Expected Cost Newsboy 68.40 68.40

(percentage)

Model-1(0.2,0.5) 4.04 7.22
PI Model-1(0.2,0.7) 5.43 3.22

Model-2(0.2) 7.98 9.89
Model-3 7.22 12.66
Model-3-Perf-Info 14.19 17.17
Newsboy-Perf-Info 7.02 7.02

Table 5.2: The impact of shortage cost and capacity on PI in expected costs,
(m=2, h = 1, α=10, β=0.5, Λ=20)
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Models c=40 c=50

b=5

Expected Cost
Model-3-Perf-Info 47.58 46.78
Newsboy 50.84 50.84

(percentage)

Model-1(0.2,0.5) 36.75 56.34
RPI Model-1(0.2,0.7) -15.31 -16.87

Model-2(0.2) 54.02 63.77
Model-3 78.59 83.46
Newsboy-Perf-Info 5.47 4.39

b=10

Expected Cost
Model-3-Perf-Info 52.53 51.18
Newsboy 57.36 57.36

(percentage)

Model-1(0.2,0.5) 13.73 38.70
RPI Model-1(0.2,0.7) 0.41 -3.79

Model-2(0.2) 44.57 53.16
Model-3 54.90 75.60
Newsboy-Perf-Info 13.70 10.72

b=15

Expected Cost
Model-3-Perf-Info 55.31 53.65
Newsboy 63.25 63.25

(percentage)

Model-1(0.2,0.5) 36.15 53.17
RPI Model-1(0.2,0.7) 33.65 21.47

Model-2(0.2) 57.80 62.06
Model-3 60.56 77.82
Newsboy-Perf-Info 43.42 35.93

b=25

Expected Cost
Model-3-Perf-Info 58.70 56.66
Newsboy 68.40 68.40

(percentage)

Model-1(0.2,0.5) 28.49 42.05
RPI Model-1(0.2,0.7) 38.28 18.78

Model-2(0.2) 56.28 57.64
Model-3 50.90 73.76
Newsboy-Perf-Info 49.47 40.89

Table 5.3: The impact of shortage cost and capacity on RPI in expected costs,
(m=2, h = 1, α=10, β=0.5, Λ=20)
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Models c=40 c=50

b=10 (percentage)

Model-1(0.2,0.5) 13.73 38.70
RPI Model-1(0.2,0.7) 0.41 -3.79

Model-2(0.2) 44.57 53.16
Model-3 54.90 75.60
Model-3(0.2) 59.17 75.69

b=25 (percentage)

Model 1(0.2,0.5) 28.49 42.05
RPI Model-1(0.2,0.7) 38.28 18.78

Model-2(0.2) 56.28 57.64
Model-3 50.90 73.76
Model-3(0.2) 63.75 74.41

Table 5.4: The impact of t1 on RPI in expected cost of Model-3, (m=2, h = 1,
α=10, β=0.5, Λ=20)

As capacity increases, the model can determine order times different than 0.2

for higher observed demand values until 0.2 and thereby takes more advantage

of demand learning. Similarly, increase in capacity leads to increase in benefits

gained from Model-3. When capacity is higher, the model decides on delaying

the order for higher threshold total observed demand values at each time point.

Thus, decisions are based on more accurate demand estimate and more bene-

fit of demand learning is gained. We observe that Model-3 outperforms other

models except for one case, when c = 40 and b = 25. Since capacity is low and

shortage cost is very high, the model triggers ordering decision at early times for

low observed demand values. These decisions based on less demand information

increase the expected cost. If we define a time point (t1) for Model-3, until which

information accumulates and ordering is not allowed before, and let the dynamic

process start hereafter, then we will see that Model-3 (using same t1 with Model-1

and Model-2) will perform better than all of the models under low capacity and

high shortage cost cases too (See Table 5.4, the new model is denoted by Model-

3(0.2)). Collecting information for a certain amount of time without evaluating

the ordering decision prevents the decision maker to order in the initial part of

the period, during which uncertainty in demand still remains, and this lowers the

expected cost. Moreover, we notice that the improvement in Newsboy-Perf-Info

increases with the shortage cost, since it decides to order more, expected shortage

costs decrease. On the other hand, we observe that PI of this model does not

change with the increase in capacity whereas RPI decreases. The reason is that
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Models c=40 c=50
t1 Expected Cost Newsboy 57.36 57.36

0.2 PI (percentage)
Model-1(t1,0.5) 1.16 4.17
Model-1(t1,0.7) 0.03 -0.41
Model-2(t1) 3.76 5.73

0.3 PI (percentage)
Model-1(t1,0.5) 3.84 5.42
Model-1(t1,0.7) 3.06 0.72
Model-2(t1) 5.39 6.51

0.4 PI (percentage)
Model-1(t1,0.5) 5.34 6.74
Model-1(t1,0.7) 4.79 5.05
Model-2(t1) 5.62 7.84

0.5 PI (percentage)
Model-1(t1,0.7) -4.10 7.04
Model-2(t1) -3.76 8.52

Table 5.5: The impact of t1 on PI in expected costs, (m=2, b=10, h = 1, α=10,
β=0.5, Λ=20)

the order quantities of both Newsboy and Newsboy-Perf-Info stay the same with

the change in capacity, but the expected cost of Model-3-Perf-Info is lower for

higher capacity.

To summarize, this analysis leads us to draw the conclusion that the value of

demand learning and improvements gained from the models increase, as capacity

increases.

Table 5.5 presents the percent improvements in the expected costs of the models

including a first demand accumulation point (t1), when t1 takes on values 0.2,

0.3, 0.4, and 0.5 and capacity takes on values 40 and 50. As t1 is shifted through

the end of the period, the uncertainty of the demand at t1 reduces. Note that

Model-1 and Model-2 decides on the order time at t1. Then, the order time will be

determined on more accurate demand information for a higher t1 value and this

lowers the expected costs. However, after a time point the expected cost starts

to increase since hereafter there is sufficient demand information but inadequate

capacity. This is why the RPI in the expected costs of Model-1s and Model-2

increase between t1=0.2 and t1=0.4 and become negative at t1=0.5, when c=40.

Moreover, we observe that Model-2 produces higher RPIs than Model-1s for all

of the cases. This is reasonable, since it has the flexibility to choose the order
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Models c=40 c=50

variance=40

Expected Cost
Model-3-Perf-Info 52.53 51.18

α=10, β=0.5 Newsboy 57.36 57.36

RPI
Model-2(0.2) 44.57 53.16
Model-3 54.90 75.60

(percentage) Newsboy-Perf-Info 13.70 10.72

variance=10

Expected Cost
Model-3-Perf-Info 52.53 51.18

α=40, β=2 Newsboy 56.70 56.70

RPI
Model-2(0.2) 76.06 78.53
Model-3 92.18 95.98

(percentage) Newsboy-Perf-Info 0 0

Table 5.6: The impact of initial mean demand estimate on RPI in expected costs,
(m=2, b=10, h = 1, Λ=20)

time by considering more possible order times based on the observations until t1.

Since the performance of Model-1 strongly depends on chosen t1 and t2 values,

from now on we will not include it in our computational analysis.

Table 5.6 studies the impact of the variance of the initial mean demand estimate

on the expected costs of the models. While the initial estimate of the mean

demand is fixed at 20, the variance of the estimate takes on values 40 and 10.

We know that in Bayesian approach, high variance of the initial mean demand

estimate indicates that the decision maker is quite unsure about his estimate and

gives more weight to the observed demand in the update procedure and vice versa

for low variance. The findings in Table 5.5 are consistent with this information.

When the variance is 40, demand learning may mislead the decision maker since

the demand estimate will quickly respond to the observed demand. However, the

update procedure is relatively robust to the observed demand when the variance

is 10. Hence, the models with demand learning take decisions in accordance with

the true mean demand estimate and produce lower expected costs and higher

RPIs in the expected costs. As seen from the table, all of the models developed

are better off when the variance is lower. Besides, when the variance is lower,

Newsboy decides on the same order quantity with Newsboy-Perf-Info and this

leads Newsboy Perf Info to produce zero RPI.
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Notice that the maximum improvements in the expected costs are achieved for

Model-3, since it uses demand learning continuously for determining the best

order time and the corresponding best order quantity. The studies in this sec-

tion illustrate that the benefits of demand learning under the true initial point

estimate are higher; when the available capacity is high and the initial level of

demand uncertainty is low.

5.2 Comparative Performance of the Models-

Incorrect Prior Estimate of the Mean De-

mand

The objective in this section is to investigate the effects of the initial estimate

of the mean demand on demand learning and the expected cost of implementing

the models. Throughout the analysis, we keep the initial estimate of the mean

demand constant and vary the true value of the demand rate and the variance of

the initial mean demand estimate. Note that the models are evaluated with the

true value of the demand rate.

We analyze the impact of the initial level of uncertainty and true demand rate in

detail on the performance of demand learning. In the analysis, we also include

the effect of capacity by taking c = 40 in Table 5.7 and Table 5.8 and c = 50

in Table 5.9 and Table 5.10. The (α, β) pair takes values (5, 0.25), (10, 0.5),

(15, 0.75), (25, 1.25), (40, 2) for which the initial estimate of the mean demand

is constant at 20. But the variance takes values 80, 40, 26.67, 16, and 10, re-

spectively. Firstly, we analyze the change in the expected costs of Newsboy and

Newsboy-Perf-Info as variance increases, which is as follows: For Λ = 20 case,

as the variance of the initial mean demand estimate decreases, the variance ap-

proaches to the variance of the true demand. Hence, the optimal order quantity

and consequently expected cost of Newsboy firstly decrease and then become

equal with Newsboy-Perf-Info. As mentioned, the optimal order quantity found

for Newsboy decreases as the variance decreases. For Λ = 10, this is reflected as
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a decrease in the expected cost of Newsboy, since the difference between order

amount and the true demand rate becomes smaller. Consequently, the percent

improvement of Newsboy-Perf-Info decreases. On the other hand for Λ = 30, as

the variance decreases, the expected cost of Newsboy increases due to increase in

expected shortage cost since the difference between order amount and the true

demand rate increases and consequently the percent improvement of Newsboy-

Perf-Info increases.

Note that under both of the capacity values the results of Λ = 20 are similar

to the results in Table 5.5; improvement gained decreases with the increase in

the variance of the initial mean demand estimate. The reason is that when the

variance is high the update procedure quickly responds to the observed demand

values and this may lead the decision maker to take wrong decisions. This is

in contrast for the cases when Λ is 10 and 30. Since, higher variance allows the

updating procedure to identify the inaccuracy of the estimate quickly and update

it for the subsequent decision epoch. We observe that the PI and RPI is always

higher for Λ = 10 and Λ = 30 compared to the PI and RPI for Λ = 20, when

the variance is high. Thus, we conclude that learning is most beneficial when the

initial estimate of the mean demand is inaccurate and the variance of the estimate

is high. Again, Model 3 produces higher percentage improvement values for all

of the cases, since it incorporates demand learning continuously and update the

mean demand estimate at each decision epoch. Additionally, we notice that the

learning effect is more pronounced when c = 50. Because delaying is a preferable

decision due to more available capacity and this makes the decision maker to

learn more about the demand. Also, we note that the improvements are more

noticeable, when the mean demand is over-estimated. But, we do not have any

intuition about this observation now.

Under the light of this analysis, we infer that the models perform better when

the mean demand is overestimated and the capacity is higher.
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Chapter 6

Conclusion

In this thesis, we study the problem of determining the order time for a seasonal

products manufacturer in an environment where demand learning is possible.

The manufacturer has a single opportunity for ordering and its supplier’s capac-

ity decreases as time progresses. The distribution of the demand is updated by

Bayesian approach at each order opportunity in order to improve the quality of

the forecasts. A standard form of Bayesian approach is used for the demand

model, which assumes that demand in the whole ordering period is distributed

by Poisson with an unknown parameter. The prior distribution of the unknown

parameter is Gamma which produces Negative Binomial distribution for uncon-

ditional demand. Three different models are developed that incorporates demand

learning, each having a different assumption in terms of existing possible order

times. The first model chooses the best order time from two defined order times

prior to the ordering period. The second model sets the best order time depend-

ing on the first predetermined order time and observed demand so far. Both of

the models update the demand distribution at the first predetermined order time

and decide on the order time based on the new distribution. The last model con-

siders each time point as a possible order time, continuously updates the demand

information and chooses the best order time accordingly. In addition, we have

conducted a series of computational studies to investigate the operating proper-

ties of the models we developed and to assess the performance of the models under
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different parameter settings. Some key conclusions and insights drawn from these

studies are as follows. Firstly, we observe that dynamic model that incorporates

continuous demand learning shows better performance than the other models.

Secondly, we observe that demand learning is most beneficial, when the initial

estimate of the mean demand is inaccurate and has high level of uncertainty.

Also, the benefits of learning is more pronounced when the capacity is high and

mis-estimation of the mean demand is significant.

We also identify a number of cases for which the study can be extended. First one

is using an increasing unit purchasing cost over time in the expected cost. Since

the supplier has limited capacity, the increase in the purchase cost through the

end of the ordering period is reasonable. It will be useful in terms of observing

a more pronounced trade-off between the capacity and more accurate demand

information. Second one is analyzing the models under nonlinear decreasing ca-

pacity. This will also lead to a different trade-off structure between the demand

and the remaining capacity.



Bibliography

[1] K. S. Azoury. Bayes solution to dynamic inventory models under unknown

demand distributions. Management Science, 31:1150–1161, 1985.

[2] J. O. Berger. Statistical decision theory and bayesian analysis. Springer

Series in Statistics, 1985.

[3] S. H. Chang and D. E. Fyffe. Estimation of forecast errors for seasonal style

goods sales. Management Science, 18:B–89–B–96, 1971.

[4] T. M. Choi, D. Li, and H. Yan. Optimal two-stage ordering policy with

bayesian information updating. Journal of the Operational Research Society,

54:846–859, 2003.
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Appendix A

Results of Computational Studies

In this section, we provide the exact values of the expected costs.
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b Models c=20 c=40 c=50

5

Model-3-Perf-Info 50.66 47.58 46.78
Newsboy 50.84 50.84 50.84
Model-1(0.2, 0.5) 55.11 49.64 48.55
Model-1(0.2,0.7) 55.05 51.34 51.52
Model-2(0.2) 55.21 49.08 48.25
Model-3 51.49 48.28 47.45
Newsboy-Perf-Info 50.66 50.66 50.66

10

Model-3-Perf-Info 59.54 52.53 51.18
Newsboy 59.54 57.36 57.36
Model-1(0.2, 0.5) 76.60 56.70 54.97
Model-1(0.2,0.7) 76.60 57.34 57.60
Model-2(0.2) 76.65 55.21 54.08
Model-3 59.54 54.71 52.69
Newsboy-Perf-Info 59.54 56.70 56.70

15

Model-3-Perf-Info 68.43 55.31 53.65
Newsboy 68.43 63.25 63.25
Model-1(0.2, 0.5) 98.51 60.38 58.15
Model-1(0.2,0.7) 98.51 60.58 61.19
Model-2(0.2) 98.65 58.66 57.29
Model-3 68.43 58.44 55.78
Newsboy-Perf-Info 68.43 59.80 59.80

25

Model-3-Perf-Info 86.19 58.70 56.66
Newsboy 86.19 68.40 68.40
Model-1(0.2, 0.5) 142.58 65.64 63.47
Model-1(0.2,0.7) 142.58 64.69 66.20
Model-2(0.2) 142.58 62.94 61.63
Model-3 86.19 63.46 59.74
Newsboy-Perf-Info 86.19 63.60 63.60

Table A.1: The impact of capacity and shortage cost on expected costs, (m=2,
h = 1, α=10, β=0.5, Λ=20)

b Models c=40 c=50

10
Model-2(0.2) 62.94 61.63
Model-3 54.71 52.69
Model-3(0.2) 54.50 52.69

25
Model-2(0.2) 55.21 54.08
Model-3 63.46 59.74
Model-3(0.2) 62.22 59.66

Table A.2: The impact of t1 on Model 3, (m=2, h = 1, α=10, β=0.5, Λ=20)
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t1
Models c=40 c=50
Newsboy 57.36 57.36

0.2
Model-1(t1, 0.5) 56.70 54.97
Model-1(t1,0.7) 57.34 57.60
Model-2(t1) 55.21 54.08

0.3
Model-1(t1, 0.5) 55.16 54.25
Model-1(t1,0.7) 55.61 56.95
Model-2(t1) 54.27 53.63

0.4
Model-1(t1, 0.5) 54.30 53.49
Model-1(t1,0.7) 54.62 54.47
Model-2(t1) 54.14 52.87

0.5
Model-1(t1,0.7) 59.71 53.32
Model-2(t1) 59.52 52.48

Table A.3: The impact of t1 on expected costs, (m=2, b=10, h = 1, α=10, β=0.5,
Λ=20)

α, β Models c=40 c=50

variance=40

Model-3-Perf-Info 52.53 51.18
α=10, β=0.5 Newsboy 57.36 57.36

Model-2(0.2) 55.21 54.08
Model-3 54.71 52.69
Newsboy-Perf-Info 56.70 56.70

variance=10

Model-3-Perf-Info 52.53 51.18
α=40, β=2 Newsboy 56.70 56.70

Model-2(0.2) 53.53 52.37
Model-3 52.86 51.41
Newsboy-Perf-Info 56.70 56.70

Table A.4: The impact of initial mean demand estimate on expected costs, (m=2,
b=10, h = 1, Λ=20)
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