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ABSTRACT

ANOTHER CHARACTERIZATION OF

EXPECTED SCOTT-SUPPES UTILITY REPRESENTATION

Yıldız, Furkan

M.A., Department of Economics

Supervisor: Asst. Prof. Dr. Nuh Aygün Dalkıran

January 2021

This thesis provides a new characterization of Expected Scott-Suppes Util-

ity Representation (ESSUR). ESSUR combines the Expected Utility Repre-

sentation with the Scott-Suppes Utility Representation. The latter represents

semiorders that formalize preferences with intransitive indifferences. Dalkıran,

Dokumacı, and Kara (2018) were the first to provide an axiomatic character-

ization of ESSUR. In this study, we provide another characterization start-

ing with the axioms of Candeal and Indurain (2010). Candeal and Indurain

(2010) provide an axiomatic characterization of Scott-Suppes representations

for semiorders on uncountably infinite sets. Therefore, we identify the axioms

required on top of those of Candeal and Indurain (2010) so that we obtain a

linear Scott-Suppes representation, i.e., another characterization of ESSUR.

Keywords: Expected Utility, Intransitive Indifference, Scott-Suppes Represen-

tation, Semiorder
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ÖZET

BEKLENEN SCOTT-SUPPES FAYDA GÖSTERİMİNİN

BİR BAŞKA KARAKTERİZASYONU

Yıldız, Furkan

Yüksek Lisans, İktisat Bölümü

Tez Danışmanı: Dr. Öğr. Üyesi Nuh Aygün Dalkıran

Ocak 2021

Bu tezde geçişken olmayan kayıtsızlıklar fikrini bünyesinde barındıran yarı-

sıralamalar yapısı altında Scott-Suppes fayda gösterimi ile Beklenen Fayda

Gösterimi’ni ilişkilendiren Beklenen Scott-Suppes Fayda Gösterimi’nin yeni bir

karakterizasyonu verilmektedir. Beklenen Scott-Suppes Fayda Gösterimi’nin ilk

karakterizasyonu Dalkıran, Dokumacı ve Kara (2018) tarafından yapılmıştır.

Bu çalışmada verilen karakterizasyon Candeal ve Indurain (2010)’un sayılamaz

sonsuzluktaki kümeler için elde ettiği Scott-Suppes Fayda Gösterimi karakteri-

zasyonunu temel olarak alıp hangi aksiyomlar ilave edildiğinde bir (lineer) Bek-

lenen Scott-Suppes fayda gösterimi elde edilebilir sorusunu cevaplamaktadır.

Anahtar Kelimeler: Beklenen Fayda, Geçişken Olmayan Kayıtsızlıklar, Scott-

Suppes Gösterimi, Yarı-sıralama
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CHAPTER 1

INTRODUCTION

1.1 Transitivity and Intransitivity of Indifference Relation and

Semiorders

Rational choice is ground by two main assumptions on preferences: complete-

ness and transitivity. Many studies in the literature criticize both of these as-

sumptions. In this thesis, we focus on transitivity, which can be defined as fol-

lows: if x is at least as good as y and y is at least as good as z, then x is at

least as good as z. The concept of ‘being at least as good as’ can be parti-

tioned into two: a strict preference relation and an indifference relation. In-

deed, the indifference relation is the lack of a strict preference: If an individual

does not strictly prefer an alternative x over another alternative y and s/he

does not strictly prefer y over x, then s/he is said to be indifferent between x

and y.

A strict preference relation is transitive if an individual strictly prefers x to y

and strictly prefers y to z, then s/he strictly prefers x to z. On the other hand,

if an individual is indifferent between x and y and also indifferent between y

and z, then it may seem to be reasonable to assume that the individual is in-

different between x and z. If this is the case, we say that the indifference rela-

tion is transitive as well.
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Many economists argue that rational choice implies that the strict preference

relation has to be transitive. On the other hand, it is not clear whether ratio-

nality imposes the transitivity of the indifference relation. The limited per-

ception of humankind and empirical unresponsiveness of individuals to small

changes seem to support the intransitivity of the indifference relation. That is,

an individual may be indifferent between x and y and s/he may be indifferent

between y and z, but s/he does not have to be indifferent between x and z.

The idea of intransitivity of indifferences is not only a topic of interest in eco-

nomics, but also it is analyzed in philosophy, physics, psychology, and psy-

chophysics. The existence of ‘intransitive indifference’ is related to the concept

of ‘vagueness’ in philosophy. The sorites paradox is a well-known example of it:

1000000 grains of sand make a heap.
If 1000000 grains of sand make a heap, then 999999 grains of
sand do.
If 999999 grains of sand make a heap, then 999998 grains do.
...
If 2 grains of sand make a heap, then 1 grain does. 1 grain of
sand makes a heap.

The moral of the sorites paradox is that an individual may not differentiate

between two very close quantities. That is, for an individual to recognize the

difference, they must differ more than some threshold level. In the field of psy-

chophysics, the Weber-Fechner law proposes that actual change and perceived

change may not necessarily coincide because some changes in some ranges may

be unnoticeable, just like the case of intransitive indifference.

When an individual strictly prefers an alternative over another and her prefer-

ences exhibit intransitive indifference, s/he behaves as if these two alternatives

differ from each other more than some threshold. Under the standard assump-

tion of transitive indifference, this threshold can be considered as zero. How-

ever, the threshold level may be non-zero under intransitive indifference. To
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illustrate, one can be indifferent between sleeping at 10:00 PM and 11:00 PM

and be indifferent between sleeping at 11:00 PM and 12:00 AM. However, s/he

might strictly prefer sleeping at 10:00 PM rather than sleeping at midnight. In

this example, the threshold level for such an individual can be thought of as an

hour.1

The idea of intransitive indifference has existed in the literature since the 19th

century (see Weber (1834)). In the 20th century, Luce (1956) introduced the

concept of ‘semiorder’ to capture the idea of intransitive indifferences.

It is certainly well known from psychophysics that if ‘prefer-
ence’ is taken to mean which of two weights a person believes
to be heavier after hefting them, and if ‘adjacent’ weights are
properly chosen, say a gram difference in a total weight of
many grams, then a subject will be indifferent between any
two ‘adjacent‘ weights. If indifference were transitive, then
he would be unable to detect any weight differences, however
great, which is patently false. (Luce; 1956)

Scott and Suppes (1958) provide a utility representation for preferences that

exhibit intransitive indifference –represented as semiorders– on finite sets. This

representation implies that the utility difference between two alternatives must

be more than some threshold level for an individual to have a strict preference

between these alternatives. This is aligned with the intuition that a strict pref-

erence can arise only when the difference is more than some threshold.2

On the other hand, semiorders on infinite sets are not always representable in

the sense of Scott-Suppes. Beja and Gilboa (1992) provide necessary and suffi-

cient conditions for a semiorder to have a Scott-Suppes type of utility represen-

tation on countably infinite sets. Gensemer (1987) provides an axiomatic char-

acterization for a continuous Scott-Suppes type of representation. Recently,

1We note that the sleeping time example we provide is similar in nature to Luce’s (1956)
famous coffee-sugar example.

2See Fishburn (1968) and Fishburn (1985) for more on semiorders and intransitive indif-
ference. Gilboa and Lapson (1995) argue that the standard weak order approach is not an
appropriate approximation for preferences with intransitive indifference.
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Candeal and Indurain (2010) present a characterization of Scott-Suppes repre-

sentability of a semiorder on an uncountable-infinite set.

Fishburn (1968) studies preferences with intransitive indifference under risk.

He shows that the sure-thing principle, an essential axiom of expected utility,

is incompatible with intransitive indifference and lists the characterization of a

Scott-Suppes type of expected utility representation as an open problem. More

recently, Dalkıran, Dokumacı, and Kara (2018) provides an answer to this open

problem by presenting such an axiomatic characterization.

The characterization of Candeal and Indurain (2010) points out two proper-

ties, namely regularity and separability, which are necessary and sufficient for

a Scott-Suppes utility representation of a semiorder on an uncountable-infinite

set. Surprisingly, even though Dalkıran, Dokumacı, and Kara (2018) provide a

(linear) Scott-Suppes utility representation on an uncountable set, their char-

acterization does not utilize the separability axiom of Candeal and Indurain

(2010).3 This study takes the axioms provided by Candeal and Indurain (2010)

as given and identifies what additional axioms are required to achieve another

characterization of Expected Scott-Suppes Utility Representation (henceforth

ESSUR).

3The separability property is a key axiom to obtain a numerical representation of pref-
erences with intransitive indifference. For more on separability axioms, see Bosi, Candeal,
Indurain, Oloriz, and Zudaire (2001) and Candeal, Indurain, Garcia, and Indurain (2012).
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CHAPTER 2

PRELIMINARIES

We first introduce definitions, concepts, and axioms from the literature that

will be frequently used in this study.

As our aim is to provide another characterization of ESSUR, we restrict our-

selves to a set of lotteries over a finite set. Let X = {x1, x2, x3, ..., xn} denote a

set with n ∈ N alternatives. A lottery on X is a list p = (p1, p2, p3, ..., pn) such

that
∑
pi = 1 and for each i ∈ {1, 2, 3, ..., n}, we have pi ≥ 0 where xi occurs

with probability pi. That is, L is the set of all (objective) lotteries on the finite

set X.

Let R ⊆ L × L be a reflexive binary relation on L.1 We write xRy in lieu of

(x, y) ∈ R. We define the strict part of R, denoted by P , as xPy if xRy and

¬(yRx). Similarly, we define the indifference part of R, denoted by I, as xIy

if xRy and yRx. Observe that R is the union of the binary relations, P and I,

on the set L, i.e., R = P ∪ I ⊆ L× L.

We assume that, P and I induced by R on L satisfy trichotomy: Only one of

xIy, xPy or yPx holds. Furthermore, it is straightforward to see that under

trichotomy, we have xRy if ¬(yPx).

Definition 1. Given a reflexive binary relation R on L that satisfies tri-

1R is said to be reflexive if for each x ∈ L, we have xRx.
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chotomy, we define the following auxiliary binary relations on L: For each

x, y ∈ L,

• xP0y if there exists z ∈ L such that xRzPy or xPzRy,

• xR0y if ¬(yP0x),

• xI0y if xR0y and yR0x.

Definition 2. R is an interval order on L if

I1. I is reflexive,

I2. for each x, y ∈ L, exactly one of xPy, yPx or xIy holds,

I3. for each x, y, z, t ∈ L, xPy and zP t imply xPt or zPy.

Definition 3. R is a semiorder on L if

S1. I is reflexive,

S2. for each x, y ∈ L, exactly one of xPy, yPx or xIy holds,

S3. for each x, y, z, t ∈ L, xPy and zP t imply xPt or zPy,

S4. for each x, y, z, t ∈ L, xPy and yPz imply xIt imply tPz.

It is straightforward to see that every semiorder is an interval order; however,

the inverse is not always true.

Definition 4. Let R be a binary relation on L, u : L → R be a function, and

k ∈ R++. (u, k) is a Scott-Suppes utility representation of R if for each

x, y ∈ L, xPy if and only if u(x) > u(y) + k.

If the preferences of an individual can be represented by a Scott-Suppes utility

representation as described above, k ∈ R++ can be interpreted as the threshold
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level of utility difference for this individual to break the (intransitive) indiffer-

ence: If the difference in terms of utility is less than or equal to k between two

alternatives, the individual is indifferent between these alternatives. On the

other hand, for an individual to have a strict preference, the utility difference

between two alternatives must be more than the threshold level k ∈ R++.

Definition 5. A function u : L → R is linear if for each x, y ∈ L and for each

α ∈ (0, 1), we have u(αx+ (1− α)y) = αu(x) + (1− α)u(y).

Linearity of utility function is essential for expected utility representation.

2.1 The Axioms Employed in Our Characterization

Below, we define the axioms that will be used in our main result, i.e., in our

characterization of ESSUR.

Definition 6. A semiorder R on L is semiorder-separable if there is a

countable subset D ⊆ L with the following property: for every x, y ∈ L such

that xPy, there are d1, d2 ∈ D such that xPd1R0y and xR0d2Py.

Definition 7. A semiorder R on L is strongly separable if there is a count-

able subset D ⊆ L with the following property: for every x, y ∈ L such that

xPy, there are d1, d2 ∈ D such that xPd1Rd2Py.

Candeal and Indurain (2010) show that semiorder separability is a necessary

condition for a Scott-Suppes utility representation.

On the other hand, strong separability of R is introduced by Chateauneuf

(1987) and, it is a necessary condition for continuous Scott-Suppes represen-

tation as shown in Gensemer (1987). We note that strong separability implies

semiorder separability and the inverse is not always true.
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Definition 8. A binary relation R on L is regular if there is no x, x ∈ L and

no sequences (xn), (yn) ∈ LN such that for each n ∈ N, we have xPxn and

xn+1Pxn or for each n ∈ N, we have ynPy and ynPyn+1. That is, the set L

has no infinite up- or down- chains with regards to P with an upper or a lower

bound, respectively.

Regularity is a necessary condition for both Scott-Suppes utility representation

and ESSUR. The former is proved by Candeal and Indurain (2010) and, the

latter is proved by Dalkıran, Dokumacı, and Kara (2018).

Definition 9. A reflexive binary relation R on L is mixture-symmetric if for

each x, y ∈ L and each α ∈ [0, 1], xI(αx+ (1− α)y) implies yI(αy + (1− α)x).

Mixture symmetry is introduced by Nakamura (1988) for a characterization of

an expected utility representation for interval orders. This axiom is also used

by Dalkıran, Dokumacı, and Kara (2018) in their characterization of ESSUR.

Mixture symmetry is essential for the linearity of the utility function represent-

ing a semiorder or an interval order.

Definition 10. R0 on L is continuous if for each y ∈ L, the sets

UC(y) := {x ∈ L : xR0y} and LC(y) := {x ∈ L : yR0x}

are closed with respect to the Euclidean metric on R.

On the other hand, R0 on L is mixture-continuous if for each x, y, z ∈ L, the

sets

UMC(y;x, z) := {α ∈ [0, 1] : [αx+ (1− α)z]R0y}

and

LMC(y;x, z) := {α ∈ [0, 1] : yR0[αx+ (1− α)z]}

are closed with respect to the Euclidean metric on R.

8



Definition 11. R0 on L satisfies the midpoint indifference axiom if for

each x, y, z ∈ L, xIy implies 1/2x+ 1/2zI01/2y + 1/2z.

Mixture continuity and midpoint indifference are necessary and sufficient con-

ditions for an expected utility representation of a weak-order as shown in Hern-

stein and Milnor (1954). We note that mixture continuity is a weaker condition

than the standard continuity axiom, i.e., continuity of a weak order implies

mixture continuity of the same weak order.2

2See Inoue (2010) for further details.
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CHAPTER 3

REPRESENTATION THEOREMS

3.1 Some Representation Theorems from the Literature

In this section, we introduce several results and representation theorems from

the literature. The first theorem presents necessary and sufficient conditions for

an expected Scott-Suppes utility representation.

We emphasize that even though this theorem characterizes a Scott-Suppes util-

ity representation on an uncountable set, it does not utilize any type of ’sepa-

rability’ axiom. However, separability of a semiorder or an interval order is an

essential axiom for utility representations under intransitive indifference.

At this point, we would like to emphasize that the goal of this study can be

thought of as identifying a characterization of Expected Scott-Suppes Utility

Representation (ESSUR) using a separability axiom.

Theorem 3.1.1. (Dalkıran, Dokumacı, and Kara (2018)) Let R be a non-

trivial semiorder on L.

• R is regular and mixture-symmetric,

• R0 is mixture-continuous and satisfies the midpoint indifference axiom,

• for each x, y ∈ L, if xPy, then there exists z ∈ L such that xIz and for

10



each t ∈ L, we have zP0t implies xPt.

if and only if there exists a linear function u : L −→ R and k ∈ R++ such that

(u, k) is a Scott-Suppes utility representation of R.

We note that the theorem above is the first characterization of ESSUR in the

literature.

The next theorem is a result that shows necessary and sufficient conditions for

Scott-Suppes representation of a semiorder on uncountable-infinite sets.

Theorem 3.1.2. (Candeal, Indurain (2010)) Let R be a non-trivial semiorder

on L. Then, the following are equivalent:

• R is Scott-Suppes representable.

• R is a regular and semiorder-separable semiorder.

It is noteworthy to mention that Candeal and Indurain’s (2010) characteriza-

tion does not guarantee that u is continuous and/or linear. Therefore, it is not

a characterization of ESSUR.

Next, we present a characterization of a continuous Scott-Suppes utility repre-

sentation of a semiorder as given by Gensemer (1987). To provide this result,

we need the following:

Definition 12. A semiorder R on L is symmetrically regular1 on L if the fol-

lowing hold:

• If x, y ∈ LM and if there exists z ∈ L such that xRzPy, then there exists

t ∈ L such that xPtRy, and

1This axiom is introduced by Gensemer (1987). However, Gensemer refers to this axiom
simply as ‘regularity’. To prevent confusion, we renamed it as ‘symmetrical regularity’ in this
study.
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• If x, y ∈ Lm and if there exists z ∈ L such that xPzRy, then there exists

t ∈ L such that xRtPy.

where LM = {x ∈ L : x is not a minimal element with respect to P} and

Lm = {x ∈ L : x is not a maximal element with respect to P}.2

The next definition is also from Gensemer (1987).

Definition 13. A semiorder R on L is normal if the following hold:

• If LM 6= ∅ and L − LM 6= ∅, then there exist x ∈ LM and y ∈ L− LM

such that yRx.

• If Lm 6= ∅ and L− Lm 6= ∅, then there exist x ∈ Lm and y ∈ L− Lm such

that xRy.

• If x ∈ W , then there exists y ∈ L such that xP ∗yRx, where W = LM ∪

Lm, i.e., W is the set of elements which are neither minimal nor maximal

elements in L.3

Normality axiom prevents isolation of an element in an indifference set when-

ever P is transitive.

We are now ready to present the aforementioned characterization theorem for a

continuous Scott-Suppes utility representation:

Theorem 3.1.3. (Gensemer (1987)) Let R be a non-trivial semiorder on L.

Then,

2Minimal and maximal elements are defined as follows:

• a ∈ L is a maximal element with respect to P if @x ∈ L such that xPa and

• b ∈ L is a minimal element with respect to P if @x ∈ L such that bPx.

3xP ∗yRx if there exists z ∈ L such that xRzPy.
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• R is strongly separable,

• R is symmetrically regular,

• R is normal

• R0 is continuous,

if and only if there exists a continuous function u : L −→ R and k ∈ R++ such

that (u, k) is a Scott-Suppes utility representation of R.

3.2 A New Characterization of Expected Scott-Suppes Utility Rep-

resentation

Before moving to the main result of this thesis, we introduce some results and

observations that will be building blocks of the proof of our main theorem.

We start with a relatively well-known result in the literature:

Lemma 1. If R is a semiorder, then for any x, y, z, t ∈ L, then

• xPyIzP t⇒ xPt,

• xPyPzIt⇒ xPt,

• xIyPzPt⇒ xPt,

• xPyRzPt⇒ xPt,

• xPyPzRt⇒ xPt,

• xRyPzPt⇒ xPt.

Proof. For the proof of this lemma, see either Bridges (1983) or Aleskerov,

Bouyssou, and Monjardet (2007).

13



Lemma 2. If a semiorder R on L is semiorder-separable, regular and satisfies

mixture-symmetry , then R is normal.

Proof. First, recall that R is normal if the following hold:

• If x is neither a minimal nor a maximal element in L, then there exists

y ∈ L such that xP ∗yRx. (N1) 4 Equivalently, there exist y and t such

that xItPyIx.

• If the set of non-minimal elements and the set of minimal elements in L

are non-empty, then there exists an element, x in the set of non-minimal

elements and y in the set of minimal elements such that yRx. (N2)

• If the set of non-maximal elements and the set of maximal elements in L

are non-empty, then there exists an element, x in the set of non-maximal

elements and y in the set of maximal elements such that xRy. (N3)

Now observe that by Theorem 3.6 of Candeal and Indurain (2010), R has a

Scott-Suppes representation (u, k): xPy if and only if u(x) > u(y) + k.

We first prove that R satisfies (N2). The proof of the fact that R satisfies

(N3) is similar.

Suppose that R does not satisfy (N2). Then, for any non-minimal element x ∈

LM and any minimal element y ∈ L−LM , we have xPy. Hence, u(x) > u(y)+k.

Let u∗ = sup{u(y)|y ∈ L − LM} and ū = inf{u(x)|x ∈ LM}. Then it follows

that ū ≥ u∗ + k. For ε > 0, take x̄0 ∈ LM such that u(x̄0) < ū + ε and take

y∗ ∈ L− LM such that u(y∗) > u∗ − ε.

4xP ∗y if there exists z ∈ L such that xRzPy. Similarly, xP ∗∗y if there exists t ∈ L such
that xPtRy.
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Consider the elements in L of the form αx̄0 + (1 − α)y∗ for some α ∈ [0, 1].

If αx̄0 + (1 − α)y∗ is a minimal element, i.e., αx̄0 + (1 − α)y∗ ∈ L − LM ,

then αx̄0 + (1 − α)y∗Iy∗ and hence, by mixture-symmetry, (1 − α)x̄0 + αy∗Ix.

Therefore, (1−α)x̄0 +αy∗ is a non-minimal element, i.e., (1−α)x̄0 +αy∗ ∈ LM .

Next, consider, in particular, 0.5x̄0 + 0.5y∗ ∈ L. Observe that 0.5x̄0 + 0.5y∗

cannot be a minimal element in L since otherwise 0.5x̄0 + 0.5y∗Iy∗ would imply

0.5x̄0 + 0.5y∗Ix by mixture symmetry. But then 0.5x̄0 + 0.5y∗ is non-minimal,

a contradiction. On the other hand, we cannot have 0.5x̄0 + 0.5y∗Ix because

otherwise, 0.5x̄0 + 0.5y∗Ix̄0 is non-minimal but also, by mixture symmetry,

0.5x̄0 + 0.5y∗Iy∗, and hence a minimal element, a contradiction. Therefore, by

trichotomy, we must either have 0.5x̄0 + 0.5y∗Px̄0 or x̄0P0.5x̄0 + 0.5y∗. Let

x̄1 = 0.5x̄0 + 0.5y∗ and consider x̄2 = 0.5x̄1 + 0.5y∗ ∈ L. A similar argument

implies that x̄2 is non-minimal with either x̄2Px̄1 or x̄1Px̄2. Continuing in this

fashion gives us an infinite downward chain such that y∗ is a lowerbound, i.e.

(yn) ∈ LN with ynPyn+1 and ynPy∗ for all n ∈ N. This contradicts regularity.

Thus, (N2) and (N3) hold.

Next, we prove that R satisfies (N1). Suppose that R does not satisfy (N1).

Then, for any x ∈ W = LM ∩Lm, there does not exist y ∈ L such that xP ∗yRx.

Thus, for any x ∈ W and y ∈ L, we have ¬(xP ∗yRx). This implies for any

x ∈ W and y ∈ L, either ¬(xP ∗y) or ¬(yRx).

If for any x ∈ W and y ∈ L, ¬(xP ∗y), then, by definition of P ∗, there does

not exist z ∈ L such that xRzPy. That is, for any z ∈ L, we have ¬(xRzPy).

Taking z = x implies that we cannot have xPy for any y ∈ L. This implies

that x is a minimal element in L, i.e., x ∈ L− LM , a contradiction.

On the other hand, if for any x ∈ W and y ∈ L we have ¬(yRx), then for

any x, we have xPy for all y ∈ L. Therefore, x is a maximal element in L, i.e.,

x ∈ L− Lm, a contradiction. Hence, R satisfies (N1) as well.

15



Therefore, we can conclude that if a semiorder R on L is semiorder-separable,

regular and satisfies mixture-symmetry, then R is normal.

To provide our next result, we need the following definitions:

Definition 14. A semiorder R on L is full if for every x, y ∈ L such that xPy,

there are a, b ∈ L such that xPaRbPy.

We note that the fullness axiom has a very similar structure to the strong sep-

arability. The only difference is that the fullness condition does not require the

existence of a countable subset of L.

Definition 15. An interval order R on L is interval order-separable if there

is a countable subset D ⊆ L with the following property: for every x, y ∈ L

such that xPy, there is d ∈ D such that xR∗dPy.5

Lemma 3. (Bosi, Candeal, Indurain, Oloriz, and Zudaire (2001)) The follow-

ing are equivalent:

• R is strongly separable,

• R is interval order-separable and full.

Proof. See Bosi, Candeal, Indurain, Oloriz, and Zudaire (2001).

Candeal, Estevan, Garcia, and Indurain (2012) state that whenever R is a

semiorder that satisfies the regularity axiom, then R is interval order-separable

if and only if R is semiorder-separable. Because we work with a semiorder that

satisfies the regularity axiom, we have the following immediate result:

Lemma 4. If R is a semiorder that satisfies the regularity axiom, then the fol-

lowing are equivalent:

5xR∗y if ¬(yP ∗x). And, xP ∗y if there exists z ∈ L such that xRzPy.
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• R is strongly separable.

• R is semiorder-separable and full.

Proof. The proof follows from Theorem 4.7 of Candeal, Estevan, Garcia, In-

durain (2012).

We know from Candeal and Indurain (2010) that when a semiorder R is

semiorder-separable and regular, then R has a Scott-Suppes utility represen-

tation. Yet, we do not know whether the corresponding utility function is con-

tinuous.

The next theorem shows that the set of axioms we work with are sufficient for

the existence of a continuous Scott-Suppes utility representation.

Theorem 3.2.1. Let R be a non-trivial semiorder on L. If R is regular, sep-

arable and mixture-symmetric and R0 is continuous and satisfies the midpoint

indifference axiom, then there exists a continuous function u : L −→ R and

k ∈ R++ such that (u, k) is a Scott-Suppes representation of R.

Proof. As stated in Theorem 3.1.3., Gensemer(1987) shows that if R is strongly

separable, normal, symmetrically regular and R0 is continuous, then there ex-

ists a continuous function u : L −→ R and k ∈ R++ such that (u, k) is a

representation of R. So, if the axioms we use in our main theorem cover these

axioms, we are done. 6

By Candeal and Indurain (2010), Theorem 3.1.2., we know that R is Scott-

Suppes representable since the semiorder R is regular and semiorder-separable.

On the other hand, Bosi, Candeal, Indurain, Oloriz, and Zudaire (2001), as

6The axioms we use in our main theorem are as follows: R is semiorder-separable, regu-
lar, mixture-symmetric, and R0 is continuous and satisfies the midpoint indifference axiom.
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stated in Lemma 3, shows that R is strongly separable if and only if R is in-

terval order-separable and full.

Furthermore, Candeal, Estevan, Garcia, and Indurain (2012) shows that when

R is regular, as stated in Lemma 4, R is strongly separable if and only if R is

semiorder order-separable and full.

That is, to show that R is strongly separable, it is enough to show that R is

full: Since R is semiorder-separable, there exists a countable subset D ⊆ L

such that defines its semiorder-separability, i.e., there exist x, y ∈ L with

xPy, there are d1, d2 ∈ D such that xR0d1Py and xPd2R0y. Observe that if

xPd1,then xP0d1 and similarly if d2Py, then d2P0y. By definition of P0, there

exist a, b ∈ L with aRb such that xPaR0y and xR0bPy. Under trichotomy, we

have either xRy or xRy, or both. Without loss of generality, assume that xRy.

Then, we have xPaRbPy. Thus, R is full. Therefore, R is strongly separable.

Since, by Lemma 2 above, we also know that the semiorder R is normal, to

finish to proof, what is left to show that R is symmetrically regular, i.e., iff

x, y ∈ LM where LM is the set of elements which are not minimal in L and

xPzRy, then there exists t ∈ L such that xRtPy; and if x, y ∈ Lm where Lm is

the set of elements which are not maximal in L and xRzPy, then there exists

t ∈ L such that xPtRy.

Since R is semiorder-separable and full under our axioms, it is easy to see that

R is symmetrically regular. For the sake of completeness, if R is semiorder-

separable and full, then there are d1, d2 ∈ L such that xPd1R0y and xR0d2Py.

By the existence of Scott-Suppes utility representation, the former implies

xPd1Ry and the latter implies xRd2Py. Therefore, R is symetrically regular.

Thus, by Gensemer (1987), there exists a continuous u : L −→ R and k ∈ R++

such that (u, k) is a Scott-Suppes representation of R.
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We are now ready to present our main result, which provides a new characteri-

zation of ESSUR.

Theorem 3.2.2. Let R be a non-trivial semiorder on L.

• R is regular, semiorder-separable and mixture-symmetric,

• R0 is continuous and satisfies the midpoint indifference axiom

if and only if there exists a linear function u : L −→ R and k ∈ R++ such that

(u, k) is a Scott-Suppes representation of R.

Proof. First, we show that if a non-trivial semiorder R on L is regular,

semiorder-separable and mixture-symmetric, and the corresponding R0 is con-

tinuous and satisfies the midpoint indifference axiom, then there exists an ex-

pected Scott-Suppes representation of R. Observe that, by Theorem 3.2.1, we

already know that there exists a continous utility function u : L −→ R and

k ∈ R++ such that (u, k) is a (continuous) Scott-Suppes representation of R.

We are left to show that there exists a linear utility function ũ : L −→ R and

k̃ ∈ R++ such that (ũ, k̃) is an expected Scott-Suppes representation of R.

To finish the proof, we employ the characterization of Dalkiran, Dokumaci, and

Kara (2018). Observe that, as stated in Theorem 3.1.1, Dalkiran, Dokumaci,

and Kara (2018), the difference of our axioms when compared to that paper

are as follows: We have R is semiorder-separable, R0 is continuous instead of

mixture-continuous, and finally, we do not have the existence of maximal indif-

ference elements. Since R0 being continuous implies R0 is mixture-continuous

(see Inoue (2010)), it is enough to show the existence of the maximal indiffer-

ence elements.
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Observe that L is a compact with respect to the standard Euclidean metric.7.

Therefore, any closed subset of L is compact. Since u : L −→ R is continuous

and represents R0, then the Extreme Value Theorem implies the existence of

maximal indifference elements, as desired: for each x, y ∈ L, if xPy, then there

exists z ∈ L such that xIz and for each t ∈ L, we have zP0t implies xPt.

To sum up, if R is a non-trivial semiorder on L and

• R is regular, semiorder-separable and mixture-symmetric,

• R0 is continuous and satisfies the midpoint indifference axiom,

then, R satisfies the following:

• R is regular and mixture-symmetric,

• R0 is mixture-continuous and satisfies the midpoint indifference axiom,

• for each x, y ∈ L, if xPy, then there exists z ∈ L such that xIz and for

each t ∈ L, we have zP0t implies xPt.

Therefore, by Dalkiran, Dokumaci, and Kara (2018), there exists an ESSUR of

R, as desired.

Next, we need to show that ESSUR implies the axioms listed. Let (u, k) be an

ESSUR of R. It follows Candeal, Indurain (2010) that R is semiorder-separable

and regular. It also follows from Dalkıran, Dokumacı, and Kara (2018), R is

a non-trivial, regular and mixture symmetric semiorder and, R0 is mixture-

continuous andsatisfies midpoint indifference axiom. The only axiom left to

show is that R0 is continuous. This follows from the fact u : L −→ R repre-

sents the weak-order R0. Furthermore, u is linear and hence continuous. Since

7By Heine-Borel Theorem, a subset of Euclidean space is compact if it is closed and
bounded.

20



upper-contour and lower-contour sets are inverse images of closed sets with re-

spect to u and u is continuous, then R0 is continuous as well. This finishes the

proof.

3.3 Independence of the Axioms

We know from Candeal and Indurain (2010) that semiorder-separability and

regularity of R are mutually independent axioms. Similarly, we also know from

Dalkıran, Dokumacı, and Kara (2018) that mixture continuity and midpoint

indifference of R0, and regularity and mixture symmetry of R are mutually

independent. The axiom system used in this work entails the combination of

axioms used in these two studies. There is a minor difference which is the con-

tinuity of R0 instead of mixture continuity of R0.

When R is a non-trivial semiorder on L, the axioms in our main result are

• R is semiorder-separable,

• R is regular,

• R is mixture-symmetric,

• R0 is continuous, and

• R0 satisfies midpoint indifference axiom.

We provide the following examples to show that these axioms are mutually in-

dependent:8

Example 1. Let L be the set of lotteries on X := {x1, x2, x3}, x, y ∈ L. We

define R on L as follows:

8Some of these examples are modified from the examples given in Dalkıran, Dokumacı,
and Kara (2018).
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• xPy if x1 > y1 + 0.1,

• xIy if |x1 − y1| ≤ 0.1.

Since 0.1 > 0, it is easy to see that R is regular.

Let D be Q ∩ [0, 1]. The set D is countably infinite and it is obviously a count-

able subset of L and for all x, y ∈ L with xPy, there are d1, d2 ∈ D such that

xR0d1Py and xPd2R0y. So R is semiorder-separable.

Let x, y ∈ L and α ∈ (0, 1). Suppose xI[αx+(1−α)y]. This implies |x1−αx1−

y1 +αy1| ≤ 0.1. Rearranging the terms gives |αy1 + (1−α)x1− y1| ≤ 0.1 Hence,

yI[αx+ (1− α)y]. Thus, R is mixture-symmetric.

For each x, y ∈ L, xR0y if and only if x1 ≥ y1. Hence, R0 is continuous.

Let z ∈ L. Suppose for some x, y ∈ L, xI0y. Because for each x, y ∈ L, xI0y

if and only if x1 = y1, we have x1 = y1. Hence, 1/2x1 + 1/2z1 = 1/2y1 +

1/2z1. Thus, [1/2x+ 1/2z]I0[1/2y + 1/2z]. So, it satisfies midpoint indifference.

Therefore, Example 1 is an example where all of our axioms hold.

Example 2. Let L be the set of lotteries on X := {x1, x2, x3}, x, y ∈ L, We

define R on L as follows:

• xPy if x1 ≥ y1 + 0.2,

• xIy if |x1 − y1| < 0.2.

Since 0.2 > 0, it is easy to see that R is regular.

For each x ∈ L, upper contour and lower contour sets with respect to R0 are

closed, thus R0 is continuous.

It is straightforward to show that for each x, y ∈ L, we have xI0y if and only

if x1 = y1. Let z ∈ L and assume that for some p, q ∈ L, we have xI0y. This

means x1 = y1. Thus, 1/2 x1+1/2z1 = 1/2y1+1/2z1, which in turn is equivalent

to [1/2 x+1/2 z]I0[1/2y + 1/2z]. So, midpoint indifference axiom holds.
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Now, the claim is this setup does not satisfy semiorder separability. To demon-

strate it, suppose there exist x, y ∈ L such that xPy, it means x1 ≥ y1 + 0.2.

And assume there is a countable subset D ⊆ L with the following property:

for every x, y ∈ L such that xPy, there are d1, d2 ∈ D such that xPd1R0y and

xR0d2Py.

If x1 = y1 + 0.2, we will have xPd1R0y and xR0d2Py. From former relation,

x1 ≥ d11 + 0.2 ≥ y1 + 0.2 and since x1 = y1 + 0.2, we get x1 ≥ d11 + 0.2 ≥ x1

and from latter relation, x ≥ d21 ≥ y1 + 0.2 and since y1 = x1 − 0.2, we get

x1 ≥ d21 ≥ x1. Furthermore, x1 ≥ d11 + 0.2 ≥ x1 implies x1 = d11 + 0.2

and x1 ≥ d21 ≥ x1 implies x1 = d21. These two equalities contradict with the

countability of D. Therefore, R is not semiorder separable.

Example 3. Let L be the set of lotteries on X := {x1, x2} and x, y ∈ L. We

define R on L such that:

• xPy if x1 > y1,

• xIy if x1 = y1.

Let D be Q ∩ [0, 1]. The set D is countably infinite and it is obviously a count-

able subset of L and for all x, y ∈ L with xPy, there are d1, d2 ∈ D such that

xR0d1Py and xPd2R0y. So, R is semiorder-separable.

It is easy to see that for each x, y ∈ L, we have xRy if and only if xR0y if and

only if x1 ≥ x1. It implies for each x ∈ L, upper contour and lower contour sets

with respect to R0 are closed. Hence, R0 is continuous.

For each x, y ∈ L, we have xIy if and only if xI0y if and only if x1 = y1. Let

z ∈ L. Suppose for some x, y ∈ L, we have xI0y. This implies x1 = y1. Hence,

1/2x1 +1/2z1 = 1/2y1 +1/2z1. Thus, [1/2x+1/2z]I0[1/2y+1/2z]. So, midpoint

indifference axiom holds.

Since for each x, y ∈ L, xPy if and only if x1 > y1, R is not regular
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Example 4. Let L be the set of lotteries on X := {x1, x2} and x, y ∈ L. We

define R on L such that:

• xPy if 3x1 > 5y1 + 1,

• xIy if ¬(xPy) and ¬(yPx)

u : L −→ R as u(x) = ln(x1 + 1) and k = ln(5/3) form a Scott-Suppes

representation for defined R and we know that (u, ln(5/3)) is a Scott-Suppes

representation of R if and only if R is separable and regular.

For each x, y ∈ L, we have xRy if and only if xR0y if and only if x1 ≥ x1. It

implies for each x ∈ L, upper contour and lower contour sets with respect to

R0 are closed. Hence, R0 is continuous.

For each x, y ∈ L, we have xIy if and only if xI0y if and only if x1 = y1. Let

z ∈ L. Suppose for some x, y ∈ L, we have xI0y. This implies x1 = y1. Hence,

1/2x1 +1/2z1 = 1/2y1 +1/2z1. Thus, [1/2x+1/2z]I0[1/2y+1/2z]. So, midpoint

indifference axiom holds.

Note that for x = (1, 0) and y = (0.5, 0.5), we have following inequalities:

3 · x1 ≤ 5 · y1 + 1 and 3 · y1 ≤ 5 · x1 + 1. Thus, (1, 0)I(0.5, 0.5) and observe

that (0.5, 0.5) = 0.5 · (1, 0) + 0.5 · (0, 1) but ¬((0.5, 0.5)I(0, 1)). Thus, R is not

mixture-symmetric.

Example 5. Let L be the set of lotteries on X := {x1, x2} and x, y ∈ L. We

define R on L such that:

• xPy if x1 = 1 and y1 = 0,

• xIy if xRy and yRx.

Observe that only strict preference under this setup is (1, 0)P (0, 1), and hence,

R is trivially separable and regular.
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For each x ∈ L, we have xI0x and when x1 ∈ (0, 1). We have (1, 0)P0xP0(0, 1).

Accordingly, midpoint indifference axiom holds.

To show that R0 does not satisfy continuity consider the upper contour set of

x = (0.5, 0.5) with respect to R0, i.e., UC0((0.5, 0.5) = L \ {(1, 0)}. Clearly, this

set is not closed. Hence, R0 is not continuous.

Example 6. Let L be the set of lotteries on X := {x1, x2} and x, y ∈ L. We

define R on L such that:

• xPy if x1 > y1 + 0.75,

• xIy if |x1 − y1| ≤ 0.75.

Let D be Q ∩ [0, 1]. The set D is countably infinite and it is obviously a count-

able subset of L and for all x, y ∈ L with xPy, there are d1, d2 ∈ D such that

xR0d1Py and xPd2R0y. So, R is semiorder-separable and since 0.75 > 0, it is

easy to see that R is regular.

Let x, y ∈ L and α ∈ (0, 1). Suppose xI[αx+(1−α)y]. This implies |x1−αx1−

y1 + αy1| ≤ 0.75. Rearranging the terms gives |αy1 + (1 − α)x1 − y1| ≤ 0.75

Hence, yI[αx+ (1− α)y]. Thus, R is mixture-symmetric.

For each x, y ∈ L, xR0y if and only if x1 ≥ y1. Hence, R0 is continuous.

Observe that (0.75, 0.25)I0(0.25, 0.75) but 1/2(0.75, 0.25) + 1/2(1, 0) =

(0.875, 0.125) and (0.875, 0.125)P0(0.8, 0.2) where (0.8, 0.2) = 1/2(0.6, 0.3) +

1/2(1, 0). Therefore, R0 does not satisfy midpoint indifference.
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CHAPTER 4

CONCLUSION

In this thesis, we focus on preferences that exhibit intransitive indifference.

Many studies in the literature show that individuals either cannot recognize

relatively small changes with regards to an alternative or deliberately ignore

such small changes. For instance, we cannot perceive slight differences on the

color scale since the eyesight of the human body has some boundaries. On the

other hand, when we are about to buy something expensive like real estate, we

do not attach importance to relatively small amounts in terms of prices. Such

observations imply that economists should use utility representations that al-

low for preferences with intransitive indifference.

The main purpose of this thesis is to obtain a new characterization of Ex-

pected Scott-Suppes Utility Representation (ESSUR). What makes this char-

acterization different is that it builds upon the axioms provided by Candeal

and Indurain (2010), i.e., regularity and semiorder-separability. Even though

Dalkıran, Dokumacı, and Kara (2018) are the first to provide a characteriza-

tion of ESSUR, their result does not use a separability axiom. Since separa-

bility axioms are essential for numerical representations of preferences on un-

countable sets, it begs the answer to the question of whether a full character-

ization with a separability axiom is possible. By providing a new characteri-

zation of ESSUR, the main result of this study shows that the answer to this
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question is affirmative.

Finally, we show that the axioms we employ in our characterization are mutu-

ally independent. That is, our main result is a new full characterization of the

Expected Scott-Suppes Utility Representation.

We hope that our results pave the way for future research on preferences with

intransitive indifference under uncertainty.
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