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ABSTRACT 

Derivation of the spatial-domain, closed-form Green's functions of the vector and 
scalar potentials are demonstrated for planar media, and their use in conjunction 
with the method of moments (MoM) is presented. As the first step of the derivation, 
the Green's functions are obtained analytically in the spectral domain for various 
sources viz., horizontal and vertical electric and magnetic dipoles embedded in a 
planar stratified media. The spatial-domain Green's function can be obtained from 
the Sommerfeld integral which is the Hankel transform of the corresponding Green's 
function in the spectral domain. The analytical evaluation of this transformation 
yields the closed-form, spatial-domain Green's functions which can be used in the 
solution of a mixed-potential integral equation (MPIE) via the MoM. This combi­
nation, i.e., the use of the closed-form Green's functions in conjunction with the 
MoM, results in a significant improvement in the fill-time of MoM matrices. In 
the conventional application of the spatial-domain MoM, the matrix elements are 
double integrals and they require the evaluation of the time-consuming Sommer­
feld integral for the spatial-domain Green's function. In the approach presented 
herein, the spatial-domain Green's functions are in closed forms, and the remaining 
double-integrals in the matrix elements are evaluated analytically. Thus, there are 
two factors in this approach that contribute to the improvement in the computa­
tion time: (i) elimination of the numerical integration to obtain the spatial-domain 
Green's functions; (ii) circumventing the need to carry out the numerical integration 
in the calculation of the MoM matrix elements. 

1. Introduction 

Electromagnetic modeling of printed structures in a stratified medium is an impor­tant problem in computational electromagnetics, and has recently attracted widespread attention. This is attributable to the increased use of multilayer microstrip geome­tries in various applications of microstrip antennas 1 -6, and in monolithic microwave integrated circuits7•8. Therefore, a considerable amount of interest has been focused 
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on the development of a rigorous and yet computationally efficient computer-aided design tools for microstrip geometries in layered media. Hence, a variety of numeri­cal techniques for accurate modeling and simulation of the electrical performances of such circuits have been proposed and studied extensively. These include the method of moments (MoM)9 and its variants; the finite element method (FEM)10; the finite difference time domain (FDTD) method11, and quasi-static methods based on con­formal mapping12
. Among these approaches, the spatial and spectral domain MoM approaches are the most commonly used numerical techniques for the rigorous anal­ysis of printed geometries in multilayer planar media. The use of the MoM in the analysis of microstrip geometries requires the compu­tation of the Green's functions for layered media, which are represented analytically in the spectral domain and transformed into the spatial domain from the spectral­domain representations via the Hankel transform. The resulting spatial-domain repre­sentation, also referred to as the Sommerfeld integral 13, is a one-dimensional integral over an infinite range with the Hankel function as its kernel; hence, its numerical eval­uation is computationally inefficient unless an acceleration technique is used. Since the Green's functions in the spectral domain are expressible in closed forms, the use of the spectral-domain MoM in the analysis of microstrip geometries had attracted much interest14-17• Although, relatively speaking, the spectral-domain MoM is more efficient in terms of computation time than some of the other numerically rigorous techniques, it is still quite time-consuming to implement. This is because, in this approach, the MoM matrix elements are double integrals of complex, slowly-decaying functions over infinite ranges. To overcome the difficulty introduced by the slowly­decaying nature of the integrand, the spectral-domain approach is usually employed in conjunction with an acceleration technique in which the asymptotic part of the integrand is subtracted from the original integrand and its contribution is calculated either analytically or in a numerically efficient manner18• 19 . However, even with the use of this tactic, this computation remains expensive, because the integrands are os­cillatory functions of the spectral domain variables, and for the self-terms, for which the observation region coincides with the source region, the convergence is still quite slow. The computational inefficiency plagues the spatial domain MoM as well, since it involves the evaluation of at least a three-dimensional integral for the matrix element, one of which is the Sommerfeld integral. However, since the remaining double-integral is over a finite domain, the spatial-domain MoM can be made computationally inex­pensive if the Sommerfeld integrals can be evaluated efficiently. A number of different techniques have been proposed for the efficient evaluation of the Sommerfeld-type integrals by employing acceleration techniques. These include the Shank's transformation, the Euler transformation and the method of averages. Among these, the method of averages has been demonstrated to be the most efficient for the evaluation of the Sommerfeld-type integrals20

• These techniques require the numerical evaluation of the integral at several intervals that leads to a series, whose convergence is accelerated via a nonlinear transformation. In this approach, it is necessary to perform a numerical integration over a portion of the infinite range of the original integral. Thus the efficiency of this technique is determined by the extent 
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of the interval over which one needs to perform the numerical integration to predict the end result sufficiently accurately. In addition, since the Sommerfeld integral is a parametric integral, with the radial distance p as the parameter, the process of acceleration described above has to be performed for each value of the parameter, which is usually on the order of hundreds for typical applications of the spatial­domain MoM. Consequently, even if the method of averages enabled us to compute the Sommerfeld integral efficiently for one value of p, it would be quite expensive to employ this technique directly in conjunction with the spatial-domain MoM which calls the evaluation of the above integral for many p. One approach to circumventing this difficulty is to precompute the values of the Green's functions for a range of radial distances and curve-fit these values locally using low-order polynomials21 . Even so, the integral must be evaluated for tens of radial distances for the purpose of curve­fitting, because of the sharp changes in some Green's functions caused by phase cancelations. Recently, yet another approach has been proposed which appears to resolve all of these difficulties mentioned above. This approach was first proposed22 for a thick, single layer microstrip geometry, and later extended to multilayer planar geometries with arbitrary thicknesses23• 24 • It takes advantage of the fact that the Sommerfeld in­tegral can be integrated analytically if the integrand, apart from the kernel HJ2l (kpp), can be approximated by complex exponentials. With this approach, the numerical integration, which causes computational inefficiency in the acceleration techniques mentioned above, is completely eliminated. Instead, the burden of the numerical algorithm falls on the task of approximating the spectral-domain Green's functions in terms of complex exponentials. Naturally, one might raise the questions regard­ing the computational efficiency and robustness of this technique and the difficulties arising in the process of applying the algorithms for the exponential approximation. Before addressing these questions, it would be useful to describe some of the recent improvements25 introduced in the technique. In its original form22 Prony's method was used for the exponential approximation26, which required the same number of samples as the number of unknowns, i.e., twice the number of complex exponentials ( one for the coefficient and one for the exponent). One consequence of this was that it was difficult to account for the rapid variations of the integrand in the spectral domain without using a large number of complex exponentials, and this phenomenon is attributable, in part, to the uniform sampling required in Prony's method. Al­though the least-square Prony's method improves its ability to account for the rapid changes with a moderate number of exponentials23, it still requires several trial and error iterations, because of the noise sensitivity of the Prony methods27
, which render the technique to be inefficient and not robust. As a solution, another exponential ap­proximation technique, called the generalized pencil of function (GPOF) method28, is employed in casting the Green's functions into closed forms24 • The GPOF method has turned out to be quite robust and less noise sensitive when compared to the orig­inal and least-square Prony methods, and also provides a good measure for choosing the number of exponentials used in the approximation. However, it still requires one to study in advance the spectral-domain behavior of the Green's function in order 
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to decide on the approximation parameters like the number of sampling points and 
the maximum value' of the sampling range. In addition, since the approximation 
techniques, such as the Prony and the GPOF methods, require the function to be 
sampled uniformly, one would need to take thousands of samples in order to be able 
to approximate a slow converging function with rapid changes (even if this were to 
occur in a small region), which is a typical behavior of the spectral-domain Green's 
functions of the scalar potentials in a thin substrate. Because of these difficulties, the 
technique of deriving the closed-form Green's functions and subsequently using them 
in MoM applications is not considered to be robust, and thus could not be used conve­
niently for the development of a general-purpose electromagnetic software. Recently, 
a new approach based on a two-level approximation has been proposed to overcome 
these difficulties, and it has been demonstrated that the new approach is very robust 
and computationally much more efficient than the original one or its variants. The 
two-level approach divides the range of approximation into two parts, the first of 
which covers the region where the function to be approximated has rapid transitions, 
whereas the function is smooth in the second region. Thus, it is no longer necessary 
to take thousands of samples to account for a rapid transition that occurs in a small 
part of the entire range, and this results in a significant reduction of the number 
of data points to be processed in deriving the exponential approximation, which, in 
turn, translates into a substantial saving in the computation time. Throughout this 
chapter., this new approach is referred to as the two-level approach while the original 
technique is called the one-level approach. 

With the introduction of the robust and efficient approach in the derivation of 
the closed-form Green's functions, the use of the MoM in the spatial domain becomes 
very attractive for the analysis of printed geometries in a multilayer environment. 
The Sommerfeld integral is now completely eliminated and the calculation of the 
matrix elements in the spatial-domain MoM now only requires double integrals over 
finite ranges that are evaluated numerically. It has been demonstrated that even the 
elimination of only the Sommerfeld integrals improves the computational efficiency 
of the spatial-domain MoM significantly29 • It has also been recently demonstrated30 

that, with the analytical approximation of the remaining double-integrals, the com­
putational efficiency of the evaluation of the matrix elements is further improved. 
Consequently, a substantial improvement in the matrix-fill time is achieved by ana­
lytically evaluating all of the integrals involved in the spatial-domain MoM. 

Section 2 describes the derivation of the closed-form Green's functions and includes 
the derivation of the spectral-domain Green's functions, discussions on the difficulties 
associated with the original one-level approach, and assessment of the robustness 
and computational efficiency of the two-level approach. Section 3 describes the use 
of the closed-form Green's functions in conjunction with the MoM and provides the 
analytical evaluation of the MoM matrix elements together with the necessary integral 
identities. 
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Let us consider, for the sake of illustration, a planar, multilayercd medium shown 
in Fig. 1 where it is assumed that the layers extend to infinity in the transverse 
directions. The source, (RED, HMD, VED or VMD) is embedded in region i and 
the observation point can be located in an arbitrary layer. Each layer can have 
different electric and magnetic properties (€,,µ,) and thickness (d;). The perfect 
electric or magnetic conducting planes and half-space are also regarded as layers in 
this formulation. The procedure for deriving closed-form expressions for the Green's 

j� z 

-----�------11----------- Z=Z m-h 
region -(i+m) 

region -(i+1) 
-----------11----------- Z=d j-h 

source 
region-(i) .,,'-------------=� 

(HED, VED,HMD, VMD) 
Z=-h 

region-(i-1) 

X 

-----.---------------- z=-d 1_1 -h 

region-(i-m) 

Z=-Z .m ·h 

Figure 1: Sources embedded in a multilayer medium. 

functions entails the following steps: 

1. Derivation of the Green's functions in the spectral domain. 

(a) Green's functions are derived in the source layer. 

(b) Green's functions in the observation layer are obtained by using an iterative 
algorithm applied to each TE and TM component of the Green's functions 
in the source layer. 

2. Derivation of the spatial domain, closed-form Green's functions. 
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(a) Spectral-domain Green's functions are approximated in terms of complex 
exponentials obtained from the GPOF method after the direct terms have 
been extracted. 

(b) Closed-form Green's functions are obtained analytically by using the Som­
merfeld identity for each of the complex exponentials. 

All of the Green's functions, presented herein, are for the vector and scalar poten­
tials that are indeed not defined uniquely in stratified media31

• 
32

. Therefore, different 
sets of Green's functions for the vector and scalar potentials can be chosen to satisfy 
the same boundary conditions. The following notation for the Green's function is 
commonly used and referred to as the traditional form33

: 

(1) 

for the vector potentials, and G�:r and G�•,m for the scalar potentials. Note that, 
in this representation, the scalar potentials of the point charges associated with the 
horizontal and vertical dipoles are not identical. This leads to some difficulties in 
the solution of the mixed potential integral equation for a geometry where both the 
horizontal and vertical sources (HED and VED or HMD and VMD) are present at the 
same point, as in the case of a microstrip etch fed by a vertical probe. To overcome 
this difficulty, an alternative form has been suggested32 for the Green's functions and 
these representations are given in Appendix A. 

2.1. Green's Functions in the Spectral Domain 

The spectral-domain Green's functions of the vector and scalar potentials can be 
obtained from the electric and magnetic fields generated by a current dipole J = 

I0 l8(r)a., where a is a unit vector. For the sake of illustration, the field components 
for an HED in a multiiayer media, Fig. 1, can be written in the source layer (layer i) 
as follows34 : 

(2) 

(3) 

where the z dependence of the fields in the source region is written as the sum of the 
direct term and up- and down-going waves due to the reflections from the boundaries 
at z = -h and z = d; - h, respectively, and + and - signs are for z > 0 and z < 0, 
respectively. The coefficients of the up- and down-going waves can be obtained in 
terms of the generalized reflection coefficients by applying the appropriate boundary 
conditions: (i) the down-going waves for z > 0 are the consequence of the reflections 
of the up-going waves at z = d; - h; and (ii) the up-going waves for z < 0 are the 
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consequence of the reflections of the down-going waves at z = -h. It should be noted 
that the other field components can be easily derived from the z-components of the 
fi.elds34, so they are not included here. After having obtained the field components, 
the components of the vector potentials and the scalar potential can be derived from 
the following relations: 

'v X A= µ;H (4) 

,Pd = 
_ 'v x A 

= 
I0 l 8,p (5) 

jwµ;E; jw 81' 
where ,Pd and ,p are the scalar potentials for the dipole element and a point charge, 
respectively, and l' is replaced by x' or y' for an HED ( depending upon the orientation 
of the dipole) and replaced by z' for a VED. Given below are the expressions of the 
spectral-domain Green's functions (traditional form) in the source layer for HED, 
HMD, VED and VMD sources. They read: 

HED: 

HMD: 

G
- A -µ; [

k.,, k,; (A"
+ B") jk,;z ,.,, = 

2 . k . k2 h h e 
J z, p 

+ 
k

�!'• (Di: - C;:)e-jk,, z] 
p 

-f.; 
[

k.,, k,, (Am + Bm) jk,,z = 
? 'k k2 h h e 
-J z; P 

+ 
k

�!·· (Di:' - Cf')e-i"•,'] 
p 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



8 M. I. Aksun & R. Mittra 

VED: 

VMD: 

{jA = _!!}_ [e-ik,; lz l + A" e
-ik,, z + B" e

ik,, • ] ZZ j2kz, V V 

{jq• = __ l_ [e-jk,; lz l + c• e
-ik,, z + n• e

ik,, •1 z j2kz, fj V V 

(12) 

(13) 

(14) 

(1 5) 

where Gj·F denotes the spectral-domain Green's functions for the vector potentials in 
the direction-i due to a unit j-directed current element; GJ• ,m represents the Green's 
function of the scalar potential in the spectral domain due to a unit i-directed electric 
or magnetic current element; k; = k: + k:, ; the superscripts A and F represent the 
magnetic and the electric vector potentials, respectively; and, q. and qm represent 
the electric and magnetic scalar potentials , respectively. The coefficients, At': ,  B::': , 
c•,m n•,m are functions of the generalized reflection coefficients RrE ,TM , and are h,v , h , u  

given by 

A"•m 
h 

+ 

Be,m 
h = 

c:·m = 

+ 

D�·m 

+ 

A"·m 
V 

+ 

e
-ik, . (d, -h) kj.i+I [e

-ik, . (d,-h) I E,TM I 

k;i-1 -jk, , (d,+hl ]MTE,TM 
E,TMe ' i 

-jk, . (d; -h) kj.i+I [ -jk, . (d; -h) e • M,TE e • 
k;i-1 -jk, (d,+hl ] M™·TE 

M,TEe ' i 

-jk, . hkj.i-1 [ -jk, . h e • E ,TM e • 
kj.i+I 

e
-ik,, (2d,-hl ]M!E ,TM 

E ,TM , 

-jk, . h Je;i-1 [ -jk, . h  e • M,TE -e • 
kj.i+I -jk, . (2d,-hl ] M™·TE 

M,TEe ' i 

-jk, h fe,i- 1 [ -jk, . h  e ' 1 'M,TE e 
Je;i+l -jk, . ( 2d; -h) l MTM.TE 

M,TEe ' 1 i 

(1 6)  

( 17) 

(18) 

( 19)  

{20)  
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B!•m = e-ik,, (d, -h) �:�/TE[e-ik,, (d, -h) 

+ �tlTEe-ik,, (d,+h) ] MfM,TE 

c:,m = e-ik,, h ��\.Bf-e-ik,, h 

+ Ri,i+I e-ik, . (2d, -hl ] MTM,TE 
' VJ'M,TE ' i 

D!•m e-ik,, (d, -h) �i�TE[- e-ik,, (d, -h) 
+ Ri,i- 1 e -ik, . (d,+hl ] MTM,TE 

' VJ'M,TE ' i 

•1,, TE,TM - [1 Ri,i+l Ri,i- 1 -jk, . 2d, 1 - 1 
m ;  - - · vrE,TM' VJ'E,TMe ' 

pi+I ,j + j"Jj,j-1  e-ik,, 2dj Ri+l ,i • vrE,TM • vrE,TM 
' VJ'E,TM = 1 R Ri,i-1 -ik, - 2dj - i,i+P vrE,TMe 1 

(21 )  

(22) 

(23) 

(24) 

(25) 

Here R and R are the Fresnel and generalized reflection coefficients34 for which the 
subscripts TE and TM represent the polarization of the wave, and the superscripts 
( i, i - 1 )  or ( i, i + 1 )  show the layer numbers. The subscripts h and v used in the 
coefficients ( 16-23) represent the orientation of the source, horizontal and vertical, 
respectively, while the superscripts e and m denote the type of the source, electric 
and magnetic, respectively. It should be noted that the horizontal Green's functions 

- A <' - A F (';A ,F (';A,F 

for the y-oriented dipoles can be obtained simply by setting GYY. = G"';, , �= �, 
and ai•,m = G�•,m . 

The amplitudes of the up- and down-going waves in a layer different from the 
source layer are �elated to those in the adjacent layers by, 

(26) 

where Ai and A.i+I are the amplitudes of the down-going waves in layers j and j + 1, 
respectively, (j = i - m), T is the transmission coefficient, and Z-m is the distance 
between the lower boundary of the source layer i and the lower boundary of layer 
j ,  Fig. 1. Similarly the amplitudes of the up-going waves in layer j = i + m can be 
written as 

T· - e-i(k,,_, -k,; H•m-1 +d, -hl 
At = At i - t ,J _ . (27) 1 i - i 1 - R ·  · 1 R ·  · 1 e-i .1:,,

u
, J,J - J,J+ 

Therefore, starting from the source layer, the field expressions for any layer can be 
obtained iteratively. 
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2.2. Closed-Form Green's Functions in the Spatial Domain 

Since the principal goal of this section is to introduce a robust and efficient tech­
nique to obtain the spatial-domain Green's functions in closed-forms for planar layered 
media, it would be useful to first provide the definition of the spatial-domain Green's 
functions 

aA,F,q. ,qm = 2_ f dk k H(2> ( k p )GA,F,q. ,qm ( k ) 
4?r ls1P P P O P P (28) 

where, G and G are the Green's functions in the spatial and spectral domains, re­
spectively, HJ2 > is the Hankel function of the second kind and SIP is the Sommerfeld 
integration path defined in Fig. 2. The Sommerfeld integral given in (28) cannot be 

kp - plane 

. . . . . . . . . .  �A' Re[ kp] 
kPmaxl 

Figure 2: Definition of the Sommerfeld integration path, and the paths Capl and Cap2 

used in one- and two-level approximations .  

integrated analytically, except for a few special cases. However, if G,  the spectral do­
main representation of the Green's function in the integrand can be approximated in 
terms of complex exponentials, the analytical evaluation of the integral (28) becomes 
possible via the Sommerfeld identity 

(29) 

Therefore, the crucial step in the derivation of the closed-form Green's functions is 
the exponential approximation of G. Since the approximation techniques used for this 
problem, namely the original Prony, the least square Prony and the GP O F  methods, 
require uniform samples along a real variable of a complex-valued function, one might 
think of choosing the integration path in (28) along the real kP axis so that G can 
be sampled along a real variable. However, one should note that k; = k2 - k; and 
sampling along the real kP axis results in an approximation in terms of exponentials of 
kP which cannot be cast into a form of exponentials of k, as required in the application 
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of the Sommerfeld identity (29). Hence, the SIP must be deformed such that the 
mapping is from a real variable, viz., the running parameter of the mapping, onto the 
complex kz plane. In the original approach, a deformed path on kP plane, denoted 
by Cap2 in Fig. 2, was used to sample the function to be approximated, while in the 
new approach, called the two-level approach, a path formed by the paths Cap2 and 
Capl is employed. The details of these approaches together with the advantages and 
disadvantages will be discussed in the following sections. 

For a general-purpose algorithm, the spectral-domain Green's functions are ob­
tained for a multilayer medium and neither surface wave poles nor the real images 
are extracted. The extraction of the surface-wave poles (SWP) and the real images 
helps the exponential approximation techniques by rendering the Green's functions in 
the spectral domain well-behaved and rapidly converging functions. However, since 
the contribution of the SWPs is small for geometries on a thin substrate, and it 
is not possible to find the real images for multilayer planar structures analytically 
except for some simple cases such as single and double layers, it is likely that the ad­
vantage gained by manipulating the Green's functions in a manner described above 
would be limited to a restricted class of planar geometries and would not lead to a 
general-purpose or robust algorithm. 

Note that to be able to use Sommerfeld identity, the approximation of the spectral 
domain Green's functions, Eqs. (6)- (15 ) ,  must be performed for the terms with the 
square brackets, i.e., the terms other than those that are k� . In addition, k,, and ky 

parameters in G1,/ and G1/, respectively, are excluded i� the approximation and 
their contributions are added in the spatial domain ( after having obtained the spatial 
domain representations of 0Z;

F 
and 0f( )  by differentiating them analytically with 

respect to x and y, respectively. 

2.2. 1 .  Original One-Level Approximation 

The deformed path Cap2 on the kp plane is defined as a mapping of a real variable 
t onto the complex kz plane by 

kz; = k; [-jt + (1 - T.
t )], 
o2 

0 $ t $ To2 (30) 

The Green's functions are sampled uniformly on t E [O, To2], which maps onto the 
path Cap2 with kPm

••• = k; [l + T;2 ] 1!2 in the kp-plane, and then approximated in terms 
of exponentials of t which can be easily transformed into exponentials of kz; . This 
scheme is called the one-level approximation app1oach because the complex function 
to be approximated is sampled between O and T02 , and is assumed to be negligible 
beyond T02 • 

It is instructive to consider the practical details of the implementation of the expo­
nential approximation along the path defined in Eq. (30). It is of utmost importance 
for the success of this approach to choose, judiciously, the approximation parameters, 
viz., the interval T02 , the number of exponentials to be used in the approximation, 
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and the number of samples in t E [O , To2] .  To illustrate the implementation of the 
one-level exponential approximation and the difficulties involved, the spectral-domain 
Green's function for the scalar potential due to an x-directed dipole, G! ,  is given in 
Fig. 3, for a geometry of four layers at 30 GHz: 1st layer- PEC; 2nd layer- e,2=12 .5 ,  
d2 =0.03 cm; 3rd layer- e,3=2. 1 ,  d3=0.07 cm; 4th layer- free-space, and the source and 
observation planes are chosen at the interface of the second and third layers . It is 

G!· 

4.0 \ -- Real 
· · · - · - · · · · · - hnag:inary 

\ 
2.0 

. . · · · · · · · · · · · ·· · · · · · · · · · ·· · · - · ·· ·· · · · · · · · · · · · · · · · · · · · · 

0.0 

-2.0 

-4.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.!> 1.0 

Figure 3: The magnitude of the spectral-domain Green's function G!• along the path 
Cap2 · 1st layer- PEC; 2nd layer- 1:,2=12.5 ,  d2=0.03 cm; 3rd layer- e,3=2. 1 ,  d3=0.07 
cm; 4th layer- free-space, freq=30 GHz. 

evident from Fig. 3 that Green's functions can have sharp peaks and fast changes for 
small t , which maps to the far-field region in the spatial domain. Hence one needs 
to sample the Green 's function given in Fig. 3 at a period of less than 0.05 along t 
so that the fine features of the function can be captured in the approximation. The 
choice of To2 is another parameter that competes with the period of samples, be­
cause a large To2 corresponds to large number of samples and translates into a longer 
CPU time. Fortunately, for the example given in Fig. 3, the Green's function decays 
quite rapidly in the spectral domain. Hence it is sufficient to sample the Green's 
function only as far as To2=5,  which requires 200 samples if 6.t is chosen to equal 
0 .025 .  The spatial-domain Green's function is obtained via the GPOF method us­
ing the above approximation parameters (To2=5, number of samples=20 1 ,  number of 
exponentials=13)  and compared to the result obtained from the numerical integra­
tion, which are labeled as Apprx. and Exact, respectively, in Fig. 4 . Although, as it 
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15.0 ,----�--�----�-----�-----, 

14.0 

13.0 

- - -
12.0 

- - - - - -

- A ppro•. 
a----o E,i:aet. 
- - SW cont.ribur.lon 

1 1 .0 �----�----�-----�----� 
-3.0 -2.0 -1.0 0.0 1.0 

Figure .4: The ma.gnitude of the Green's function for the sca.la.r potentia.l a.nd the 
surface wa.ve contribution. 1st la.yer- PEC; 2nd la.yer- €,2= 1 2.5 ,  d2 =0.03 cm; 3rd 
la.yer- €,3=2. l ,  d3=0.07 cm; 4th la.yer- free-spa.ce, freq=30 GHz. 

wa.s mentioned a.hove, the SWPs a.re not extra.cted from the spectra.1-doma.in Green's 
function prior to the exponentia.l a.pproxima.tion, the contribution of the SWPs is a.lso 
shown for the purpose of compa.rison. One ca.n dra.w the conclusion tha.t the exponen­
tia.l a.pproxima.tion a.lgorithm (GPOF) works well within the influence ra.nge of the 
SWPs. Beyond tha.t a.n a.symptotic a.pproxima.tion together with the surfa.ce-wa.ve 
contribution ca.n be used to a.pproxima.te the spa.tia.1-doma.in Green's functions35

• 
36

• 

Unfortuna.tely, not a.11 the Green's functions ha.ve ra.pidly deca.ying spectra.1-doma.in 
beha.vior, of the type in the exa.mple given a.hove in Fig. 3. For exa.mple, the spectra.1-
doma.in Green's function for the vertica.l component of the vector potentia.l due to 
a. HED, G1,Ji kx = a:y /j ky (7) , does not deca.y a.s fa.st a.nd, moreover, ha.s a. rela.­
tively sha.rp pea.k which requires sa.mpling a.lmost a.s frequently a.s tha.t of the exa.mple 
given in Fig .  3 (see Fig. 5). To demonstra.te the effect of the choice of a.pproxima.tion 
pa.ra.meters, the Green's function J G1x dx ( = F-1 { G1x fi kx })  is given for the sa.me 
a.pproxima.tion pa.ra.meters a.s those of the a.hove exa.mple (Ta2=5 ,  number of sa.m­
ples=201) a.nd compa.red to the results obta.ined by the numerica.l integra.tion of the 
spectra.l-doma.in representa.tion of the Green's function a.nd to the results obta.ined 
by using different a.pproxima.tion pa.ra.meters in Fig.  6. We observe tha.t the a.pprox­
ima.ted Green's functions do not a.gree well with the exa.ct solution for sma.11 va.lues 
of p. This is beca.use the spectra.1-doma.in Green 's function is not sa.mpled fa.r enough 
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Figure 5: The magnitude of the spectral-domain Green's function Gf,,/j k,, along 
the path Cap2 · 1st layer- PEC; 2nd layer- E,2=12.5, d2 =0.03 cm; 3rd layer- E,3=2. 1, 
d3 =0.07 cm; 4th layer- free-space, freq=30 GHz. 

to get an accurate near-field distribution. However, if the value of T02 is increased, 
the agreement between the approximated and exact Green's functions is improved at 
the expense of the computation time provided that the frequency of sampling is kept 
constant. 

From the above discussion, it can be concluded that the one-level approximation 
approach cannot be made fully robust and suitable for the development of CAD soft­
ware. As was mentioned above, this is because it requires the users to first investigate 
the spectral-domain behavior of the Green's function and then perform a few iter­
ations to find the best possible combination of the approximation parameters. To 
circumvent these difficulties, a two-level approximation scheme has been developed 
in conjunction with the use of the GPOF method and its details are given in the 
following section. 

2. 2.2 Two-Level Approach 
To alleviate the necessity of investigating the spectral-domain Green's functions 

in advance and the difficulties caused by the trade-off between the sampling range 
T02 and the sampling period, the approximation is performed in two levels. The first 
part of the approximation is carried out along the path Capl, and the second along 
the path  Cap2 , as shown in Fig. 2. Note that the second part of the approximation 
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Figure 6 :  The magnitude of the Green's function for the vector potential J G1,, dx . 
1st layer- PEC; 2nd layer- f,2= 12.5,  d2 =0.03 cm; 3rd layer- f,3=2. 1 ,  d3 =0.07 cm; 4th 
layer- free-space, freq=30 GHz. 

is the same as the one-level approximation scheme described in the previous section, 
except th_at now the value of To2 (k

Pmas• = k[l + T;2
] 112 ) can be set in advance such 

that k
Pmas• � km where km is the maximum value of the wavenumber involved in the 

geometry. 
To illustrate the procedure of the two-level approximation, we will first outline 

the necessary steps and then provide some of the details . The steps are: 

• Choose To2 such that k
Pmas• � km : For example, since GaAs is the highest 

dielectric constant layer ( fr (GaAs) = 12 . 5 ) ,  then km = ./mko , and To2 can 
be safely chosen to be 5. 

• Choose To i ,  i .e . ,  kPmasi = k[l + (To i + To2 ) 2] 112 , and the number of samples 
in the range [kPmas2 ' kPmasi l ·  The choice of To i is not very critical as long as 
one chooses kPmas, large enough to pick up the behavior of the spectral-domain 
Green's function for large k

p . Also, since the spectral-domain behaviors of the 
Green's functions are alw:i.ys smooth beyond kPmas2 ' it is not necessary to have 
a large number of sampies on (k

Pmu2 l kPmas, J .  Typical values could be 200 for 
Toi and 200 for the number of samples . 

• Sample the function along the path C11p
i and approximate it by using the GPOF 
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method: Sampling along the path Cap! can be performed by varying t between 0 and T01 uniformly in kz = -jk[T02 + t] . 
• Subtract the function approximated for the range of kP E [ kPmo%2 , kPma%, ] from the original function: The remaining function will be non-zero over a small range of kp ( E [O , kPma%2 ]) so that one can pick up the fine features of this function without employing a relatively large number of sampling points. 
• Sample the remaining function along the path Cap2 uniformly and approximate it by using the GPOF method: Sampling along the path Cap2 can be performed by varying t between O and To2 uniformly in kz = k [-jt + (l - t/T02) ] .  
The parameters that must be fixed by the user in advance are the limits of the sampling ranges Toi and To2 for the first and the second parts of the approximation, respectively, and the number of samples along the paths Cap! and Cap2 , which respec­tively correspond to the first and second parts of the approximation. Although it appears the number of parameters that are to be decided by the user is greater than for the one-level approximation, these parameters need be determined only once for the class of geometries that are of interest. Also, they are used for the approximation of any component of the dyadic Green's function and for any geometrical constants. Finally, the choice of these parameters do not require an investigation of the function to be approximated in advance because they can be chosen for the possible limits of the geometrical constants. To demonstrate the robustness of the technique, the choice of the parameters and the application of the above procedure, the Green's function J c:x dx is obtained for the same geometry as considered in Section 2 . 2. 1 .  Let us first write the parametric equations describing the paths Cap! and Cap2 for the first and second parts of the approximation, respectively 

For Cap! 

For Cap2 

-jk; [To2 + t] 0 :S t  :S Toi 
k; [-jt + (l - -t )] O :S t :S T02 To2 

(31 )  

(32)  

where t is  the running variable sampled uniformly on the corresponding range. Then, the above procedure is followed step by step as: 
• To2 = 5 is chosen, for which kPmo%2 = k; [ l  + T;2J 1!2 > km = Vl2.5 ko 
• T01 = 400 is chosen to ensure that the behavior of G1x /ikx for large kp is captured. This choice for To1 is not critical; for instance, a value of 300 or 500 could have been chosen instead. Since there is no fine feature to be modeled in this range, i.e. , since the function is smooth, one can keep the range large without having to use a large number of samples. Therefore, the number of samples is chosen to be 50 . 
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• G1,Jjk., is sampled along the path Capt and the GPOF method is applied . 

fJin 
Otn = --;---k j 

J i 

N, 
L bine/3, nt 
n=l 

N, 
= I: a 1 n e - 0' 1 n kzi 

n=l 

(33) 

(34) 

where b1n and fJ1n are the coefficients and exponents obtained from the GPOF 
method, and N1 is the number of exponentials used in this approximation. The 
choice of the number of exponentials is based upon the number of significant 
singular values obtained in an intermediate step of the application of the GPOF 
method. For this specific problem, five exponentials are chosen to approximate 
the Green's function over the range of kp E [kPmoz2 >  kPmoz, l ·  It is necessary to 
transform the coefficients b1n and the exponents fl1 n is necessary to cast the ap­
proximating function into a form suitable for the application of the Sommerfeld 
identity (29). This, in turn, implies that the approximating function must be 
an exponential representation in terms of kz; . Hence, a1n and a1n are obtained 
in terms of b1n and f11n in (34). 

• The approximating function J(kp) is subtracted from the original function 
G1

.,
/j k., , which guarantees the remaining function to be negligible beyond 

kpmax2 · 

( 35) 

Note that the first integral is evaluated along the path Cap2 because the inte­
grand is negligible on CapI , but the second integral is evaluated along Cap2 + Capl · 

Therefore, the Sommerfeld identity (29) can be applied to the integrals in (35). 

The remaining function is sampled along the path Cap2 with 100 samples. Since 
the maximum range for the sampling (kPm ... 2 ) is rather small compared to that 
of the one-level approximation scheme, the frequency of sampling can be made 
quite high without substantially increasing the number of samples. For all 
practical purposes (including the worst case situation) the choice of 200 as the 
number of samples is more than sufficient to get a good approximation. 

QA � � ·i." - J(kp) � I: o.ne/J•n t 
= I: a2ne -"•nk,; 

J x n=I n=l 

f12nT02 
a2n = 

k; ( l  + jTo2 ) ;  

(36 ) 

(37) 
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where b2n and /32n are the coefficients and exponents of the exponentials of t 
obtained from the application of the GPOF method, and a2n and a2n are the 
coefficients and exponents of the exponentials of k,, . The number of exponen­
tials N2· in this part of the approximation is chosen to be 8, again by the number 
of significant singular values. 

• By following the previous steps, the spectral-domain Green's function can be 
written as 

(38) 

Also the spatial-domain Green's function can be cast into a closed-form by 
substituting this approximation of the spectral-domain Green's function into 
Eq. (28) , and then employing the Sommerfeld identity Eq. (29) for each term 
to yield 

(39) 

where Tin = jx2 + y2 - a?n and T2n = jx2 + y2 - a�n are the complex dis­
tances. 

In summary, the approximation parameters chosen here for the first part of the 
approximation are: To i = 400; To2 = 5; number of samples=50;  and, number of expo­
nentials=5 .  Likewise, for the second part of the approximation these parameters are: 
number of samples= lOO; and ,  number of exponentials=8. Note that the total number 
of exponentials used in this approximation is 13 .  The Green's function derived by 
employing the above procedure is plotted in Fig. 7, along with the data obtained from 
direct numerical evaluation of the Sommerfeld-type integral (exact) .  Also plotted in 
Fig. 7 are the results derived from the one-level approximation approach with the 
following parameters of approximation: T0 = 200 ; number of samples=400 ;  and the 
number of exponentials= l3 .  Note that the values of the parameters used in the one­
level approximation are chosen to reduce the computation time without sacrificing too 
much accuracy. However, those of the two-level approximation are typical values and 
the number of samples for the second part of the approximation can even be reduced 
to 50 with little or no change in the results. The CPU times on the SPARCstation 
1 0/41  for two approximation techniques for the above example are compared when 
the same number ( =13 )  of total exponentials are used for different approximation 
parameters. The results are presented in the tabular format below: 

Approximation Approximation Parameters CPU time (sec) 
one-level T0 = 200, N, = 400 198 .0  
one-level To = 200 , Ns = 500 382 .0  
two-level Toi = 400 , N, 1 = 50 To2 = 5, N,2 = 50 1 . 2 
two-level T0 1 = 400 , N, 1 = -50 To2 = 5, N,2 = 100 3 .5 
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Figure 7: The magnitude of the Green's function for the vector potential J Gf., dx . 1st layer- PEC; 2nd layer- f,2= 12.5, d2 =0.03 cm; 3rd layer- e,3 =2. 1 ,  d3 =0.07 cm; 4th layer- free-space, freq=30 GHz. 
where N, is the number of samples in the one-level approximation scheme while Ns1 and N,2 are the number of samples of the first and second parts of the approximation, respectively, in the two-level approximation approach. It is obvious that the two-level approximation approach improves the computational efficiency significantly. The robustness of the two-level approach can be demonstrated by casting the other Green's functions into closed forms with the use of the same approximation parameters as those employed for J Gf., dx , viz., To1 = 400, N,, = 50 To2 = 5, N,2 

= 1 00. The normalized Green's functions of the vector and . scalar potentials due to HED and VED sources are obtained (41rG:.,f µ3, 41re3G�, 41rGfz / µ3 and 4H3Gn following the two-level approach (Apprx.) and evaluating the Sommerfeld integrals numerically (Exact). These Green's function plots are shown in Figs. 8 and 9. This numerical experimentation shows that the same set of approximation parameters can be used for any Green's function, i.e., neither an advance investigation of the Green's function nor any trial steps are needed in this procedure. The assessment of the robustness of the proposed approach also requires a study of the sensitivity of the approximation parameters to the geometrical constants and the frequency. Hence the Green's functions for the vector and the scalar potentials are obtained in closed forms for the same geometrical constants and for the same approximation parameters used above, but the frequency of operation is changed to 1 GHz, 10 GHz and 1 00 GHz. This is equivalent, in effect, to changing the geometrical constants (see Figs. 10 and 1 1). It is observed that the agreements between the exact 
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Figure 8: The magnitude of the normalized Green's functions 41rG:.,/ µ3 , 41rE3G� . 1st 
layer- PEC; 2nd layer- E,2= 12 .5 ,  d2=0.03 cm;  3rd layer- E,3=2. 1 ,  d3=0.07 cm; 4th 
layer- free-space, freq=30 GHz. 
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Figure 9: The magnitude of the normalized Green's functions 41rG1z / µ3, 4u3G� . 1st 
layer- PEC;  2nd layer- E,2= 12 .5 ,  d2=0.03 cm; 3rd layer- 1:,3=2. l ,  d3=0.07 cm;  4th 
layer- free-space, freq=30 GHz. 
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Figure 10 :  The magnitude of the normalized Green's function 41rG:,J µ3 • 1st layer­
PEC;  2nd layer- e,2= 12 .5 ,  d2=0.03 cm; 3rd layer- e,3 =2. 1 ,  d3=0.07 cm; 4th layer­
free-space. 

and approximate sets of data remain extremely good.  

3.  MoM Applications of the Closed-Form Green 's Functions 

After having introduced a robust and computationally efficient approach for the 
derivation of the closed-form Green's functions in the previous section, their use in the 
method of moments formulation is discussed in this section. Eliminating the Sommer­
feld integral in the application of the spatial-domain MoM results in two-dimensional 
integrals over finite ranges , and, consequently, the computational efficiency improves 
significantly. However, one still needs to evaluate the remaining double integrals 
numerically, which is the limiting factor for matrix-fill time in the application of the 
spatial-domain MoM for a printed geometry. In this section, we will demonstrate that 
the use of the complex exponentials in place of the spatial-domain Green's functions 
further improves the matrix-fill time because it facilitates the analytical evaluation 
of the remaining double integrals. Thus , a substantial improvement in the matrix-fill 
time is achieved by eliminating all of the numerical integrations involved in the ap­
plication of the spatial-domain MoM to the solution of the Mixed Potential Integral 
Equation. 
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Figure 1 1 :  The magnitude of the normalized Green's function 41r E3G� . 1st layer­
PEC; 2nd layer- E,2=12 .5 ,  d2 =0.03 cm; 3rd layer- E,3 =2. 1 ,  d3=0.07 cm; 4th layer­
free-space. 

3.1 Formulation for the Spatial-Domain MoM 

Before going into the details of how the closed-form Green's functions are employed 
in the MoM formulations , it would be instructive to present the formulation for the 
spatial-domain MoM for 2.5D geometries in a multilayer environment . For the sake of 
illustration, a typical 2 .5D geometry is depicted in Fig. 12 and the MoM formulation 
is demonstrated for this geometry with no loss of generality. Note that the geometry is 
multilayer and has vertical connections , e.g. , shorting pins, as well as two-dimensional 
printed conductors . All of the layers and the ground plane are assumed to be infinitely 
wide in the horizontal plane, and the conductors are assumed to be lossless and 
infinitesimally thin. 

The tangential components of the electric field on the plane of the patch and on 
the shorting pins can be written in terms of the surface current density, J ,  and the 
associated Green's functions as follows: 

E,, = -jwG:,, * J,, + -;..-
8

8 (Gq• * - V · J) (40) 
J W  X 

Ey = -jwG�Y * Jy + -;..-
8

8 (Gq• * V · J )  (41 )  • J W  y 
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Figure 12: A typical 2 .5D geometry in a multilayer medium. 

X 

where * denotes convolution and G1., = G:y · Gj re_Presents the i-directed vector po­
tential at r due to an j-directed electric dipole of unit strength located at r', while 
Gq• represents the scalar potential by a unit point charge associated with an electric 
dipole. Since the traditional form of the Green's functions are employed in the above 
formulation, the Green's function for the scalar potential is not unique for the HED 
and VED. Hence, the term involving the Green's function for the scalar potential, 
which is common in Eqs. (40) - (42), can be explicitly written as 

8J 8J 8J 
Q9• * 'v . J = Q9• * -"' + Gq• * _Y + Gq• * _z 

"' 8x Y 8y z 8z 

where G't,e =Gi• for an HED and Gi• for an VED. 

(43)  

To solve for the surface current density J via the MoM, J is  expressed as a linear 
combination of the basis functions, which are chosen in this work to be rooftops for 
the x- and y-components and pulses or rooftops for the z-component of the current 
density (see Fig. 13) .  Hence, the components of the current density are expressed as: 

J:z: (x , y ) = L L I!mnJ ntnl (x , y )  (44) 
m n 

Jy (x , y ) = I: I:  r!mn> ntni (x , y ) (45) 
m n 

Jz (x , y , z )  = L I!'l Bi' l (x ,  y ,  z) (46)  
I 
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Figure 13 :  Basis functions representing the current density. 

where B£mn) and B�mn) are rooftop functions, and B£1l is pulse or rooftop functions, 
!£mn) and I!mn) are the unknown coefficients of the basis functions at the (m ,  n)th 
position on the subdivided horizontal conductor, and I1'l on the /-th shorting pin or 
the via hole. One of the basis function can be considered as that associated with the 
current source, of course with a known coefficient. 

Following the substitution of Eqs. ( 44)-( 46) into Eqs. ( 40)-( 42), the boundary 
conditions on the tangential electric fields on the conductors are applied in integral 
sense by testing the resulting equations with some testing functions, say TJm 'n') , 
TJm'n') and TJ"l .  This leads to a matrix equation for the unknown coefficients of the 
basis functions which reads 

[ 

z(m 'n' ,mn) 
:,::,: 

z (m 'n' ,mn) 
y:i: 

z(l ' ,mn) 
z:,; 

[ Z ]  [ I ] = [ V j 

z (m' n' ,mn) z(m 'n' ,I) l [ J(m n) l 
:cy :cz :c 

z (m 'n' ,mn) z(m'n' ,I) J(mn) 
yy yz y 

z(l' ,mn) z(l ' ,I) J( I) 
zy zz z 

[ 
vJm 'n' ) l 

= v.:!m 'n' )  

v(I') 
z 

(47) 

where Zs denote the mutual impedances between the testing and basis functions, 
and Vs represent the excitation voltages due to the current source. For the sake of 
brevity, the explicit forms of the impedances and voltages in Eq. (47) are not given 
here for this general case. 
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3. 2 Closed-Form Green's Functions for MoM applications 

In Section 2, a general procedure for deriving the closed-form Green's functions for 
the vector and scalar potentials was detailed. However, a discussion of the technique 
for rendering these closed-form expressions numerically efficient when they are used in 
conjunction with the method of moments was not included. As mentioned in Section 
2 . 2, the terms in the square brackets in Eqs. (6)-(15) should be sampled uniformly 
along kzi and approximated in terms of complex exponentials. However, in order 
to do this, it is necessary to fix the vertical coordinate variable z and apply the 
GP OF approximation technique anew for each value of z. For geometries involving 
horizontal conductors only, this would not be a computationally inefficient procedure 
because the conductors would be located at constant z-planes. As an example, for 
a microstrip line along the x-direction, the only MoM matrix element is z£7,;im ' ) ,  and 
can be written explicitly as; 

( ' )  ( ' )  A ( ) 1 ( ') 8 aB(m) 
z,;;:m = < T,,m , G,,,, * B,,

m > +
w2 < T,,

m 

' 8x
[G!• * a: ] > (48) 

where a:,, and G!• used in this formulation are approximated by GP OF for constant 
z's corresponding to the planes of the conductors in the geometry. However, for 
geometries with both vertical and horizontal conductors that support both z and 
x-directed current components, typical MoM matrix elements have the forms 

T(I') GA B(m) T(I') !_[Gq· aBJ
m) ] 

< z 7 ZX * X > , < Z 
> az X * ax > 

< r(I'> GA * B<'l > < r(l'l !_[Gq· * 8B1'l i > z , zz z , z , az z az 
(49) 

where < , > and * denote inner product and convolution, respectively. G!, G1z , G!• 
and G'i• need to be approximated at every observation point z ,  and/or source point 
z' values in the integration due to the testing and expansion processes along a ver­
tical conductor. (Note that if we assume the origin is located at the bottom of the 
source layer for the application of the MoM, the coordinates used in the derivation 
of the Green's functions here can be transformed from z to z - z', and h to z') . 
However, this would defeat the purpose of using the closed-form Green's functions in 
a MoM application. To circumvent the problem associated with the testing process, 
which corresponds to integration along z, the GPOF method can be applied to the 
complex coefficients of e±ik,; z in all the Green's functions except a:/. Hence, the 
z-dependence in the closed-form Green's functions becomes explicit and the testing 
procedure along the z-direction can be performed analytically for some testing func­
tions like uniform and roof-top functions, which further improves the computational 
efficiency of using the closed-form Green's functions in conjunction with the method 
of moments. 

Another technique, proposed herein, to overcome the above mentioned difficulties 
is to interchange the order of integration ( 49), provided that the basis and testing 
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functions are so chosen that the involved integrals a.re uniformly convergent37
, a.nd 

carrying out the integration over z analytically for spectral domain representation 
of the Green's function multiplied with the testing function. Next, the approxima­
tion method, GPOF, is applied to the resulting spectra.I domain function. For the 
inner product terms involving both the z and z' integrations, these integrals can be 
performed analytically by using the procedure described above, and subsequently ap­
plying the GPOF algorithm. Note that the spectral representations of the Green's 
functions are exponential functions of z and z', and this enables us to carry out the 
z a.nd z' integrations analytically in the spectral domain. 

3. 3 Analytical Evaluation of the MoM Matrix Elements 

The formulation presented herein is a.pplica.ble to genera.I microstrip geometries 
in a multilayer medium where it is assumed that the layers extend to infinity in 
the transverse directions. However, to illustrate the main concept of the proposed 
method, the formulation is presented, without loss of generality, for a microstrip etch 
on a. substrate for which only the longitudinal current is assumed to exist. To calculate 

Basis functions . . . 
Feed ::: : \  

t 
/- z -/ I 

d E Substrate 

t Ground plane 

F igure 14: A typical microstrip geometry. €r =4.0 ,  d=0.02032 cm, f= l . 0  GHz. 

the necessary Green's functions in a. closed-form, we consider the following para.meters 
for the geometry of a substrate ha.eked by a ground plane, (see Fig. 14) . The dielectric 
constant €r of the substrate is 4; the thickness of the substrate d=0.02032 cm; and, 
the frequency of operation f=l.0 GHz. The Green's function of the vector and scalar 
potentials due to an HED located a.t the air-substrate interface are obtained in closed 
forms via. the two-level approximation scheme, and the coefficients a1n , a2n and the 
exponents a1n , a2n are given in Table 1 along with the normalized Green's functions 
for vector and scalar potentials, 47f"G:,,; µo and 47f"€o G!• , respectively, in Fig .  15 . The 
mixed-potential integral equation for the microstrip line can be transformed into the 
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Table 1. Coefficients and Exponents for the closed-form Green 's functions 

41rG:,,/ µo = E�v,;i'4 Un e-ik,rn /rn 471'€o G!• = E:�i'8 Un e -ik, rn /rn 

Un an Un an 

-1. 0000+j 0 . 0000 0.000+j 0.0406 -0.590623+j0 . 0  0.0-j 0. 1 03e-3 
0.495e-6-j0 . 123e-5 -0.0512+j 0.0505 0.0196+j 0.0374 0.0390+j 0.0598 

0 .498e-6+j 0. 123e-5 0 .05 1 Hj 0 . 0506 -0.4485+j0.0 0.0+j 0.0345 
1 .0+j 0. 0  0.0+j O.O  0.0196-j 0.0374 -0.0390+j 0.0598 

-0.260e- 1 0+j 0. 77le-l l  -53.33+j 439 .67 
0.279e-5-j0.245e-6 -0.3396+j 0. 9239 

0.204e-6+j 0.328e-6 1 .0270-j 0.2907 
l .O+j 0.0  0.0+j 0.0  

matrix equation via the spatial-domain MoM, and a typical matrix element is  given 
below to help demonstrate the use of the formulation; 

The first inner product of (50) is written explicitly as 
< Tjm 'J , a:,, * Bim l >= 

(50) 

iv) dxdyTjm'l (x , y) iv) dx'dy'G:,, (x - x' , y - y')Bim l (x' , y') (5 1 )  

where DT and Ds denote the domains of the testing and basis functions, respectively, 
and the closed-form Green's function a:,, is expressed as in (39). By changing the 
order of integration, the inner product can be written 

j j du dv a:,,(u, v)j j dx dy Tjm 'l (x , y ) Biml (x - u, y - v) (52) 

where the inner double integral is a correlation function represented as TJm ') ® BJm l . 
As is well-known, the choice of the basis and testing functions are of great impor­
tance for the accuracy of the results and for the convergence of the matrix elements 
involved in the MoM37 • Since the formulation presented here requires the correla­
tion function to be polynomial function, the choice of testing and basis functions is 
restricted to polynomial like functions. Therefore, we choose the rooftop functions, 
which are triangular functions in the longitudinal direction and uniform in the trans­
verse direction, as the basis and . testing functions. Half rooftop functions are also 
used to model the current density at the load and source terminals38 • 

For the above choice of the basis and testing functions, the correlation function 
becomes 

(53) 
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Figure 15 :  The magnitude of the normalized Green's function 41rG1,,/µ0 , 41r1:0G!· · 1:, =4.0, d=0.02032 cm, f= l.0 GHz. 
where 

f(u) 

g(v) 

13u3 + 12u2 + 11u + 1o (m - n - 2)h,, < u < (m - n + 2) h,, 

= ..!_ { V + hy -hy $ V $ Q (54) h; - V + hy O $ V $ hy 

and 10 , 11 , 12 , 13 are constants determined by m, n and h,, (the half-span of the basis functions in x-direction). Also, hy , the length of the unit cell in y-direction is chosen to equal the width of the microstrip line for the specific geometry considered herein. It should be noted that the formulation given here is also valid for a two-dimensional patch since the order of the polynomials in (54) is the highest that can be encountered in the analysis. By substituting the correlation function (53) and the Green's function (39) into (52), the inner-product term can be written as 
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where rn is either r1n or r2n as defined in (39) . 
Because the integrals in Eq. (55) occur in the calculation of matrix elements ,  and 

because they cannot be evaluated analytically, their numerical evaluations constitute 
almost the entire fill time of the MoM matrix. Although the use of the closed­
form Green's functions in conjunction with the MoM improves the matrix fill time 
significantly38

, it could be further improved if the integrals involved (55) can be 
evaluated analytically. It has been shown that the Taylor 's series expansion of the 
exponential term in the integrand of the first integral in (55) results in an analyti­
cally integrable function over a surface39

. Using this fact , and some of the integral 
identities40

, we can evaluate the integrals in (55) analytically. The case of the Taylor 's 
series expansion requires examining its convergence for all rn values with the same 
number of terms; therefore the expansion is performed around different center points 
Re for different regions corresponding to different basis and testing function pairs . 
The m th order Taylor series expansion of f(z) around z0 involves an error term of 

error = (z - z )m+i I Jm+l (c) I (m + 1 ) !  0 

where c is a point in the region of convergence. As the m 1h derivative of e-ik, rn is 
bounded by k';' , the error introduced by using the mth order expansion is 

< l k. (rn - Re) lm+l error _ (m + l ) !  

I t  can be  observed that the distance t o  the center point directly determines the error. 
Hence, to minimize the error, the locations of the center points are chosen to be the 
mid-point of the each integration region for which the integration intervals are 2hy and 
4h., for v and u integrations , respectively, and consequently, rn - Re $ /(2h., ) 2 + h; . 
For the choice of 20 basis functions for each wavelength, rn - Re is bounded by 0 . l ! A  
and the error i s  obtained i n  the following form 

(21r X 0 . 1 1r+L (0 .7r+l error $ (m + l ) ! = (m + l ) !  (56) 

from which it is easily shown that an error bounded by 10-4 can be obtained with 
the use of at least five terms of the Taylor series . The results presented in Section 3 .4 
demonstrate that the amount of error of 10-4 or smaller does not affect the end result 
as the current distributions obtained by using analytic and numeric integrations are 
in good agreement . Hence, it is not worthwhile to. increase the number of terms any 
further. 

Using the fifth order Taylor series expansion around Re , e-ik,rn can be approxi­
mated as 

(57) 
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where 

fJo = 

f11 = 

f12 = 

fJ3 = 

fJ4 = 

fls = 

(l + .
k R _ k;R� _ . k;R� + k!R� . k!R�

) 1 S C 2 1 6 24 
+ 1 120 

(-
.
k + k

2R . k;R� _ k!R� _ . k!R�
) l s  , c + l 2 6 1 24 

( 
k: . k;Rc k!R� . k!�

) - - - 1 -- + -- + 1 --2 2 4 12  

c
k; k!Rc . k!R�

) 1 6 - -6 - - 1 12 

(
k! . k!Rc

) 24 
+ 1 24 

. k! 
-1 1 20 

(58) 

(59)  

(60)  

(61 )  

(62) 

(63) 

Replacing the exponential term e-ik, rn in (55) by its Taylor series expansion given in 
(57) requires an analytic evaluation of the integrals of the type 

for j =-1 ,0 ,  . . .  ,4, k=O ,  . . .  ,3, 1=0, 1  (64) 

which are given in Appendix B. Note that the same procedure presented above can be 
applied to the second inner-product term of (50) in which G�· has the same functional 
form as G1,, given in (39 ) .  

3.4 Results and Discussions 

In this part of the study, the formulation described above is applied to a microstrip 
line to evaluate computational efficiency. The dielectric constant of the medium is fr 

= 4.0 ,  the ratio of line width w to substrate thickness d is 4 .0 .  The thickness of the 
substrate is 0 .02032 cm (=8.0  mils. ) ,  the frequency is 1 GHz, and the length of the 
line is 10 cm. Computational efficiency of the proposed method is assessed in terms 
of the CPU time obtained on a SUNsparc-1 0  workstation. 

The current distribution on the microstrip line is obtained by numerically inte­
grating the double integrals (52) involved in the MoM matrix elements (Case 1), and 
then by using the analytic integration formulation presented in Section 3 .3  (Case 2). 
The current distributions derived via the use of the numerical integration (Case 1 )  
have been verified b y  comparing it with the results obtained via the transmission line 
method38 ; therefore, Case 1 serves here as a reference for the accuracy of the current 
distribution as well. In the numerical integration, 16-point Gauss quadrature inte­
gration algorithm, which is considered to be one of the fastest numerical integration 
algorithms, is employed for the double integrals for which the range of the integration 
is divided into sub-regions to guarantee the convergence of the numerical integration. 
For both cases, the CPU times are obtained for different numbers of basis functions 
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Figure 16 :  Current distributions obtained by using 40 ha.sis functions. 1:,=4.0 ,  d=0.02032 cm,  f=l.0 GHz, w=0.08128 cm, 1=10  cm. 
and are listed in Table 2. The current distributions obtained via numerical and an­alytical evaluations of the integrals for 40 ha.sis functions are shown in Fig. 16. It 
Table 2. CPU times for different number of basis functions 

number of ha.sis func. CPU time in sec. (Case 1 )  CPU time in sec. ( Case 2) 10 13 .3 0.36 20 27.0 0.65 30 39.0 0.98 40 52 .95 1.33 
can be observed from Table 2 that the elimination of the numerical integrals reduces the computation time approximately by a factor of 40. Besides the improvement in computational efficiency, the formulation based on. the analytical integration also provides a number of other advantages. First of all, a.s the MoM becomes a technique free from any numerical integrations; hence, the numerical errors due to integration as well as the effort needed to locate an appropriate numerical integration algorithm are eliminated. Secondly, as the matrix entries are expressed in closed-forms,  the effect of changing the geometrical parameters, e.g. , the length and width of the mi­crostrip line, on the output parameters such as current distribution, input impedance or spurious radiation, can be studied analytically by taking a derivative with respect to the desired parameter. Finally, if a method uses numerical integrations, it is nee-
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essary to extract the singularity at the source point , while in the analytic integration 
formulation this problem is completely eliminated because the singularities involved 
are integrable over a surface. It should be noted that the application of the proposed 
approach here has no restriction for the size of the geometry, provided the closed-form 
Green's functions are valid for the distance as far as the maximum distance of the 
geometry. 

4. Conclusions 

The closed-form Green's functions, developed in the past, suffer from the drawback 
of choosing the parameters for the exponential approximation procedure required in 
its derivation. Moreover, the extraction of the SWPs and real images may not be 
possible or efficient for multilayer geometries when the original version of the approach 
is employed. Here, a new approach based on a two-level approximation is proposed 
to overcome these difficulties and to make the use of closed-form Green's functions 
attractive for those developing the EM software as well as for researchers in the field. 
The major advantages of this approach are its robustness and the computational 
efficiency, both of which are demonstrated in the text . Numerical examples of the 
closed-form Green's functions a.re given for a multilayer medium. The approximate 
Green's functions are compared with the exact ones and very good agreement is 
achieved. 

When the spatial domain MoM is used in conjunction with the closed-form Green's 
functions for the solution of the mixed-potential integral equation, the MoM matrix 
elements involve two-dimensional integrals whose numerical evaluations increase the 
matrix fill-time. In order to improve the numerical efficiency of the method, the 
integrand is approximated by its Taylor series and each term of the expansion is in­
tegrated analytically. By eliminating the numerical integration from the MoM, the 
matrix fill-time is decreased drastically, which is a significant improvement in the 
matrix-fill time of the MoM. This acceleration in the matrix fill time makes the MoM 
an efficient and full-wave analysis technique, which can be utilized in an optimization 
algorithm for the solution of a microstrip circuit or antenna design problem. The pro­
posed method offers other advantages as well. For instance, by expressing the matrix 
entries in closed-forms, it becomes possible to investigate the effect of varying certain 
parameters on the end result by examining the matrix entries and their derivatives 
analytically. 

5. Appendix A: Alternative Form of Green's Function 

Since the vector and scalar potentials are not uniquely defined in stratified media, 
different sets of Green's functions for the vector and scalar potentials are possible, 
and they lead to several different MPIE formulations31 • 32 . Among these Green's 
functions, three useful choices, referred to as formulations A, B, and C were given by 
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Michalski33 • In this paper, the formulation C is chosen as the alternative form of the 
Green's function and given here as, 

;:,A,F 
a = (xx + yy)G,,,, + zxG.,, + zyG,y 

+ xzG,,. + yzGy, + zzG •• 
and Gq•,m as the Green's function for the scalar potential for both horizontal and 
vertical dipoles, Fig. 1. Note that the difficulties encountered in the traditional for­
mulation due to the difference between the scalar potentials of HED (HMD) and 
VED (VMD) are alleviated in this formulation. In the above form of the Green's 
function, the terms associated with the horizontal dipoles ( G1!/, a:/ G1,{ , G1/, 
G�•.m , and G�•.m ) remain the same as in the traditional form (6)-(1 1); two new entries, 
a:{ and a:;F, are introduced, and G1;F is modified for the vertical dipoles. For an 
x-oriented HED and a z-oriented VED, the Green's function components used with 
the alternative form, are adopted to the formulation given in Section 2 . 1  as, 

(jA = •• 

where, G1. ,  G1. are the alternative Green's function components in the source layer, 
and Ah,v >  B'f.,v, G;:, Di. are given in the Eqs. (16)-(21).  

6.  Appendix B :  The Analytic Evaluation of the Integrals Given in (64) 

R = ,lu2 + v2 + c2 

where c is any of the complex exponents.  Some special integrals are defined in order 
to simplify the formulation. 

Jo = j R du = � ( Ru + ( v2 + c2) log( u + R)) 
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11 = 

12 = 

]3 = 

]4 = 

]5 = 

ls = 

]7 = 

Ko = 

K1 = 

Kn = 

lo = 

11 = 

In = 

Lo = 

L1 = 

Ln = 

Mn = 

R3 

j uR du = 
3 

j u2R du = 
u (v2 + c2 + 2u2 )R (v2 + c2 ) 2 

-
8 

log(u + R) 

J Rs R3 

u
3R du = - - (v2 + c2 ) -

5 3 

j u
4R du = (- �(v2 + c2 ) 2 + (v2 + c2)u2 + 4u4) ( �:) 

1 + 
1 6  

(v2 + c2 )3 log(u + R) 

J R7 2 R3 

u5 R du = - - -R5 (v2 + c2 ) + -(v2 + c2 ) 2 

7 5 3 

j 
1u (v2 + c2 ) (v2 + c2 ) 2 (v2 + c2 )3 

u
6 R du = 

8Js -
40 ]4 + 

30 
12 -

15  
lo 

R9 Rr Rs R3 

j u
7 R du = - - 3(v2 + c2) - + 3(v2 + c2) 2 - - (v2 + c2 )3 -

9 7 5 3 

j 1 du = log( u + R) 

j i du = R  

J Un 
2 2 

R 
du = ln-2 - (v + c )l<n-2 

; 
1 1 

(
UV

) (u2 + c2 )R 
du = 

vc arctan cR 

j 
u 

du =
log(R - v) - log(R + v) 

(u2 + c2 )R 2v 

J Un 
2 

(u2 + c2 )R 
du = Kn-2 - c In-2 

j 
(u2 � c2 ) du = � arctan (�) 

j 
u 

du = 
log(u2 + c2 ) 

(u2 + c2 ) 2 

J 
Un Un-1 

( 2 2 ) du = -- - c2Ln-2 
u + c n - 1  

j j � dv du = (un+l log(v + R) - Ln+2 + vln+2) / (n + 1 ) 

j j u
n R dv du 

j j u
n R2 dv du 

1 2 = 
2

(vJn + Mn+2 + C Mn ) 

un+l 
(

v3 

2) 
u"+3 

= -- - + vc + --v 
n + l 3 n + 3  



j j un R:3 dv du 
j j un R4 dv du 
j ; unv R dv du 

j j unvR dv du 
j j unvR2 dv du 
j j unvR3 dv du 
j j unvR4 dv du 
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= 

= 

= 

= 

= 

= 
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